1
|
Ouissam AJ, Hind C, Sami Aziz B, Said A. Inhibition of the PI3K/AKT/mTOR pathway in pancreatic cancer: is it a worthwhile endeavor? Ther Adv Med Oncol 2024; 16:17588359241284911. [PMID: 39399412 PMCID: PMC11468005 DOI: 10.1177/17588359241284911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease that is challenging to treat and is associated with a high mortality rate. The most common type of PC is pancreatic ductal adenocarcinoma (PDAC), and the existing treatment options are insufficient for PDAC patients. Due to the complexity and heterogeneity of PDAC, personalized medicine is necessary for effectively treating this illness. To achieve this, it is essential to understand the mechanism of PDAC carcinogenesis. Targeted therapies are a promising strategy to improve patient outcomes. Aberrant activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a crucial role in PC pathogenesis, from initiation to progression. This review provides a comprehensive overview of the current state of knowledge regarding the PI3K pathway in PDAC, summarizes clinical data on PI3K pathway inhibition in PDAC, and explores potential effective combinations that are a promising direction requiring further investigation in PDAC.
Collapse
Affiliation(s)
- Al Jarroudi Ouissam
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Chibani Hind
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Brahmi Sami Aziz
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Afqir Said
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
2
|
Shin YB, Choi JY, Yoon MS, Yoo MK, Shin DH, Lee JW. Evaluation of Anticancer Efficacy of D-α-Tocopheryl Polyethylene-Glycol Succinate and Soluplus ® Mixed Micelles Loaded with Olaparib and Rapamycin Against Ovarian Cancer. Int J Nanomedicine 2024; 19:7871-7893. [PMID: 39114180 PMCID: PMC11304412 DOI: 10.2147/ijn.s468935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose Ovarian cancer has the highest mortality rate and lowest survival rate among female reproductive system malignancies. There are treatment options of surgery and chemotherapy, but both are limited. In this study, we developed and evaluated micelles composed of D-α-tocopheryl polyethylene-glycol (PEG) 1000 succinate (TPGS) and Soluplus® (SOL) loaded with olaparib (OLA), a poly(ADP-ribose)polymerase (PARP) inhibitor, and rapamycin (RAPA), a mammalian target of rapamycin (mTOR) inhibitor in ovarian cancer. Methods We prepared micelles containing different molar ratios of OLA and RAPA embedded in different weight ratios of TPGS and SOL (OLA/RAPA-TPGS/SOL) were prepared and physicochemical characterized. Furthermore, we performed in vitro cytotoxicity experiments of OLA, RAPA, and OLA/RAPA-TPGS/SOL. In vivo toxicity and antitumor efficacy assays were also performed to assess the efficacy of the mixed micellar system. Results OLA/RAPA-TPGS/SOL containing a 4:1 TPGS:SOL weight ratio and a 2:3 OLA:RAPA molar ratio showed synergistic effects and were optimized. The drug encapsulation efficiency of this formulation was >65%, and the physicochemical properties were sustained for 180 days. Moreover, the formulation had a high cell uptake rate and significantly inhibited cell migration (**p < 0.01). In the in vivo toxicity test, no toxicity was observed, with the exception of the high dose group. Furthermore, OLA/RAPA-TPGS/SOL markedly inhibited tumor spheroid and tumor growth in vivo. Conclusion Compared to the control, OLA/RAPA-TPGS/SOL showed significant tumor inhibition. These findings lay a foundation for the use of TPGS/SOL mixed micelles loaded with OLA and RAPA in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Sup Yoon
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Myeong Kyun Yoo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- Chungbuk National University Hospital, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| |
Collapse
|
3
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
4
|
Zhou K, Liu Y, Yuan S, Zhou Z, Ji P, Huang Q, Wen F, Li Q. Signalling in pancreatic cancer: from pathways to therapy. J Drug Target 2023; 31:1013-1026. [PMID: 37869884 DOI: 10.1080/1061186x.2023.2274806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Pancreatic cancer (PC) is a common malignant tumour in the digestive system. Due to the lack of sensitive diagnostic markers, strong metastasis ability, and resistance to anti-cancer drugs, the prognosis of PC is inferior. In the past decades, increasing evidence has indicated that the development of PC is closely related to various signalling pathways. With the exploration of RAS-driven, epidermal growth factor receptor, Hedgehog, NF-κB, TGF-β, and NOTCH signalling pathways, breakthroughs have been made to explore the mechanism of pancreatic carcinogenesis, as well as the novel therapies. In this review, we discussed the signalling pathways involved in PC and summarised current targeted agents in the treatment of PC. Furthermore, opportunities and challenges in the exploration of potential therapies targeting signalling pathways were also highlighted.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingping Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Ziyu Zhou
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Pengfei Ji
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Qianhan Huang
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Zhang J, Darman L, Hassan MS, Von Holzen U, Awasthi N. Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review). Oncol Rep 2023; 50:206. [PMID: 37800636 PMCID: PMC10570661 DOI: 10.3892/or.2023.8643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 10/07/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the most frequently mutated oncogenes in solid tumors. More than 90% of pancreatic ductal adenocarcinoma (PDAC) are driven by mutations in the KRAS gene, suggesting the importance of targeting this oncogene in PDAC. Initial efforts to target KRAS have been unsuccessful due to its small size, high affinity for guanosine triphosphate/guanosine diphosphate, and lack of distinct drug‑binding pockets. Therefore, much of the focus has been directed at inhibiting the activation of major signaling pathways downstream of KRAS, most notably the PI3K/AKT and RAF/MAPK pathways, using tyrosine kinase inhibitors and monoclonal antibodies. While preclinical studies showed promising results, clinical data using the inhibitors alone and in combination with other standard therapies have shown limited practicality, largely due to the lack of efficacy and dose‑limiting toxicities. Recent therapeutic approaches for KRAS‑driven tumors focus on mutation‑specific drugs such as selective KRASG12C inhibitors and son of sevenless 1 pan‑KRAS inhibitors. While KRASG12C inhibitors showed great promise against patients with non‑small cell lung cancer (NSCLC) harboring KRASG12C mutations, they were not efficacious in PDAC largely because the major KRAS mutant isoforms in PDAC are G12D, G12V, and G12R. As a result, KRASG12D and pan‑KRAS inhibitors are currently under investigation as potential therapeutic options for PDAC. The present review summarized the importance of KRAS oncogenic signaling, challenges in its targeting, and preclinical and clinical targeted agents including recent direct KRAS inhibitors for blocking KRAS signaling in PDAC.
Collapse
Affiliation(s)
- Joshua Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lily Darman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Md Sazzad Hassan
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Urs Von Holzen
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
- Goshen Center for Cancer Care, Goshen, IN 46526, USA
- University of Basel School of Medicine, 4056 Basel, Switzerland
| | - Niranjan Awasthi
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
| |
Collapse
|
6
|
Guo JS, Li JJ, Wang ZH, Liu Y, Yue YX, Li HB, Zhao XH, Sun YJ, Ding YH, Ding F, Guo DS, Wang L, Chen Y. Dual hypoxia-responsive supramolecular complex for cancer target therapy. Nat Commun 2023; 14:5634. [PMID: 37704601 PMCID: PMC10500001 DOI: 10.1038/s41467-023-41388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
The prognosis with pancreatic cancer is among the poorest of any human cancer. One of the important factors is the tumor hypoxia. Targeting tumor hypoxia is considered a desirable therapeutic option. However, it has not been translated into clinical success in the treatment of pancreatic cancer. With enhanced cytotoxicities against hypoxic pancreatic cancer cells, BE-43547A2 (BE) may serve as a promising template for hypoxia target strategy. Here, based on rational modification, a BE prodrug (NMP-BE) is encapsulated into sulfonated azocalix[5]arene (SAC5A) to generate a supramolecular dual hypoxia-responsive complex NMP-BE@SAC5A. Benefited from the selective load release within cancer cells, NMP-BE@SAC5A markedly suppresses tumor growth at low dose in pancreatic cancer cells xenograft murine model without developing systemic toxicity. This research presents a strategy for the modification of covalent compounds to achieve efficient delivery within tumors, a horizon for the realization of safe and reinforced hypoxia target therapy using a simple approach.
Collapse
Affiliation(s)
- Jian-Shuang Guo
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yang Liu
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yu-Xin Yue
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Xiu-He Zhao
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yuan-Jun Sun
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Ya-Hui Ding
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Fei Ding
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China.
| | - Liang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Yue Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Kim SY, Jo MJ, Yoon MS, Jin CE, Shin YB, Lee JM, Shin HJ, Oh JG, Cho JM, Kim H, Park H, Choi YW, Park CW, Kim JS, Shin DH. Gemcitabine and rapamycin-loaded mixed polymeric thermogel for metastatic pancreatic cancer therapy. J Control Release 2023; 360:796-809. [PMID: 37437850 DOI: 10.1016/j.jconrel.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related death and has a poor 5-year overall survival. The superior therapeutic benefits of combination or co-administration of drugs as intraperitoneal chemotherapy have increased interest in developing strategies to deliver chemotherapeutic agents to patients safely. In this study, we prepared a gel comprising the thermosensitive poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) polymer and gemcitabine (GEM), which is currently used as the primary chemotherapy for PDAC and rapamycin (RAPA), a mammalian TOR (mTOR) inhibitor, to deliver the drug through intraperitoneal injection. We performed in vitro cytotoxicity experiments to verify the synergistic effects of the two drugs at different molar ratios and characterized the physicochemical properties of the GEM, RAPA, and GEM/RAPA-loaded thermosensitive PLGA-PEG-PLGA gels, hereafter referred to as (g(G), g(R), and g(GR)), respectively. The g(GR) comprising PLGA-PEG-PLGA polymer (25% w/v) and GEM and RAPA at a molar ratio of 11:1 showed synergism and was optimized. An in vitro cytotoxicity assay was performed by treating Panc-1-luc2 tumor spheroids with g(G), g(R), or g(GR). The g(GR) treatment group showed a 2.75-fold higher inhibition rate than the non-treated (NT) and vehicle-treated groups. Furthermore, in vivo drug release assay in mice by intraperitoneal injection of g(G), g(R), or g(GR) showed a more rapid release rate of GEM than RAPA, similar to the in vitro release pattern. The drugs in the gel were released faster in vivo than in vitro and degraded in 48 h. In addition, g(GR) showed the highest anti-tumor efficacy with no toxicity to mice. These results provide evidence for the safety and efficacy of g(GR) for intraperitoneal drug delivery. This study will assist in developing and clinically administering topical anti-cancer formulations.
