1
|
Najjar R, Alessi H, Pinal‐Fernandez I, Mammen AL, Mustelin T. Distinct Transcript-Level Expression Profiles and Unique Alternative Splicing in Inflammatory Myopathies. ACR Open Rheumatol 2024; 6:690-699. [PMID: 39073022 PMCID: PMC11471943 DOI: 10.1002/acr2.11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE The pathogenesis of inflammatory myopathies is poorly understood and there is a need to dissect the transcriptome in more granular ways beyond gene expression. METHODS We used a set of muscle RNA-sequencing data from different myositis subtypes grouped by their specific autoantibodies (n = 152). We quantified annotated RNA transcripts for each myositis subtype and identified uniquely expressed RNA as well as transcriptional similarities among myositis types. In addition, we quantified event-based alternative splicing with predicted protein changes. And finally, we searched for cryptic exons. RESULTS We saw considerable overlap in RNA expression among subtypes. In addition, MADCAM1 was previously shown to be uniquely expressed in Mi-2 myositis; we discovered it was two noncanonical transcripts that predominantly contributed to the observed increased expression. At the transcriptional level, dermatomyositis subtypes were least similar to inclusion body myositis (IBM) or Jo1, followed by HMGCR, then SRP and other dermatomyositis subtype. Additionally, we discovered many alternative splicing events that were unique by myositis subgroup, including events in muscle dystrophy genes and one event in SRP72, which was seen uniquely in SRP myositis. Finally, we looked for previously reported cryptic exons in IBM and did not find them. CONCLUSION The large degree of transcriptional overlap among myositis subtypes reinforces the need to use disease (in addition to healthy) controls to find unique features of autoimmune disease. Unique alterations in the transcriptome that are seen in one myositis subtype and not others advance our understanding of distinct disease pathology.
Collapse
Affiliation(s)
| | | | - Iago Pinal‐Fernandez
- National Institute of Arthritis and Musculoskeletal and Skin DiseaseNational Institutes of HealthBethesdaMaryland
| | - Andrew L. Mammen
- National Institute of Arthritis and Musculoskeletal and Skin DiseaseNational Institutes of HealthBethesdaMaryland
| | | |
Collapse
|
2
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key mediator of cell traction force generation in hyaluronic acid-rich extracellular matrices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563860. [PMID: 37961689 PMCID: PMC10634813 DOI: 10.1101/2023.10.24.563860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via integrin cell surface adhesion receptors. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA, an unsulfated GAG) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface adhesion receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
|
3
|
Levêque M, Lecommandoux S, Garanger E. Thermoresponsive Core-cross-linked Nanoparticles from HA- b-ELP Diblock Copolymers. Biomacromolecules 2024; 25:3011-3017. [PMID: 38689515 DOI: 10.1021/acs.biomac.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Stabilization against the dilution-dependent disassembly of self-assembled nanoparticles is a requirement for in vivo application. Herein, we propose a simple and biocompatible cross-linking reaction for the stabilization of a series of nanoparticles formed by the self-assembly of amphiphilic HA-b-ELP block copolymers, through the alkylation of methionine residues from the ELP block with diglycidyl ether compounds. The core-cross-linked nanoparticles retain their colloidal properties, with a spherical core-shell morphology, while maintaining thermoresponsive behavior. As such, instead of a reversible disassembly when non-cross-linked, a reversible swelling of nanoparticles' core and increase of hydrodynamic diameter are observed with lowering of the temperature.
Collapse
Affiliation(s)
- Manon Levêque
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | | | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| |
Collapse
|
4
|
Skurikhin E, Ermakova N, Zhukova M, Pan E, Widera D, Sandrikina L, Kogai L, Pershina O, Pakhomova A, Pan VY, Kushlinskii N, Kubatiev A, Morozov S, Dygai A. Effects of reprogrammed splenic CD8 + T-cells in vitro and in mice with spontaneous metastatic Lewis lung carcinoma. BMC Cancer 2024; 24:522. [PMID: 38664641 PMCID: PMC11046928 DOI: 10.1186/s12885-024-12203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Metastatic disease is a major and difficult-to-treat complication of lung cancer. Considering insufficient effectiveness of existing therapies and taking into account the current problem of lung cancer chemoresistance, it is necessary to continue the development of new treatments. METHODS Previously, we have demonstrated the antitumor effects of reprogrammed CD8+ T-cells (rCD8+ T-cells) from the spleen in mice with orthotopic lung carcinoma. Reprogramming was conducted by inhibiting the MAPK/ERK signalling pathway through MEKi and the immune checkpoint PD-1/PD-L1. Concurrently, CD8+ T-cells were trained in Lewis lung carcinoma (LLC) cells. We suggested that rCD8+ T-cells isolated from the spleen might impede the development of metastatic disease. RESULTS The present study has indicated that the reprogramming procedure enhances the survival and cytotoxicity of splenic CD8+ T-cells in LLC culture. In an LLC model of spontaneous metastasis, splenic rCD8 + T-cell therapy augmented the numbers of CD8+ T-cells and CD4+ T-cells in the lungs of mice. These changes can account for the partial reduction of tumors in the lungs and the mitigation of metastatic activity. CONCLUSIONS Our proposed reprogramming method enhances the antitumor activity of CD8+ T-cells isolated from the spleen and could be valuable in formulating an approach to treating metastatic disease in patients with lung cancer.
Collapse
Affiliation(s)
- E Skurikhin
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia.
| | - N Ermakova
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - M Zhukova
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia.
| | - E Pan
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - D Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, Whiteknights Campus, RG6 6AP, Reading, UK
| | - L Sandrikina
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - L Kogai
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
- Ministry of Health of the Russian Federation, Siberian State Medical University, Moskovski, 2, 634050, Tomsk, Russia
| | - O Pershina
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - A Pakhomova
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - V Yu Pan
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - N Kushlinskii
- Blokhin National Medical Research Center of Oncology, 115522, Moscow, Russia
| | - A Kubatiev
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - S Morozov
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - A Dygai
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| |
Collapse
|
5
|
Yoon KH, Chu H, Kim H, Huh S, Kim EK, Kang UB, Shin HC. Comparative profiling by data-independent acquisition mass spectrometry reveals featured plasma proteins in breast cancer: a pilot study. Ann Surg Treat Res 2024; 106:195-202. [PMID: 38586559 PMCID: PMC10995839 DOI: 10.4174/astr.2024.106.4.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Breast cancer is known to be influenced by genetic and environmental factors, and several susceptibility genes have been discovered. Still, the majority of genetic contributors remain unknown. We aimed to analyze the plasma proteome of breast cancer patients in comparison to healthy individuals to identify differences in protein expression profiles and discover novel biomarkers. Methods This pilot study was conducted using bioresources from Seoul National University Bundang Hospital's Human Bioresource Center. Serum samples from 10 breast cancer patients and 10 healthy controls were obtained. Liquid chromatography-mass spectrometry analysis was performed to identify differentially expressed proteins. Results We identified 891 proteins; 805 were expressed in the breast cancer group and 882 in the control group. Gene set enrichment and differential expression analysis identified 30 upregulated and 100 downregulated proteins in breast cancer. Among these, 10 proteins were selected as potential biomarkers. Three proteins were upregulated in breast cancer patients, including cluster of differentiation 44, eukaryotic translation initiation factor 2-α kinase 3, and fibronectin 1. Seven proteins downregulated in breast cancer patients were also selected: glyceraldehyde-3-phosphate dehydrogenase, α-enolase, heat shock protein member 8, integrin-linked kinase, tissue inhibitor of metalloproteinases-1, vasodilator-stimulated phosphoprotein, and 14-3-3 protein gamma. All proteins had been previously reported to be related to tumor development and progression. Conclusion The findings suggest that plasma proteome profiling can reveal potential diagnostic biomarkers for breast cancer and may contribute to early detection and personalized treatment strategies. A further validation study with a larger sample cohort of breast cancer patients is planned.
Collapse
Affiliation(s)
- Kyung-Hwak Yoon
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyosub Chu
- Bertis R&D Division, Bertis Inc., Seongnam, Korea
| | - Hyeonji Kim
- Bertis R&D Division, Bertis Inc., Seongnam, Korea
| | - Sunghyun Huh
- Bertis R&D Division, Bertis Inc., Seongnam, Korea
| | - Eun-Kyu Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Un-Beom Kang
- Bertis R&D Division, Bertis Inc., Seongnam, Korea
| | - Hee-Chul Shin
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
6
|
Vogl DP, Mateos B, Migotti M, Felkl M, Conibear AC, Konrat R, Becker CFW. Semisynthesis of segmentally isotope-labeled and site-specifically palmitoylated CD44 cytoplasmic tail. Bioorg Med Chem 2024; 100:117617. [PMID: 38306881 DOI: 10.1016/j.bmc.2024.117617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
CD44, a ubiquitously expressed transmembrane receptor, plays a crucial role in cell growth, migration, and tumor progression. Dimerization of CD44 is a key event in signal transduction and has emerged as a potential target for anti-tumor therapies. Palmitoylation, a posttranslational modification, disrupts CD44 dimerization and promotes CD44 accumulation in ordered membrane domains. However, the effects of palmitoylation on the structure and dynamics of CD44 at atomic resolution remain poorly understood. Here, we present a semisynthetic approach combining solid-phase peptide synthesis, recombinant expression, and native chemical ligation to investigate the impact of palmitoylation on the cytoplasmic domain (residues 669-742) of CD44 (CD44ct) by NMR spectroscopy. A segmentally isotope-labeled and site-specifically palmitoylated CD44 variant enabled NMR studies, which revealed chemical shift perturbations and indicated local and long-range conformational changes induced by palmitoylation. The long-range effects suggest altered intramolecular interactions and potential modulation of membrane association patterns. Semisynthetic, palmitoylated CD44ct serves as the basis for studying CD44 clustering, conformational changes, and localization within lipid rafts, and could be used to investigate its role as a tumor suppressor and to explore its therapeutic potential.
