1
|
Payne T, Taylor J, Kunkel D, Konieczka K, Ingram F, Blennow K, Zetterberg H, Pearce RA, Meyer-Franke A, Terrando N, Akassoglou K, Sanders RD, Lennertz RC. Association of preoperative to postoperative change in cerebrospinal fluid fibrinogen with postoperative delirium. BJA OPEN 2024; 12:100349. [PMID: 39429436 PMCID: PMC11490679 DOI: 10.1016/j.bjao.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024]
Abstract
Background We aimed to assess perioperative changes in fibrinogen in the cerebrospinal fluid (CSF), their association with markers of blood-brain barrier breakdown and neuroinflammation, and their association with postoperative delirium severity. Methods We conducted a secondary analysis of the Interventions for Postoperative Delirium-Biomarker 2 (IPOD-B2, NCT02926417) study, a prospective observational cohort study. We included 24 patients aged >21 yr undergoing aortic aneurysm repair. CSF samples were obtained before (n=24) and after surgery (n=13), with some participants having multiple postoperative samples. Our primary outcome was the perioperative change in CSF fibrinogen. Delirium was assessed using the Delirium Rating Scale-Revised-98. Results CSF fibrinogen increased after surgery (P<0.001), and this was associated with an increase in CSF/plasma albumin ratio (β=1.09, 95% CI 0.47-1.71, P=0.004). The peak change in CSF fibrinogen was associated with the change in CSF interleukin (IL)-10 and IL-12p70. The peak change in CSF fibrinogen was associated with the change in CSF total tau (β=0.47, 95% CI 0.24-0.71, P=0.002); however, we did not observe an association with postoperative delirium severity (incidence rate ratio = 1.20, 95% CI 0.66-2.17, P=0.540). Conclusions Our preliminary findings support the hypothesis that fibrinogen enters the brain via blood-brain barrier disruption, promoting neuroinflammation and neuronal injury. However, we did not observe an association between cerebrospinal fluid fibrinogen and peak delirium severity in this limited cohort.
Collapse
Affiliation(s)
- Thomas Payne
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, New South Wales, Australia
| | - Jennifer Taylor
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, New South Wales, Australia
| | - David Kunkel
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Katherine Konieczka
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Frankie Ingram
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Robert A. Pearce
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Anke Meyer-Franke
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Cell Biology, and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Katerina Akassoglou
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology and Weill Institute of Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Robert D. Sanders
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, New South Wales, Australia
- Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
- NHMRC Clinical Trials Centre, The University of Sydney, New South Wales, Australia
| | - Richard C. Lennertz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
2
|
Mohammadi H, Ariaei A, Ghobadi Z, Gorgich EAC, Rustamzadeh A. Which neuroimaging and fluid biomarkers method is better in theranostic of Alzheimer's disease? An umbrella review. IBRO Neurosci Rep 2024; 16:403-417. [PMID: 38497046 PMCID: PMC10940808 DOI: 10.1016/j.ibneur.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Biomarkers are measured to evaluate physiological and pathological processes as well as responses to a therapeutic intervention. Biomarkers can be classified as diagnostic, prognostic, predictor, clinical, and therapeutic. In Alzheimer's disease (AD), multiple biomarkers have been reported so far. Nevertheless, finding a specific biomarker in AD remains a major challenge. Three databases, including PubMed, Web of Science, and Scopus were selected with the keywords of Alzheimer's disease, neuroimaging, biomarker, and blood. The results were finalized with 49 potential CSF/blood and 35 neuroimaging biomarkers. To distinguish normal from AD patients, amyloid-beta42 (Aβ42), plasma glial fibrillary acidic protein (GFAP), and neurofilament light (NFL) as potential biomarkers in cerebrospinal fluid (CSF) as well as the serum could be detected. Nevertheless, most of the biomarkers fairly change in the CSF during AD, listed as kallikrein 6, virus-like particles (VLP-1), galectin-3 (Gal-3), and synaptotagmin-1 (Syt-1). From the neuroimaging aspect, atrophy is an accepted biomarker for the neuropathologic progression of AD. In addition, Magnetic resonance spectroscopy (MRS), diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), tractography (DTT), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), can be used to detect AD. Using neuroimaging and CSF/blood biomarkers, in combination with artificial intelligence, it is possible to obtain information on prognosis and follow-up on the different stages of AD. Hence physicians could select the suitable therapy to attenuate disease symptoms and follow up on the efficiency of the prescribed drug.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (MUI), Isfahan, Islamic Republic of Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Islamic Republic of Iran
| | - Enam Alhagh Charkhat Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
3
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
4
|
Kantor AB, Akassoglou K, Stavenhagen JB. Fibrin-Targeting Immunotherapy for Dementia. J Prev Alzheimers Dis 2023; 10:647-660. [PMID: 37874085 PMCID: PMC11227370 DOI: 10.14283/jpad.2023.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Blood-brain barrier (BBB) disruption is an early event in the development of Alzheimer's disease. It precedes extracellular deposition of amyloid-β in senile plaques and blood vessel walls, the intracellular accumulation of neurofibrillary tangles containing phosphorylated tau protein, microglial activation, and neuronal cell death. BBB disruption allows the coagulation protein fibrinogen to leak from the blood into the brain, where it is converted by thrombin cleavage into fibrin and deposits in the parenchyma and CNS vessels. Fibrinogen cleavage by thrombin exposes a cryptic epitope termed P2 which can bind CD11b and CD11c on microglia, macrophages and dendritic cells and trigger an inflammatory response toxic to neurons. Indeed, genetic and pharmacological evidence demonstrates a causal role for fibrin in innate immune cell activation and the development of neurodegenerative diseases. The P2 inflammatory epitope is spatially and compositionally distinct from the coagulation epitope on fibrin. Mouse monoclonal antibody 5B8, which targets the P2 epitope without interfering with the clotting process, has been shown to reduce neurodegeneration and neuroinflammation in animal models of Alzheimer's disease and multiple sclerosis. The selectivity and efficacy of this anti-human fibrin-P2 antibody in animal models supports the development of a monoclonal antibody drug targeting fibrin P2 for the treatment of neurodegenerative diseases. THN391 is a humanized, affinity-matured antibody which has a 100-fold greater affinity for fibrin P2 and improved development properties compared to the parental 5B8 antibody. It is currently in a Phase 1 clinical trial.