Collapse
Affiliation(s)
- Seo Yeon Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Moon Sup Yoon
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Chae Eun Jin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae Min Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Hee Ji Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Joon Gyo Oh
- R&D Center, Huons Co., Ltd., Ansan, 15588, Republic of Korea
| | - Jae Min Cho
- R&D Center, Huons Co., Ltd., Ansan, 15588, Republic of Korea
| | - Hyunjun Kim
- R&D Center, Huons Co., Ltd., Ansan, 15588, Republic of Korea
| | - Hyunjin Park
- R&D Center, Huons Co., Ltd., Ansan, 15588, Republic of Korea
| | - Yong-Won Choi
- R&D Center, Huons Co., Ltd., Ansan, 15588, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea.
| |
Collapse
|
8
|
Chen Z, Chen M, Fu Y, Zhang J. The KRAS signaling pathway's impact on the characteristics of pancreatic cancer cells. Pathol Res Pract 2023; 248:154603. [PMID: 37356222 DOI: 10.1016/j.prp.2023.154603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is classified as a cancer with high metastasis so that its mortality rate is high and most of the patients could not survive longer than 5 years. RAS signaling participate in cellular processes, so it has a key role in PDAC.RAS activation is associated via three different signaling pathway including somatic oncogenic point mutations in KRAS, upstream signaling like EGFR, oncogenic activation of the downstream B-RAF molecule. Several targeted therapies have been developed against kinase effectors particularly those in the MAPK and PI3K (phosphoinositide 3-kinase)/mTOR signaling pathways and several inhibitors are undergoing clinical studies at the moment. However, because it is highly metastatic and frequently diagnosed at advanced disease stages, pancreatic cancer continues to be a challenging cancer to treat. This article will explore therapeutic approaches that focus on oncogenic KRAS signaling in pancreatic cancer and provide an updated synopsis of our knowledge of how mutant KRAS function in the illness.
Collapse
Affiliation(s)
- ZhangXing Chen
- Department of Gastroenterology, Success Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| | - Meiyan Chen
- Department of Gastroenterology, Success Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China.
| | - Yuka Fu
- Department of Gastroenterology, Success Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| | - Jingyi Zhang
- Department of Gastroenterology, Success Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| |
Collapse
|
9
|
Zhang Y, Kong R, Yang W, Hu K, Zhao Z, Li L, Geng X, Liu L, Chen H, Xiao P, Liu D, Luo Y, Chen H, Hu J, Sun B. DUSP2 recruits CSNK2A1 to suppress AKT1-mediated apoptosis resistance under hypoxic microenvironment in pancreatic cancer. Cancer Lett 2023:216288. [PMID: 37390887 DOI: 10.1016/j.canlet.2023.216288] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxic tumor microenvironment (TME), which aids tumor progression, drug resistance, and immune evasion. Dual-specificity phosphatase 2 (DUSP2), a member of the mitogen-activated protein kinase phosphatase family, regulates pancreatic cancer metastasis. However, its role in the hypoxic TME in PDAC remains unknown. We explored the role of DUSP2 by simulating the hypoxic TME. DUSP2 significantly promoted apoptosis in PDAC both in vitro and in vivo, mainly through AKT1 rather than ERK1/2. Mechanistically, DUSP2 competed with AKT1 to bind to casein kinase 2 alpha 1 (CSNK2A1) and inhibited the phosphorylation of AKT1, which plays a crucial role in apoptosis resistance. Interestingly, aberrant activation of AKT1 resulted in an increase in the ubiquitin E3 ligase tripartite motif-containing 21 (TRIM21), which binds to and mediates the ubiquitination-dependent proteasomal degradation of DUSP2. Overall, we identified CSNK2A1 as a novel binding partner of DUSP2 that promotes PDAC apoptosis through CSN2KA1/AKT1 in an ERK1/2-independent manner. Activation of AKT1 also mediated proteasomal degradation of DUSP2 via the AKT1/TRIM21 positive feedback loop. We propose increasing the level of DUSP2 as a potential therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Keyi Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Peng Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Danxi Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Yan Luo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China.
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
10
|
Chen Y, Meng J, Lu X, Li X, Wang C. Clustering analysis revealed the autophagy classification and potential autophagy regulators' sensitivity of pancreatic cancer based on multi-omics data. Cancer Med 2023; 12:733-746. [PMID: 35684936 PMCID: PMC9844610 DOI: 10.1002/cam4.4932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy and is unresponsive to conventional therapeutic modalities due to its high heterogeneity, expounding the necessity, and priority of searching for effective biomarkers and drugs. Autophagy, as an evolutionarily conserved biological process, is upregulated in PDAC and its regulation is linked to a poor prognosis. Increased autophagy sequestered MHC-I on PDAC cells and weaken the antigen presentation and antitumor immune response, indicating the potential therapeutic strategies of autophagy inhibitors. METHODS By performing 10 state-of-the-art multi-omics clustering algorithms, we constructed a robust PDAC classification model to reveal the autophagy-related genes among different subgroups. OUTCOMES After building a more comprehensive regulating network for potential autophagy regulators exploration, we concluded the top 20 autophagy-related hub genes (GAPDH, MAPK3, RHEB, SQSTM1, EIF2S1, RAB5A, CTSD, MAP1LC3B, RAB7A, RAB11A, FADD, CFKN2A, HSP90AB1, VEGFA, RELA, DDIT3, HSPA5, BCL2L1, BAG3, and ERBB2), six miRNAs, five transcription factors, and five immune infiltrated cells as biomarkers. The drug sensitivity database was screened based on the biomarkers to predict possible drug-targeting signal pathways, hoping to yield novel insights, and promote the progress of the anticancer therapeutic strategy. CONCLUSION We succefully constructed an autophagy-related mRNA/miRNA/TF/Immune cells network based on a 10 state-of art algorithm multi-omics analysis, and screened the drug sensitivity dataset for detecting potential signal pathway which might be possible autophagy modulators' targets.
Collapse
Affiliation(s)
- Yonghao Chen
- Department of GastroenterologyWest China Hospital of Sichuan UniversityChengduSichuanP.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical UniversityHefeiP.R. China
- Institute of UrologyAnhui Medical UniversityHefeiP.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiP.R. China
| | - Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational PharmacyChina Pharmaceutical UniversityNanjingP.R. China
| | - Xiao Li
- Department of GastroenterologyWest China Hospital of Sichuan UniversityChengduSichuanP.R. China
| | - Chunhui Wang
- Department of GastroenterologyWest China Hospital of Sichuan UniversityChengduSichuanP.R. China
| |
Collapse
|
11
|
Rezaei M, Shams Z, Rasouli BS, Amirfard KD, Sadrabadi MS, Gheysarzadeh A, Haghani K, Bakhtiyari S. New Association Between Diabetes Mellitus and Pancreatic Cancer. Curr Diabetes Rev 2023; 19:e180122200320. [PMID: 35040413 DOI: 10.2174/1573399818666220118095952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus is a global issue that has affected the lives of many people all over the world. This disorder, which is also called the mother of all diseases, possesses high pathogenicity and results in the emergence of many disorders. One of the known correlated diseases is pancreatic cancer which can be accompanied by diabetes mellitus. Therefore, finding the association between these diseases and common genes is urgent. OBJECTIVE In this study, in order to survey the relationship between diabetes mellitus and pancreatic cancer, the common genes of these disorders were analyzed by bioinformatics tools. METHODS For this purpose, we screened 17 shared genes from microarray data downloaded from the Gene Expression Omnibus (GEO) database. In addition, the relationship between identified genes was constructed by STRING and DAVID tools. RESULTS In total, 112 genes were identified to be differentially expressed. Among these, 17 genes were found to be common, including two genes that were down-regulated and others that were upregulated. Other analyses showed that most of the genes were enriched in Vibrio cholera infection and the mTOR signaling pathway. The biological processes of such genes included oxygen and gas transport, phagosome acidification, and GTPase activity. CONCLUSION In this study, 17 common genes that had not previously been considered in diabetes and pancreatic cancer were screened, which can be further considered for clinical approaches and in vitro studies.