Collapse
Affiliation(s)
- Dominik P Vogl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Borja Mateos
- Max Perutz Laboratories, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Mario Migotti
- Max Perutz Laboratories, Vienna Biocenter Campus 5, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Manuel Felkl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Anne C Conibear
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Robert Konrat
- Max Perutz Laboratories, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria.
| |
Collapse
|
7
|
El-Deek HE, El-Naggar MS, Gamal Sayed S. Immunohistochemical Expression of Autophagy-Related Marker (LC3B) and Stem Cell Marker (CD44) in Molecular Subtypes of Breast Cancer. Asian Pac J Cancer Prev 2024; 25:145-152. [PMID: 38285778 PMCID: PMC10911742 DOI: 10.31557/apjcp.2024.25.1.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is among the most prevalent aggressive type of malignancy affecting females worldwide. Despite the advance in early detection and management of BC; recurrence, metastasis and mortality remains high. This may be attributed to heterogeneity of BC which explained by the presence of breast cancer stem cells (BCSCs). BCSCs is characterized by their ability of self-renewal, unlimited proliferation and their differentiation potential. BCSCs maintain their activity through process of autophagy. Autophagy is a catabolic pathway important for maintenance of cellular hemostasis in response to different stressful conditions. Autophagy allows BCSCs to adapt to different stressful conditions. So, it protects BCSCs from cytotoxic effects of anti-cancer therapy and anticancer resistance. METHODS Formalin-fixed paraffin embedded fifty specimens of Invasive duct carcinoma of no special type(IDC/NST) of breast was selected and immunostained with stem cell marker CD44 and autophagy related marker LC3B antibodies. Correlation with different clinicopathological, histopathological characteristics and molecular subtypes of studied specimens were evaluated. RESULTS Both CD44 and LC3B expression were significantly associated with lymph nodal metastasis (p =0.001 and 0.010 respectively), advanced pathological stage (p= 0.045 and 0.004 respectively) and with triple negative molecular subtype of BC (p=0.044 and 0.048 respectively). Statistically positive correlation was also found between both tumor markers expression. CONCLUSION Results of this study suggests that CD44 and LC3B expression play a role in the clinical behavior and progression of different molecular subtypes of BC.
Collapse
Affiliation(s)
- Heba E.M. El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Maha Salah El-Naggar
- Department of Clinical Oncology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Shaimaa Gamal Sayed
- Department of Clinical Oncology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
8
|
Maebele LT, Mulaudzi TV, Yasasve M, Dlamini Z, Damane BP. Immunomodulatory Gene-Splicing Dysregulation in Tumorigenesis: Unmasking the Complexity. Molecules 2023; 28:5984. [PMID: 37630236 PMCID: PMC10458946 DOI: 10.3390/molecules28165984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with diverse functionality from a single mRNA transcript. Splicing factors are pivotal in modulating alternative splicing processes but are also subject to regulation. The dysregulation of alternative splicing may result from splicing factor (SF) abnormal expression levels and mutations in the cis and trans-acting elements and small nuclear RNA (snRNA) molecules. Aberrant splicing may generate abnormal mRNA transcripts encoding isoforms with altered functions that contribute to tumorigenesis or cancer progression. This review uncovers the complexity of immunomodulatory genes splicing dysregulation in oncogenesis. Identifying specific immunomodulatory splicing isoforms that contribute to cancer could be utilized to improve current immunotherapeutic drugs or develop novel therapeutic interventions for cancer.
Collapse
Affiliation(s)
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
9
|
Zhang W, Xu Y, Wang X, Oikawa T, Su G, Wauthier E, Wu G, Sethupathy P, He Z, Liu J, Reid LM. Fibrolamellar carcinomas-growth arrested by paracrine signals complexed with synthesized 3-O sulfated heparan sulfate oligosaccharides. Matrix Biol 2023; 121:194-216. [PMID: 37402431 DOI: 10.1016/j.matbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Tsunekazu Oikawa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guowei Su
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Praveen Sethupathy
- Division of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Lola M Reid
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Program in Molecular Biology and Biotechnology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
10
|
Parnigoni A, Moretto P, Viola M, Karousou E, Passi A, Vigetti D. Effects of Hyaluronan on Breast Cancer Aggressiveness. Cancers (Basel) 2023; 15:3813. [PMID: 37568628 PMCID: PMC10417239 DOI: 10.3390/cancers15153813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in breast cancer cells is critical for determining tumor aggressiveness and targeting therapies. The presence of such receptors allows for the use of antagonists that effectively reduce breast cancer growth and dissemination. However, the absence of such receptors in triple-negative breast cancer (TNBC) reduces the possibility of targeted therapy, making these tumors very aggressive with a poor outcome. Cancers are not solely composed of tumor cells, but also include several types of infiltrating cells, such as fibroblasts, macrophages, and other immune cells that have critical functions in regulating cancer cell behaviors. In addition to these cells, the extracellular matrix (ECM) has become an important player in many aspects of breast cancer biology, including cell growth, motility, metabolism, and chemoresistance. Hyaluronan (HA) is a key ECM component that promotes cell proliferation and migration in several malignancies. Notably, HA accumulation in the tumor stroma is a negative prognostic factor in breast cancer. HA metabolism depends on the fine balance between HA synthesis by HA synthases and degradation yielded by hyaluronidases. All the different cell types present in the tumor can release HA in the ECM, and in this review, we will describe the role of HA and HA metabolism in different breast cancer subtypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.P.); (P.M.); (M.V.); (E.K.); (A.P.)
| |
Collapse
|
11
|
Espejo-Román JM, Rubio-Ruiz B, Chayah-Ghaddab M, Vega-Gutierrez C, García-García G, Muguruza-Montero A, Domene C, Sánchez-Martín RM, Cruz-López O, Conejo-García A. N-aryltetrahydroisoquinoline derivatives as HA-CD44 interaction inhibitors: Design, synthesis, computational studies, and antitumor effect. Eur J Med Chem 2023; 258:115570. [PMID: 37413883 DOI: 10.1016/j.ejmech.2023.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Hyaluronic acid (HA) plays a crucial role in tumor growth and invasion through its interaction with cluster of differentiation 44 (CD44), a non-kinase transmembrane glycoprotein, among other hyaladherins. CD44 expression is elevated in many solid tumors, and its interaction with HA is associated with cancer and angiogenesis. Despite efforts to inhibit HA-CD44 interaction, there has been limited progress in the development of small molecule inhibitors. As a contribution to this endeavour, we designed and synthesized a series of N-aryltetrahydroisoquinoline derivatives based on existing crystallographic data available for CD44 and HA. Hit 2e was identified within these structures for its antiproliferative effect against two CD44+ cancer cell lines, and two new analogs (5 and 6) were then synthesized and evaluated as CD44-HA inhibitors by applying computational and cell-based CD44 binding studies. Compound 2-(3,4,5-trimethoxybenzyl)-1,2,3,4-tetrahydroisoquinolin-5-ol (5) has an EC50 value of 0.59 μM against MDA-MB-231 cells and is effective to disrupt the integrity of cancer spheroids and reduce the viability of MDA-MB-231 cells in a dose-dependent manner. These results suggest lead 5 as a promising candidate for further investigation in cancer treatment.
Collapse
Affiliation(s)
- Jose M Espejo-Román
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, 18071, University of Granada, Granada, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012, Granada, Spain.
| | - Belén Rubio-Ruiz
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, 18071, University of Granada, Granada, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012, Granada, Spain.
| | - Meriem Chayah-Ghaddab
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, 18071, University of Granada, Granada, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012, Granada, Spain.
| | - Carlos Vega-Gutierrez
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, 18071, University of Granada, Granada, Spain.
| | - Gracia García-García
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, 18071, University of Granada, Granada, Spain.
| | | | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY, Bath, United Kingdom; Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, Oxford, United Kingdom.
| | - Rosario M Sánchez-Martín
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, 18071, University of Granada, Granada, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012, Granada, Spain.
| | - Olga Cruz-López
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, 18071, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012, Granada, Spain.
| | - Ana Conejo-García
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, 18071, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012, Granada, Spain.
| |
Collapse
|
12
|
Urriola-Muñoz P, Pattison LA, Smith ESJ. Dysregulation of ADAM10 shedding activity in naked mole-rat fibroblasts is due to deficient phosphatidylserine externalization. J Cell Physiol 2023; 238:761-775. [PMID: 36790936 DOI: 10.1002/jcp.30972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
The naked mole-rat (NMR, Heterocephalus glaber) is of significant interest to biogerontological research, rarely developing age-associated diseases, such as cancer. The transmembrane glycoprotein CD44 is upregulated in certain cancers and CD44 cleavage by a disintegrin and metalloproteinase 10 (ADAM10) regulates cellular migration. Here we provide evidence that mature ADAM10 is expressed in NMR primary skin fibroblasts (NPSF), and that ionomycin increases cell surface ADAM10 localization. However, we observed an absence of ADAM10 mediated CD44 cleavage, as well as shedding of exogenous and overexpressed betacellulin in NPSF, whereas in mouse primary skin fibroblasts ionomycin induced ADAM10-dependent cleavage of both CD44 and betacellulin. Overexpressing a hyperactive form of the Ca2+ -dependent phospholipid scramblase ANO6 in NPSF increased phosphatidylserine (PS) externalization, which rescued the ADAM10 sheddase activity and promoted cell migration in NPSF in an ADAM10-dependent manner. These findings suggest that dysregulation of ADAM10 shedding activity is due to a deficient PS externalization in NMR.
Collapse
Affiliation(s)
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. Int J Mol Sci 2023; 24:ijms24032122. [PMID: 36768445 PMCID: PMC9917165 DOI: 10.3390/ijms24032122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer stem cells are found in many cancer types. They comprise a distinct subpopulation of cells within the tumor that exhibit properties of stem cells. They express a number of cell surface markers, such as CD133, CD44, ALDH, and EpCAM, as well as embryonic transcription factors Oct4, Nanog, and SOX2. CSCs are more resistant to conventional chemotherapy and can potentially drive tumor relapse. Therefore, it is essential to understand the molecular mechanisms that drive chemoresistance and to target them with specific therapy effectively. Highly conserved developmental signaling pathways such as Wnt, Hedgehog, and Notch are commonly reported to play a role in CSCs chemoresistance development. Studies show that particular pathway inhibitors combined with conventional therapy may re-establish sensitivity to the conventional therapy. Another significant contributor of chemoresistance is a specific tumor microenvironment. Surrounding stroma in the form of cancer-associated fibroblasts, macrophages, endothelial cells, and extracellular matrix components produce cytokines and other factors, thus creating a favorable environment and decreasing the cytotoxic effects of chemotherapy. Anti-stromal agents may potentially help to overcome these effects. Epigenetic changes and autophagy were also among the commonly reported mechanisms of chemoresistance. This review provides an overview of signaling pathway components involved in the development of chemoresistance of CSCs and gathers evidence from experimental studies in which CSCs can be re-sensitized to conventional chemotherapy agents across different cancer types.