Collapse
Affiliation(s)
- A B Kantor
- Jeffrey Stavenhagen, PhD, Therini Bio, Inc, Sacramento, CA, USA,
| | | | | |
Collapse
|
5
|
Sulimai NH, Brown J, Lominadze D. Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines 2022; 10:1712. [PMID: 35885017 PMCID: PMC9313381 DOI: 10.3390/biomedicines10071712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/05/2022] Open
Abstract
Fibrinogen (Fg) and its derivatives play a considerable role in many diseases. For example, increased levels of Fg have been found in many inflammatory diseases, such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Although associations of Fg, Fg chains, and its derivatives with various diseases have been established, their specific effects and the mechanisms of actions involved are still unclear. The present review is the first attempt to discuss the role of Fg, Fg chains, its derivatives, and other members of Fg family proteins, such as Fg-like protein 1 and 2, in inflammatory diseases and their effects in immunomodulation.
Collapse
Affiliation(s)
- Nurul H. Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - Jason Brown
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
- Departments of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
Kumar A, Doan VM, Kunkli B, Csősz É. Construction of Unified Human Antimicrobial and Immunomodulatory Peptide Database and Examination of Antimicrobial and Immunomodulatory Peptides in Alzheimer's Disease Using Network Analysis of Proteomics Datasets. Front Genet 2021; 12:633050. [PMID: 33995478 PMCID: PMC8113759 DOI: 10.3389/fgene.2021.633050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
The reanalysis of genomics and proteomics datasets by bioinformatics approaches is an appealing way to examine large amounts of reliable data. This can be especially true in cases such as Alzheimer's disease, where the access to biological samples, along with well-defined patient information can be challenging. Considering the inflammatory part of Alzheimer's disease, our aim was to examine the presence of antimicrobial and immunomodulatory peptides in human proteomic datasets deposited in the publicly available proteomics database ProteomeXchange (http://www.proteomexchange.org/). First, a unified, comprehensive human antimicrobial and immunomodulatory peptide database, containing all known human antimicrobial and immunomodulatory peptides was constructed and used along with the datasets containing high-quality proteomics data originating from the examination of Alzheimer's disease and control groups. A throughout network analysis was carried out, and the enriched GO functions were examined. Less than 1% of all identified proteins in the brain were antimicrobial and immunomodulatory peptides, but the alterations characteristic of Alzheimer's disease could be recapitulated with their analysis. Our data emphasize the key role of the innate immune system and blood clotting in the development of Alzheimer's disease. The central role of antimicrobial and immunomodulatory peptides suggests their utilization as potential targets for mechanistic studies and future therapies.
Collapse
Affiliation(s)
- Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vo Minh Doan
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Kunkli
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Ayton S, Janelidze S, Roberts B, Palmqvist S, Kalinowski P, Diouf I, Belaidi AA, Stomrud E, Bush AI, Hansson O. Acute phase markers in CSF reveal inflammatory changes in Alzheimer's disease that intersect with pathology, APOE ε4, sex and age. Prog Neurobiol 2020; 198:101904. [PMID: 32882319 DOI: 10.1016/j.pneurobio.2020.101904] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 01/31/2023]
Abstract
It is unknown how neuroinflammation may feature in the etiology of Alzheimer's disease (AD). We profiled acute phase response (APR) proteins (α1-antitrypsin, α1-antichymotrypsin, ceruloplasmin, complement C3, ferritin, α-fibrinogen, β-fibrinogen, γ-fibrinogen, haptoglobin, hemopexin) in CSF of 1291 subjects along the clinical and biomarker spectrum of AD to investigate the association between inflammatory changes, disease outcomes, and demographic variables. Subjects were stratified by Aβ42/t-tau as well as the following clinical diagnoses: cognitively normal (CN); subjective cognitive decline (SCD); mild cognitive impairment (MCI); and AD dementia. In separate multiple regressions (adjusting for diagnosis, age, sex, APOE-ε4) of each APR protein and a composite of all APR proteins, CSF Aβ42/t-tau status was associated with elevated ferritin, but not any other APR protein in CN and SCD subjects. Rather, the APR was elevated along with symptomatic progression (CN < SCD < MCI < AD), and this was elevation was mediated by CSF p-tau181. APOE ε4 status did not affect levels of any APR proteins in CSF, while these were elevated in males and with increased age. The performance of the APR in predicting clinical diagnosis was influenced by APOE ε4 status, sex, and age. These data provide new insight into inflammatory changes in AD and how this intersects with pathology changes and patient demographics.
Collapse
Affiliation(s)
- Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Blaine Roberts
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Pawel Kalinowski
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ibrahima Diouf
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Abdel A Belaidi
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
9
|
Johnson AA, Shokhirev MN, Wyss-Coray T, Lehallier B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res Rev 2020; 60:101070. [PMID: 32311500 DOI: 10.1016/j.arr.2020.101070] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
The development of clinical interventions that significantly improve human healthspan requires robust markers of biological age as well as thoughtful therapeutic targets. To promote these goals, we performed a systematic review and analysis of human aging and proteomics studies. The systematic review includes 36 different proteomics analyses, each of which identified proteins that significantly changed with age. We discovered 1,128 proteins that had been reported by at least two or more analyses and 32 proteins that had been reported by five or more analyses. Each of these 32 proteins has known connections relevant to aging and age-related disease. GDF15, for example, extends both lifespan and healthspan when overexpressed in mice and is additionally required for the anti-diabetic drug metformin to exert beneficial effects on body weight and energy balance. Bioinformatic enrichment analyses of our 1,128 commonly identified proteins heavily implicated processes relevant to inflammation, the extracellular matrix, and gene regulation. We additionally propose a novel proteomic aging clock comprised of proteins that were reported to change with age in plasma in three or more different studies. Using a large patient cohort comprised of 3,301 subjects (aged 18-76 years), we demonstrate that this clock is able to accurately predict human age.