Collapse
Affiliation(s)
- Monireh Rezaei
- Department of Medical Genetics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Zinat Shams
- Department of Biological Science, Kharazmi University, Tehran, Iran
| | - Bahareh Sadat Rasouli
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Ali Gheysarzadeh
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
12
|
Diehl AC, Hannan LM, Zhen DB, Coveler AL, King G, Cohen SA, Harris WP, Shankaran V, Wong KM, Green S, Ng N, Pillarisetty VG, Sham JG, Park JO, Reddi D, Konnick EQ, Pritchard CC, Baker K, Redman M, Chiorean EG. KRAS Mutation Variants and Co-occurring PI3K Pathway Alterations Impact Survival for Patients with Pancreatic Ductal Adenocarcinomas. Oncologist 2022; 27:1025-1033. [PMID: 36124727 DOI: 10.1093/oncolo/oyac179] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND KRAS variant alleles may have differential biological properties which impact prognosis and therapeutic options in pancreatic ductal adenocarcinomas (PDA). MATERIALS AND METHODS We retrospectively identified patients with advanced PDA who received first-line therapy and underwent blood and/or tumor genomic sequencing at the University of Washington between 2013 and 2020. We examined the incidence of KRAS mutation variants with and without co-occurring PI3K or other genomic alterations and evaluated the association of these mutations with clinicopathological characteristics and survival using a Cox proportional hazards model. RESULTS One hundred twenty-six patients had genomic sequencing data; KRAS mutations were identified in 111 PDA and included the following variants: G12D (43)/G12V (35)/G12R (23)/other (10). PI3K pathway mutations (26% vs. 8%) and homologous recombination DNA repair (HRR) defects (35% vs. 12.5%) were more common among KRAS G12R vs. non-G12R mutated cancers. Patients with KRAS G12R vs. non-G12R cancers had significantly longer overall survival (OS) (HR 0.55) and progression-free survival (PFS) (HR 0.58), adjusted for HRR pathway co-mutations among other covariates. Within the KRAS G12R group, co-occurring PI3K pathway mutations were associated with numerically shorter OS (HR 1.58), while no effect was observed on PFS. CONCLUSIONS Patients with PDA harboring KRAS G12R vs. non-G12R mutations have longer survival, but this advantage was offset by co-occurring PI3K alterations. The KRAS/PI3K genomic profile could inform therapeutic vulnerabilities in patients with PDA.
Collapse
Affiliation(s)
- Adam C Diehl
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lindsay M Hannan
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David B Zhen
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew L Coveler
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gentry King
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stacey A Cohen
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - William P Harris
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Veena Shankaran
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kit M Wong
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Natasha Ng
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Jonathan G Sham
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - James O Park
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Deepti Reddi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Eric Q Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Mary Redman
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - E Gabriela Chiorean
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
13
|
Liu Y, Azizian NG, Sullivan DK, Li Y. mTOR inhibition attenuates chemosensitivity through the induction of chemotherapy resistant persisters. Nat Commun 2022; 13:7047. [PMID: 36396656 PMCID: PMC9671908 DOI: 10.1038/s41467-022-34890-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Chemotherapy can eradicate a majority of cancer cells. However, a small population of tumor cells often survives drug treatments through genetic and/or non-genetic mechanisms, leading to tumor recurrence. Here we report a reversible chemoresistance phenotype regulated by the mTOR pathway. Through a genome-wide CRISPR knockout library screen in pancreatic cancer cells treated with chemotherapeutic agents, we have identified the mTOR pathway as a prominent determinant of chemosensitivity. Pharmacological suppression of mTOR activity in cancer cells from diverse tissue origins leads to the persistence of a reversibly resistant population, which is otherwise eliminated by chemotherapeutic agents. Conversely, activation of the mTOR pathway increases chemosensitivity in vitro and in vivo and predicts better survival among various human cancers. Persister cells display a senescence phenotype. Inhibition of mTOR does not induce cellular senescence per se, but rather promotes the survival of senescent cells through regulation of autophagy and G2/M cell cycle arrest, as revealed by a small-molecule chemical library screen. Thus, mTOR plays a causal yet paradoxical role in regulating chemotherapeutic response; inhibition of the mTOR pathway, while suppressing tumor expansion, facilitates the development of a reversible drug-tolerant senescence state.
Collapse
Affiliation(s)
- Yuanhui Liu
- grid.63368.380000 0004 0445 0041Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX 77030 USA ,grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Nancy G. Azizian
- grid.63368.380000 0004 0445 0041Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX 77030 USA ,grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Delaney K. Sullivan
- grid.19006.3e0000 0000 9632 6718UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Yulin Li
- grid.63368.380000 0004 0445 0041Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX 77030 USA ,grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
14
|
LRRC8A Is a Promising Prognostic Biomarker and Therapeutic Target for Pancreatic Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14225526. [PMID: 36428619 PMCID: PMC9688930 DOI: 10.3390/cancers14225526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor of the digestive system with increasing morbidity and mortality. The lack of sensitive and reliable biomarkers is one of the main reasons for the poor prognosis. Volume-regulated anion channels (VRAC), which are ubiquitously expressed in the vertebrate cell membrane, are composed of leucine-rich repeat-containing 8A (LRRC8A) and four other homologous family members (LRRC8B-E). VRAC heterogeneous complex is implicated in each of the six "hallmarks of cancer" and represents a novel therapeutic target for cancer. In this study, LRRC8A was speculated to be a promising prognostic biomarker and therapeutic target for PAAD based on a series of bioinformatics analyses. Additional cell experiments and immunohistochemical assays demonstrated that LRRC8A can affect the prognosis of PAAD and is correlated to cell proliferation, cell migration, drug resistance, and immune infiltration. Functional analysis indicated that LRRC8A influences the progression and prognosis of patients with PAAD by the regulation of CD8+ T cells immune infiltration. Taken together, these results can help in the design of new therapeutic drugs for patients with PAAD.
Collapse
|
15
|
Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int J Mol Sci 2022; 23:ijms231710132. [PMID: 36077529 PMCID: PMC9456549 DOI: 10.3390/ijms231710132] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.
Collapse
|
16
|
O'Kane GM, Lowery MA. Moving the Needle on Precision Medicine in Pancreatic Cancer. J Clin Oncol 2022; 40:2693-2705. [PMID: 35839440 DOI: 10.1200/jco.21.02514] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/20/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
The management of pancreatic ductal adenocarcinoma (PDAC) has posed a considerable challenge for decades, with incidence and mortality rates almost mirroring each other. Despite this, a deeper understanding of the complex biology inherent to PDAC has provided a roadmap for a more precise approach to treatment. PDAC deficient in homologous recombination repair and mismatch repair is a subgroup that should be identified in the clinic for a targeted approach. In addition, KRAS wild-type PDAC, occurring in approximately 10% of patients, is enriched in highly actionable alterations including fusions, underscoring the importance of integrative germline and somatic sequencing. Comprehensive sequencing efforts over the past decade have documented genomic- and transcriptomic-based classifiers, with the latter emerging as two main subtypes: the classical and basal-like, which are now being evaluated in clinical trials. Together with promising, innovative strategies to target KRAS mutations and their pleotropic effects, a new era of precision medicine in PDAC is on the horizon.
Collapse
Affiliation(s)
- Grainne M O'Kane
- Trinity St James Cancer Institute, Dublin, Ireland
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | |
Collapse
|
17
|
Raeisi M, Saberivand M, Velaei K, Aghaei N, Rahimi-Farsi N, Kharrati-Shishavan H, Hassanzadeh D, Mehdizadeh A. Porcn as a novel therapeutic target in cancer therapy: A review. Cell Biol Int 2022; 46:1979-1991. [PMID: 35971741 DOI: 10.1002/cbin.11882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
Wingless-related integration site (Wnt) signaling is one of the main oncogenic pathways in different malignancies. Therefore, targeting this pathway has been considered an exciting strategy in cancer treatment. Porcn is among the central enzymes in this pathway that has recently been considered for cancer-targeted therapy. As a membrane-bound O-acyltransferase, Porcn plays a critical role in wnt ligand palmitoylation and its subsequent secretion. In addition to Porcn's role in stem cell signaling and differentiation, recent findings have shown its role in developing and progressing colorectal, pancreatic, liver, head, and neck cancers. Developed small molecule inhibitors have also opened a promising window toward cancer treatment strategies. In this review, the structure and biological role of Porcn in different cancer-related signaling pathways and inhibitors used for inhibiting this enzyme are discussed.
Collapse
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saberivand
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Aghaei
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Imam Sajjad Hospital, Tabriz, Iran
| | | | | | - Davoud Hassanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Li X, Liu H, Dun MD, Faulkner S, Liu X, Jiang CC, Hondermarck H. Proteome and secretome analysis of pancreatic cancer cells. Proteomics 2022; 22:e2100320. [PMID: 35388624 DOI: 10.1002/pmic.202100320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/07/2022]
Abstract
Pancreatic cancer is a lethal malignancy and no screening biomarker or targeted therapy is currently available. Here, we performed a shotgun proteomic label-free quantification (LFQ) to define protein changes in the cellular proteome and secretome of four pancreatic cancer cell lines (PANC1, Paca44, Paca2, and BXPC3) versus normal human pancreatic ductal epithelial cells (HPDE). In the cellular proteome and secretome, 149 and 43 proteins were dysregulated in the most cancer cell lines, respectively. Using Ingenuity Pathway Analysis (IPA), the most dysregulated signaling pathways in pancreatic cancer cells included the activation of epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular regulated kinase (ERK), and the deactivation of type-I interferon (IFN) pathways, which could promote cancer cell progression and decrease antitumor immunity. Parallel reaction monitoring (PRM) mass spectrometry was used to confirm the changes of seven regulated proteins quantified by LFQ: EGFR, growth/differentiation factor 15 (GDF15), protein-glutamine gamma-glutamyltransferase 2 (TGM2), leukemia inhibitory factor (LIF), interferon-induced GTP-binding protein Mx1 (MX1), signal transducer and activator of transcription 1 (STAT1), and serpin B5 (SERPINB5). Together, this proteomic analysis highlights protein changes associated with pancreatic cancer cells that should be further investigated as potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Xiang Li
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Xiaoming Liu
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Chen Chen Jiang
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| |
Collapse
|
20
|
Islam MM, Goertzen A, Singh PK, Saha R. Exploring the metabolic landscape of pancreatic ductal adenocarcinoma cells using genome-scale metabolic modeling. iScience 2022; 25:104483. [PMID: 35712079 PMCID: PMC9194136 DOI: 10.1016/j.isci.2022.104483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major research focus because of its poor therapy response and dismal prognosis. PDAC cells adapt their metabolism to the surrounding environment, often relying on diverse nutrient sources. Because traditional experimental techniques appear exhaustive to find a viable therapeutic strategy, a highly curated and omics-informed PDAC genome-scale metabolic model was reconstructed using patient-specific transcriptomics data. From the model-predictions, several new metabolic functions were explored as potential therapeutic targets in addition to the known metabolic hallmarks of PDAC. Significant downregulation in the peroxisomal beta oxidation pathway, flux modulation in the carnitine shuttle system, and upregulation in the reactive oxygen species detoxification pathway reactions were observed. These unique metabolic traits of PDAC were correlated with potential drug combinations targeting genes with poor prognosis in PDAC. Overall, this study provides a better understanding of the metabolic vulnerabilities in PDAC and will lead to novel effective therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Andrea Goertzen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Pankaj K. Singh
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
21
|
Immunotherapy as a Therapeutic Strategy for Gastrointestinal Cancer-Current Treatment Options and Future Perspectives. Int J Mol Sci 2022; 23:ijms23126664. [PMID: 35743107 PMCID: PMC9224428 DOI: 10.3390/ijms23126664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) cancer constitutes a highly lethal entity among malignancies in the last decades and is still a major challenge for cancer therapeutic options. Despite the current combinational treatment strategies, including chemotherapy, surgery, radiotherapy, and targeted therapies, the survival rates remain notably low for patients with advanced disease. A better knowledge of the molecular mechanisms that influence tumor progression and the development of optimal therapeutic strategies for GI malignancies are urgently needed. Currently, the development and the assessment of the efficacy of immunotherapeutic agents in GI cancer are in the spotlight of several clinical trials. Thus, several new modalities and combinational treatments with other anti-neoplastic agents have been identified and evaluated for their efficiency in cancer management, including immune checkpoint inhibitors, adoptive cell transfer, chimeric antigen receptor (CAR)-T cell therapy, cancer vaccines, and/or combinations thereof. Understanding the interrelation among the tumor microenvironment, cancer progression, and immune resistance is pivotal for the optimal therapeutic management of all gastrointestinal solid tumors. This review will shed light on the recent advances and future directions of immunotherapy for malignant tumors of the GI system.
