1
|
Zhou Z, Tang T, Li N, Zheng Q, Xiao T, Tian Y, Sun J, Zhang L, Wang X, Wang Y, Ye F, Chen Z, Zhang H, Zheng X, Cai Z, Liu L, Guan J. VLDL and LDL Subfractions Enhance the Risk Stratification of Individuals Who Underwent Epstein-Barr Virus-Based Screening for Nasopharyngeal Carcinoma: A Multicenter Cohort Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308765. [PMID: 38520712 PMCID: PMC11165512 DOI: 10.1002/advs.202308765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Serological tests for Epstein-Barr virus (EBV) antibodies have been widely conducted for the screening of nasopharyngeal carcinoma (NPC) in endemic areas. Further risk stratification of NPC can be achieved through plasma lipoprotein and metabolic profiles. A total of 297 NPC patients and 149 EBV-positive participants are enrolled from the NCT03919552 and NCT05682703 cohorts for plasma nuclear magnetic resonance (NMR) metabolomic analysis. Small, dense very low density lipoprotein particles (VLDL-5) and large, buoyant low density lipoprotein particles (LDL-1) are found to be closely associated with nasopharyngeal carcinogenesis. Herein, an NMR-based risk score (NRS), which combines lipoprotein subfractions and metabolic biomarkers relevant to NPC, is developed and well validated within a multicenter cohort. Combining the median cutoff value of the NRS (N50) with that of the serological test for EBV antibodies, the risk stratification model achieves a satisfactory performance in which the area under the curve (AUC) is 0.841 (95% confidence interval: 0.811-0.871), and the positive predictive value (PPV) reaches 70.08% in the combined cohort. These findings not only suggest that VLDL-5 and LDL-1 particles can serve as novel risk factors for NPC but also indicate that the NRS has significant potential in personalized risk prediction for NPC.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Chronic Airways Diseases LaboratoryDepartment of Respiratory and Critical Care MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tingxi Tang
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Nan Li
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qiaocong Zheng
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of Radiation OncologyYangjiang People's HospitalYangjiangGuangdongChina
| | - Ting Xiao
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yunming Tian
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of Radiation OncologyHuizhou People's HospitalHuizhouGuangdongChina
| | - Jianda Sun
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of Radiation OncologyMeizhou People's HospitalMeizhouGuangdongChina
| | - Longshan Zhang
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaoqing Wang
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yingqiao Wang
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Feng Ye
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zekai Chen
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hanbin Zhang
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiuting Zheng
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhen Cai
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Laiyu Liu
- Chronic Airways Diseases LaboratoryDepartment of Respiratory and Critical Care MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jian Guan
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdongChina
| |
Collapse
|
2
|
Wang Y, Wang B, Cao W, Xu X. TGF-β-activated circRYK drives glioblastoma progression by increasing VLDLR mRNA expression and stability in a ceRNA- and RBP-dependent manner. J Exp Clin Cancer Res 2024; 43:73. [PMID: 38454465 PMCID: PMC10921701 DOI: 10.1186/s13046-024-03000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The TGF-β signalling pathway is intricately associated with the progression of glioblastoma (GBM). The objective of this study was to examine the role of circRNAs in the TGF-β signalling pathway. METHODS In our research, we used transcriptome analysis to search for circRNAs that were activated by TGF-β. After confirming the expression pattern of the selected circRYK, we carried out in vitro and in vivo cell function assays. The underlying mechanisms were analysed via RNA pull-down, luciferase reporter, and RNA immunoprecipitation assays. RESULTS CircRYK expression was markedly elevated in GBM, and this phenotype was strongly associated with a poor prognosis. Functionally, circRYK promotes epithelial-mesenchymal transition and GSC maintenance in GBM. Mechanistically, circRYK sponges miR-330-5p and promotes the expression of the oncogene VLDLR. In addition, circRYK could enhance the stability of VLDLR mRNA via the RNA-binding protein HuR. CONCLUSION Our findings show that TGF-β promotes epithelial-mesenchymal transition and GSC maintenance in GBM through the circRYK-VLDLR axis, which may provide a new therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China
| | - Binbin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China
| | - Wenping Cao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China.
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
3
|
Cao Y, Wang H, Jin P, Ma F, Zhou X. Identification and Characterization of the Very-Low-Density Lipoprotein Receptor Gene from Branchiostoma belcheri: Insights into the Origin and Evolution of the Low-Density Lipoprotein Receptor Gene Family. Animals (Basel) 2023; 13:2193. [PMID: 37443991 DOI: 10.3390/ani13132193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Low-density lipoprotein receptors (LDLRs) are a class of cell-surface endocytosis receptors that are mainly involved in cholesterol homeostasis and cellular signal transduction. Very-low-density lipoprotein receptors (VLDLRs), which are members of the LDLR family, have been regarded as multi-function receptors that fulfill diverse physiological functions. However, no VLDLR gene has been identified in protochordates to date. As a representative protochordate species, amphioxi are the best available example of vertebrate ancestors. Identifying and characterizing the VLDLR gene in amphioxi has high importance for exploring the evolutionary process of the LDLR family. With this study, a new amphioxus VLDLR gene (designated AmphiVLDLR) was cloned and characterized using RACE-PCR. The 3217 nt transcript of the AmphiVLDLR had a 2577 nt ORF, and the deduced 858 amino acids were highly conserved within vertebrate VLDLRs according to their primary structure and three-dimensional structure, both of which contained five characteristic domains. In contrast to other vertebrate VLDLRs, which had a conserved genomic structure organization with 19 exons and 18 introns, the AmphiVLDLR had 13 exons and 12 introns. The results of a selective pressure analysis showed that the AmphiVLDLR had numerous positive selection sites. Furthermore, the tissue expression of AmphiVLDLR using RT-qPCR showed that AmphiVLDLR RNA expression levels were highest in the gills and muscles, moderate in the hepatic cecum and gonads, and lowest in the intestines. The results of the evolutionary analysis demonstrated that the AmphiVLDLR gene is a new member of the VLDLR family whose family members have experienced duplications and deletions over the evolutionary process. These results imply that the functions of LDLR family members have also undergone differentiation. In summary, we found a new VLDLR gene homolog (AmphiVLDLR) in amphioxi. Our results provide insight into the function and evolution of the LDLR gene family.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou 225300, China
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Haili Wang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Xue Zhou
- School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou 225300, China
| |
Collapse
|
4
|
Bhardwaj A, Liyanage SI, Weaver DF. Cancer and Alzheimer's Inverse Correlation: an Immunogenetic Analysis. Mol Neurobiol 2023; 60:3086-3099. [PMID: 36797545 DOI: 10.1007/s12035-023-03260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Numerous studies have demonstrated an inverse link between cancer and Alzheimer's disease (AD), with data suggesting that people with Alzheimer's have a decreased risk of cancer and vice versa. Although other studies have investigated mechanisms to explain this relationship, the connection between these two diseases remains largely unexplained. Processes seen in cancer, such as decreased apoptosis and increased cell proliferation, seem to be reversed in AD. Given the need for effective therapeutic strategies for AD, comparisons with cancer could yield valuable insights into the disease process and perhaps result in new treatments. Here, through a review of existing literature, we compared the expressions of genes involved in cell proliferation and apoptosis to establish a genetic basis for the reciprocal association between AD and cancer. We discuss an array of genes involved in the aforementioned processes, their relevance to both diseases, and how changes in those genes produce varying effects in either disease.