Collapse
|
14
|
Levêque M, Xiao Y, Durand L, Massé L, Garanger E, Lecommandoux S. Aqueous synthesis and self-assembly of bioactive and thermo-responsive HA- b-ELP bioconjugates. Biomater Sci 2022; 10:6365-6376. [PMID: 36168976 DOI: 10.1039/d2bm01149b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The design of synthetic (bio)macromolecules that combine biocompatibility, self-assembly and bioactivity properties at the molecular level is an intense field of research for biomedical applications such as (nano)medicine. In this contribution, we have designed and synthesized a library of bioactive and thermo-responsive bioconjugates from elastin-like polypeptides (ELPs) and hyaluronic acid (HA) in order to access bioactive self-assembled nanoparticles. These were prepared by a simple synthetic and purification strategy, compatible with the requirements for biological applications and industrial scale-up. A series of 9 HA-b-ELP bioconjugates with different compositions and block lengths was synthesized under aqueous conditions by strain-promoted azide-alkyne cycloaddition (SPAAC), avoiding the use of catalysts, co-reactants and organic solvents, and isolated by a simple centrifugation step. An extensive physico-chemical study was then performed on the whole library of bioconjugates in an attempt to establish structure-property relationships. In particular, the determination of the critical conditions for thermally driven self-assembly was carried out upon temperature (CMT) and concentration (CMC) gradients, leading to a phase diagram for each of these bioconjugates. These parameters and the size of nanoparticles were found to depend on the chemical composition of the bioconjugates, namely on the respective size of individual blocks. Understanding the mechanism underlying this dependency is a real asset for designing more effective experiments: with key criteria defined (e.g. concentration, temperature, salinity, and biological target), the composition of the best candidates can be rationalized. In particular, four of the bioconjugates (HA4.6k-ELPn80 or n100 and HA24k-ELPn80 or n100) were found to self-assemble into well-defined spherical core-shell nanoparticles, with a negative surface charge due to the HA block exposed at the surface, a hydrodynamic diameter between 40 and 200 nm under physiological conditions and a good stability over time at 37 °C. We therefore propose here a versatile and simple design of smart, controllable, and bioactive nanoparticles that present different behaviors depending on the diblocks' composition.
Collapse
Affiliation(s)
- Manon Levêque
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Ye Xiao
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Laura Durand
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Louise Massé
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | | |
Collapse
|
15
|
Regulation of Tissue Factor by CD44 Supports Coagulant Activity in Breast Tumor Cells. Cancers (Basel) 2022; 14:cancers14133288. [PMID: 35805061 PMCID: PMC9266039 DOI: 10.3390/cancers14133288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Metastasis and thromboembolic complications are the main cause of cancer-associated death. An overexpression of coagulation factors, and particularly Tissue factor, by tumor cells is a key event implicated in this observed hypercoagulability. Tissue Factor is indeed a cellular initiator of the coagulation cascade which has been associated with aggressive tumor phenotypes such as those characteristic of Epithelial-Mesenchymal Transitions (EMTs) and Cancer Stem Cells (CSCs). Understanding molecular mechanisms controlling Tissue Factor overexpression in those tumor phenotypes is thus an important aspect of cancer research. We show here that CD44 (a transmembrane marker of CSC and EMT phenotypes) contributes to regulate TF expression at a transcriptional level, thereby supporting procoagulant properties in tumor cells that facilitate their metastatic spread. Abstract Previous work identified Tissue Factor (TF), a key activator of the coagulation cascade, as a gene induced in cellular contexts of Epithelial-Mesenchymal Transitions (EMTs), providing EMT+ Circulating Tumor Cells (CTCs) with coagulant properties that facilitate their metastatic seeding. Deciphering further molecular aspects of TF regulation in tumor cells, we report here that CD44 and TF coexpress in EMT contexts, and that CD44 acts as a regulator of TF expression supporting procoagulant properties and metastatic seeding. A transcriptional regulatory mechanism bridging CD44 to TF expression was further evidenced. Comparing different TF –promoter luciferase reporter constructs, we indeed found that the shortest -111 pb TF promoter fragment harboring three Specificity Protein 1 (Sp1) binding sites is still responsive to CD44 silencing. The observation that (i) mutation within Sp1 binding sites decreased the basal activity of the -111 pb TF promoter construct, (ii) CD44 silencing decreased Sp1 protein and mRNA levels and (iii) Sp1 silencing diminished TF expression further points to Sp1 as a key mediator linking CD44 to TF regulation. All together, these data thus report a transcriptional regulatory mechanism of TF expression by CD44 supporting procoagulant activity and metastatic competence of CTCs.
Collapse
|
16
|
Rossi V, Govoni M, Farabegoli F, Di Stefano G. Lactate is a potential promoter of tamoxifen resistance in MCF7 cells. Biochim Biophys Acta Gen Subj 2022; 1866:130185. [PMID: 35661802 DOI: 10.1016/j.bbagen.2022.130185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Tamoxifen is a widely used estrogen receptor inhibitor, whose clinical success is limited by the development of acquired resistance. This compound was also found to inhibit mitochondrial function, causing increased glycolysis and lactate production. Lactate has been widely recognized as a signaling molecule, showing the potential of modifying gene expression. These metabolic effects of tamoxifen can by hypothesized to contribute in driving drug resistance. METHODS To test this hypothesis, we used MCF7 cells together with a tamoxifen resistant cell line (MCF7-TAM). Experiments were aimed at verifying whether enhanced lactate exposure can affect the phenotype of MCF7 cells, conferring them features mirroring those observed in the tamoxifen resistant culture. RESULTS The obtained results suggested that enhanced lactate in MCF7 cells medium can increase the expression of tafazzin (TAZ) and telomerase complex (TERC, TERT) genes, reducing the cells' attitude to undergo senescence. In long term lactate-exposed cells, signs of EGFR activation, a pathway related to acquired tamoxifen resistance, was also observed. CONCLUSIONS The obtained results suggested lactate as a potential promoter of tamoxifen resistance. The off-target effects of this compound could play a role in hindering its therapeutic efficacy. GENERAL SIGNIFICANCE The features of acquired tamoxifen resistance have been widely characterized at the molecular level; in spite of their heterogeneity, poorly responsive cells were often found to display upregulated glycolysis. Our results suggest that this metabolic asset is not simply a result of neoplastic progression, but can play an active part in driving this process.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Marzia Govoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Fukuoka M, Ichikawa Y, Osako T, Fujita T, Baba S, Takeuchi K, Tsunoda N, Ebata T, Ueno T, Ohno S, Saitoh N. The ELEANOR non-coding RNA expression contributes to cancer dormancy and predicts late recurrence of ER-positive breast cancer. Cancer Sci 2022; 113:2336-2351. [PMID: 35415910 PMCID: PMC9277265 DOI: 10.1111/cas.15373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
The recurrence risk of estrogen receptor (ER)-positive breast cancer remains high for a long period of time, unlike the other types of cancer. The late recurrence reflects the ability of cancer cells to remain dormant through various events, including cancer stemness acquisition, but the detailed mechanism is unknown. ESR1 locus enhancing and activating non-coding RNAs (ELEANORS) are a cluster of nuclear non-coding RNAs originally identified in a recurrent breast cancer cell model. Although their functions as chromatin regulators in vitro are well characterized, their roles in vivo remain elusive. In this study, we evaluated the clinicopathological features of ELEANORS, using primary and corresponding metastatic breast cancer tissues. The ELEANOR expression was restricted to ER-positive cases and well-correlated with the ER and progesterone receptor expression levels, especially at the metastatic sites. ELEANORS were detected in both primary and metastatic tumors (32% and 29%, respectively), and frequently in postmenopausal cases. Interestingly, after surgery, patients with ELEANOR-positive primary tumors exhibited increased relapse rates after, but not within, 5 years. Multivariate analysis showed that ELEANORS are independent recurrence risk factor. Consistently, analyses with cell lines, mouse xenografts and patient tissues revealed that ELEANORS upregulate a breast cancer stemness gene, CD44, and maintain the cancer stem cell population, which may facilitate tumor dormancy. Our findings highlight a new role of nuclear long non-coding RNAs and their clinical potential as predictive biomarkers and therapeutic targets for late recurrence of ER-positive breast cancer.
Collapse
Affiliation(s)
- Megumi Fukuoka
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan.,Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Ichikawa
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan
| | - Tomo Osako
- Division of Pathology, The Cancer Institute of JFCR.,Department of Pathology, The Cancer Institute Hospital of JFCR
| | - Tomoko Fujita
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan
| | - Satoko Baba
- Division of Pathology, The Cancer Institute of JFCR.,Department of Pathology, The Cancer Institute Hospital of JFCR.,Pathology Project for Molecular Targets, Cancer Institute
| | - Kengo Takeuchi
- Division of Pathology, The Cancer Institute of JFCR.,Department of Pathology, The Cancer Institute Hospital of JFCR.,Pathology Project for Molecular Targets, Cancer Institute
| | - Nobuyuki Tsunoda
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Takayuki Ueno
- Breast Oncology Center, The Cancer Institute Hospital of JFCR
| | - Shinji Ohno
- Breast Oncology Center, The Cancer Institute Hospital of JFCR
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan
| |
Collapse
|
18
|
Espejo-Román JM, Rubio-Ruiz B, Cano-Cortés V, Cruz-López O, Gonzalez-Resines S, Domene C, Conejo-García A, Sánchez-Martín RM. Selective Anticancer Therapy Based on a HA-CD44 Interaction Inhibitor Loaded on Polymeric Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14040788. [PMID: 35456622 PMCID: PMC9032636 DOI: 10.3390/pharmaceutics14040788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA), through its interactions with the cluster of differentiation 44 (CD44), acts as a potent modulator of the tumor microenvironment, creating a wide range of extracellular stimuli for tumor growth, angiogenesis, invasion, and metastasis. An innovative antitumor treatment strategy based on the development of a nanodevice for selective release of an inhibitor of the HA-CD44 interaction is presented. Computational analysis was performed to evaluate the interaction of the designed tetrahydroisoquinoline-ketone derivative (JE22) with CD44 binding site. Cell viability, efficiency, and selectivity of drug release under acidic conditions together with CD44 binding capacity, effect on cell migration, and apoptotic activity were successfully evaluated. Remarkably, the conjugation of this CD44 inhibitor to the nanodevice generated a reduction of the dosis required to achieve a significant therapeutic effect.
Collapse
Affiliation(s)
- José M. Espejo-Román
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Belén Rubio-Ruiz
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Victoria Cano-Cortés
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Olga Cruz-López
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Saúl Gonzalez-Resines
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, UK; (S.G.-R.); (C.D.)
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, UK; (S.G.-R.); (C.D.)