Collapse
|
22
|
Management of Pancreatic Cancer and Its Microenvironment: Potential Impact of Nano-Targeting. Cancers (Basel) 2022; 14:cancers14122879. [PMID: 35740545 PMCID: PMC9221065 DOI: 10.3390/cancers14122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The poor prognosis and survival rates associated with pancreatic cancer show that there is a clear unmet need for better disease management. The heterogeneity of the tumor and its microenvironment, including stroma and fibrosis, creates a challenge for current therapy. The pathogenesis of pancreatic cancer is mediated by several factors, such as severed communication between pancreatic stellate cells and stroma and the consequences of hypoxia-inducible factors that aid in the survival of the pancreatic tumor. Given the multiple limitations of molecular targeting, multiple functional nano-targeting offers a breakthrough in pancreatic cancer treatment through its ability to overcome the physical challenges posed by the tumor microenvironment, amongst many others. Abstract Pancreatic ductal adenocarcinoma (PDAC) is rare and difficult to treat, making it a complicated diagnosis for every patient. These patients have a low survival rate along with a poor quality of life under current pancreatic cancer therapies that adversely affect healthy cells due to the lack of precise drug targeting. Additionally, chemoresistance and radioresistance are other key challenges in PDAC, which might be due in part to the lack of tumor-targeted delivery of sufficient levels of different chemotherapies because of their low therapeutic index. Thus, instead of leaving a trail of off-target damage when killing these cancer cells, it is best to find a way that targets them directly. More seriously, metastatic relapse often occurs after surgery, and therefore, achieving improved outcomes in the management of PDAC in the absence of strategies preventing metastasis is likely to be impossible. Nano-targeting of the tumor and its microenvironment has shown promise for treating various cancers, which might be a promising approach for PDAC. This review updates the advancements in treatment modalities for pancreatic cancer and highlights future directions that warrant further investigation to increase pancreatic patients’ overall survival.
Collapse
|
23
|
Gu W, Shen H, Xie L, Zhang X, Yang J. The Role of Feedback Loops in Targeted Therapy for Pancreatic Cancer. Front Oncol 2022; 12:800140. [PMID: 35651786 PMCID: PMC9148955 DOI: 10.3389/fonc.2022.800140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic cancer is the leading cause of cancer-related deaths worldwide, with limited treatment options and low long-term survival rates. The complex and variable signal regulation networks are one of the important reasons why it is difficult for pancreatic cancer to develop precise targeted therapy drugs. Numerous studies have associated feedback loop regulation with the development and therapeutic response of cancers including pancreatic cancer. Therefore, we review researches on the role of feedback loops in the progression of pancreatic cancer, and summarize the connection between feedback loops and several signaling pathways in pancreatic cancer, as well as recent advances in the intervention of feedback loops in pancreatic cancer treatment, highlighting the potential of capitalizing on feedback loops modulation in targeted therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Weigang Gu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - HongZhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Xie
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Xiaofeng Zhang, ; Jianfeng Yang,
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiaofeng Zhang, ; Jianfeng Yang,
| |
Collapse
|
24
|
Taucher E, Mykoliuk I, Fediuk M, Smolle-Juettner FM. Autophagy, Oxidative Stress and Cancer Development. Cancers (Basel) 2022; 14:cancers14071637. [PMID: 35406408 PMCID: PMC8996905 DOI: 10.3390/cancers14071637] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Autophagy, as an important cellular repair mechanism, is important for the prevention of several diseases, including metabolic and neurologic disorders, and cancer. Hence, dysfunctional autophagy has been linked to these diseases, and in recent years researchers have tried to outline therapeutic targets in autophagy-related pathways as a treatment. With this review of the literature, we want to give an overview about the connection between oxidative stress, autophagy and cancer. Abstract Autophagy is an important cellular repair mechanism, aiming at sequestering misfolded and dysfunctional proteins and damaged cell organelles. Dysfunctions in the autophagy process have been linked to several diseases, like infectious and neurodegenerative diseases, type II diabetes mellitus and cancer. Living organisms are constantly subjected to some degree of oxidative stress, mainly induced by reactive oxygen and nitrogen species. It has been shown that autophagy is readily induced by reactive oxygen species (ROS) upon nutrient deprivation. In recent years, research has increasingly focused on outlining novel therapeutic targets related to the autophagy process. With this review of the literature, we want to give an overview about the link between autophagy, oxidative stress and carcinogenesis.
Collapse
Affiliation(s)
- Elisabeth Taucher
- Division of Pulmonology, Department of Internal Medicine, Medical University Graz, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-12183
| | - Iurii Mykoliuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| | - Melanie Fediuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| | - Freyja-Maria Smolle-Juettner
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| |
Collapse
|
25
|
Shields MA, Spaulding C, Metropulos AE, Khalafalla MG, Pham TND, Munshi HG. Gα13 loss in Kras/Tp53 mouse model of pancreatic tumorigenesis promotes tumors susceptible to rapamycin. Cell Rep 2022; 38:110441. [PMID: 35235808 PMCID: PMC8989626 DOI: 10.1016/j.celrep.2022.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/22/2021] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Gα13 transduces signals from G-protein-coupled receptors. While Gα13 functions as a tumor suppressor in lymphomas, it is not known whether Gα13 is pro-tumorigenic or tumor suppressive in genetically engineered mouse (GEM) models of epithelial cancers. Here, we show that loss of Gα13 in the Kras/Tp53 (KPC) GEM model promotes well-differentiated tumors and reduces survival. Mechanistically, tumors developing in KPC mice with Gα13 loss exhibit increased E-cadherin expression and mTOR signaling. Importantly, human pancreatic ductal adenocarcinoma (PDAC) tumors with low Gα13 expression also exhibit increased E-cadherin expression and mTOR signaling. Treatment with the mTOR inhibitor rapamycin decreases the growth of syngeneic KPC tumors with Gα13 loss by promoting cell death. This work establishes a tumor-suppressive role of Gα13 in pancreatic tumorigenesis in the KPC GEM model and suggests targeting mTOR in human PDAC tumors with Gα13 loss.
Collapse
Affiliation(s)
- Mario A Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Lurie 3-220 or Lurie 3-117, Chicago, IL 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Lurie 3-220 or Lurie 3-117, Chicago, IL 60611, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Anastasia E Metropulos
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Lurie 3-220 or Lurie 3-117, Chicago, IL 60611, USA
| | - Mahmoud G Khalafalla
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Lurie 3-220 or Lurie 3-117, Chicago, IL 60611, USA
| | - Thao N D Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Lurie 3-220 or Lurie 3-117, Chicago, IL 60611, USA
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Lurie 3-220 or Lurie 3-117, Chicago, IL 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
26
|
Khandakar GI, Satoh R, Takasaki T, Fujitani K, Tanabe G, Sakai K, Nishio K, Sugiura R. ACAGT-007a, an ERK MAPK Signaling Modulator, in Combination with AKT Signaling Inhibition Induces Apoptosis in KRAS Mutant Pancreatic Cancer T3M4 and MIA-Pa-Ca-2 Cells. Cells 2022; 11:702. [PMID: 35203351 PMCID: PMC8869916 DOI: 10.3390/cells11040702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol-3 kinase (PI3K)/AKT pathways are dysregulated in various human cancers, including pancreatic ductal adenocarcinoma (PDAC), which has a very poor prognosis due to its lack of efficient therapies. We have previously identified ACAGT-007a (GT-7), an anti-cancer compound that kills ERK-active melanoma cells by inducing ERK-dependent apoptosis. Here, we investigated the apoptosis-inducing effect of GT-7 on three PDAC cell lines and its relevance with the MAPK/ERK and PI3K/AKT signaling pathways. GT-7 induced apoptosis in PDAC cells with different KRAS mutations (MIA-Pa-Ca-2 (KRAS G12C), T3M4 (KRAS Q61H), and PANC-1 (KRAS G12D)), being T3M4 most susceptible, followed by MIA-Pa-Ca-2, and PANC-1 was most resistant to apoptosis induction by GT-7. GT-7 stimulated ERK phosphorylation in the three PDAC cells, but only T3M4 displayed ERK-activation-dependent apoptosis. Furthermore, GT-7 induced a marked down-regulation of AKT phosphorylation after a transient peak in T3M4, whereas PANC-1 displayed the strongest and most sustained AKT activation, followed by MIA-Pa-Ca-2, suggesting that sustained AKT phosphorylation as a determinant for the resistance to GT-7-mediated apoptosis. Consistently, a PI3K inhibitor, Wortmannin, abolished AKT phosphorylation and enhanced GT-7-mediated apoptosis in T3M4 and MIA-Pa-Ca-2, but not in PANC-1, which showed residual AKT phosphorylation. This is the first report that ERK stimulation alone or in combination with AKT signaling inhibition can effectively induce apoptosis in PDAC and provides a rationale for a novel concurrent targeting of the PI3K/AKT and ERK pathways.