Collapse
Affiliation(s)
- Aditya Bhardwaj
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - S Imindu Liyanage
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Donald F Weaver
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.
- Departments of Medicine and Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Qiu Y, Xu Z, Xie Q, Zhang R, Wang L, Zhao L, Liu H. Association of plasma lipid metabolism profiles with overall survival for patients with gastric cancer undergoing gastrectomy based on 1H-NMR spectroscopy. Nutr Metab (Lond) 2023; 20:7. [PMID: 36750880 PMCID: PMC9903497 DOI: 10.1186/s12986-023-00728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Lipid metabolism dysregulation is a prominent metabolic alteration in various cancers. The study aimed to explore the association of plasma lipid metabolism profiles with overall survival (OS) for gastric cancer (GC) patients who received gastrectomy. METHODS GC patients who were treated with gastrectomy and measured with plasma lipid metabolism profiles using proton nuclear magnetic resonance (1H-NMR) spectroscopy in Nanfang Hospital between January 1, 2017, and October 31, 2018, were recruited. The Least Absolute Shrinkage and Selection Operator (LASSO) regression model was used to analyze variables selected by univariate analysis for OS. An index of plasma lipid metabolism profiles, named plasma lipid metabolism index (PLMI), was constructed by variables' coefficients in LASSO regression to explore its association with OS and its role in the prediction model. RESULTS A total of 158 GC patients were included in this study. Four of the 110 lipid profiles, including LDL-5 Apo-B, LDL-4 Cholesterol, HDL-4 Apo-A2, and HDL-4 Free Cholesterol, were selected to construct the PLMI. The optimal cut-off value of PLMI for OS was used to classify the population into two subgroups, the high PLMI group (≥ - 0.163) and the low PLMI group (< - 0.163). The high PLMI group had a shorter OS (p = 0.0034) and was the independent risk factor for OS (Hazard Ratio = 2.13, 95% Confidence Interval (CI): 1.07-4.22, p = 0.031) after adjusting for perineural invasion and tumor stage. In subsets of the I-III stage and treating postoperative chemotherapy, high PLMI also had an unfavorable correlation with OS (p = 0.016 and p = 0.0086, respectively). The nomogram prediction models of both the training cohort and validation cohort showed good calibration and discrimination with the concordance indexes of 0.806 (95% CI, 0.732-0.880) in the training cohort and 0.794 (95% CI, 0.725-0.862) in the validation cohort. CONCLUSIONS This study found that the index derived from the LDL-5 Apo-B, LDL-4 Cholesterol, HDL-4 Apo-A2, and HDL-4 Free Cholesterol, was significantly associated with overall survival, suggesting that regulating lipid metabolisms might improve the prognosis for GC patients.
Collapse
Affiliation(s)
- Yaopeng Qiu
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Zhou Xu
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Qingfeng Xie
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Renyi Zhang
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Luyao Wang
- Guangdong IFV Biomedical Technology Co., Ltd, Foshan, China
| | - Liying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China.