Collapse
|
10
|
Rehiman SH, Lim SM, Neoh CF, Majeed ABA, Chin AV, Tan MP, Kamaruzzaman SB, Ramasamy K. Proteomics as a reliable approach for discovery of blood-based Alzheimer's disease biomarkers: A systematic review and meta-analysis. Ageing Res Rev 2020; 60:101066. [PMID: 32294542 DOI: 10.1016/j.arr.2020.101066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
In order to gauge the impact of proteomics in discovery of Alzheimer's disease (AD) blood-based biomarkers, this study had systematically reviewed articles published between 1984-2019. Articles that fulfilled the inclusion criteria were assessed for risk of bias. A meta-analysis was performed for replicable candidate biomarkers (CB). Of the 1651 articles that were identified, 17 case-control and two cohort studies, as well as three combined case-control and longitudinal designs were shortlisted. A total of 207 AD and mild cognitive impairment (MCI) CB were discovered, with 48 reported in >2 studies. This review highlights six CB, namely alpha-2-macroglobulin (α2M)ps, pancreatic polypeptide (PP)ps, apolipoprotein A-1 (ApoA-1)ps, afaminp, insulin growth factor binding protein-2 (IGFBP-2)ps and fibrinogen-γ-chainp, all of which exhibited consistent pattern of regulation in >three independent cohorts. They are involved in AD pathogenesis via amyloid-beta (Aβ), neurofibrillary tangles, diabetes and cardiovascular diseases (CVD). Meta-analysis indicated that ApoA-1ps was significantly downregulated in AD (SMD = -1.52, 95% CI: -1.89, -1.16, p < 0.00001), with low inter-study heterogeneity (I2 = 0%, p = 0.59). α2Mps was significantly upregulated in AD (SMD = 0.83, 95% CI: 0.05, 1.62, p = 0.04), with moderate inter-study heterogeneity (I2 = 41%, p = 0.19). Both CB are involved in Aβ formation. These findings provide important insights into blood-based AD biomarkers discovery via proteomics.
Collapse
|
11
|
Wesenhagen KEJ, Teunissen CE, Visser PJ, Tijms BM. Cerebrospinal fluid proteomics and biological heterogeneity in Alzheimer's disease: A literature review. Crit Rev Clin Lab Sci 2019; 57:86-98. [PMID: 31694431 DOI: 10.1080/10408363.2019.1670613] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by aggregation of amyloid and tau proteins in the brain. Results from genetic studies suggest that the pathophysiology underlying AD is complex, but studying this complexity in patients remains difficult. The cerebrospinal fluid (CSF) proteome contains a large number of proteins that can reflect ongoing biological processes. Proteomics techniques can be used to measure many proteins simultaneously in individual patients and may therefore provide an opportunity to study AD disease mechanisms. Here, we review the CSF proteomics literature to identify proteins consistently associated with AD, and perform pathway analyses on these proteins to study which biological processes may be involved in the disease.We performed a literature search of studies that investigated CSF proteomic alterations related to AD. We included original research articles when they measured at least 10 proteins in (antemortem) CSF in at least 10 individuals with AD, mild cognitive impairment (MCI) or controls. We examined if proteins were consistently related to AD, defined as consistent increase or decrease in AD vs. controls across studies. Next, we used the proteins identified as input to pathway analyses using Reactome to investigate which biological processes were enriched.In total, 29 studies were included that investigated AD-related changes to the CSF proteome, including a total of 1434 individuals with AD (of whom 47.1% had a CSF biomarker profile and 9.6% a postmortem examination consistent with AD) and 1380 controls. The studies reported 1 to 138 proteins associated with AD, of which 97 proteins were reported by two or more studies. Among proteins that were measured in more than one study, 27 (27.8%) showed consistent increases, 15 (15.5%) consistent decreases and 55 (56.7%) had contrasting results. Pathway analyses showed that AD-related proteins were enriched for hemostasis, lipoprotein and extracellular matrix pathways.These results indicate that proteomic alterations in CSF associated with AD reflect involvement of various biological pathways. The frequent occurrence of inconsistent protein level changes reported by different studies suggests that additional biological and/or (pre)analytical factors may influence the CSF proteome in AD, which should be further investigated in order to improve understanding of the biological complexity underlying AD.
Collapse
Affiliation(s)
- Kirsten E J Wesenhagen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Van Giau V, An SSA. Epitope Mapping Immunoassay Analysis of the Interaction between β-Amyloid and Fibrinogen. Int J Mol Sci 2019; 20:ijms20030496. [PMID: 30678343 PMCID: PMC6387197 DOI: 10.3390/ijms20030496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
The vast majority of patients with Alzheimer's disease (AD) suffer from impaired cerebral circulation. Substantial evidence indicates that fibrinogen (Fbg) and fibrin clot formation play an important role in this circulatory dysfunction in AD. Fbg interacts with β-amyloid (1-42) (Aβ), forming plasmin-resistant abnormal blood clots, and increased fibrin deposition has been discovered in the brains of AD patients and mouse models. In this study, biochemical approaches and the epitope mapping immunoassay were employed to characterize binding epitopes within the Fbg and complementary epitopes in Aβ. We discovered the Aβ5⁻25 peptide as the most critical region for the interaction, which can be inhibited by specific monoclonal and polyclonal antibodies against the central region of Aβ. Aβ binding to Fbg may block plasmin-mediated fibrin cleavage at this site, resulting in the generation of increased levels of plasmin-resistant fibrin degradation fragments. Our study elucidates the Aβ⁻Fbg interaction that may involve the mechanism by which Aβ⁻Fbg binding delays fibrinolysis by plasmin, providing valuable information in the development of therapeutic approaches for AD.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon University, Seongnam, 1342 Sungnamdaero, Sujeong-Gu, Seongnam, Gyeonggi 461-701, Korea.