Collapse
Affiliation(s)
- Golam Iftakhar Khandakar
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (G.I.K.); (R.S.); (T.T.); (K.F.)
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (G.I.K.); (R.S.); (T.T.); (K.F.)
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (G.I.K.); (R.S.); (T.T.); (K.F.)
| | - Kana Fujitani
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (G.I.K.); (R.S.); (T.T.); (K.F.)
| | - Genzoh Tanabe
- Laboratory of Organic Chemistry, Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan;
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University School of Medicine, Osaka 589-8511, Japan; (K.S.); (K.N.)
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University School of Medicine, Osaka 589-8511, Japan; (K.S.); (K.N.)
| | - Reiko Sugiura
- Laboratory of Organic Chemistry, Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan;
| |
Collapse
|
27
|
Murugan NJ, Voutsadakis IA. Proteasome regulators in pancreatic cancer. World J Gastrointest Oncol 2022; 14:38-54. [PMID: 35116102 PMCID: PMC8790418 DOI: 10.4251/wjgo.v14.i1.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal cancers with rising incidence. Despite progress in its treatment, with the introduction of more effective chemotherapy regimens in the last decade, prognosis of metastatic disease remains inferior to other cancers with long term survival being the exception. Molecular characterization of pancreatic cancer has elucidated the landscape of the disease and has revealed common lesions that contribute to pancreatic carcinogenesis. Regulation of proteostasis is critical in cancers due to increased protein turnover required to support the intense metabolism of cancer cells. The proteasome is an integral part of this regulation and is regulated, in its turn, by key transcription factors, which induce transcription of proteasome structural units. These include FOXO family transcription factors, NFE2L2, hHSF1 and hHSF2, and NF-Y. Networks that encompass proteasome regulators and transduction pathways dysregulated in pancreatic cancer such as the KRAS/ BRAF/MAPK and the Transforming growth factor beta/SMAD pathway contribute to pancreatic cancer progression. This review discusses the proteasome and its transcription factors within the pancreatic cancer cellular micro-environment. We also consider the role of stemness in carcinogenesis and the use of proteasome inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Biology, Algoma University, Sault Sainte Marie P6A3T6, ON, Canada
| | - Ioannis A Voutsadakis
- Department of Medical Oncology, Sault Area Hospital, Sault Sainte Marie P6A3T6, ON, Canada
| |
Collapse
|
28
|
Raufi AG, Liguori NR, Carlsen L, Parker C, Hernandez Borrero L, Zhang S, Tian X, Louie A, Zhou L, Seyhan AA, El-Deiry WS. Therapeutic Targeting of Autophagy in Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2021; 12:751568. [PMID: 34916936 PMCID: PMC8670090 DOI: 10.3389/fphar.2021.751568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by early metastasis, late detection, and poor prognosis. Progress towards effective therapy has been slow despite significant efforts. Novel treatment approaches are desperately needed and autophagy, an evolutionary conserved process through which proteins and organelles are recycled for use as alternative energy sources, may represent one such target. Although incompletely understood, there is growing evidence suggesting that autophagy may play a role in PDAC carcinogenesis, metastasis, and survival. Early clinical trials involving autophagy inhibiting agents, either alone or in combination with chemotherapy, have been disappointing. Recently, evidence has demonstrated synergy between the MAPK pathway and autophagy inhibitors in PDAC, suggesting a promising therapeutic intervention. In addition, novel agents, such as ONC212, have preclinical activity in pancreatic cancer, in part through autophagy inhibition. We discuss autophagy in PDAC tumorigenesis, metabolism, modulation of the immune response, and preclinical and clinical data with selected autophagy modulators as therapeutics.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| | - Nicholas R. Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Cassandra Parker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| |
Collapse
|
29
|
Pretta A, Lai E, Persano M, Donisi C, Pinna G, Cimbro E, Parrino A, Spanu D, Mariani S, Liscia N, Dubois M, Migliari M, Impera V, Saba G, Pusceddu V, Puzzoni M, Ziranu P, Scartozzi M. Uncovering key targets of success for immunotherapy in pancreatic cancer. Expert Opin Ther Targets 2021; 25:987-1005. [PMID: 34806517 DOI: 10.1080/14728222.2021.2010044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite available treatment options, pancreatic ductal adenocarcinoma (PDAC) is frequently lethal. Recent immunotherapy strategies have failed to yield any notable impact. Therefore, research is focussed on unearthing new drug targets and therapeutic strategies to tackle this malignancy and attain more positive outcomes for patients. AREAS COVERED In this perspective article, we evaluate the main resistance mechanisms to immune checkpoint inhibitors (ICIs) and the approaches to circumvent them. We also offer an assessment of concluded and ongoing trials of PDAC immunotherapy. Literature research was performed on Pubmed accessible through keywords such as: 'pancreatic ductal adenocarcinoma,' 'immunotherapy,' 'immunotherapy resistance,' 'immune escape,' 'biomarkers.' Papers published between 2000 and 2021 were selected. EXPERT OPINION The tumor microenvironment is a critical variable of treatment resistance because of its role as a physical barrier and inhibitory immune signaling. Promising therapeutic strategies appear to be a combination of immunotherapeutics with other targeted treatments. Going forward, predictive biomarkers are required to improve patient selection. Biomarker-driven trials could enhance approaches for assessing the role of immunotherapy in PDAC.
Collapse
Affiliation(s)
- Andrea Pretta
- Medical Oncology Unit, Sapienza University of Rome, Rome Italy.,Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Giovanna Pinna
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Erika Cimbro
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Alissa Parrino
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Nicole Liscia
- Medical Oncology Unit, Sapienza University of Rome, Rome Italy.,Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valentino Impera
- Medical Oncology Unit, Sapienza University of Rome, Rome Italy.,Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| |
Collapse
|
30
|
Sankarasubramanian S, Pfohl U, Regenbrecht CRA, Reinhard C, Wedeken L. Context Matters-Why We Need to Change From a One Size Fits all Approach to Made-to-Measure Therapies for Individual Patients With Pancreatic Cancer. Front Cell Dev Biol 2021; 9:760705. [PMID: 34805167 PMCID: PMC8599957 DOI: 10.3389/fcell.2021.760705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the deadliest cancers and remains a major unsolved health problem. While pancreatic ductal adenocarcinoma (PDAC) is associated with driver mutations in only four major genes (KRAS, TP53, SMAD4, and CDKN2A), every tumor differs in its molecular landscape, histology, and prognosis. It is crucial to understand and consider these differences to be able to tailor treatment regimens specific to the vulnerabilities of the individual tumor to enhance patient outcome. This review focuses on the heterogeneity of pancreatic tumor cells and how in addition to genetic alterations, the subsequent dysregulation of multiple signaling cascades at various levels, epigenetic and metabolic factors contribute to the oncogenesis of PDAC and compensate for each other in driving cancer progression if one is tackled by a therapeutic approach. This implicates that besides the need for new combinatorial therapies for PDAC, a personalized approach for treating this highly complex cancer is required. A strategy that combines both a target-based and phenotypic approach to identify an effective treatment, like Reverse Clinical Engineering® using patient-derived organoids, is discussed as a promising way forward in the field of personalized medicine to tackle this deadly disease.
Collapse
Affiliation(s)
| | - Ulrike Pfohl
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt Am Main, Frankfurt, Germany
| | - Christian R. A. Regenbrecht
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Pathology, Universitätsklinikum Göttingen, Göttingen, Germany
| | | | - Lena Wedeken
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
| |
Collapse
|
31
|
Hu HF, Ye Z, Qin Y, Xu XW, Yu XJ, Zhuo QF, Ji SR. Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacol Sin 2021; 42:1725-1741. [PMID: 33574569 PMCID: PMC8563973 DOI: 10.1038/s41401-020-00584-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a minimal difference between its incidence rate and mortality rate. Advances in oncology over the past several decades have dramatically improved the overall survival of patients with multiple cancers due to the implementation of new techniques in early diagnosis, therapeutic drugs, and personalized therapy. However, pancreatic cancers remain recalcitrant, with a 5-year relative survival rate of <9%. The lack of measures for early diagnosis, strong resistance to chemotherapy, ineffective adjuvant chemotherapy and the unavailability of molecularly targeted therapy are responsible for the high mortality rate of this notorious disease. Genetically, PDAC progresses as a complex result of the activation of oncogenes and inactivation of tumor suppressors. Although next-generation sequencing has identified numerous new genetic alterations, their clinical implications remain unknown. Classically, oncogenic mutations in genes such as KRAS and loss-of-function mutations in tumor suppressors, such as TP53, CDNK2A, DPC4/SMAD4, and BRCA2, are frequently observed in PDAC. Currently, research on these key driver genes is still the main focus. Therefore, studies assessing the functions of these genes and their potential clinical implications are of paramount importance. In this review, we summarize the biological function of key driver genes and pharmaceutical targets in PDAC. In addition, we conclude the results of molecularly targeted therapies in clinical trials and discuss how to utilize these genetic alterations in further clinical practice.