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Yang M, Zhan Y, Hou Z, Wang C, Fan W, Guo T, Li Z, Fang L, Lv S, Li S, Gu C, Ye M, Qin H, Liu Q, Cui X. VLDLR disturbs quiescence of breast cancer stem cells in a ligand-independent function. Front Oncol 2022; 12:887035. [PMID: 36568166 PMCID: PMC9767959 DOI: 10.3389/fonc.2022.887035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer stem cells are responsible for cancer initiation, progression, and drug resistance. However, effective targeting strategies against the cell subpopulation are still limited. Here, we unveil two splice variants of very-low-density lipoprotein receptor, VLDLR-I and -II, which are highly expressed in breast cancer stem cells. In breast cancer cells, VLDLR silencing suppresses sphere formation abilities in vitro and tumor growth in vivo. We find that VLDLR knockdown induces transition from self-renewal to quiescence. Surprisingly, ligand-binding activity is not involved in the cancer-promoting functions of VLDLR-I and -II. Proteomic analysis reveals that citrate cycle and ribosome biogenesis-related proteins are upregulated in VLDLR-I and -II overexpressed cells, suggesting that VLDLR dysregulation is associated with metabolic and anabolic regulation. Moreover, high expression of VLDLR in breast cancer tissues correlates with poor prognosis of patients. Collectively, these findings indicate that VLDLR may be an important therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Mengying Yang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yajing Zhan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wenjun Fan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Tao Guo
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhuoshi Li
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lei Fang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shasha Lv
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sisi Li
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chundong Gu
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Mingliang Ye
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Hongqiang Qin
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China,*Correspondence: Xiaonan Cui, ; Quentin Liu, ; Hongqiang Qin,
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xiaonan Cui, ; Quentin Liu, ; Hongqiang Qin,
| | - Xiaonan Cui
- The First Affiliated Hospital, Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Quentin Liu, ; Hongqiang Qin,
| |
Collapse
|
7
|
Transcription profiling of feline mammary carcinomas and derived cell lines reveals biomarkers and drug targets associated with metabolic and cell cycle pathways. Sci Rep 2022; 12:17025. [PMID: 36220861 PMCID: PMC9553959 DOI: 10.1038/s41598-022-20874-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
The molecular heterogeneity of feline mammary carcinomas (FMCs) represents a prognostic and therapeutic challenge. RNA-Seq-based comparative transcriptomic profiling serves to identify recurrent and exclusive differentially expressed genes (DEGs) across sample types and molecular subtypes. Using mass-parallel RNA-Seq, we identified DEGs and performed comparative function-based analysis across 15 tumours (four basal-like triple-negative [TN], eight normal-like TN, and three luminal B fHER2 negative [LB fHER2-]), two cell lines (CL, TiHo-0906, and TiHo-1403) isolated from the primary tumours (LB fHER2-) of two cats included in this study, and 13 healthy mammary tissue controls. DEGs in tumours were predominantly upregulated; dysregulation of CLs transcriptome was more extensive, including mostly downregulated genes. Cell-cycle and metabolic-related DEGs were upregulated in both tumours and CLs, including therapeutically-targetable cell cycle regulators (e.g. CCNB1, CCNB2, CDK1, CDK4, GTSE1, MCM4, and MCM5), metabolic-related genes (e.g. FADS2 and SLC16A3), heat-shock proteins (e.g. HSPH1, HSP90B1, and HSPA5), genes controlling centrosome disjunction (e.g. RACGAP1 and NEK2), and collagen molecules (e.g. COL2A1). DEGs specifically upregulated in basal-like TN tumours were involved in antigen processing and presentation, in normal-like TN tumours encoded G protein-coupled receptors (GPCRs), and in LB fHER2- tumours were associated with lysosomes, phagosomes, and endosomes formation. Downregulated DEGs in CLs were associated with structural and signalling cell surface components. Hence, our results suggest that upregulation of genes enhancing proliferation and metabolism is a common feature among FMCs and derived CLs. In contrast, the dissimilarities observed in dysregulation of membrane components highlight CLs' disconnection with the tumour microenvironment. Furthermore, recurrent and exclusive DEGs associated with dysregulated pathways might be useful for the development of prognostically and therapeutically-relevant targeted panels.
Collapse
|
8
|
Spunde K, Korotkaja K, Zajakina A. Recombinant Viral Vectors for Therapeutic Programming of Tumour Microenvironment: Advantages and Limitations. Biomedicines 2022; 10:2142. [PMID: 36140243 PMCID: PMC9495732 DOI: 10.3390/biomedicines10092142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Viral vectors have been widely investigated as tools for cancer immunotherapy. Although many preclinical studies demonstrate significant virus-mediated tumour inhibition in synergy with immune checkpoint molecules and other drugs, the clinical success of viral vector applications in cancer therapy currently is limited. A number of challenges have to be solved to translate promising vectors to clinics. One of the key elements of successful virus-based cancer immunotherapy is the understanding of the tumour immune state and the development of vectors to modify the immunosuppressive tumour microenvironment (TME). Tumour-associated immune cells, as the main component of TME, support tumour progression through multiple pathways inducing resistance to treatment and promoting cancer cell escape mechanisms. In this review, we consider DNA and RNA virus vectors delivering immunomodulatory genes (cytokines, chemokines, co-stimulatory molecules, antibodies, etc.) and discuss how these viruses break an immunosuppressive cell development and switch TME to an immune-responsive "hot" state. We highlight the advantages and limitations of virus vectors for targeted therapeutic programming of tumour immune cell populations and tumour stroma, and propose future steps to establish viral vectors as a standard, efficient, safe, and non-toxic cancer immunotherapy approach that can complement other promising treatment strategies, e.g., checkpoint inhibitors, CAR-T, and advanced chemotherapeutics.