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, 1342 Sungnamdaero, Sujeong-Gu, Seongnam, Gyeonggi 461-701, Korea.
| |
Collapse
|
13
|
Piers TM, East E, Villegas-Llerena C, Sevastou IG, Matarin M, Hardy J, Pocock JM. Soluble Fibrinogen Triggers Non-cell Autonomous ER Stress-Mediated Microglial-Induced Neurotoxicity. Front Cell Neurosci 2018; 12:404. [PMID: 30524237 PMCID: PMC6257202 DOI: 10.3389/fncel.2018.00404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
Aberrant or chronic microglial activation is strongly implicated in neurodegeneration, where prolonged induction of classical inflammatory pathways may lead to a compromised blood-brain barrier (BBB) or vasculature, features of many neurodegenerative disorders and implicated in the observed cognitive decline. BBB disruption or vascular disease may expose the brain parenchyma to “foreign” plasma proteins which subsequently impact on neuronal network integrity through neurotoxicity, synaptic loss and the potentiation of microglial inflammation. Here we show that the blood coagulation factor fibrinogen (FG), implicated in the pathogenesis of dementias such as Alzheimer’s disease (AD), induces an inflammatory microglial phenotype as identified through genetic microarray analysis of a microglial cell line, and proteome cytokine profiling of primary microglia. We also identify a FG-mediated induction of non-cell autonomous ER stress-associated neurotoxicity via a signaling pathway that can be blocked by pharmacological inhibition of microglial TNFα transcription or neuronal caspase-12 activity, supporting a disease relevant role for plasma components in neuronal dysfunction.
Collapse
Affiliation(s)
- Thomas M Piers
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom
| | - Emma East
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom
| | - Claudio Villegas-Llerena
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom.,Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Ioanna G Sevastou
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom
| | - Mar Matarin
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom.,Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer M Pocock
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
14
|
Petersen MA, Ryu JK, Akassoglou K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat Rev Neurosci 2018; 19:283-301. [PMID: 29618808 PMCID: PMC6743980 DOI: 10.1038/nrn.2018.13] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood coagulation protein fibrinogen is deposited in the brain in a wide range of neurological diseases and traumatic injuries with blood-brain barrier (BBB) disruption. Recent research has uncovered pleiotropic roles for fibrinogen in the activation of CNS inflammation, induction of scar formation in the brain, promotion of cognitive decline and inhibition of repair. Such diverse roles are possible in part because of the unique structure of fibrinogen, which contains multiple binding sites for cellular receptors and proteins expressed in the nervous system. The cellular and molecular mechanisms underlying the actions of fibrinogen are beginning to be elucidated, providing insight into its involvement in neurological diseases, such as multiple sclerosis, Alzheimer disease and traumatic CNS injury. Selective drug targeting to suppress the damaging functions of fibrinogen in the nervous system without affecting its beneficial effects in haemostasis opens a new fibrinogen therapeutics pipeline for neurological disease.
Collapse
Affiliation(s)
- Mark A. Petersen
- Gladstone Institutes, San Francisco, CA USA
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA USA
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Abstract
The fundamental pathology in Alzheimer's disease (AD) is neuronal dysfunction leading to cognitive impairment. The amyloid-β peptide (Aβ), derived from amyloid precursor protein, is one driver of AD, but how it leads to neuronal dysfunction is not established. In this Review, I discuss the complexity of AD and possible cause-and-effect relationships between Aβ and the vascular and hemostatic systems. AD can be considered a multifactorial syndrome with various contributing pathological mechanisms. Therefore, as is routinely done with cancer, it will be important to classify patients with respect to their disease signature so that specific pathologies, including vascular pathways, can be therapeutically targeted.
Collapse
|
16
|
Connor DE, Chaitanya GV, Chittiboina P, McCarthy P, Scott LK, Schrott L, Minagar A, Nanda A, Alexander JS. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:169-183. [PMID: 28549769 PMCID: PMC7303909 DOI: 10.1016/j.pathophys.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. METHODS Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. RESULTS Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. CONCLUSIONS Consistent CSF elevation of CA-I and Prx-2 with concurrent depletion of Hp and Tf may represent a useful combination of biomarkers for the prediction of severity and prognosis following brain injury.
Collapse
Affiliation(s)
- David E Connor
- Baptist Health Neurosurgery Arkansas, Little Rock, AR, United States.
| | - Ganta V Chaitanya
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States.
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD, United States.
| | - Paul McCarthy
- Department of Medicine, Sect. of Nephrology, University of Maryland, Baltimore, MD, United States.
| | - L Keith Scott
- Department of Critical Care Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Lisa Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Anil Nanda
- Department of Neurosurgery, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| |
Collapse
|
17
|
Majerova P, Barath P, Michalicova A, Katina S, Novak M, Kovac A. Changes of Cerebrospinal Fluid Peptides due to Tauopathy. J Alzheimers Dis 2017; 58:507-520. [DOI: 10.3233/jad-170110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- AXON Neuroscience R&D, Bratislava, Slovak Republic
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Alena Michalicova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- AXON Neuroscience R&D, Bratislava, Slovak Republic
| | - Stanislav Katina
- AXON Neuroscience R&D, Bratislava, Slovak Republic
- Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- AXON Neuroscience R&D, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- AXON Neuroscience R&D, Bratislava, Slovak Republic
- Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovak Republic
| |
Collapse
|
18
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
19
|
Jayasena T, Poljak A, Braidy N, Smythe G, Raftery M, Hill M, Brodaty H, Trollor J, Kochan N, Sachdev P. Upregulation of glycolytic enzymes, mitochondrial dysfunction and increased cytotoxicity in glial cells treated with Alzheimer's disease plasma. PLoS One 2015; 10:e0116092. [PMID: 25785936 PMCID: PMC4364672 DOI: 10.1371/journal.pone.0116092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with increased oxidative stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxidation and reduced activities of antioxidant enzymes have been reported in AD plasma. Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including complement activation and acute phase reactions, which may also be reflected in plasma. Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We investigated the effect of pooled plasma (n = 20 each) from healthy controls, individuals with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) on cultured microglial cells. AD plasma and was found to significantly decrease cell viability and increase glycolytic flux in microglia compared to plasma from healthy controls. This effect was prevented by the heat inactivation of complement. Proteomic methods and isobaric tags (iTRAQ) found the expression level of complement and other acute phase proteins to be altered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants in AD plasma may alter the energy metabolism of glia.