Collapse
Affiliation(s)
- Hai-feng Hu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Zeng Ye
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Yi Qin
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xiao-wu Xu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xian-jun Yu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Qi-feng Zhuo
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Shun-rong Ji
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| |
Collapse
|
32
|
Sun Y, Xie J, Cai S, Wang Q, Feng Z, Li Y, Lu JJ, Chen W, Ye Z. Elevated expression of nuclear receptor-binding SET domain 3 promotes pancreatic cancer cell growth. Cell Death Dis 2021; 12:913. [PMID: 34615858 PMCID: PMC8494902 DOI: 10.1038/s41419-021-04205-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022]
Abstract
The nuclear receptor-binding SET domain 3 (NSD3) catalyzes methylation of histone H3 at lysine 36 (H3K36), and promotes malignant transformation and progression of human cancer. Its expression, potential functions and underlying mechanisms in pancreatic cancer are studied. Bioinformatics studies and results from local human tissues show that NSD3 is upregulated in human pancreatic cancer tissues, which is correlated with poor overall survival. In primary and established pancreatic cancer cells, NSD3 silencing (by shRNAs) or CRISPR/Cas9-induced NSD3 knockout potently inhibited cell proliferation, migration and invasion, while provoking cell cycle arrest and apoptosis. Conversely, ectopic expression of NSD3-T1232A mutation significantly accelerated proliferation, migration, and invasion of pancreatic cancer cells. H3K36 dimethylation, expression of NSD3-dependent genes (Prkaa2, Myc, Irgm1, Adam12, and Notch3), and mTOR activation (S6K1 phosphorylation) were largely inhibited by NSD3 silencing or knockout. In vivo, intratumoral injection of adeno-associated virus (AAV)-packed NSD3 shRNA potently inhibited pancreatic cancer xenograft growth in nude mice. These results suggest that elevated NSD3 could be an important driver for the malignant progression of pancreatic cancer.
Collapse
Affiliation(s)
- Yihui Sun
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaming Xie
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Wang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Feng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yecheng Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing-Jing Lu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Wei Chen
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Zhenyu Ye
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
33
|
Targeting PI3K Pathway in Pancreatic Ductal Adenocarcinoma: Rationale and Progress. Cancers (Basel) 2021; 13:cancers13174434. [PMID: 34503244 PMCID: PMC8430624 DOI: 10.3390/cancers13174434] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains among the deadliest solid tumors that remain treatment-refractory and show a dismal prognosis. More than 90% of PDAC tumors harbor mutations in the K-Ras that exert a strong pro-tumorigenic effect by activating several downstream effector pathways, including phosphatidylinositol-3-kinase (PI3K)-Akt. The role of frequently activated PI3K/Akt pathway in promoting PDAC aggressiveness is well established. Therapeutic approaches targeting PI3K and downstream signaling components in different cellular compartments, including tumor, stromal and immune cells, have directly impacted the tumor burden in this cancer type. Our previous work has demonstrated that targeting the PI3K/Akt/mTOR pathway reduced tumor growth and improved survival in the genetic mouse model of PDAC. Here, we discuss the significance of targeting PI3K signaling and the biological impact of PI3K inhibition in modulating the tumor-stromal immune crosstalk within the microenvironment of pancreatic cancer. Furthermore, this review updates on the current challenges involving the therapeutic implications of targeting this pathway in PDAC.
Collapse
|
34
|
Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, El-Rayes B, Azmi AS. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev 2021; 40:819-835. [PMID: 34499267 PMCID: PMC8556325 DOI: 10.1007/s10555-021-09990-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Kirsten Rat Sarcoma (KRAS) is a master oncogene involved in cellular proliferation and survival and is the most commonly mutated oncogene in all cancers. Activating KRAS mutations are present in over 90% of pancreatic ductal adenocarcinoma (PDAC) cases and are implicated in tumor initiation and progression. Although KRAS is a critical oncogene, and therefore an important therapeutic target, its therapeutic inhibition has been very challenging, and only recently specific mutant KRAS inhibitors have been discovered. In this review, we discuss the activation of KRAS signaling and the role of mutant KRAS in PDAC development. KRAS has long been considered undruggable, and many drug discovery efforts which focused on indirect targeting have been unsuccessful. We discuss the various efforts for therapeutic targeting of KRAS. Further, we explore the reasons behind these obstacles, novel successful approaches to target mutant KRAS including G12C mutation as well as the mechanisms of resistance.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Division of Hematology/Oncology, Department of Medicine, UCI Health, Orange, CA, 92868, USA
| | - Farzeen Fazili
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
35
|
Duan X, Wang W, Pan Q, Guo L. Type 2 Diabetes Mellitus Intersects With Pancreatic Cancer Diagnosis and Development. Front Oncol 2021; 11:730038. [PMID: 34485159 PMCID: PMC8415500 DOI: 10.3389/fonc.2021.730038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The relationship between type 2 diabetes mellitus (T2DM) and pancreatic cancer (PC) is complex. Diabetes is a known risk factor for PC, and new-onset diabetes (NOD) could be an early manifestation of PC that may be facilitate the early diagnosis of PC. Metformin offers a clear benefit of inhibiting PC, whereas insulin therapy may increase the risk of PC development. No evidence has shown that novel hypoglycemic drugs help or prevent PC. In this review, the effects of T2DM on PC development are summarized, and novel strategies for the prevention and treatment of T2DM and PC are discussed.
Collapse
Affiliation(s)
- Xiaoye Duan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weihao Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Liu X, Li Z, Wang Y. Advances in Targeted Therapy and Immunotherapy for Pancreatic Cancer. Adv Biol (Weinh) 2021; 5:e1900236. [PMID: 33729700 DOI: 10.1002/adbi.201900236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/19/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a highly aggressive malignancy with an overall 5-year survival rate of <6% due to therapeutic resistance and late-stage diagnosis. These statistics have not changed despite 50 years of research and therapeutic development. Pancreatic cancer is predicted to become the second leading cause of cancer mortality by the year 2030. Currently, the treatment options for pancreatic cancer are limited. This disease is usually diagnosed at a late stage, which prevents curative surgical resection. Chemotherapy is the most frequently used approach for pancreatic cancer treatment and has limited effects. In many other cancer types, targeted therapy and immunotherapy have made great progress and have been shown to be very promising prospects; these treatments also provide hope for pancreatic cancer. The need for research on targeted therapy and immunotherapy is pressing due to the poor prognosis of pancreatic cancer, and in recent years, there have been some breakthroughs for targeted therapy and immunotherapy in pancreatic cancer. This review summarizes the current preclinical and clinical studies of targeted therapy and immunotherapy for pancreatic cancer and ends by describing the challenges and outlook.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
37
|
Zhang Z, Song J, Xie C, Pan J, Lu W, Liu M. Pancreatic Cancer: Recent Progress of Drugs in Clinical Trials. AAPS JOURNAL 2021; 23:29. [PMID: 33580411 DOI: 10.1208/s12248-021-00556-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer is a highly malignant tumor and one of the primary causes of cancer-related death. Because pancreatic cancer is difficult to diagnose in the early course of the disease, most patients present with advanced lesions at the time of diagnosis, and only 20% of patients are eligible for surgery. Consequently, drug treatment has become extremely important. At present, the main treatment regimens for pancreatic cancer are gemcitabine and the FORFIRINOX and MPACT regimens. However, none of these regimens substantially improves the prognosis of patients with pancreatic cancer. Extensive efforts have been dedicated to the study of pancreatic cancer in recent years. With the development and clinical application of biological targeted drugs, the biological targeted treatment of tumors has been widely accepted. Therefore, this article used relevant clinical trial data to summarize the research progress of traditional chemotherapy drugs and biological targeted drugs for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jie Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jun Pan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Min Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
38
|
Abstract
Pancreatic cancer is a recalcitrant cancer with one of the lowest 5-year survival rates. A hallmark of pancreatic cancer is the prevalence of oncogenic mutation in the KRAS gene. The KRAS oncogene plays a critical role in the initiation and maintenance of pancreatic tumors and its signaling network represents a major target for therapeutic intervention. A number of inhibitors have been developed against kinase effectors in various Ras signaling pathways. Their clinical activity, however, has been disappointing thus far. More recently, covalent inhibitors targeting the KRASG12C oncoprotein have been developed. These inhibitors showed promising activity in KRASG12C mutant pancreatic cancer in early clinical trials. This review will present an updated summary of our understanding of mutant KRAS function in pancreatic cancer and discuss therapeutic strategies that target oncogenic KRAS signaling in this disease.
Collapse
Affiliation(s)
- Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD.
| |
Collapse
|
39
|
Al-Share B, Hammad N, Diab M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 2021; 40:355-371. [PMID: 33398620 DOI: 10.1007/s10555-020-09948-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.
Collapse
Affiliation(s)
- Bayan Al-Share
- Department of Oncology, Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nour Hammad
- Department of Oncology, Ascension Providence Hospital and Medical Center/Michigan State University/Collage of Human Medicine, Southfield, MI, USA
| | - Maria Diab
- Department of Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
40
|
Piffoux M, Eriau E, Cassier PA. Autophagy as a therapeutic target in pancreatic cancer. Br J Cancer 2021; 124:333-344. [PMID: 32929194 PMCID: PMC7852577 DOI: 10.1038/s41416-020-01039-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/22/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by early metastasis and resistance to anti-cancer therapy, leading to an overall poor prognosis. Despite continued research efforts, no targeted therapy has yet shown meaningful efficacy in PDAC; mutations in the oncogene KRAS and the tumour suppressor TP53, which are the most common genomic alterations in PDAC, have so far shown poor clinical actionability. Autophagy, a conserved process allowing cells to recycle altered or unused organelles and cellular components, has been shown to be upregulated in PDAC and is implicated in resistance to both cytotoxic chemotherapy and targeted therapy. Autophagy is thus regarded as a potential therapeutic target in PDAC and other cancers. Although the molecular mechanisms of autophagy activation in PDAC are only beginning to emerge, several groups have reported interesting results when combining inhibitors of the extracellular-signal-regulated kinase/mitogen-activated protein kinase pathway and inhibitors of autophagy in models of PDAC and other KRAS-driven cancers. In this article, we review the existing preclinical data regarding the role of autophagy in PDAC, as well as results of relevant clinical trials with agents that modulate autophagy in this cancer.