Collapse
Affiliation(s)
| | | | - Anna Zajakina
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k.1, LV-1067 Riga, Latvia
| |
Collapse
|
9
|
Passarella D, Ciampi S, Di Liberto V, Zuccarini M, Ronci M, Medoro A, Foderà E, Frinchi M, Mignogna D, Russo C, Porcile C. Low-Density Lipoprotein Receptor-Related Protein 8 at the Crossroad between Cancer and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23168921. [PMID: 36012187 PMCID: PMC9408729 DOI: 10.3390/ijms23168921] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The low-density-lipoprotein receptors represent a family of pleiotropic cell surface receptors involved in lipid homeostasis, cell migration, proliferation and differentiation. The family shares common structural features but also has significant differences mainly due to tissue-specific interactors and to peculiar proteolytic processing. Among the receptors in the family, recent studies place low-density lipoprotein receptor-related protein 8 (LRP8) at the center of both neurodegenerative and cancer-related pathways. From one side, its overexpression has been highlighted in many types of cancer including breast, gastric, prostate, lung and melanoma; from the other side, LRP8 has a potential role in neurodegeneration as apolipoprotein E (ApoE) and reelin receptor, which are, respectively, the major risk factor for developing Alzheimer’s disease (AD) and the main driver of neuronal migration, and as a γ-secretase substrate, the main enzyme responsible for amyloid formation in AD. The present review analyzes the contributions of LDL receptors, specifically of LRP8, in both cancer and neurodegeneration, pointing out that depending on various interactions and peculiar processing, the receptor can contribute to both proliferative and neurodegenerative processes.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Silvia Ciampi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Emanuele Foderà
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-0874404897
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
10
|
Gregorio JD, Petricca S, Iorio R, Toniato E, Flati V. MITOCHONDRIAL AND METABOLIC ALTERATIONS IN CANCER CELLS. Eur J Cell Biol 2022; 101:151225. [DOI: 10.1016/j.ejcb.2022.151225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
|
11
|
Chen CH, Ke GM, Lin PC, Lin KD. Therapeutic DNA vaccine encoding CEMIP (KIAA1199) ameliorates kidney fibrosis in obesity through inhibiting the Wnt/β-catenin pathway. Biochim Biophys Acta Gen Subj 2021; 1865:130019. [PMID: 34582938 DOI: 10.1016/j.bbagen.2021.130019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND CEMIP is a novel risk factor of various cancers through activating Wnt/β-catenin /epithelial-mesenchymal transition between epithelial cells and stroma. The chronic fibrosis commonly contributes renal carcinogenesis in patients with obesity. As there have very few choices of medicines targeting CEMIP. This study intended to design therapeutic DNA vaccines for nephropathy in obesity, through diminishing the CEMIP/Wnt1/β-catenin pathway. METHOD In an 8-week experiment, plasmid-encoding CEMIP was vaccinated into high-fat diet (HFD) or obesity mice in the first 4 weeks, and then vaccination was stopped for at least 4 weeks. Then, plasma and spleens were harvested to evaluate anti-CEMIP antibody synthesis and T-helper type 1 and 2 activation after vaccination. Kidneys were collected to investigate efficacy of CEMIP DNA vaccine on inhibiting HFD and obesity-induced fibrosis and Wnt1/β-catenin pathway. To confirm that CEMIP crucially contributed towards fibrotic formation, CEMIP gene or siRNA transfection was performed in HK-2 cells under VLDL stimulation, or not. RESULTS At the end point, anti-CEMIP antibody was successfully produced in the pcDNA 3.1-CEMIP vaccinated group, while Wnt1/β-catenin signaling and fibrosis was inactive. Through VLDL stimulation and CEMIP overexpression, Wnt1/β-catenin signaling and fibrosis significantly presented in vitro. Otherwise, anti-sera of CEMIP-vaccinated mice could inhibit the VLDL-induced Wnt1/β-catenin/fibrosis pathway in HK-2 cells. Similarly, the silencing of CEMIP by siRNA ameliorated the Wnt1/β-catenin pathway and fibrogenesis under VLDL stimulation. CONCLUSION DNA vaccine targeting CEMIP/Wnt1/β-catenin pathway plays a novel strategy in nephropathy. GENERAL SIGNIFICANCE Immune therapy might provide a new therapeutic option on nephropathy of obesity.
Collapse
Affiliation(s)
- Chao-Hung Chen
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pi-Chen Lin
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Der Lin
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan..
| |
Collapse
|
12
|
Liu W, Chakraborty B, Safi R, Kazmin D, Chang CY, McDonnell DP. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun 2021; 12:5103. [PMID: 34429409 PMCID: PMC8385107 DOI: 10.1038/s41467-021-25354-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Hypercholesterolemia and dyslipidemia are associated with an increased risk for many cancer types and with poor outcomes in patients with established disease. Whereas the mechanisms by which this occurs are multifactorial we determine that chronic exposure of cells to 27-hydroxycholesterol (27HC), an abundant circulating cholesterol metabolite, selects for cells that exhibit increased cellular uptake and/or lipid biosynthesis. These cells exhibit substantially increased tumorigenic and metastatic capacity. Notably, the metabolic stress imposed upon cells by the accumulated lipids requires sustained expression of GPX4, a negative regulator of ferroptotic cell death. We show that resistance to ferroptosis is a feature of metastatic cells and further demonstrate that GPX4 knockdown attenuates the enhanced tumorigenic and metastatic activity of 27HC resistant cells. These findings highlight the general importance of ferroptosis in tumor growth and metastasis and suggest that dyslipidemia/hypercholesterolemia impacts cancer pathogenesis by selecting for cells that are resistant to ferroptotic cell death.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rachid Safi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dmitri Kazmin
- Emory Vaccine Center, Emory University, Atlanta, GA, 30322, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
13
|
Zhang Y, Huang X, Liu J, Chen G, Liu C, Zhang S, Li J. New insight into long non-coding RNAs associated with bone metastasis of breast cancer based on an integrated analysis. Cancer Cell Int 2021; 21:372. [PMID: 34256750 PMCID: PMC8276423 DOI: 10.1186/s12935-021-02068-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background Bone is the most common site of metastatic breast cancer, and it is a leading cause of breast cancer-related death. This study aimed to explore bone metastasis-related long non-coding RNAs (lncRNAs) in breast cancer. Methods Four mRNA datasets and two lncRNA datasets of bone metastasis, lung metastasis and liver metastasis of breast cancer were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) in group of bone metastasis vs lung metastasis and bone metastasis vs liver metastasis, as well as the overlap of the two groups, were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein–protein interaction (PPI) network construction of DEmRNAs were conducted. The cis nearby-targeted DEmRNAs of DElncRNAs were obtained. Quantitative real-time polymerase chain reactions (qRT-PCR) was used to detect the expression levels of selected DEmRNAs and DElncRNAs. LOC641518-lymphoid enhancer-binding factor 1 (LEF1) pair was selected to verify its role in migration and invasion capability of breast cancer cells by wounding healing assay and transwell invasion assay. Results A total of 237 DEmRNAs were obtained in bone metastasis compared with both lung metastasis and liver metastasis. A total of three DElncRNAs in bone metastasis compared with both lung metastasis and liver metastasis were obtained. A total of seven DElncRNA-nearby-targeted DEmRNA pairs and 15 DElncRNA-nearby-targeted DEmRNA pairs in group of bone metastasis vs lung metastasis and bone metastasis vs liver metastasis, were detected, respectively. Four cis LncRNA-mRNA interaction pairs were identified, which are LOC641518-LEF1, FLJ35024-Very Low Density Lipoprotein Receptor (VLDLR), LOC285972-Retinoic Acid Receptor Responder 2 (RARRES2) and LOC254896-TNF receptor superfamily member 10c (TNFRSF10C). qRT-PCR using clinical samples from our hospital confirms the bioinformatics prediction. siRNA knocking down LOC641518 down-regulates LEF1 mRNA expression, and reduces the migration and invasion capability of breast cancer cells. Conclusions We concluded that four LncRNA-mRNA pairs, including LOC641518-LEF1, may play a central role in breast cancer bone metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02068-7.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Orthopaedics, The First People's Hospital of Chengdu, Chengdu, Sichuan Province, China
| | - Xiaofeng Huang
- Department of Orthopaedics, The First People's Hospital of Chengdu, Chengdu, Sichuan Province, China
| | - Jin Liu
- Department of Orthopaedics, The First People's Hospital of Chengdu, Chengdu, Sichuan Province, China
| | - Guo Chen
- Department of Orthopaedics, The First People's Hospital of Chengdu, Chengdu, Sichuan Province, China
| | - Chengjun Liu
- Department of Orthopaedics, The First People's Hospital of Chengdu, Chengdu, Sichuan Province, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Jiaxin Li
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University & Lishui City People's Hospital, Lishui, Zhejiang Province, China.