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ana Conejo-García
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
- Correspondence: (A.C.-G.); (R.M.S.-M.)
| | - Rosario M. Sánchez-Martín
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
- Correspondence: (A.C.-G.); (R.M.S.-M.)
| |
Collapse
|
19
|
Versatile Encapsulation and Synthesis of Potent Liposomes by Thermal Equilibration. MEMBRANES 2022; 12:membranes12030319. [PMID: 35323794 PMCID: PMC8954264 DOI: 10.3390/membranes12030319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/05/2023]
Abstract
The wide-scale use of liposomal delivery systems is challenged by difficulties in obtaining potent liposomal suspensions. Passive and active loading strategies have been proposed to formulate drug encapsulated liposomes but are limited by low efficiencies (passive) or high drug specificities (active). Here, we present an efficient and universal loading strategy for synthesizing therapeutic liposomes. Integrating a thermal equilibration technique with our unique liposome synthesis approach, co-loaded targeting nanovesicles can be engineered in a scalable manner with potencies 200-fold higher than typical passive encapsulation techniques. We demonstrate this capability through simultaneous co-loading of hydrophilic and hydrophobic small molecules and targeted delivery of liposomal Doxorubicin to metastatic breast cancer cell line MDA-MB-231. Molecular dynamic simulations are used to explain interactions between Doxorubicin and liposome membrane during thermal equilibration. By addressing the existing challenges, we have developed an unparalleled approach that will facilitate the formulation of novel theranostic and pharmaceutical strategies.
Collapse
|
20
|
Andugulapati SB, Sundararaman A, Lahiry M, Rangarajan A. AMP- activated protein kinase (AMPK) promotes breast cancer stemness and drug resistance. Dis Model Mech 2022; 15:274505. [PMID: 35195687 PMCID: PMC9150117 DOI: 10.1242/dmm.049203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are a major cause of therapy resistance and tumour progression. Currently, their regulation is not entirely understood. Previous work from our laboratory demonstrated a context-specific pro-tumorigenic role for AMP-activated protein kinase (AMPK) under anchorage-deprivation and mammosphere formation, which are hallmarks of BCSCs. Therefore, we investigated the role of AMPK in the maintenance of BCSC state/function. AMPK depletion reduces serial sphere formation in vitro and tumour initiation in vivo. Intriguingly, tumour-derived cell analysis using stem cell markers and functional assays revealed that AMPK is required for the maintenance of BCSC populations in vivo. AMPK promotes the expression of stemness genes such as NANOG, SOX2 and BMI1 through the transcriptional upregulation of TWIST via promoter acetylation. Further, AMPK-driven stemness plays a critical role in doxorubicin resistance. Significantly, AMPK activity increased after chemotherapy in patient-derived tumour samples alongside an increase in stemness markers. Importantly, AMPK depletion sensitises mouse tumours to doxorubicin treatment. Our work indicates that targeting of AMPK in conjunction with regular chemotherapy is likely to reduce the stem cell pool and improve chemosensitivity in breast cancers. Summary: AMPK inhibition in conjunction with regular chemotherapy is likely to reduce the stem cell pool and improve chemosensitivity and therapeutic outcomes in breast cancers.
Collapse
Affiliation(s)
- Sai Balaji Andugulapati
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bangalore 560012, India
| | - Ananthalakshmy Sundararaman
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bangalore 560012, India
| | - Mohini Lahiry
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bangalore 560012, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021; 11:1850. [PMID: 34944493 PMCID: PMC8699317 DOI: 10.3390/biom11121850] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
CD44, a non-kinase cell surface transmembrane glycoprotein, has been widely implicated as a cancer stem cell (CSC) marker in several cancers. Cells overexpressing CD44 possess several CSC traits, such as self-renewal and epithelial-mesenchymal transition (EMT) capability, as well as a resistance to chemo- and radiotherapy. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The interaction of such isoforms with ligands, particularly hyaluronic acid (HA), osteopontin (OPN) and matrix metalloproteinases (MMPs), drive numerous cancer-associated signalling. However, there are contradictory results regarding whether high or low CD44 expression is associated with worsening clinicopathological features, such as a higher tumour histological grade, advanced tumour stage and poorer survival rates. Nonetheless, high CD44 expression significantly contributes to enhanced tumourigenic mechanisms, such as cell proliferation, metastasis, invasion, migration and stemness; hence, CD44 is an important clinical target. This review summarises current research regarding the different CD44 isoform structures and their roles and functions in supporting tumourigenesis and discusses CD44 expression regulation, CD44-signalling pathways and interactions involved in cancer development. The clinical significance and prognostic value of CD44 and the potential of CD44 as a therapeutic target in cancer are also addressed.
Collapse
Affiliation(s)
- Malak Hassn Mesrati
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
22
|
Skurikhin E, Pershina O, Zhukova M, Widera D, Ermakova N, Pan E, Pakhomova A, Morozov S, Kubatiev A, Dygai A. Potential of Stem Cells and CART as a Potential Polytherapy for Small Cell Lung Cancer. Front Cell Dev Biol 2021; 9:778020. [PMID: 34926461 PMCID: PMC8678572 DOI: 10.3389/fcell.2021.778020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the increasing urgency of the problem of treating small cell lung cancer (SCLC), information on the causes of its development is fragmentary. There is no complete understanding of the features of antitumor immunity and the role of the microenvironment in the development of SCLC resistance. This impedes the development of new methods for the diagnosis and treatment of SCLC. Lung cancer and chronic obstructive pulmonary disease (COPD) have common pathogenetic factors. COPD is a risk factor for lung cancer including SCLC. Therefore, the search for effective approaches to prevention, diagnosis, and treatment of SCLC in patients with COPD is an urgent task. This review provides information on the etiology and pathogenesis of SCLC, analyses the effectiveness of current treatment options, and critically evaluates the potential of chimeric antigen receptor T cells therapy (CART therapy) in SCLC. Moreover, we discuss potential links between lung cancer and COPD and the role of endothelium in the development of COPD. Finally, we propose a new approach for increasing the efficacy of CART therapy in SCLC.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Mariia Zhukova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
23
|
Li Y, Liu B, Shi H, Wang Y, Sun Q, Zhang Q. Metal complexes against breast cancer stem cells. Dalton Trans 2021; 50:14498-14512. [PMID: 34591055 DOI: 10.1039/d1dt02909f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the highest incidence, breast cancer is the leading cause of cancer deaths among women in the world. Tumor metastasis is the major contributor of high mortality in breast cancer, and the existence of cancer stem cells (CSCs) has been proven to be the cause of tumor metastasis. CSCs are a small proportion of tumor cells, and they are associated with self-renewal and tumorigenic potential. Given the significance of CSCs in tumor initiation, expansion, relapse, resistance, and metastasis, studies should investigate and discover effective anticancer agents that can not only inhibit the proliferation of differentiated tumor cells but also reduce the tumorigenic capability of CSCs. Thus, new therapies must be discovered to treat and prevent this severely hazardous disease of human beings. The success of platinum complexes in cancer treatment has laid the basic foundation for the utilization of metal complexes in the treatment of malignant cancers, in particular the highly aggressive triple-negative breast cancer. Importantly, metal complexes currently have diverse and versatile competences in the therapeutic targeting of CSCs. The anti-CSC properties provide a strong impetus for the development of novel metal-based compounds for the targeting of CSCs and treatment of chemotherapy-resistant and relapsed tumors. In this review, we provide the latest advances in metal complexes including platinum, ruthenium, osmium, iridium, manganese, cobalt, nickel, copper, zinc, palladium, and tin complexes against breast CSCs obtained over the past decade, with pertinent literature including those published until 2021.
Collapse
Affiliation(s)
- Yingsi Li
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Boxin Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Hongdong Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yi Wang
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology Shanghai, 200237, P. R. China
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
24
|
Bahmani A, Shokri E, Hosseini M, Hosseinkhani S. A fluorescent aptasensor based on copper nanoclusters for optical detection of CD44 exon v10, an important isoform in metastatic breast cancer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3837-3844. [PMID: 34378562 DOI: 10.1039/d1ay01087e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent studies suggest that breast cancer cells express various CD44 isoforms. CD44 is an integral transmembrane protein encoded by a single 20-exon gene. Exon v10 of CD44 plays a critical role in promoting cancer metastasis, so sensitive detection of this isoform helps in early diagnosis of metastatic breast cancer and facilitates the treatment process. This study aimed to use v10-specific aptamers to set up an optical aptasensor based on fluorescent metal nanoclusters. For this purpose, nanoclusters of silver, gold, and copper were prepared by different CD44 v10 DNA aptamers as molecular templates. UV-vis, TEM, and fluorescence spectrometer results confirmed the accuracy and quality of the synthesized aptamer-templated nanoclusters (Apt-NCs). Finally, we compared the performance of the as-prepared Apt-NCs in response to different cultured cell lines. According to the results, the optical response of M-Apt4-CuNCs was more efficient and correlated well with the concentrations of CD44 v10-enriched cells. The detection limit of the aptasensor was 40 ± 5 cells per mL.
Collapse
Affiliation(s)
- Amin Bahmani
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Ehsan Shokri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Manupati K, Yeeravalli R, Kaushik K, Singh D, Mehra B, Gangane N, Gupta A, Goswami K, Das A. Activation of CD44-Lipoprotein lipase axis in breast cancer stem cells promotes tumorigenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166228. [PMID: 34311079 DOI: 10.1016/j.bbadis.2021.166228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Breast cancer stem cells (CSCs) are distinct CD44+-subpopulations that are involved in metastasis and chemoresistance. However, the underlying molecular mechanism of CD44 in breast CSCs-mediated tumorigenesis remains elusive. We observed high CD44 expression in advanced-stage clinical breast tumor samples. CD44 activation in breast CSCs sorted from various triple negative breast cancer (TNBC) cell lines induced proliferation, migration, invasion, mammosphere formation that were reversed in presence of inhibitor, 4-methyl umbelliferone or CD44 silencing. CD44 activation in breast CSCs induced Src, Akt, and nuclear translocation of pSTAT3. PCR arrays revealed differential expression of a metabolic gene, Lipoprotein lipase (LPL), and transcription factor, SNAI3. Differential transcriptional regulation of LPL by pSTAT3 and SNAI3 was confirmed by promoter-reporter and chromatin immunoprecipitation analysis. Orthotopic xenograft murine breast tumor model revealed high tumorigenicity of CD24-/CD44+-breast CSCs as compared with CD24+-breast cancer cells. Furthermore, stable breast CSCs-CD44 shRNA and/or intratumoral administration of Tetrahydrolipstatin (LPL inhibitor) abrogated tumor progression and neoangiogenesis. Thus, LPL serves as a potential target for an efficacious therapeutics against aggressive breast cancer.