Collapse
Affiliation(s)
- Max Piffoux
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- INSERM UMR 1197-Interaction cellules souches-niches: physiologie, tumeurs et réparation tissulaire, Villejuif, France
- Laboratoire matière et systèmes complexes, Université de Paris, Paris, France
| | - Erwan Eriau
- Team 11 « Metabolism, Cancer, Immunity », UMR S1138, Centre de Recherche des Cordeliers, Paris, France
| | - Philippe A Cassier
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France.
- TGFβ and Pancreatic Cancer Lab, UMR INSERM 1052 - CNRS 5286, Centre de Recherche en Cancérologie de LYON (CRCL), Centre Léon Bérard, Lyon, France.
| |
Collapse
|
41
|
Gao HL, Wang WQ, Yu XJ, Liu L. Molecular drivers and cells of origin in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine carcinoma. Exp Hematol Oncol 2020; 9:28. [PMID: 33101770 PMCID: PMC7579802 DOI: 10.1186/s40164-020-00184-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the most common causes of cancer-related deaths worldwide. The two major histological subtypes of pancreatic cancer are pancreatic ductal adenocarcinoma (PDAC), accounting for 90% of all cases, and pancreatic neuroendocrine neoplasm (PanNEN), which makes up 3-5% of all cases. PanNEN is classified into well-differentiated pancreatic neuroendocrine tumor and poorly-differentiated pancreatic neuroendocrine carcinoma (PanNEC). Although PDAC and PanNEN are commonly thought to be different diseases with distinct biology, cell of origin, and genomic abnormalities, the idea that PDAC and PanNEC share common cells of origin has been gaining support. This is substantiated by evidence that the molecular profiling of PanNEC is genetically and phenotypically related to PDAC. In the current review, we summarize published studies pointing to common potential cells of origin and speculate about how the distinct paths of differentiation are determined by the genomic patterns of each disease. We also discuss the overlap between PDAC and PanNEC, which has been noted in clinical observations.
Collapse
Affiliation(s)
- He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 20032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Shanghai Pancreatic Cancer Institute, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 20032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Shanghai Pancreatic Cancer Institute, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 20032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Shanghai Pancreatic Cancer Institute, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 20032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Shanghai Pancreatic Cancer Institute, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
42
|
Krishnamurthy A, Bhattacharya S, Lathia T, Kantroo V, Kalra S, Dutta D. Anticancer Medications and Sodium Dysmetabolism. EUROPEAN ENDOCRINOLOGY 2020; 16:122-130. [PMID: 33117443 DOI: 10.17925/ee.2020.16.2.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Therapeutic advances have revolutionised cancer treatment over the last two decades, but despite improved survival and outcomes, adverse effects to anticancer therapy such as dyselectrolytaemias do occur and need to be managed appropriately. This review explores essential aspects of sodium homeostasis in cancer with a focus on alterations arising from anticancer medications. Sodium and water balance are tightly regulated by close interplay of stimuli arising from hypothalamic osmoreceptors, arterial and atrial baroreceptors and the renal juxtaglomerular apparatus. This delicate balance can be disrupted by cancer itself, as well as the medications used to treat it. Some of the conventional chemotherapeutics, such as alkylating agents and platinum-based drugs, can cause hyponatraemia and, on rare occasions, hypernatraemia. Other conventional agents such as vinca alkaloids, as well as newer targeted cancer therapies including small molecule inhibitors and monoclonal antibodies, can cause hyponatraemia, usually as a result of inappropriate antidiuretic hormone secretion. Hyponatraemia can also sometimes occur secondarily to drug-induced hypocortisolism or salt-wasting syndromes. Another atypical but distinct mechanism for hyponatraemia is via pituitary dysfunction induced by immune checkpoint inhibitors. Hypernatraemia is uncommon and occasionally ensues as a result of drug-induced nephrogenic diabetes insipidus. Identification of the aetiology and appropriate management of these conditions, in addition to averting treatment-related problems, can be lifesaving in critical situations.
Collapse
Affiliation(s)
- Aishwarya Krishnamurthy
- Endocrinology Department, Max Super Speciality Hospital, Patparganj, New Delhi, Delhi, India
| | - Saptarshi Bhattacharya
- Endocrinology Department, Max Super Speciality Hospital, Patparganj, New Delhi, Delhi, India
| | - Tejal Lathia
- Endocrinology Department, Fortis Hospital, Vashi, Navi Mumbai, Maharashtra, India
| | - Viny Kantroo
- Respiratory Department, Critical Care and Sleep Medicine, Apollo Hospitals, Sarita Vihar, New Delhi, Delhi, India
| | - Sanjay Kalra
- Endocrinology Department, Bharti Hospital, Karnal, Haryana, India
| | - Deep Dutta
- CEDAR Superspeciality Clinics, Dwarka, New Delhi, Delhi, India
| |
Collapse
|
43
|
Bever KM, Borazanci EH, Thompson EA, Durham JN, Pinero K, Jameson GS, Vrana A, Liu M, Wilt C, Wu AA, Fu W, Wang H, Yin Y, Leal JP, Jesus-Acosta AD, Zheng L, Laheru DA, Von Hoff DD, Jaffee EM, Powell JD, Le DT. An exploratory study of metformin with or without rapamycin as maintenance therapy after induction chemotherapy in patients with metastatic pancreatic adenocarcinoma. Oncotarget 2020; 11:1929-1941. [PMID: 32523648 PMCID: PMC7260120 DOI: 10.18632/oncotarget.27586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: Metformin combined with the mTOR inhibitor rapamycin showed potential synergistic anti-tumor activity in preclinical studies in pancreatic ductal adenocarcinoma (PDA). This phase 1b study (NCT02048384) was conducted to evaluate the feasibility and activity of metformin +/– rapamycin in the maintenance setting for unselected patients with metastatic PDA (mPDA) treated with chemotherapy. Materials and Methods: Eligible patients with stable or responding mPDA after ≥ 6 months on chemotherapy were randomized 1:1 to metformin alone (Arm A) or with rapamycin (Arm B), stratified by prior treatment with FOLFIRINOX. Fluorodeoxyglucose (FDG) PET scans and peripheral blood mononuclear cells were obtained for exploratory analyses. Results: 22 subjects (11 per arm) received treatment per protocol. Median PFS/OS were 3.5 and 13.2 months respectively, with 2 year OS rate of 37%; there were no differences between arms. No responses were observed by RECIST; however, decreases in FDG avidity and/or CA19-9 were observed in several long-term survivors. Treatment related adverse events of Grade ≥ 3 occurred in 0% vs 27% of patients in Arm A vs B and were asymptomatic hematologic or electrolyte abnormalities that were not clinically significant. Improved survival was associated with low baseline neutrophil: lymphocyte ratio, baseline lack of assessable disease by PET, and greater expansion of dendritic cells following treatment. Conclusions: Metformin +/– rapamycin maintenance for mPDA was well-tolerated and several patients achieved stable disease associated with exceptionally long survival. Further prospective studies are needed to clarify the role of these agents in the maintenance setting and to enhance patient selection for such approaches.
Collapse
Affiliation(s)
- Katherine M Bever
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA.,The Skip Viragh Center for Pancreas Cancer at Johns Hopkins, Baltimore, MD, USA.,Co-first authors
| | - Erkut H Borazanci
- Virginia Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA.,Molecular Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.,Co-first authors
| | - Elizabeth A Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Jennifer N Durham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Kimberly Pinero
- Virginia Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA
| | - Gayle S Jameson
- Virginia Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA.,Molecular Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Amber Vrana
- Virginia Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA
| | - Meizheng Liu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Cara Wilt
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA.,The Skip Viragh Center for Pancreas Cancer at Johns Hopkins, Baltimore, MD, USA
| | - Annie A Wu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA.,The Skip Viragh Center for Pancreas Cancer at Johns Hopkins, Baltimore, MD, USA
| | - Wei Fu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA.,Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Jeffrey P Leal
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ana De Jesus-Acosta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,The Skip Viragh Center for Pancreas Cancer at Johns Hopkins, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA.,The Skip Viragh Center for Pancreas Cancer at Johns Hopkins, Baltimore, MD, USA
| | - Daniel A Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA.,The Skip Viragh Center for Pancreas Cancer at Johns Hopkins, Baltimore, MD, USA
| | - Daniel D Von Hoff
- Virginia Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA.,Molecular Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA.,The Skip Viragh Center for Pancreas Cancer at Johns Hopkins, Baltimore, MD, USA
| | - Jonathan D Powell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Dung T Le
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA.,The Skip Viragh Center for Pancreas Cancer at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
44
|
Liu Y, Feng M, Chen H, Yang G, Qiu J, Zhao F, Cao Z, Luo W, Xiao J, You L, Zheng L, Zhang T. Mechanistic target of rapamycin in the tumor microenvironment and its potential as a therapeutic target for pancreatic cancer. Cancer Lett 2020; 485:1-13. [PMID: 32428662 DOI: 10.1016/j.canlet.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer(PC) is a devastating disease with a poor prognosis; however, few treatment options are available and the search continues for feasible molecular therapeutic targets, both in the tumor itself and in the tumor microenvironment. The mechanistic target of rapamycin (mTOR) signaling pathway has emerged as an attractive target due to its regulatory role in multiple cellular processes, including metabolism, proliferation, survival, and differentiation, under physiological and pathological conditions. Although mTOR-regulated events in tumor cells and the tumor microenvironment are known to restrict the development and growth of tumor cells, monotherapy with mTOR inhibitors has shown limited efficacy against PC to date, suggesting the need for alternative approaches. In this review, we describe the mechanisms by which mTOR modulates the PC microenvironment and suggest ways its function in immune cells might be exploited for the treatment of PC. We also discuss preclinical and clinical studies with mTOR inhibitors in combination with other therapeutic strategies, most notably immunotherapy. Finally, we highlight the promise that mTOR combinatorial therapy may hold for the treatment of PC in the near future.