| |
Collapse
|
14
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Campion O, Al Khalifa T, Langlois B, Thevenard-Devy J, Salesse S, Savary K, Schneider C, Etique N, Dedieu S, Devy J. Contribution of the Low-Density Lipoprotein Receptor Family to Breast Cancer Progression. Front Oncol 2020; 10:882. [PMID: 32850302 PMCID: PMC7406569 DOI: 10.3389/fonc.2020.00882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) family comprises 14 single-transmembrane receptors sharing structural homology and common repeats. These receptors specifically recognize and internalize various extracellular ligands either alone or complexed with membrane-spanning co-receptors that are then sorted for lysosomal degradation or cell-surface recovery. As multifunctional endocytic receptors, some LDLR members from the core family were first considered as potential tumor suppressors due to their clearance activity against extracellular matrix-degrading enzymes. LDLRs are also involved in pleiotropic functions including growth factor signaling, matricellular proteins, and cell matrix adhesion turnover and chemoattraction, thereby affecting both tumor cells and their surrounding microenvironment. Therefore, their roles could appear controversial and dependent on the malignancy state. In this review, recent advances highlighting the contribution of LDLR members to breast cancer progression are discussed with focus on (1) specific expression patterns of these receptors in primary cancers or distant metastasis and (2) emerging mechanisms and signaling pathways. In addition, potential diagnosis and therapeutic options are proposed.
Collapse
Affiliation(s)
- Océane Campion
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Tesnim Al Khalifa
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Benoit Langlois
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jessica Thevenard-Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphanie Salesse
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Katia Savary
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Christophe Schneider
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Nicolas Etique
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jérôme Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
16
|
Monaco ME. Fatty acid metabolism in breast cancer subtypes. Oncotarget 2018; 8:29487-29500. [PMID: 28412757 PMCID: PMC5438746 DOI: 10.18632/oncotarget.15494] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/06/2017] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of fatty acid metabolism is recognized as a component of malignant transformation in many different cancers, including breast; yet the potential for targeting this pathway for prevention and/or treatment of cancer remains unrealized. Evidence indicates that proteins involved in both synthesis and oxidation of fatty acids play a pivotal role in the proliferation, migration and invasion of breast cancer cells. The following essay summarizes data implicating specific fatty acid metabolic enzymes in the genesis and progression of breast cancer, and further categorizes the relevance of specific metabolic pathways to individual intrinsic molecular subtypes of breast cancer. Based on mRNA expression data, the less aggressive luminal subtypes appear to rely on a balance between de novo fatty acid synthesis and oxidation as sources for both biomass and energy requirements, while basal-like, receptor negative subtypes overexpress genes involved in the utilization of exogenous fatty acids. With these differences in mind, treatments may need to be tailored to individual subtypes.
Collapse
Affiliation(s)
- Marie E Monaco
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.,Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| |
Collapse
|
17
|
Jones R, Watson K, Bruce A, Nersesian S, Kitz J, Moorehead R. Re-expression of miR-200c suppresses proliferation, colony formation and in vivo tumor growth of murine claudin-low mammary tumor cells. Oncotarget 2017; 8:23727-23749. [PMID: 28423599 PMCID: PMC5410340 DOI: 10.18632/oncotarget.15829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Claudin-low breast cancer is a relatively rare breast cancer subtype. These cancers are typically ER-/PR-/HER2- and express high levels of mesenchymal genes as well as genes associated with inflammation, angiogenesis and stem cell function. In addition to alterations in gene expression, it was recently demonstrated that claudin-low breast cancers express very low levels of the miR-200 family of miRNAs. Given that each miRNA can regulate tens, hundreds or even thousands of genes, miRNAs are being evaluated as therapeutic targets. In this study we show that mammary tumors from MTB-IGFIR transgenic mice and cell lines derived from these tumors represent a model of human claudin-low breast cancer and murine claudin-low mammary tumors and cell lines express only very low levels of all five members of the miR-200 family. Reduced miR-200 family expression appears to be regulated via methylation as cells and tumors expressing low levels of miR-200 family members had higher levels of CpG methylation in a putative promoter region than tumors and cells expressing high levels of miR-200 family members. Re-expression of miR-200c in murine claudin-low mammary tumor cells inhibited tumor cell proliferation and colony formation in vitro and tumor growth in vivo. With respect to tumor growth in vivo, re-expression of miR-200c was associated with a reduction in tumor vasculature and expression of Flt1 and Vegfc. Therefore, miR-200c is an important regulator of mesenchymal tumor cell growth.