Collapse
Affiliation(s)
- Kanakaraju Manupati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Ragini Yeeravalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Digvijay Singh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Bhupendra Mehra
- Department of Surgery, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Nitin Gangane
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Anupama Gupta
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Kalyan Goswami
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
26
|
Abdel-Hamid NM, Fathy M, Koike C, Yoshida T, Okabe M, Zho K, Abouzied M, Nikaido T. Identification of Chemo and Radio-Resistant Sub-Population of Stem Cells in Human Cervical Cancer HeLa Cells. Cancer Invest 2021; 39:661-674. [PMID: 34076552 DOI: 10.1080/07357907.2021.1931875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cervical cancer ranks the second female malignancy after breast cancer. Cancer stem cells (CSCs) are hard to be eradicated, so can recur. We aim to isolate and characterize CSCs from HeLa cells. METHODS These cells express clusters of differentiation (CDs), 44 and 24, to be sorted by fluorescence-activated cell sorting (FACS). RESULTS CD44+CD24+ cells showed potential to form spheres, tumorigenicity, stemness genes and higher resistance to cisplatin, X-ray. CONCLUSION CD44+CD24+ HeLa cells hold characteristics of CSCs, in vitro, in vivo studies, suggesting that targeting may lead to screening of new anti-cancer therapies.
Collapse
Affiliation(s)
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Egypt.,Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Chika Koike
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Toshiko Yoshida
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Motonori Okabe
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kaixuan Zho
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mekky Abouzied
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Egypt
| | - Toshio Nikaido
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
27
|
Kim H, Woo J, Dan K, Lee KM, Jin MS, Park IA, Ryu HS, Han D. Quantitative Proteomics Reveals Knockdown of CD44 Promotes Proliferation and Migration in Claudin-Low MDA-MB-231 and Hs 578T Breast Cancer Cell Lines. J Proteome Res 2021; 20:3720-3733. [PMID: 34075748 DOI: 10.1021/acs.jproteome.1c00293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD44 is a transmembrane glycoprotein that can regulate the oncogenic process. This is known to be a marker of the claudin-low subtype of breast cancer, as well as a cancer stem cell marker. However, its functional regulatory roles are poorly understood in claudin-low breast cancer. To gain comprehensive insight into the function of CD44, we performed an in-depth tandem mass tag-based proteomic analysis of two claudin-low breast cancer cell lines (MDA-MB-231 and Hs 578T) transfected with CD44 siRNA. As a result, we observed that 2736 proteins were upregulated and 2172 proteins were downregulated in CD44-knockdown MDA-MB-231 cells. For Hs 578T CD44-knockdown cells, 412 proteins were upregulated and 443 were downregulated. Gene ontology and network analyses demonstrated that the suppression of this marker mediates significant functional alterations related to oncogenic cellular processes, including proliferation, metabolism, adhesion, and gene expression regulation. A functional study confirmed that CD44 knockdown inhibited proliferation by regulating the expression of genes related to cell cycle, translation, and transcription. Moreover, this promoted the expression of multiple cell adhesion-associated proteins and attenuated cancer cell migration. Finally, our proteomic study defines the landscape of the CD44-regulated proteome of claudin-low breast cancer cells, revealing changes that mediate cell proliferation and migration. Our proteomics data set has been deposited to the ProteomeXchange Consortium via the PRIDE repository with the data set identifier PXD015171.
Collapse
Affiliation(s)
- Hyeyoon Kim
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea.,Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea
| | - Jongmin Woo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea
| | - Kyung-Min Lee
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Min-Sun Jin
- Department of Pathology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Gyeonggi-do 14647, Korea
| | - In Ae Park
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea.,Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea
| |
Collapse
|
28
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A, Zaman MK. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics 2021; 13:120. [PMID: 34051847 PMCID: PMC8164819 DOI: 10.1186/s13148-021-01107-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
At present, after extensive studies in the field of cancer, cancer stem cells (CSCs) have been proposed as a major factor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell-like properties and tumorigenic capabilities, having the abilities of self-renewal and differentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti-tumor treatments. Highly resistant to conventional chemo- and radiotherapy, CSCs have heterogeneity and can migrate to different organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of different epigenetic pathways having effects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifications (DNA methylation, histone modifications, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can offer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors influencing the development thereof, with an emphasis on different types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Khatir Zaman
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| |
Collapse
|
29
|
Lusche DF, Wessels DJ, Reis RJ, Forrest CC, Thumann AR, Soll DR. New monoclonal antibodies that recognize an unglycosylated, conserved, extracellular region of CD44 in vitro and in vivo, and can block tumorigenesis. PLoS One 2021; 16:e0250175. [PMID: 33891595 PMCID: PMC8064539 DOI: 10.1371/journal.pone.0250175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
CD44 is a transmembrane glycoprotein that binds to hyaluronic acid, plays roles in a number of cellular processes and is expressed in a variety of cell types. It is up-regulated in stem cells and cancer. Anti-CD44 monoclonal antibodies affect cell motility and aggregation, and repress tumorigenesis and metastasis. Here we describe four new anti-CD44 monoclonal antibodies originating from B cells of a mouse injected with a plasmid expressing CD44 isoform 12. The four monoclonal antibodies bind to the terminal, extracellular, conserved domain of CD44 isoforms. Based on differences in western blot patterns of cancer cell lysates, the four anti-CD44 mAbs separated into three distinct categories that include P4G9, P3D2, and P3A7, and P3G4. Spot assay analysis with peptides generated in Escherichia coli support the conclusion that the monoclonal antibodies recognize unglycosylated sequences in the N-terminal conserved region between amino acid 21-220, and analyses with a peptide generated in human embryonic kidney 293 cells, demonstrate that these monoclonal antibodies bind to these peptides only after deglycosylation. Western blots with lysates from three cancer cell lines demonstrate that several CD44 isoforms are unglycosylated in the anti-CD44 target regions. The potential utility of the monoclonal antibodies in blocking tumorigenesis was tested by co-injection of cells of the breast cancer-derived tumorigenic cell line MDA-MB-231 with the anti-CD44 monoclonal antibody P3D2 into the mammary fat pads of mice. All five control mice injected with MDA-MB-231 cells plus anti-IgG formed palpable tumors, while only one of the six test mice injected with MDA-MB-231 cells plus P3D2 formed a tiny tumor, while the remaining five were tumor-free, indicating that the four anti-CD44 mAbs may be useful therapeutically.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Deborah J. Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan J. Reis
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Cristopher C. Forrest
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Alexis R. Thumann
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - David R. Soll
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
30
|
Yoshida GJ, Saya H. Molecular pathology underlying the robustness of cancer stem cells. Regen Ther 2021; 17:38-50. [PMID: 33869685 PMCID: PMC8024885 DOI: 10.1016/j.reth.2021.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Intratumoral heterogeneity is tightly associated with the failure of anticancer treatment modalities including conventional chemotherapy, radiation therapy, and molecularly targeted therapy. Such heterogeneity is generated in an evolutionary manner not only as a result of genetic alterations but also by the presence of cancer stem cells (CSCs). CSCs are proposed to exist at the top of a tumor cell hierarchy and are undifferentiated tumor cells that manifest enhanced tumorigenic and metastatic potential, self-renewal capacity, and therapeutic resistance. Properties that contribute to the robustness of CSCs include the abilities to withstand redox stress, to rapidly repair damaged DNA, to adapt to a hyperinflammatory or hyponutritious tumor microenvironment, and to expel anticancer drugs by the action of ATP-binding cassette transporters as well as plasticity with regard to the transition between dormant CSC and transit-amplifying progenitor cell phenotypes. In addition, CSCs manifest the phenomenon of metabolic reprogramming, which is essential for maintenance of their self-renewal potential and their ability to adapt to changes in the tumor microenvironment. Elucidation of the molecular underpinnings of these biological features of CSCs is key to the development of novel anticancer therapies. In this review, we highlight the pathological relevance of CSCs in terms of their hallmarks and identification, the properties of their niche—both in primary tumors and at potential sites of metastasis—and their resistance to oxidative stress dependent on system xc (−). Intratumoral heterogeneity driven by CSCs is responsible for therapeutic resistance. CTCs survive in the distant organs and achieve colonization, causing metastasis. E/M hybrid cancer cells due to partial EMT exhibit the highest metastatic potential. The CSC niche regulates stemness in metastatic disease as well as in primary tumor. Activation of system xc(-) by CD44 variant in CSCs is a promising therapeutic target.
Collapse
Key Words
- ABC, ATP-binding cassette
- ALDH, Aldehyde dehydrogenase
- BMP, Bone morphogenetic protein
- CAF, Cancer-associated fibroblast
- CD44 variant
- CD44v, CD44 variant
- CSC, Cancer stem cell
- CTC, Circulating tumor cell
- CagA, Cytotoxin-associated gene A
- Cancer stem cell
- DTC, Disseminated tumor cell
- E/M, Epithelial/mesenchymal
- ECM, Extracellular matrix
- EGF, Epidermal growth factor
- EMT, Epithelial-to-mesenchymal transition
- EpCAM, Epithelial cell adhesion moleculeE
- Epithelial-to-mesenchymal transition (EMT)
- GSC, Glioma stem cell
- GSH, reduced glutathione
- HGF, Hepatocyte growth factor
- HNSCC, Head and neck squamous cell cancer
- IL, Interleukin
- Intratumoral heterogeneity
- MAPK, mitogen-activated protein kinase
- MET, mesenchymal-to-epithelial transition
- NSCLC, non–small cell lung cancer
- Niche
- Nrf2, nuclear factor erythroid 2–related factor 2
- OXPHOS, Oxidative phosphorylation
- Plasticity
- Prrx1, Paired-related homeodomain transcription factor 1
- ROS, Reactive oxygen species
- SRP1, Epithelial splicing regulatory protein 1
- TGF-β, Transforming growth factor–β
Collapse
Affiliation(s)
- Go J Yoshida
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Chen Q, Gu M, Cai ZK, Zhao H, Sun SC, Liu C, Zhan M, Chen YB, Wang Z. TGF-β1 promotes epithelial-to-mesenchymal transition and stemness of prostate cancer cells by inducing PCBP1 degradation and alternative splicing of CD44. Cell Mol Life Sci 2021; 78:949-962. [PMID: 32440711 PMCID: PMC11072728 DOI: 10.1007/s00018-020-03544-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
CD44 is a marker of cancer stem cell (CSC) in many types of tumors. Alternative splicing of its 20 exons generates various CD44 isoforms that have different tissue specific expression and functions, including the CD44 standard isoform (CD44s) encoded by the constant exons and the CD44 variant isoforms (CD44v) with variant exon insertions. Switching between the CD44v and CD44s isoforms plays pivotal roles in tumor progression. Here we reported a novel mechanism of CD44 alternative splicing induced by TGF-β1 and its connection to enhanced epithelial-to-mesenchymal transition (EMT) and stemness in human prostate cancer cells. TGF-β1 treatment increased the expression of CD44s and N-cadherin while decreased the expression of CD44v and E-cadherin in DU-145 prostate cancer cells. Other EMT markers and cancer stem cell markers were also upregulated after TGF-β1 treatment. RNAi knockdown of CD44 reversed the phenotype, which could be rescued by overexpressing CD44s but not CD44v, indicating the alternatively spliced isoform CD44s mediated the activity of TGF-β1 treatment. Mechanistically, TGF-β1 treatment induced the phosphorylation, poly-ubiquitination, and degradation of PCBP1, a well-characterized RNA binding protein known to regulate CD44 splicing. RNAi knockdown of PCBP1 was able to mimic TGF-β1 treatment to increase the expression of CD44s, as well as the EMT and cancer stem cell markers. In vitro and in vivo experiments were performed to show that CD44s promoted prostate cancer cell migration, invasion, and tumor initiation. Taken together, we defined a mechanism by which TGF-β1 induces CD44 alternative splicing and promotes prostate cancer progression.