Collapse
Affiliation(s)
- Tharusha Jayasena
- Bioanalytical Mass Spectrometry Facility, MW Analytical Centre, University of New South Wales, Sydney, Australia
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, MW Analytical Centre, University of New South Wales, Sydney, Australia
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - George Smythe
- Bioanalytical Mass Spectrometry Facility, MW Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Mark Raftery
- Bioanalytical Mass Spectrometry Facility, MW Analytical Centre, University of New South Wales, Sydney, Australia
| | - Mark Hill
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Collaborative Research Centre, University of New South Wales, Sydney, Australia
| | - Julian Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, the Prince of Wales Hospital, Sydney, Australia
| | - Nicole Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, the Prince of Wales Hospital, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, the Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
20
|
Shayan G, Adamiak B, Choe LH, Relkin N, Lee KH. Longitudinal effects of intravenous immunoglobulin on Alzheimer's cerebrospinal fluid proteome. Electrophoresis 2015; 35:1821-7. [PMID: 24756957 DOI: 10.1002/elps.201300609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/08/2022]
Abstract
Intravenous immunoglobulin (IVIg) therapy has shown promise in the treatment of Alzheimer's disease (AD). In this study, serial cerebrospinal fluid (CSF) samples from a group of subjects with AD undergoing IVIg immunotherapy are analyzed to identify IVIg-related changes. CSF samples from eight subjects were collected before therapy, after 6 months of therapy, and after a 3-month drug washout period. Samples were analyzed using a gel-based proteomics strategy and IVIg-related changes were determined by gel spot percent volumes. An initial assessment of the data revealed consistent and considerable change in 69 spots. A statistical analysis revealed 79 protein spots with a significant change after 6 months; furthermore, in a subset of these (25), the percent volume change was either maintained or reversed in the washout samples. The proteins that showed a significant change during IVIg therapy, including Ig molecules, gelsolin, transferrin, and transthyretin, have been previously implicated in AD. This study provides preliminary findings regarding a group of CSF proteins that may be associated with the treatment of AD, as well as the potential use of IVIg as an AD immunotherapy.
Collapse
Affiliation(s)
- Gilda Shayan
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
21
|
Noguchi M, Sato T, Nagai K, Utagawa I, Suzuki I, Arito M, Iizuka N, Suematsu N, Okamoto K, Kato T, Yamaguchi N, Kurokawa MS. Roles of serum fibrinogen α chain-derived peptides in Alzheimer's disease. Int J Geriatr Psychiatry 2014; 29:808-18. [PMID: 24190360 DOI: 10.1002/gps.4047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/09/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To find a blood biomarker and disease-related peptides in Alzheimer's disease (AD), we comprehensively detected serum peptides. METHODS Ion intensity of serum peptides from 62 AD patients and 82 control subjects was measured by mass spectrometry. RESULTS A total of 157 peptides were detected from 30 AD patients and 30 healthy control (HC) subjects. Sixty out of the 157 peptide profiles discriminated between the AD and HC groups. Sixteen out of the 60 peptides were identified, 10 out of which were fragments of a fibrinogen α chain (FIBA). Among the 10 peptides, four and six peptides were derived from fibrinopeptide A (FPA, Aα1-16) and the C-terminal region of the αC-domain (αCDC, Aα557-610), respectively. The profile of 10 FIBA-derived peptides combined with age discriminated between the two groups with an area under the receiver operating characteristic curve (AUROC) of 0.940. Validation of this model using a testing set of 32 AD patients and 19 HC subjects showed an AUROC of 0.717, sensitivity of 65.6%, and specificity of 73.7% by a cutoff value of 0.56420. Another value, 0.04029, showed sensitivity of 96.9%, suggesting that subjects with values less than 0.04029 rarely possess AD. FPA and αCDC showed increased ion intensity in the AD group compared with the HC group (p < 0.05). CONCLUSIONS The profile of 10 FIBA-derived peptides combined with age would be a candidate biomarker for AD, which facilitates screening of the disease. The significant release of FPA and αCDC may be involved in the aberrant coagulation that leads to vascular damage in AD.