Collapse
Affiliation(s)
- Robert Jones
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Katrina Watson
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony Bruce
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah Nersesian
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jenna Kitz
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger Moorehead
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
18
|
Idippily ND, Gan C, Orefice P, Peterson J, Su B. Synthesis of Vorinostat and cholesterol conjugate to enhance the cancer cell uptake selectivity. Bioorg Med Chem Lett 2017; 27:816-820. [DOI: 10.1016/j.bmcl.2017.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 12/01/2022]
|
19
|
Deregulated MicroRNAs in Biliary Tract Cancer: Functional Targets and Potential Biomarkers. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4805270. [PMID: 27957497 PMCID: PMC5120202 DOI: 10.1155/2016/4805270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Biliary tract cancer (BTC) is still a fatal disease with very poor prognosis. The lack of reliable biomarkers for early diagnosis and of effective therapeutic targets is a major demanding problem in diagnosis and management of BTC. Due to the clinically silent and asymptomatic characteristics of the tumor, most patients are diagnosed at an already advanced stage allowing only for a palliative therapeutic approach. MicroRNAs are small noncoding RNAs well known to regulate various cellular functions and pathologic events including the formation and progression of cancer. Over the last years, several studies have shed light on the role of microRNAs in BTC, making them potentially attractive therapeutic targets and candidates as biomarkers. In this review, we will focus on the role of oncogenic and tumor suppressor microRNAs and their direct targets in BTC. Furthermore, we summarize and discuss data that evaluate the diagnostic power of deregulated microRNAs as possible future biomarkers for BTC.
Collapse
|
20
|
Higgins MJ, Serrano A, Boateng KY, Parsons VA, Phuong T, Seifert A, Ricca JM, Tucker KC, Eidelman AS, Carey MA, Kurt RA. A Multifaceted Role for Myd88-Dependent Signaling in Progression of Murine Mammary Carcinoma. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:157-167. [PMID: 27812285 PMCID: PMC5084708 DOI: 10.4137/bcbcr.s40075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
Previous data obtained in our laboratory suggested that there may be constitutive signaling through the myeloid differentiation primary response gene 88 (Myd88)-dependent signaling cascade in murine mammary carcinoma. Here, we extended these findings by showing that, in the absence of an added Toll-like receptor (TLR) agonist, the myddosome complex was preformed in 4T1 tumor cells, and that Myd88 influenced cytoplasmic extracellular signal–regulated kinase (Erk)1/Erk2 levels, nuclear levels of nuclear factor-kappaB (NFκB) and signal transducer and activator of transcription 5 (STAT5), tumor-derived chemokine (C–C motif) ligand 2 (CCL2) expression, and in vitro and in vivo tumor growth. In addition, RNA-sequencing revealed that Myd88-dependent signaling enhanced the expression of genes that could contribute to breast cancer progression and genes previously associated with poor outcome for patients with breast cancer, in addition to suppressing the expression of genes capable of inhibiting breast cancer progression. Yet, Myd88-dependent signaling in tumor cells also suppressed expression of genes that could contribute to tumor progression. Collectively, these data revealed a multifaceted role for Myd88-dependent signaling in murine mammary carcinoma.
Collapse
Affiliation(s)
- Mary J Higgins
- Department of Biology, Lafayette College, Easton, PA, USA
| | | | - Kofi Y Boateng
- Department of Biology, Lafayette College, Easton, PA, USA
| | | | - Tiffany Phuong
- Department of Biology, Lafayette College, Easton, PA, USA
| | - Alyssa Seifert
- Department of Biology, Lafayette College, Easton, PA, USA
| | - Jacob M Ricca
- Department of Biology, Lafayette College, Easton, PA, USA
| | - Kyle C Tucker
- Department of Biology, Lafayette College, Easton, PA, USA
| | | | | | - Robert A Kurt
- Department of Biology, Lafayette College, Easton, PA, USA
| |
Collapse
|
21
|
Chen Y, Wang L, Li L, Zhang H, Yuan Z. Informative gene selection and the direct classification of tumors based on relative simplicity. BMC Bioinformatics 2016; 17:44. [PMID: 26792270 PMCID: PMC4721022 DOI: 10.1186/s12859-016-0893-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/19/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Selecting a parsimonious set of informative genes to build highly generalized performance classifier is the most important task for the analysis of tumor microarray expression data. Many existing gene pair evaluation methods cannot highlight diverse patterns of gene pairs only used one strategy of vertical comparison and horizontal comparison, while individual-gene-ranking method ignores redundancy and synergy among genes. RESULTS Here we proposed a novel score measure named relative simplicity (RS). We evaluated gene pairs according to integrating vertical comparison with horizontal comparison, finally built RS-based direct classifier (RS-based DC) based on a set of informative genes capable of binary discrimination with a paired votes strategy. Nine multi-class gene expression datasets involving human cancers were used to validate the performance of new method. Compared with the nine reference models, RS-based DC received the highest average independent test accuracy (91.40%), the best generalization performance and the smallest informative average gene number (20.56). Compared with the four reference feature selection methods, RS also received the highest average test accuracy in three classifiers (Naïve Bayes, k-Nearest Neighbor and Support Vector Machine), and only RS can improve the performance of SVM. CONCLUSIONS Diverse patterns of gene pairs could be highlighted more fully while integrating vertical comparison with horizontal comparison strategy. DC core classifier can effectively control over-fitting. RS-based feature selection method combined with DC classifier can lead to more robust selection of informative genes and classification accuracy.