Collapse
Affiliation(s)
- Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhi-Kang Cai
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hu Zhao
- Department of Urology, Guanyun People's Hospital, Lianyungang, China
| | - Shi-Cheng Sun
- Department of Urology, Guanyun People's Hospital, Lianyungang, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yan-Bo Chen
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
32
|
Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44. Int Immunopharmacol 2020; 88:106991. [PMID: 33182071 DOI: 10.1016/j.intimp.2020.106991] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Despite the considerable advances in treatment method development, the mortality rate related to colon cancer still ranks the fifth in all tumor-related diseases. Recently, there has been growing evidences supporting the existence of colon cancer stem cells (CSCs) might be one of the main causes for initiation, progression and recurrence of colon cancer. Curcumin has been shown to possess anticancer activities. It has also been suggested that curcumin was effective against colon CSCs by coupling with CD44, a robust marker and functional important molecule for colorectal CSC. In the present study, we confirmed that curcumin can inhibit the proliferation, colony formation, migration and tumor sphere formation of colon cancer cells. Results from real-time PCR and western blotting had suggested that curcumin could down-regulate the expression of CD44. Moreover, results from flow cytometry had further revealed that curcumin could decrease the proportion of CD44+ colon cancer cells. After the expression of CD44 had been knocked down by using siRNA, the inhibition effects of curcumin against CD44+ colon cancer cells were observed to be reduced significantly. Moreover, it had been observed that the cellular uptake of curcumin was significantly higher in CD44+ colon cancer cells. Results from flow cytometry had shown that curcumin could induce apoptosis in CD44+ colon cancer cells. Altogether, our results suggested that curcumin might be an adjuvant drug for the treatment of colorectal cancer by targeting CD44.
Collapse
|
33
|
Mochel MC, Liaquat S, Moore JB, Hoang MP. Metastasizing basal cell carcinoma: A clinicopathologic and immunohistochemical study of 22 cases. J Cutan Pathol 2020; 48:374-383. [PMID: 33010047 DOI: 10.1111/cup.13888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 11/27/2022]
Abstract
Basal cell carcinomas metastasize rarely, and there have been limited studies of potential drivers for this metastasis. Epithelial-mesenchymal transition (EMT) may play a role, although this has not been investigated in detail. We reviewed clinicopathologic features of 22 patients with metastasizing basal cell carcinoma (MBCC). Immunohistochemical markers of EMT, including CD44, E-cadherin, claudin, smooth muscle actin, beta-catenin, Twist1, and Oct 3/4, were evaluated on 10 MBCC (primary and metastases) and 18 non-metastasizing BCC. Primary sites included the head and neck, trunk, and extremity, while metastatic sites included lymph nodes, lung, bone, and soft tissue. Of 19 cases with follow-up, the range of follow-up after diagnosis of metastasis was 5 to 248 months (median: 50 months). Two cases were of unknown primary, nine metastases were diagnosed concurrently with primary tumors, and remaining cases showed a median latency between diagnosis of primary and metastatic tumors of 27.5 months (range: 3-81 months). Median survival was 66 months. Compared to non-metastasizing BCC, MBCC demonstrated reduced CD44 expression (primary [P = .0036], metastatic [P = .011]) and increased Twist1 expression (primary, P = .0017). MBCC shows variably aggressive behavior, and reduced CD44 and increased Twist1 expression may indicate significant EMT in metastasizing tumors and signify a metastatic phenotype.
Collapse
Affiliation(s)
- Mark C Mochel
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Dermatology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Samia Liaquat
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Johanna B Moore
- Western Diagnostic Services Laboratory, Santa Maria, California, USA
| | - Mai P Hoang
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Al-Othman N, Alhendi A, Ihbaisha M, Barahmeh M, Alqaraleh M, Al-Momany BZ. Role of CD44 in breast cancer. Breast Dis 2020; 39:1-13. [PMID: 31839599 DOI: 10.3233/bd-190409] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is among the most prevalent type of malignancy affecting females worldwide. BC is classified into different types according to the status of the expression of receptors such as estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), and progesterone receptor (PR). Androgen receptor (AR) appears to be a promising therapeutic target of BC. Binding of 5α-dihydrotestosterone (DHT) to AR controls the expression of microRNA (miRNA) molecules in BC, consequently, affecting protein expression. One of these proteins is the transmembrane glycoprotein cluster of differentiation 44 (CD44). Remarkably, CD44 is a common marker of cancer stem cells in BC. It functions as a co-receptor for a broad diversity of extracellular matrix ligands. Several ligands, primarily hyaluronic acid (HA), can interact with CD44 and mediate its functions. CD44 promotes a variety of functions independently or in cooperation with other cell-surface receptors through activation of varied signaling pathways like Rho GTPases, Ras-MAPK, and PI3K/AKT pathways to regulate cell adhesion, migration, survival, invasion, and epithelial-mesenchymal transition. In this review, we present the relations between AR, miRNA, and CD44 and their roles in BC.
Collapse
Affiliation(s)
- Nihad Al-Othman
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ala' Alhendi
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Manal Ihbaisha
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Myassar Barahmeh
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | | |
Collapse
|
35
|
Roosta Y, Sanaat Z, Nikanfar AR, Dolatkhah R, Fakhrjou A. Predictive Value of CD44 for Prognosis in Patients with Breast Cancer. Asian Pac J Cancer Prev 2020; 21:2561-2567. [PMID: 32986353 PMCID: PMC7779424 DOI: 10.31557/apjcp.2020.21.9.2561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Breast Cancer (BC), is one of the most common malignancies around the world. CD44 expression correlates with cell proliferation, infiltration, angiogenesis, metastasis and prognosis in breast cancer but the exact mechanism of CD44 function is still not clear. The present study evaluates the expression of CD44 in primary HER2-positive breast cancer. The results can be used to determine the disease-free and overall survival of patients with breast cancer. Methods: We studied specimens from 100 patients with HER2-positive invasive breast cancer between March 2011 and June 2019. Immunohistochemical staining for CD44 was performed in all the specimens. Their CD44 association with clinicopathologic parameters and prognosis was evaluated. Results: The high CD44 was expression in 68(68%) of the patients and Low expression in 32(32%). CD44 expression was significantly associated with stage (p=0.007). There were no significant associations between the DFS, OS and other clinicopathologic parameters except for the stage, respectively (HR= 3.67, 95% CI =1.16-11.56, P = 0.03) (HR= 0.8.56, 95% CI =2.22-32.90, P = 0.002).20% of patients had died by the end of the follow-up. There were no significant association between DFS, OS and CD44 expression, respectively. (Log-rank p=0.13). (Log-rank p=0.10). Conclusion: The results from this study suggest that CD44 is clinically associated with stage of breast cancers. From the survival analysis, there was no statistical difference in overall survival and disease free survival with respect to CD44 expression. Further studies larger sample sizes are recommended for further investigation.
Collapse
Affiliation(s)
- Yousef Roosta
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Nikanfar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Dolatkhah
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashraf Fakhrjou
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020; 182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.
Collapse
|
37
|
Cancer Stem Cells: Acquisition, Characteristics, Therapeutic Implications, Targeting Strategies and Future Prospects. Stem Cell Rev Rep 2020; 15:331-355. [PMID: 30993589 DOI: 10.1007/s12015-019-09887-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since last two decades, the major cancer research has focused on understanding the characteristic properties and mechanism of formation of Cancer stem cells (CSCs), due to their ability to initiate tumor growth, self-renewal property and multi-drug resistance. The discovery of the mechanism of acquisition of stem-like properties by carcinoma cells via epithelial-mesenchymal transition (EMT) has paved a way towards a deeper understanding of CSCs and presented a possible avenue for the development of therapeutic strategies. In spite of years of research, various challenges, such as identification of CSC subpopulation, lack of appropriate experimental models, targeting cancer cells and CSCs specifically without harming normal cells, are being faced while dealing with CSCs. Here, we discuss the biology and characteristics of CSCs, mode of acquisition of stemness (via EMT) and development of multi-drug resistance, the role of tumor niche, the process of dissemination and metastasis, therapeutic implications of CSCs and necessity of targeting them. We emphasise various strategies being developed to specifically target CSCs, including those targeting biomarkers, key pathways and microenvironment. Finally, we focus on the challenges that need to be subdued and propose the aspects that need to be addressed in future studies in order to broaden the understanding of CSCs and develop novel strategies to eradicate them in clinical applications. Graphical Abstract Cancer Stem Cells(CSCs) have gained much attention in the last few decades due to their ability to initiate tumor growth and, self-renewal property and multi-drug resistance. Here, we represent the CSC model of cancer, Characteristics of CSCs, acquisition of stemness and metastatic dissemination of cancer, Therapeutic implications of CSCs and Various strategies being employed to target and eradicate CSCs.