Collapse
Affiliation(s)
- Miwa Noguchi
- Department of Neuropsychiatry, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Altered Levels of Amyloid Precursor Protein Intracellular Domain-interacting Proteins in Alzheimer Disease. Alzheimer Dis Assoc Disord 2014; 28:283-90. [DOI: 10.1097/wad.0000000000000011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Cortes-Canteli M, Zamolodchikov D, Ahn HJ, Strickland S, Norris EH. Fibrinogen and altered hemostasis in Alzheimer's disease. J Alzheimers Dis 2013; 32:599-608. [PMID: 22869464 DOI: 10.3233/jad-2012-120820] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaques, tau tangles, brain atrophy, and vascular pathology. Vascular defects include cerebrovascular dysfunction, decreased cerebral blood flow, and blood brain barrier (BBB) disruption, among others. Here, we review the evidence that links Aβ with the vascular pathology present in AD, with a specific focus on the hemostatic system and the clotting protein fibrinogen. Fibrinogen is normally found circulating in blood, but in AD it deposits with Aβ in the brain parenchyma and cerebral blood vessels. We found that Aβ and fibrin(ogen) interact, and their binding leads to increased fibrinogen aggregation, Aβ fibrillization, and the formation of degradation-resistant fibrin clots. Decreasing fibrinogen levels not only lessens cerebral amyloid angiopathy and BBB permeability, but it also reduces microglial activation and improves cognitive performance in AD mouse models. Moreover, a prothrombotic state in AD is evidenced by increased clot formation, decreased fibrinolysis, and elevated levels of coagulation factors and activated platelets. Abnormal deposition and persistence of fibrin(ogen) in AD may result from Aβ-fibrin(ogen) binding and altered hemostasis and could thus contribute to Aβ deposition, decreased cerebral blood flow, exacerbated neuroinflammation, and eventual neurodegeneration. Blocking the interaction between fibrin(ogen) and Aβ may be a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Marta Cortes-Canteli
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
24
|
Zürbig P, Jahn H. Use of proteomic methods in the analysis of human body fluids in Alzheimer research. Electrophoresis 2013; 33:3617-30. [PMID: 23160951 DOI: 10.1002/elps.201200360] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/27/2012] [Accepted: 09/27/2012] [Indexed: 01/23/2023]
Abstract
Proteomics is the study of the entire population of proteins and peptides in an organism or a part of it, such as a cell, tissue, or fluids like cerebrospinal fluid, plasma, serum, urine, or saliva. It is widely assumed that changes in the composition of the proteome may reflect disease states and provide clues to its origin, eventually leading to targets for new treatments. The ability to perform large-scale proteomic studies now is based jointly on recent advances in our analytical methods. Separation techniques like CE and 2DE have developed and matured. Detection methods like MS have also improved greatly in the last 5 years. These developments have also driven the fields of bioinformatics, needed to deal with the increased data production and systems biology. All these developing methods offer specific advantages but also come with certain limitations. This review describes the different proteomic methods used in the field, their limitations, and their possible pitfalls. Based on a literature search in PubMed, we identified 112 studies that applied proteomic techniques to identify biomarkers for Alzheimer disease. This review describes the results of these studies on proteome changes in human body fluids of Alzheimer patients reviewing the most important studies. We extracted a list of 366 proteins and peptides that were identified by these studies as potential targets in Alzheimer research.
Collapse
|
25
|
Golubnitschaja O, Yeghiazaryan K, Costigliola V, Trog D, Braun M, Debald M, Kuhn W, Schild HH. Risk assessment, disease prevention and personalised treatments in breast cancer: is clinically qualified integrative approach in the horizon? EPMA J 2013; 4:6. [PMID: 23418957 PMCID: PMC3615949 DOI: 10.1186/1878-5085-4-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/29/2012] [Indexed: 12/21/2022]
Abstract
Breast cancer is a multifactorial disease. A spectrum of internal and external factors contributes to the disease promotion such as a genetic predisposition, chronic inflammatory processes, exposure to toxic compounds, abundant stress factors, a shift-worker job, etc. The cumulative effects lead to high incidence of breast cancer in populations worldwide. Breast cancer in the USA is currently registered with the highest incidence rates amongst all cancer related patient cohorts. Currently applied diagnostic approaches are frequently unable to recognise early stages in tumour development that impairs individual outcomes. Early diagnosis has been demonstrated to be highly beneficial for significantly enhanced therapy efficacy and possibly full recovery. Actual paper shows that the elaboration of an integrative diagnostic approach combining several levels of examinations creates a robust platform for the reliable risk assessment, targeted preventive measures and more effective treatments tailored to the person in the overall task of breast cancer management. The levels of examinations are proposed, and innovative technological approaches are described in the paper. The absolute necessity to create individual patient profiles and extended medical records is justified for the utilising by routine medical services. Expert recommendations are provided to promote further developments in the field.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Department of Radiology, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str, 25, Bonn, 53105, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Holewinski RJ, Jin Z, Powell MJ, Maust MD, Van Eyk JE. A fast and reproducible method for albumin isolation and depletion from serum and cerebrospinal fluid. Proteomics 2013; 13:743-50. [PMID: 23300121 DOI: 10.1002/pmic.201200192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 12/21/2022]
Abstract
Analysis of serum and plasma proteomes is a common approach for biomarker discovery, and the removal of high-abundant proteins, such as albumin and immunoglobins, is usually the first step in the analysis. However, albumin binds peptides and proteins, which raises concerns as to how the removal of albumin could impact the outcome of the biomarker study while ignoring the possibility that this could be a biomarker subproteome itself. The first goal of this study was to test a new commercially available affinity capture reagent from Protea Biosciences and to compare the efficiency and reproducibility to four other commercially available albumin depletion methods. The second goal of this study was to determine if there is a highly efficient albumin depletion/isolation system that minimizes sample handling and would be suitable for large numbers of samples. Two of the methods tested (Sigma and ProteaPrep) showed an albumin depletion efficiency of 97% or greater for both serum and cerebrospinal fluid (CSF). Isolated serum and CSF albuminomes from ProteaPrep spin columns were analyzed directly by LC-MS/MS, identifying 128 serum (45 not previously reported) and 94 CSF albuminome proteins (17 unique to the CSF albuminome). Serum albuminome was also isolated using Vivapure anti-HSA columns for comparison, identifying 105 proteins, 81 of which overlapped with the ProteaPrep method.
Collapse
Affiliation(s)
- Ronald J Holewinski
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
27
|
Preliminary Study for a Multicenter Study of Alzheimer's Disease Cerebrospinal Fluid Biomarkers. Dement Neurocogn Disord 2013. [DOI: 10.12779/dnd.2013.12.1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Chakrabarti A, Mukhopadhyay D. Novel adaptors of amyloid precursor protein intracellular domain and their functional implications. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:208-16. [PMID: 23084776 PMCID: PMC5054717 DOI: 10.1016/j.gpb.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 01/20/2023]
Abstract
Amyloid precursor protein intracellular domain (AICD) is one of the potential candidates in deciphering the complexity of Alzheimer’s disease. It plays important roles in determining cell fate and neurodegeneration through its interactions with several adaptors. The presence or absence of phosphorylation at specific sites determines the choice of partners. In this study, we identified 20 novel AICD-interacting proteins by in vitro pull down experiments followed by 2D gel electrophoresis and MALDI-MS analysis. The identified proteins can be grouped into different functional classes including molecular chaperones, structural proteins, signaling and transport molecules, adaptors, motor proteins and apoptosis determinants. Interactions of nine proteins were further validated either by colocalization using confocal imaging or by co-immunoprecipitation followed by immunoblotting. The cellular functions of most of the proteins can be correlated with AD. Hence, illustration of their interactions with AICD may shed some light on the disease pathophysiology.