Collapse
Affiliation(s)
- Yuan Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China. .,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Lifeng Wang
- Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha, China.
| | - Lanzhi Li
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Hongyan Zhang
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Zheming Yuan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China. .,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
22
|
Liu W, Yi DD, Guo JL, Xiang ZX, Deng LF, He L. Nuciferine, extracted from Nelumbo nucifera Gaertn, inhibits tumor-promoting effect of nicotine involving Wnt/β-catenin signaling in non-small cell lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:83-93. [PMID: 25698245 DOI: 10.1016/j.jep.2015.02.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Nelumbo nucifera Gaertn are recorded in the earliest written documentation of traditional Chinese medicinal as "Ben Cao Gang Mu", a medicinal herb for blood clotting, dysentery and dizziness. Recently, nuciferine (NF), one of N. nucifera Gaertn leaf extracts has been shown to possess several pharmacological properties, including anti-viral and anti-cancer. The aim of this study is to investigate the underlying molecular mechanism of the anti-cancer activity of NF in NSCLC progression induced by nicotine MATERIALS AND METHODS The effect of NF on proliferation of A549 (human lung adenocarcinoma epithelial cell line) pretreated with or without nicotine was detected by tumor cell proliferation assay. TOP-Flash reporter assay was applied to investigate the activity of Wnt/β-catenin signaling in tumor cells in the presence of NF and/or nicotine. Apoptosis was measured using a FITC-Annexin V and PI detection kit by flow cytometry. In addition, mRNA or protein expression levels were respectively tested by quantitative RT-PCR or western blot. In vivo experiments, tumor samples were fixed in formalin and embedded in paraffin for additional analyses by immunohistochemistry and TUNEL staining. RESULTS NF significantly inhibited the proliferation of NSCLC cells in the presence of nicotine, suppressed the activity of Wnt/β-catenin signaling, enhanced the stabilization of Axin, and induced apoptosis. NF down-regulated the expression levels of β-catenin and its downstream targets including c-myc, cyclin D and VEGF-A. NF also decreased the ratio of Bcl-2/Bax, which may explain the pro-apoptosis effect of NF. In tumor xenograft nude mice, NF not only inhibited the growth of non-small cell lung cancer (NSCLC) cells, but also remarkably alleviated the injury induced by nicotine in liver function. CONCLUSIONS NF has the remarkable effect to inhibit nicotine-induced NSCLC progression, which was due to its ability to reduce the activity of Wnt/β-catenin signaling. Thus, the work stated here emphasizes the importance of this traditional medicine and presents a potential novel alternative to NSCLC prevention and therapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, China
| | - Dan-Dan Yi
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Jian-Li Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Zhu-Xing Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Lin-Feng Deng
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Road, Wuhan 430030, China
| | - Lei He
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Road, Wuhan 430030, China.
| |
Collapse
|
23
|
Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth. Eur J Cancer 2014; 50:3187-97. [PMID: 25450947 DOI: 10.1016/j.ejca.2014.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/11/2014] [Accepted: 09/24/2014] [Indexed: 12/14/2022]
Abstract
AIM OF THE STUDY Metabolic adaptations are essential during tumour growth to maintain the high proliferation levels exhibited by cancer cells. In this study, we examined the transformations that occurred in the lipid metabolism in astrocytic tumours, and the possible role of the fuel-sensing enzyme AMPK. Metabolic targets might help design new and effective drugs for cancer. METHODS To accomplish this objective, we studied both mice and human astrocytic tumours. We first used a mouse model of astrocytoma driven by oncogenic H-RasV12 and/or with PTEN deletion based on the common constitutive activation of the Raf/MEK/ERK and PI3K/AKT cascades in human astrocytomas. We then confirmed the results in human glioblastoma cell lines and in glioblastoma tissue samples from patients. RESULTS We show that the high levels of activated AMPK, observed in astrocytic tumours, increase extracellular lipid internalisation and reduce energy expenditure by inhibiting 'de novo' fatty acid (FA) synthesis, which allows tumour cells to obtain building blocks and energy to be able to create new organelles and new cells. CONCLUSIONS Our findings demonstrate that AMPK plays a crucial role in glioblastoma cell growth and suggest that blocking lipoprotein receptors could potentially be used as a plausible therapeutic approach for these and other type of tumours with high levels of AMPK.
Collapse
|
24
|
Zhao YZ, Liu XL, Shen GM, Ma YN, Zhang FL, Chen MT, Zhao HL, Yu J, Zhang JW. Hypoxia induces peroxisome proliferator-activated receptor γ expression via HIF-1-dependent mechanisms in HepG2 cell line. Arch Biochem Biophys 2013; 543:40-7. [PMID: 24374034 DOI: 10.1016/j.abb.2013.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 01/22/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) can activate expression of a broad range of genes in response to hypoxia. It has been shown that the levels of peroxisome proliferator-activated receptor γ (PPARγ) are influenced by changes in oxygen tension, and PPARγ plays a critical role in metabolism regulation and cancers. In this research, we observed an increased PPARγ mRNA and protein levels in company with increased HIF-1 protein levels in HepG2 cells in hypoxia as compared with in normoxia. Enforced expression of HIF-1α induced PPARγ1 and PPARγ2 expression, while knockdown of HIF-1α by small interference RNA deduced PPARγ1 and PPARγ2 expression in HepG2 cells under hypoxic conditions. By dual-luciferase reporter assay and chromatin immunoprecipitation assay we confirmed a functional hypoxic response element (HRE) localized at 684bp upstream of the transcriptional start site (TSS) of PPARγ1 and a functional HRE localized at 204bp downstream of the TSS of PPARγ2 in HepG2 cells. Additionally we observed an increase and co-presence of PPARγ and HIF-1α, and a highly positive correlation between PPARγ expression and HIF-1α expression (r=0.553, p<0.0001), in the same tumor tissue areas of hepatocellular carcinoma patients. Our data suggested a new mechanism of hepatocellular carcinoma cells response to hypoxia.