Collapse
|
38
|
Bhattacharya S, Ghosh A, Maiti S, Ahir M, Debnath GH, Gupta P, Bhattacharjee M, Ghosh S, Chattopadhyay S, Mukherjee P, Adhikary A. Delivery of thymoquinone through hyaluronic acid-decorated mixed Pluronic® nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer. J Control Release 2020; 322:357-374. [DOI: 10.1016/j.jconrel.2020.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
|
39
|
Jariyal H, Gupta C, Srivastava A. Hyaluronic acid induction on breast cancer stem cells unfolds subtype specific variations in stemness and epithelial-to-mesenchymal transition. Int J Biol Macromol 2020; 160:1078-1089. [PMID: 32479949 DOI: 10.1016/j.ijbiomac.2020.05.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
The reoccurrence of breast cancer is a major concern due to presence of cancer stem cells (CSCs). Considering the key role of hyaluronic acid (HA) in modulating the inflammation and cellular migration in cancer, the response of high molecular weight (HMW) and low molecular weight (LMW) HA towards various subtypes of breast cancer and breast cancer stem cells remain elusive. The aim of this study is to determine the effect of exogenous HMW-HA and LMW-HA on stemness of CSCs and epithelial-to-mesenchymal transition which may help in designing HA based therapeutic strategies. LMW-HA induces EMT in MCF-7 more prominently as compared to MDA-MB-231. However, HMW-HA did not show significant changes in the expression of EMT genes. Surprisingly, both HMW-HA and LMW-HA have shown to decrease the expression of EpCAM in MCF-7 cells and decrease the expression of CD44 in MDAMB-231 cells. HA has maintained the native stem cells phenotype of bCSCs isolated from MCF-7 only. The bCSCs isolated form MDAMB-231 showed a decrease in CD44. Luminal subtype has shown to follow Wnt/β-catenin whereas in the basal subtype localization of CD44 from surface to cytosol was observed in response to HA. Our study has demonstrated that bCSCs in luminal and basal cells follow differential intracellular signaling mechanisms in response to HA. This study could significantly influence the therapeutics involving HA in breast cancer.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| | - Chanchal Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
40
|
Hyaluronic acid binding to CD44S is indiscriminate of molecular weight. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183348. [PMID: 32428448 DOI: 10.1016/j.bbamem.2020.183348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
The ubiquitous presence of hyaluronic acid (HA) in the extracellular matrix (ECM) of both healthy and diseased tissues underscores its importance in human physiology. Previous studies suggest that HA can be used as a probe to qualitatively monitor cell surface levels of CD44 and other important HA receptors; however, these studies use mixtures of HA at various molecular weights. Using fluorescently labeled HA, we evaluated the apparent differences of low (25 kilodalton) and high (700 kilodalton) molecular weight HA interacting with breast cancer cell lines of varying levels of CD44. Our results confirm that CD44 expression and the apparent level of HA interaction correlates with molecular weight. Importantly, we show that HA only binds a small fraction of the major CD44 isoform, CD44S, on cell surfaces and that CD44S interactions account for <50% of the total HA bound to cell surfaces. Although increased fluorescence level correlates with higher molecular weight of HA, this appears to be an artifact of chain length and not a result of multivalent binding between HA and CD44S. Accordingly, we verify that HA binding characteristics of cell surfaces is similar to previous artificial membrane models which proposed that HA anchors to CD44S and forms a non-binding corona of HA that extends beyond the surface.
Collapse
|
41
|
Sun F, Schroer CFE, Palacios CR, Xu L, Luo SZ, Marrink SJ. Molecular mechanism for bidirectional regulation of CD44 for lipid raft affiliation by palmitoylations and PIP2. PLoS Comput Biol 2020; 16:e1007777. [PMID: 32271757 PMCID: PMC7173942 DOI: 10.1371/journal.pcbi.1007777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/21/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
The co-localization of Cluster-of-Differentiation-44 protein (CD44) and cytoplasmic adaptors in specific membrane environments is crucial for cell adhesion and migration. The process is controlled by two different pathways: On the one hand palmitoylation keeps CD44 in lipid raft domains and disables the linking to the cytoplasmic adaptor, whereas on the other hand, the presence of phosphatidylinositol-4,5-biphosphate (PIP2) lipids accelerates the formation of the CD44-adaptor complex. The molecular mechanism explaining how CD44 is migrating into and out of the lipid raft domains and its dependence on both palmitoylations and the presence of PIP2 remains, however, elusive. In this study, we performed extensive molecular dynamics simulations to study the raft affinity and translocation of CD44 in phase separated model membranes as well as more realistic plasma membrane environments. We observe a delicate balance between the influence of the palmitoylations and the presence of PIP2 lipids: whereas the palmitoylations of CD44 increases the affinity for raft domains, PIP2 lipids have the opposite effect. Additionally, we studied the association between CD44 and the membrane adaptor FERM in dependence of these factors. We find that the presence of PIP2 lipids allows CD44 and FERM to associate in an experimentally observed binding mode whereas the highly palmitoylated species shows no binding affinity. Together, our results shed light on the sophisticated mechanism on how membrane translocation and peripheral protein association can be controlled by both protein modifications and membrane composition. Cytoskeleton protein complex involving with association of CD44 and ERMs is critical for cancer-related cellular adhesion and migration. The protein interactions are found to be modulated by chemical modification and membrane microenvironments, but the inherent mechanism is unclear. We obtained molecular dynamic details of CD44 localization switching between raft/non-raft subdomains regulated by palmitoylations and PIP2 molecules. Binding of PIP2 on the palmitoylated CD44 enables it to release from lipid raft, revealing an exceptional role of PIP2 in mediating protein translocation. PIP2 is beneficial for CD44 to associate with the active domain of ERM, in a nearly crystal structure mode. The molecular information will enhance our understanding for PIP2 regulation to protein translocation and membrane association.
Collapse
Affiliation(s)
- Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, China
| | - Carsten F E Schroer
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, The Netherlands
| | - Carlos R Palacios
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, The Netherlands
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, The Netherlands
| |
Collapse
|
42
|
Karamanou K, Franchi M, Onisto M, Passi A, Vynios DH, Brézillon S. Evaluation of lumican effects on morphology of invading breast cancer cells, expression of integrins and downstream signaling. FEBS J 2020; 287:4862-4880. [PMID: 32160387 DOI: 10.1111/febs.15289] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
The small leucine-rich proteoglycan lumican regulates estrogen receptors (ERs)-associated functional properties of breast cancer cells, expression of matrix macromolecules, and epithelial-to-mesenchymal transition. However, it is not known whether the ER-dependent lumican effects on breast cancer cells are related to the expression of integrins and their intracellular signaling pathways. Here, we analyzed the effects of lumican in three breast cancer cell lines: the highly metastatic ERβ-positive MDA-MB-231, cells with the respective ERβ-suppressed (shERβMDA-MB-231), and lowly invasive ERα-positive MCF-7/c breast cancer cells. Scanning electron microscopy, confocal microscopy, real-time PCR, western blot, and cell adhesion assays were performed. Lumican effects on breast cancer cell morphology were also investigated in 3-dimensional collagen cultures. Lumican treatment induced cell-cell contacts and cell grouping and inhibited microvesicles and microvilli formation. The expression of the cell surface adhesion receptor CD44, its isoform and variants, hyaluronan (HA), and HA synthases was also investigated. Lumican inhibited the expression of CD44 and HA synthases, and its effect on cell adhesion revealed a major role of α1, α2, α3, αVβ3, and αVβ5 integrins in MDA-MB-231 cells, but not in MCF-7/c cells. Lumican upregulated the expression of α2 and β1 integrin subunits both in MDA-MB-231 and in shERβMDA-MB-231 as compared to MCF-7/c cells. Downstream signaling pathways for integrins, such as FAK, ERK 1/2 MAPK 42/44, and Akt, were found to be downregulated by lumican. Our data shed light to the molecular mechanisms responsible for the anticancer activity of lumican in invasive breast cancer.
Collapse
Affiliation(s)
- Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, Reims, France.,Matrice Extracellulaire et Dynamique Cellulaire, CNRS UMR 7369, Reims, France
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alberto Passi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stéphane Brézillon
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, Reims, France.,Matrice Extracellulaire et Dynamique Cellulaire, CNRS UMR 7369, Reims, France
| |
Collapse
|
43
|
Flores-Ramírez I, Baranda-Avila N, Langley E. Breast Cancer Stem Cells and Sex Steroid Hormones. Curr Stem Cell Res Ther 2019; 14:398-404. [PMID: 30095060 DOI: 10.2174/1574888x13666180810121415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022]
Abstract
Breast cancer stem cells (BCSCs) are a small population of tumor-initiating cells that express stem cell-associated markers. In recent years, their properties and mechanisms of regulation have become the focus of intense research due to their intrinsic resistance to conventional cancer therapies. This review describes breast cancer stem cell origin, signaling pathways involved in self-renewal, such as Wnt, Notch and Hedgehog, biomarkers linked to stemness, and the role of sex steroid hormones in BCSC regulation.
Collapse
Affiliation(s)
- Iván Flores-Ramírez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CDMX, México.,Departamento de Investigacion Basica, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Col. Seccion XVI, Tlalpan 14080, CDMX, Mexico
| | - Noemi Baranda-Avila
- Departamento de Investigacion Basica, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Col. Seccion XVI, Tlalpan 14080, CDMX, Mexico
| | - Elizabeth Langley
- Departamento de Investigacion Basica, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Col. Seccion XVI, Tlalpan 14080, CDMX, Mexico
| |
Collapse
|
44
|
Togano T, Kim N, Kim N, Park GS, Park AK, Bennet M, Park J. The evaluation of Cannabidiol's effect on the immunotherapy of Burkitt lymphoma. Biochem Biophys Res Commun 2019; 520:225-230. [PMID: 31587870 DOI: 10.1016/j.bbrc.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 01/19/2023]
Abstract
AIM AF1q has a precise oncogenic function. The purpose of this study is to investigate whether CBD has an effect on the AF1q/ICAM-1 regulatory axis in Burkitt's lymphoma (BL), and thus has potential to enhance immunotherapy and reduce side effects. METHODS We established BL cell lines with altered AF1q expression using lentivirus. After confirmation of gene expression by RT-PCR, cells were treated with CBD followed by co-culture of killing assay. RESULTS AF1q increased oncogenic growth and colony formation, and induced resistance against cell-mediated cytotoxic chemotherapy through attenuation of ICAM-1 expression in BL. CBD was able to reverse the acquired resistance mediated by AF1q/ICAM-1 regulatory axis. CONCLUSION CBD holds potential to enhance the efficacy of immunotherapy for BL with hyperactive AF1q/ICAM-1 regulatory axis, and warrants further study.