Collapse
Affiliation(s)
- Arunabha Chakrabarti
- Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | | |
Collapse
|
29
|
Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, Perrin RJ, Bales KR, Soares H, Fagan AM, Holtzman DM. Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer's disease diagnosis and prognosis. PLoS One 2011; 6:e18850. [PMID: 21526197 PMCID: PMC3079734 DOI: 10.1371/journal.pone.0018850] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Clinicopathological studies suggest that Alzheimer's disease (AD) pathology begins ∼10-15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181). METHODS AND FINDINGS Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age. CONCLUSIONS/SIGNIFICANCE Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best current CSF biomarkers for distinguishing very mildly/mildly demented from cognitively normal individuals. Additionally, we identified a novel biomarker (calbindin) with significant prognostic potential.
Collapse
Affiliation(s)
- Rebecca Craig-Schapiro
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Max Kuhn
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Chengjie Xiong
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eve H. Pickering
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Jingxia Liu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas P. Misko
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Richard J. Perrin
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kelly R. Bales
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Holly Soares
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
30
|
Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D, Bhuvanendran S, Fenz KM, Strickland S. Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer's disease. Neuron 2010; 66:695-709. [PMID: 20547128 DOI: 10.1016/j.neuron.2010.05.014] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2010] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in which vascular pathology plays an important role. Since the beta-amyloid peptide (Abeta) is a critical factor in this disease, we examined its relationship to fibrin clot formation in AD. In vitro and in vivo experiments showed that fibrin clots formed in the presence of Abeta are structurally abnormal and resistant to degradation. Fibrin(ogen) was observed in blood vessels positive for amyloid in mouse and human AD samples, and intravital brain imaging of clot formation and dissolution revealed abnormal thrombosis and fibrinolysis in AD mice. Moreover, depletion of fibrinogen lessened cerebral amyloid angiopathy pathology and reduced cognitive impairment in AD mice. These experiments suggest that one important contribution of Abeta to AD is via its effects on fibrin clots, implicating fibrin(ogen) as a potential critical factor in this disease.
Collapse
Affiliation(s)
- Marta Cortes-Canteli
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Venugopal A, Chaerkady R, Pandey A. Application of mass spectrometry-based proteomics for biomarker discovery in neurological disorders. Ann Indian Acad Neurol 2010; 12:3-11. [PMID: 20151002 PMCID: PMC2811975 DOI: 10.4103/0972-2327.48845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/10/2008] [Accepted: 11/10/2008] [Indexed: 12/03/2022] Open
Abstract
Mass spectrometry-based quantitative proteomics has emerged as a powerful approach that has the potential to accelerate biomarker discovery, both for diagnostic as well as therapeutic purposes. Proteomics has traditionally been synonymous with 2D gels but is increasingly shifting to the use of gel-free systems and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Quantitative proteomic approaches have already been applied to investigate various neurological disorders, especially in the context of identifying biomarkers from cerebrospinal fluid and serum. This review highlights the scope of different applications of quantitative proteomics in understanding neurological disorders with special emphasis on biomarker discovery.
Collapse
|
32
|
Ciborowski P. Biomarkers of HIV-1-associated neurocognitive disorders: challenges of proteomic approaches. Biomark Med 2009; 3:771-85. [PMID: 20477714 PMCID: PMC3544489 DOI: 10.2217/bmm.09.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HIV-1 enters the brain shortly after infection, which may lead to neurological complications and in the most severe cases to encephalitis, dementia and death. The introduction of antiretroviral therapy reduced the incidence of the most severe conditions, nevertheless, approximately half of those infected with this virus will suffer to various degrees from HIV-1-associated neurocognitive disorders. Despite many years of research, there are no biomarkers that can objectively measure and, more importantly, predict the onset and the tempo of HIV-1-associated neurocognitive disorders. Here we review biomarker candidates of neurocognitive impairment due to HIV infection of the brain that have been proposed during the last two decades, and discuss perspectives and limitations of proteomic approaches in the search for new, more sensitive and specific biomarkers.
Collapse
Affiliation(s)
- Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
33
|
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive loss of cognitive function and subsequent death. Since the first case of this disease was diagnosed one century ago, much effort has been dedicated to find a cure. However, even though progress has been made in the knowledge of the pathogenesis of this disease, an effective treatment has not been found. Therefore, new approaches are needed urgently. AD patients have an abnormal cerebral vasculature and brain hypoperfusion, and a large body of research, including some from our lab, implicates cerebrovascular dysfunction as a contributing factor to AD. Reducing fibrinogen, a circulating protein critical in hemostasis, provides a significant decrease in the neurovascular damage, blood-brain barrier permeability and neuroinflammation present in AD. These studies implicate fibrinogen as a possible contributor to AD.