Collapse
Affiliation(s)
- Ying-Ze Zhao
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Ling Liu
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Min Shen
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Ni Ma
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng-Lin Zhang
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Tai Chen
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua-Lu Zhao
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Wu Zhang
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
25
|
Ng L, Poon RTP, Pang R. Biomarkers for predicting future metastasis of human gastrointestinal tumors. Cell Mol Life Sci 2013; 70:3631-56. [PMID: 23370778 PMCID: PMC11113832 DOI: 10.1007/s00018-013-1266-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 01/02/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Abstract
The recent advances in surgery and radiation therapy have significantly improved the prognosis of patients with primary cancer, and the major challenge of cancer treatment now is metastatic disease development. The 5-year survival rate of cancer patients who have distant metastasis at diagnosis is extremely low, suggesting that prediction and early detection of metastasis would definitely improve their prognosis because suitable patient therapeutic management and treatment strategy can be provided. Cancer cells from a primary site give rise to a metastatic tumor via a number of steps which require the involvement and altered expression of many regulators. These regulators may serve as biomarkers for predicting metastasis. Over the past few years, numerous regulators have been found correlating with metastasis. In this review, we summarize the findings of a number of potential biomarkers that are involved in cadherin-catenin interaction, integrin signaling, PI3K/Akt/mTOR signaling and cancer stem cell identification in gastrointestinal cancers. We will also discuss how certain biomarkers are associated with the tumor microenvironment that favors cancer metastasis.
Collapse
Affiliation(s)
- Lui Ng
- Department of Surgery, The University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China,
| | | | | |
Collapse
|
26
|
Dubuissez M, Faiderbe P, Pinte S, Dehennaut V, Rood BR, Leprince D. The Reelin receptors ApoER2 and VLDLR are direct target genes of HIC1 (Hypermethylated In Cancer 1). Biochem Biophys Res Commun 2013; 440:424-30. [PMID: 24076391 DOI: 10.1016/j.bbrc.2013.09.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/16/2022]
Abstract
The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) is located in 17p13.3 a region frequently hypermethylated or deleted in tumors and in a contiguous-gene syndrome, the Miller-Dieker syndrome which includes classical lissencephaly (smooth brain) and severe developmental defects. HIC1 encodes a transcriptional repressor involved in the regulation of growth control, DNA damage response and cell migration properties. We previously demonstrated that the membrane-associated G-protein-coupled receptors CXCR7, ADRB2 and the tyrosine kinase receptor EphA2 are direct target genes of HIC1. Here we show that ectopic expression of HIC1 in U2OS and MDA-MB-231 cell lines decreases expression of the ApoER2 and VLDLR genes, encoding two canonical tyrosine kinase receptors for Reelin. Conversely, knock-down of endogenous HIC1 in BJ-Tert normal human fibroblasts through RNA interference results in the up-regulation of these two Reelin receptors. Finally, through chromatin immunoprecipitation (ChIP) in BJ-Tert fibroblasts, we demonstrate that HIC1 is a direct transcriptional repressor of ApoER2 and VLDLR. These data provide evidence that HIC1 is a new regulator of the Reelin pathway which is essential for the proper migration of neuronal precursors during the normal development of the cerebral cortex, of Purkinje cells in the cerebellum and of mammary epithelial cells. Deregulation of this pathway through HIC1 inactivation or deletion may contribute to its role in tumor promotion. Moreover, HIC1, through the direct transcriptional repression of ATOH1 and the Reelin receptors ApoER2 and VLDLR, could play an essential role in normal cerebellar development.
Collapse
Affiliation(s)
- Marion Dubuissez
- CNRS-UMR 8161, Institut de Biologie de Lille, Université de Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 rue Calmette, BP447, 59017 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
27
|
Hypoxia-inducible factor-1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia. Biochem J 2012; 441:675-83. [PMID: 21970364 DOI: 10.1042/bj20111377] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolism under hypoxia is significantly different from that under normoxia. It has been well elucidated that HIF-1 (hypoxia-inducible factor-1) plays a central role in regulating glucose metabolism under hypoxia; however, the role of HIF-1 in lipid metabolism has not yet been well addressed. In the present study we demonstrate that HIF-1 promotes LDL (low-density lipoprotein) and VLDL (very-LDL) uptake through regulation of VLDLR (VLDL receptor) gene expression under hypoxia. Increased VLDLR mRNA and protein levels were observed under hypoxic or DFO (deferoxamine mesylate salt) treatment in MCF7, HepG2 and HeLa cells. Using dual-luciferase reporter and ChIP (chromatin immunoprecipitation) assays we confirmed a functional HRE (hypoxia-response element) which is localized at +405 in exon 1 of the VLDLR gene. Knockdown of HIF1A (the α subunit of HIF-1) and VLDLR, but not HIF2A (the α subunit of HIF-2), attenuated hypoxia-induced lipid accumulation through affecting LDL and VLDL uptake. Additionally we also observed a correlation between HIF-1 activity and VLDLR expression in hepatocellular carcinoma specimens. The results of the present study suggest that HIF-1-mediated VLDLR induction influences intracellular lipid accumulation through regulating LDL and VLDL uptake under hypoxia.
Collapse
|
28
|
Rebustini IT, Hayashi T, Reynolds AD, Dillard ML, Carpenter EM, Hoffman MP. miR-200c regulates FGFR-dependent epithelial proliferation via Vldlr during submandibular gland branching morphogenesis. Development 2011; 139:191-202. [PMID: 22115756 DOI: 10.1242/dev.070151] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of epithelial proliferation during organ morphogenesis is crucial for normal development, as dysregulation is associated with tumor formation. Non-coding microRNAs (miRNAs), such as miR-200c, are post-transcriptional regulators of genes involved in cancer. However, the role of miR-200c during normal development is unknown. We screened miRNAs expressed in the mouse developing submandibular gland (SMG) and found that miR-200c accumulates in the epithelial end buds. Using both loss- and gain-of-function, we demonstrated that miR-200c reduces epithelial proliferation during SMG morphogenesis. To identify the mechanism, we predicted miR-200c target genes and confirmed their expression during SMG development. We discovered that miR-200c targets the very low density lipoprotein receptor (Vldlr) and its ligand reelin, which unexpectedly regulate FGFR-dependent epithelial proliferation. Thus, we demonstrate that miR-200c influences FGFR-mediated epithelial proliferation during branching morphogenesis via a Vldlr-dependent mechanism. miR-200c and Vldlr may be novel targets for controlling epithelial morphogenesis during glandular repair or regeneration.
Collapse
Affiliation(s)
- Ivan T Rebustini
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|