Collapse
Affiliation(s)
- Tomiteru Togano
- Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Division of Haematology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naomi Kim
- Dupont Manual High School, Louisville, KY, USA
| | - Natalie Kim
- Dupont Manual High School, Louisville, KY, USA
| | | | - Alex K Park
- Dupont Manual High School, Louisville, KY, USA
| | - Maura Bennet
- Northern Kentucky University, Highland Heights, KY, USA
| | - Jino Park
- Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
45
|
Swaminathan S, Cranston AN, Clyne AM. A Three-Dimensional In Vitro Coculture Model to Quantify Breast Epithelial Cell Adhesion to Endothelial Cells. Tissue Eng Part C Methods 2019; 25:609-618. [PMID: 31441384 PMCID: PMC7718851 DOI: 10.1089/ten.tec.2019.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) in vitro culture models better recapitulate the tissue microenvironment, and therefore may provide a better platform to evaluate therapeutic effects on adhesive cell-cell interactions. The objective of this study was to determine if AD-01, a peptide derivative of FK506-binding protein like that is reported to bind to the adhesion receptor CD44, would induce a greater reduction in breast epithelial spheroid adhesion to endothelial tube-like networks in our 3D coculture model system compared to two-dimensional (2D) culture. MCF10A, MCF10A-NeuN, MDA-MB-231, and MCF7 breast epithelial cells were pretreated with AD-01 either as single cells or as spheroids. Breast epithelial cell adhesion to 2D tissue culture substrates was first measured, followed by spheroid formation (breast cell-cell adhesion) and spheroid adhesion to Matrigel or endothelial networks. Finally, CD44 expression was quantified in breast epithelial cells in 2D and 3D culture. Our results show that AD-01 had the largest effect on spheroid formation, specifically in breast cancer cell lines. AD-01 also inhibited breast cancer spheroid adhesion to and migration along endothelial networks. The different breast epithelial cell lines expressed more CD44 when cultured as 3D spheroids, but this did not universally translate into higher protein levels. This study shows that 3D coculture models can enable unique insights into cell adhesion, migration, and cell-cell interactions, thereby enhancing understanding of basic biological mechanisms. Furthermore, such 3D coculture systems may also represent a more relevant testing platform for understanding the mechanism-of-action of new therapeutic agents. Impact Statement Cell adhesion is inherently different in two dimensional (2D) compared to three dimensional (3D) culture; yet, most adhesion assays in academia and industry are still conducted in 2D because few simple, yet effective, adhesion models exist in 3D. Recently we developed a 3D in vitro coculture model to examine breast epithelial spheroid interactions with endothelial tubes. We now show that this 3D coculture model can effectively be used to interrogate and quantify drug-induced differences in breast epithelial cell adhesion that are unique to 3D cocultures. This 3D coculture adhesion model can furthermore be modified for use with other cell types to better predict drug effects on cell-vasculature adhesion.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania
| | - Aaron N. Cranston
- Centre for Precision Therapeutics, Health Sciences Building, Almac Discovery Ltd., Belfast, United Kingdom
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
46
|
Anand V, Khandelwal M, Appunni S, Gupta N, Seth A, Singh P, Mathur S, Sharma A. CD44 splice variant (CD44v3) promotes progression of urothelial carcinoma of bladder through Akt/ERK/STAT3 pathways: novel therapeutic approach. J Cancer Res Clin Oncol 2019; 145:2649-2661. [PMID: 31529191 DOI: 10.1007/s00432-019-03024-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/08/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE The incidence of Urothelial carcinoma of bladder (UBC) is gradually increasing by changing lifestyle and environment. The development of a tumor has been noted to be accompanied by modifications in the extracellular matrix (ECM) consisting of CD44, hyaluronic acid (HA) and its family members. The importance of CD44 splice variants and HA family members has been studied in UBC. METHODS The cohort of study included 50 UBC patients undergoing radical cystectomy and 50 healthy subjects. The molecular expression of CD44 and HA family members was determined. Effect of CD44 variant-specific silencing on downstream signaling in HT1376 cells was investigated. Combinatorial treatment of 4-MU (4-methylumbelliferone) with cisplatin or doxorubicin on chemosensitivity was also explored. RESULTS Higher expression of HA, HAS2, and CD44 was observed in Indian UBC patients which also showed the trend with severity of disease. Splice variant assessment of CD44 demonstrated the distinct role of CD44v3 and CD44v6 in bladder cancer progression. shRNA-mediated downregulation of CD44v3 showed an increase effect on cell cycle, apoptosis and multiple downstream signaling cascade including pAkt, pERK and pSTAT3. Furthermore, 4-MU, an HA synthesis inhibitor, observed to complement the effect of Cisplatin or Doxorubicin by enhancing the chemosensitivity of bladder cancer cells. CONCLUSIONS Our findings exhibit involvement of CD44 splice variants and HA family members in UBC and significance of 4-MU in enhancing chemosensitivity suggesting their novel therapeutic importance in disease therapeutics.
Collapse
Affiliation(s)
- Vivek Anand
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Madhuram Khandelwal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Sandeep Appunni
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Nidhi Gupta
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Prabhjot Singh
- Department of Urology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
47
|
Carton F, Chevalier Y, Nicoletti L, Tarnowska M, Stella B, Arpicco S, Malatesta M, Jordheim LP, Briançon S, Lollo G. Rationally designed hyaluronic acid-based nano-complexes for pentamidine delivery. Int J Pharm 2019; 568:118526. [DOI: 10.1016/j.ijpharm.2019.118526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/04/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
|
48
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
49
|
Kuciauskas D, Dreize N, Ger M, Kaupinis A, Zemaitis K, Stankevicius V, Suziedelis K, Cicenas J, Graves LM, Valius M. Proteomic Analysis of Breast Cancer Resistance to the Anticancer Drug RH1 Reveals the Importance of Cancer Stem Cells. Cancers (Basel) 2019; 11:E972. [PMID: 31336714 PMCID: PMC6678540 DOI: 10.3390/cancers11070972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Antitumor drug resistance remains a major challenge in cancer chemotherapy. Here we investigated the mechanism of acquired resistance to a novel anticancer agent RH1 designed to be activated in cancer cells by the NQO1 enzyme. Data show that in some cancer cells RH1 may act in an NQO1-independent way. Differential proteomic analysis of breast cancer cells with acquired resistance to RH1 revealed changes in cell energy, amino acid metabolism and G2/M cell cycle transition regulation. Analysis of phosphoproteomics and protein kinase activity by multiplexed kinase inhibitor beads showed an increase in the activity of protein kinases involved in the cell cycle and stemness regulation and downregulation of proapoptotic kinases such as JNK in RH1-resistant cells. Suppression of JNK leads to the increase of cancer cell resistance to RH1. Moreover, resistant cells have enhanced expression of stem cell factor (SCF) and stem cell markers. Inhibition of SCF receptor c-KIT resulted in the attenuation of cancer stem cell enrichment and decreased amounts of tumor-initiating cells. RH1-resistant cells also acquire resistance to conventional therapeutics while remaining susceptible to c-KIT-targeted therapy. Data show that RH1 can be useful to treat cancers in the NQO1-independent way, and targeting of the cancer stem cells might be an effective approach for combating resistance to RH1 therapy.
Collapse
Affiliation(s)
- Dalius Kuciauskas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Nadezda Dreize
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Marija Ger
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Kristijonas Zemaitis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Vaidotas Stankevicius
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Kestutis Suziedelis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
- MAP Kinase Resource, 3027 Bern, Switzerland
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania.
| |
Collapse
|
50
|
Spadea A, Rios de la Rosa JM, Tirella A, Ashford MB, Williams KJ, Stratford IJ, Tirelli N, Mehibel M. Evaluating the Efficiency of Hyaluronic Acid for Tumor Targeting via CD44. Mol Pharm 2019; 16:2481-2493. [PMID: 31013093 DOI: 10.1021/acs.molpharmaceut.9b00083] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of delivery systems capable of tumor targeting represents a promising strategy to overcome issues related to nonspecific effects of conventional anticancer therapies. Currently, one of the most investigated agents for cancer targeting is hyaluronic acid (HA), since its receptor, CD44, is overexpressed in many cancers. However, most of the studies on CD44/HA interaction have been so far performed in cell-free or genetically modified systems, thus leaving some uncertainty regarding which cell-related factors influence HA binding and internalization (collectively called "uptake") into CD44-expressing cells. To address this, the expression of CD44 (both standard and variants, designated CD44s and CD44v, respectively) was evaluated in human dermal fibroblasts (HDFs) and a large panel of cancer cell lines, including breast, prostate, head and neck, pancreatic, ovarian, colorectal, thyroid, and endometrial cancers. Results showed that CD44 isoform profiles and expression levels vary across the cancer cell lines and HDF and are not consistent within the cell origin. Using composite information of CD44 expression, HA binding, and internalization, we found that the expression of CD44v can negatively influence the uptake of HA, and, instead, when cells primarily expressed CD44s, a positive correlation was observed between expression and uptake. In other words, CD44shigh cells bound and internalized more HA compared to CD44slow cells. Moreover, CD44shigh HDFs were less efficient in uptaking HA compared to CD44shigh cancer cells. The experiments described here are the first step toward understanding the interplay between CD44 expression, its functionality, and the underlying mechanism(s) for HA uptake. The results show that factors other than the amount of CD44 receptor can play a role in the interaction with HA, and this represents an important advance with respect to the design of HA-based carriers and the selection of tumors to treat according to their CD44 expression profile.
Collapse
Affiliation(s)
- Alice Spadea
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester and Manchester Academic Health Science Centre , Stopford Building , Manchester M13 9PT , U.K
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , North West Centre of Advanced Drug Delivery (NoWCADD) , Stopford Building , Manchester M13 9PT , U.K
- Manchester Cancer Research Centre , The University of Manchester , 555 Wilmslow Road , Manchester M20 4GJ , U.K
| | - Julio Manuel Rios de la Rosa
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester and Manchester Academic Health Science Centre , Stopford Building , Manchester M13 9PT , U.K
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , North West Centre of Advanced Drug Delivery (NoWCADD) , Stopford Building , Manchester M13 9PT , U.K
- BiOncoTech Therapeutics S.L., Science 2 Business Foundation , C/ Santiago Grisolia 2 Tres Cantos , Madrid 28760 , Spain
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester and Manchester Academic Health Science Centre , Stopford Building , Manchester M13 9PT , U.K
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , North West Centre of Advanced Drug Delivery (NoWCADD) , Stopford Building , Manchester M13 9PT , U.K
| | - Marianne B Ashford
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , North West Centre of Advanced Drug Delivery (NoWCADD) , Stopford Building , Manchester M13 9PT , U.K
- Pharmaceutical Sciences, Innovative Medicines Biotech Unit , AstraZeneca , Macclesfield SK10 2NA , U.K
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester and Manchester Academic Health Science Centre , Stopford Building , Manchester M13 9PT , U.K
- Manchester Cancer Research Centre , The University of Manchester , 555 Wilmslow Road , Manchester M20 4GJ , U.K
| | - Ian J Stratford
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester and Manchester Academic Health Science Centre , Stopford Building , Manchester M13 9PT , U.K
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , North West Centre of Advanced Drug Delivery (NoWCADD) , Stopford Building , Manchester M13 9PT , U.K
- Manchester Cancer Research Centre , The University of Manchester , 555 Wilmslow Road , Manchester M20 4GJ , U.K
| | - Nicola Tirelli
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester and Manchester Academic Health Science Centre , Stopford Building , Manchester M13 9PT , U.K
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , North West Centre of Advanced Drug Delivery (NoWCADD) , Stopford Building , Manchester M13 9PT , U.K
- Laboratory of Polymers and Biomaterials , Fondazione Istituto Italiano di Tecnologia , 16163 Genova , Italy
| | - Manal Mehibel
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester and Manchester Academic Health Science Centre , Stopford Building , Manchester M13 9PT , U.K
- Department of Radiation Oncology , Stanford University , Stanford , California 94305-5847 , United States
| |
Collapse
|