Collapse
Affiliation(s)
- Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mengyu Feng
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China; Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
45
|
Milton CK, Self AJ, Clarke PA, Banerji U, Piccioni F, Root DE, Whittaker SR. A Genome-scale CRISPR Screen Identifies the ERBB and mTOR Signaling Networks as Key Determinants of Response to PI3K Inhibition in Pancreatic Cancer. Mol Cancer Ther 2020; 19:1423-1435. [PMID: 32371585 DOI: 10.1158/1535-7163.mct-19-1131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
KRAS mutation is a key driver of pancreatic cancer and PI3K pathway activity is an additional requirement for Kras-induced tumorigenesis. Clinical trials of PI3K pathway inhibitors in pancreatic cancer have shown limited responses. Understanding the molecular basis for this lack of efficacy may direct future treatment strategies with emerging PI3K inhibitors. We sought new therapeutic approaches that synergize with PI3K inhibitors through pooled CRISPR modifier genetic screening and a drug combination screen. ERBB family receptor tyrosine kinase signaling and mTOR signaling were key modifiers of sensitivity to alpelisib and pictilisib. Inhibition of the ERBB family or mTOR was synergistic with PI3K inhibition in spheroid, stromal cocultures. Near-complete loss of ribosomal S6 phosphorylation was associated with synergy. Genetic alterations in the ERBB-PI3K signaling axis were associated with decreased survival of patients with pancreatic cancer. Suppression of the PI3K/mTOR axis is potentiated by dual PI3K and ERBB family or mTOR inhibition. Surprisingly, despite the presence of oncogenic KRAS, thought to bestow independence from receptor tyrosine kinase signaling, inhibition of the ERBB family blocks downstream pathway activation and synergizes with PI3K inhibitors. Further exploration of these therapeutic combinations is warranted for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Charlotte K Milton
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Annette J Self
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Paul A Clarke
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Udai Banerji
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
46
|
Chen F, Zhang Z, Yu Y, Liu Q, Pu F. HSulf‑1 and palbociclib exert synergistic antitumor effects on RB‑positive triple‑negative breast cancer. Int J Oncol 2020; 57:223-236. [PMID: 32377705 PMCID: PMC7252455 DOI: 10.3892/ijo.2020.5057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Human sulfatase-1 (HSulf-1) is emerging as a novel prognostic biomarker in breast cancer. Previous studies demonstrated HSulf-1 to function as a negative regulator of cyclin D1 in breast cancer. Accumulating preclinical evidence is supporting the efficacy of cyclin-dependent kinase (CDK) 4/6 inhibitors against the luminal androgen receptor sub-type of triple-negative breast cancer (TNBC). It was therefore hypothesized that HSulf-1 may cooperate with CDK4/6 inhibitors to control cell cycle progression in breast cancer cells. HSulf-1 expression was found to be downregulated in TNBC tissues and cell lines compared with that in healthy tissues and non-breast cancer cell lines, respectively. High levels of HSulf-1 expression was also found to be associated with increased progression-free survival and overall survival in patients with TNBC. Functionally, it was demonstrated that HSulf-1 served as tumor suppressor in TNBC by inducing cell cycle arrest and apoptosis whilst inhibiting proliferation, epithelial-mesenchymal transition, migration and invasion. Subsequent overexpression of HSulf-1 coupled with treatment with the CDK4/6 inhibitor palbociclib exhibited a synergistic antitumor effect on retinoblastoma (RB)-positive TNBC. Further studies revealed the mechanism underlying this cooperative antiproliferative effect involved to be due to the prohibitive effects of HSulf-1 on the palbociclib-induced accumulation of cyclin D1 through AKT/STAT3 and ERK1/2/STAT3 signaling. Taken together, findings from the present study not only suggest that HSulf-1 may be a potential therapeutic target for TNBC, but also indicate that combinatorial treatment could be an alternative therapeutic option for RB-positive TNBC, which may open novel perspectives.
Collapse
Affiliation(s)
- Fengxia Chen
- Department of Medical Oncology, General Hospital of The Yangtze River Shipping, Wuhan Polytechnic University, Wuhan, Hubei 430010, P.R. China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yihan Yu
- Department of Pediatrics, The Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiuyu Liu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
47
|
Vundavilli H, Datta A, Sima C, Hua J, Lopes R, Bittner M. In Silico Design and Experimental Validation of Combination Therapy for Pancreatic Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1010-1018. [PMID: 30281473 DOI: 10.1109/tcbb.2018.2872573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The number of deaths associated with Pancreatic Cancer has been on the rise in the United States making it an especially dreaded disease. The overall prognosis for pancreatic cancer patients continues to be grim because of the complexity of the disease at the molecular level involving the potential activation/inactivation of several diverse signaling pathways. In this paper, we first model the aberrant signaling in pancreatic cancer using a multi-fault Boolean Network. Thereafter, we theoretically evaluate the efficacy of different drug combinations by simulating this boolean network with drugs at the relevant intervention points and arrive at the most effective drug(s) to achieve cell death. The simulation results indicate that drug combinations containing Cryptotanshinone, a traditional Chinese herb derivative, result in considerably enhanced cell death. These in silico results are validated using wet lab experiments we carried out on Human Pancreatic Cancer (HPAC) cell lines.
Collapse
|
48
|
Michalopoulou E, Auciello FR, Bulusu V, Strachan D, Campbell AD, Tait-Mulder J, Karim SA, Morton JP, Sansom OJ, Kamphorst JJ. Macropinocytosis Renders a Subset of Pancreatic Tumor Cells Resistant to mTOR Inhibition. Cell Rep 2020; 30:2729-2742.e4. [PMID: 32101748 PMCID: PMC7043007 DOI: 10.1016/j.celrep.2020.01.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a near-universal mutation in KRAS. Additionally, the tumor suppressor PTEN is lost in ∼10% of patients, and in mouse models, this dramatically accelerates tumor progression. While oncogenic KRAS and phosphatidylinositol 3-kinase (PI3K) cause divergent metabolic phenotypes individually, how they synergize to promote tumor metabolic alterations and dependencies remains unknown. We show that in KRAS-driven murine PDAC cells, loss of Pten strongly enhances both mTOR signaling and macropinocytosis. Protein scavenging alleviates sensitivity to mTOR inhibition by rescuing AKT phosphorylation at serine 473 and consequently cell proliferation. Combined inhibition of mTOR and lysosomal processing of internalized protein eliminates the macropinocytosis-mediated resistance. Our results indicate that mTORC2, rather than mTORC1, is an important regulator of protein scavenging and that protein-mediated resistance could explain the lack of effectiveness of mTOR inhibitors in certain genetic backgrounds. Concurrent inhibition of mTOR and protein scavenging might be a valuable therapeutic approach.
Collapse
Affiliation(s)
- Evdokia Michalopoulou
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Francesca R Auciello
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Vinay Bulusu
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - David Strachan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Andrew D Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jacqueline Tait-Mulder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Saadia A Karim
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
49
|
Hu Q, Wu W, Wang M, Shao S, Jin P, Chen Q, Bai H, Zhao X, Huang J, Wang J, Tang G, Liang T. Reverting chemoresistance of targeted agents by a ultrasoluble dendritic nanocapsule. J Control Release 2020; 317:67-77. [DOI: 10.1016/j.jconrel.2019.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/02/2019] [Accepted: 11/17/2019] [Indexed: 01/19/2023]
|
50
|
Chen EP, Song RS, Chen X. Mathematical model of hypoxia and tumor signaling interplay reveals the importance of hypoxia and cell-to-cell variability in tumor growth inhibition. BMC Bioinformatics 2019; 20:507. [PMID: 31638911 PMCID: PMC6802183 DOI: 10.1186/s12859-019-3098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/13/2019] [Indexed: 01/10/2023] Open
Abstract
Background Human tumor is a complex tissue with multiple heterogeneous hypoxic regions and significant cell-to-cell variability. Due to the complexity of the disease, the explanation of why anticancer therapies fail cannot be attributed to intrinsic or acquired drug resistance alone. Furthermore, there are inconsistent reports of hypoxia-induced kinase activities in different cancer cell-lines, where increase, decreases, or no change has been observed. Thus, we asked, why are there widely contrasting results in kinase activity under hypoxia in different cancer cell-lines and how does hypoxia play a role in anti-cancer drug sensitivity? Results We took a modeling approach to address these questions by analyzing the model simulation to explain why hypoxia driven signals can have dissimilar impact on tumor growth and alter the efficacy of anti-cancer drugs. Repeated simulations with varying concentrations of biomolecules followed by decision tree analysis reveal that the highly differential effects among heterogeneous subpopulation of tumor cells could be governed by varying concentrations of just a few key biomolecules. These biomolecules include activated serine/threonine-specific protein kinases (pRAF), mitogen-activated protein kinase kinase (pMEK), protein kinase B (pAkt), or phosphoinositide-4,5-bisphosphate 3-kinase (pPI3K). Additionally, the ratio of activated extracellular signal-regulated kinases (pERK) or pAkt to its respective total was a key factor in determining the sensitivity of pERK or pAkt to hypoxia. Conclusion This work offers a mechanistic insight into how hypoxia can affect the efficacy of anti-cancer drug that targets tumor signaling and provides a framework to identify the types of tumor cells that are either sensitive or resistant to anti-cancer therapy.
Collapse
Affiliation(s)
- Emile P Chen
- Computational Sciences, GlaxoSmithKline, Collegeville, PA, 19426, USA.
| | - Roy S Song
- Computational Sciences, GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Xueer Chen
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206-3701, USA
| |
Collapse
|