Collapse
Affiliation(s)
- M Cortes-Canteli
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
34
|
Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, Anderson NL, Borchers CH. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 2009; 8:1860-77. [PMID: 19411661 DOI: 10.1074/mcp.m800540-mcp200] [Citation(s) in RCA: 424] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mass spectrometry-based multiple reaction monitoring (MRM) quantitation of proteins can dramatically impact the discovery and quantitation of biomarkers via rapid, targeted, multiplexed protein expression profiling of clinical samples. A mixture of 45 peptide standards, easily adaptable to common plasma proteomics work flows, was created to permit absolute quantitation of 45 endogenous proteins in human plasma trypsin digests. All experiments were performed on simple tryptic digests of human EDTA-plasma without prior affinity depletion or enrichment. Stable isotope-labeled standard peptides were added immediately following tryptic digestion because addition of stable isotope-labeled standard peptides prior to trypsin digestion was found to generate elevated and unpredictable results. Proteotypic tryptic peptides containing isotopically coded amino acids ([(13)C(6)]Arg or [(13)C(6)]Lys) were synthesized for all 45 proteins. Peptide purity was assessed by capillary zone electrophoresis, and the peptide quantity was determined by amino acid analysis. For maximum sensitivity and specificity, instrumental parameters were empirically determined to generate the most abundant precursor ions and y ion fragments. Concentrations of individual peptide standards in the mixture were optimized to approximate endogenous concentrations of analytes and to ensure the maximum linear dynamic range of the MRM assays. Excellent linear responses (r > 0.99) were obtained for 43 of the 45 proteins with attomole level limits of quantitation (<20% coefficient of variation) for 27 of the 45 proteins. Analytical precision for 44 of the 45 assays varied by <10%. LC-MRM/MS analyses performed on 3 different days on different batches of plasma trypsin digests resulted in coefficients of variation of <20% for 42 of the 45 assays. Concentrations for 39 of the 45 proteins are within a factor of 2 of reported literature values. This mixture of internal standards has many uses and can be applied to the characterization of trypsin digestion kinetics and plasma protein expression profiling because 31 of the 45 proteins are putative biomarkers of cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Kuzyk
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Les marqueurs biologiques protéiques du liquide céphalorachidien : caractéristiques et implications cliniques dans les démences. Rev Neurol (Paris) 2009; 165:213-22. [DOI: 10.1016/j.neurol.2008.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/07/2008] [Accepted: 05/22/2008] [Indexed: 11/20/2022]
|
36
|
Aluise CD, Sowell RA, Butterfield DA. Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1782:549-58. [PMID: 18760351 DOI: 10.1016/j.bbadis.2008.07.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/22/2008] [Accepted: 07/24/2008] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) affects millions of persons worldwide. Earlier detection and/or diagnosis of AD would permit earlier intervention, which conceivably could delay progression of this dementing disorder. In order to accomplish this goal, reliable and specific biomarkers are needed. Biomarkers are multidimensional and have the potential to aid in various facets of AD such as diagnostic prediction, assessment of disease stage, discrimination from normally cognitive controls as well as other forms of dementia, and therapeutic efficacy of AD drugs. To date, biomarker research has focused on plasma and cerebrospinal fluid (CSF), two bodily fluids believed to contain the richest source of biomarkers for AD. CSF is the fluid surrounding the central nervous system (CNS), and is the most indicative obtainable fluid of brain pathology. Blood plasma contains proteins that affect brain processes from the periphery, as well as proteins/peptides exported from the brain; this fluid would be ideal for biomarker discovery due to the ease and non-invasive process of sample collection. However, it seems reasonable that biomarker discovery will result in combinations of CSF, plasma, and other fluids such as urine, to serve the aforementioned purposes. This review focuses on proteins and peptides identified from CSF, plasma, and urine that may serve as biomarkers in AD.
Collapse
Affiliation(s)
- Christopher D Aluise
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | |
Collapse
|
37
|
Zetterberg H, Rüetschi U, Portelius E, Brinkmalm G, Andreasson U, Blennow K, Brinkmalm A. Clinical proteomics in neurodegenerative disorders. Acta Neurol Scand 2008; 118:1-11. [PMID: 18279484 DOI: 10.1111/j.1600-0404.2007.00985.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders are characterized by neuronal impairment that eventually leads to neuronal death. In spite of the brain's known capacity for regeneration, lost neurons are difficult to replace. Therefore, drugs aimed at inhibiting neurodegenerative processes are likely to be most effective if the treatment is initiated as early as possible. However, clinical manifestations in early disease stages are often numerous, subtle and difficult to diagnose. This is where biomarkers that specifically reflect onset of pathology, directly or indirectly, may have a profound impact on diagnosis making in the future. A triplet of biomarkers for Alzheimer's disease (AD), total and hyperphosphorylated tau and the 42 amino acid isoform of beta-amyloid, has already been established for early detection of AD before the onset of dementia. However, more biomarkers are needed both for AD and for other neurodegenerative disorders, such as Parkinson's disease, frontotemporal dementia and amyotrophic lateral sclerosis. This review provides an update on recent advances in clinical neuroproteomics, a biomarker discovery field that has expanded immensely during the last decade, and gives an overview of the most commonly used techniques and the major clinically relevant findings these techniques have lead to.
Collapse
Affiliation(s)
- H Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at Göteborg University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
38
|
Roche S, Gabelle A, Lehmann S. Clinical proteomics of the cerebrospinal fluid: Towards the discovery of new biomarkers. Proteomics Clin Appl 2008; 2:428-36. [DOI: 10.1002/prca.200780040] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Abstract
Biomarkers are increasingly employed in empirical studies of human populations to understand physiological processes that change with age, diseases whose onset appears linked to age, and the aging process itself. In this chapter, we describe some of the most commonly used biomarkers in population aging research, including their collection, associations with other markers, and relationships to health outcomes. We discuss biomarkers of the cardiovascular system, metabolic processes, inflammation, activity in the hypothalamic-pituitary axis (HPA) and sympathetic nervous system (SNS), and organ functioning (including kidney, lung, and heart). In addition, we note that markers of functioning of the central nervous system and genetic markers are now becoming part of population measurement. Where possible, we detail interrelationships between these markers by providing correlations between high risk levels of each marker from three population-based surveys: the National Health and Nutrition Examination Survey (NHANES) III, NHANES 1999-2002, and the MacArthur Study of Successful Aging. NHANES III is used instead of NHANES 1999-2002 when specific markers of interest are available only in NHANES III and when we examine the relationship of biomarkers to mortality which is only known for NHANES III. We also describe summary measures combining biomarkers across systems. Finally, we examine associations between individual markers and mortality and provide information about biomarkers of growing interest for future research in population aging and health.
Collapse
Affiliation(s)
- Eileen Crimmins
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|