1
|
Hara A, Lu E, Johnstone L, Wei M, Sun S, Hallmark B, Watkins JC, Zhang HH, Yao G, Chilton FH. Identification of an Allele-Specific Transcription Factor Binding Interaction that May Regulate PLA2G2A Gene Expression. Bioinform Biol Insights 2024; 18:11779322241261427. [PMID: 39081667 PMCID: PMC11287738 DOI: 10.1177/11779322241261427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 08/02/2024] Open
Abstract
The secreted phospholipase A2 (sPLA2) isoform, sPLA2-IIA, has been implicated in a variety of diseases and conditions, including bacteremia, cardiovascular disease, COVID-19, sepsis, adult respiratory distress syndrome, and certain cancers. Given its significant role in these conditions, understanding the regulatory mechanisms impacting its levels is crucial. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs), including rs11573156, that are associated with circulating levels of sPLA2-IIA. The work in the manuscript leveraged 4 publicly available datasets to investigate the mechanism by which rs11573156 influences sPLA2-IIA levels via bioinformatics and modeling analysis. Through genotype-tissue expression (GTEx), 234 expression quantitative trait loci (eQTLs) were identified for the gene that encodes for sPLA2-IIA, PLA2G2A. SNP2TFBS was used to ascertain the binding affinities between transcription factors (TFs) to both the reference and alternative alleles of identified eQTL SNPs. Subsequently, candidate TF-SNP interactions were cross-referenced with the ChIP-seq results in matched tissues from ENCODE. SP1-rs11573156 emerged as the significant TF-SNP pair in the liver. Further analysis revealed that the upregulation of PLA2G2A transcript levels through the rs11573156 variant was likely affected by tissue SP1 protein levels. Using an ordinary differential equation based on Michaelis-Menten kinetic assumptions, we modeled the dependence of PLA2G2A transcription on SP1 protein levels, incorporating the SNP influence. Collectively, our analysis strongly suggests that the difference in the binding dynamics of SP1 to different rs11573156 alleles may underlie the allele-specific PLA2G2A expression in different tissues, a mechanistic model that awaits future direct experimental validation. This mechanism likely contributes to the variation in circulating sPLA2-IIA protein levels in the human population, with implications for a wide range of human diseases.
Collapse
Affiliation(s)
- Aki Hara
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
| | - Eric Lu
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| | - Laurel Johnstone
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
| | - Michelle Wei
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| | - Shudong Sun
- Department of Mathematics, The University of Arizona, Tucson, AZ, USA
- Statistics Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Brian Hallmark
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| | - Joseph C Watkins
- Department of Mathematics, The University of Arizona, Tucson, AZ, USA
- Statistics Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Hao Helen Zhang
- Department of Mathematics, The University of Arizona, Tucson, AZ, USA
- Statistics Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA
- Center for Precision Nutrition and Wellness, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Mohamed E, García Martínez DJ, Hosseini MS, Yoong SQ, Fletcher D, Hart S, Guinn BA. Identification of biomarkers for the early detection of non-small cell lung cancer: a systematic review and meta-analysis. Carcinogenesis 2024; 45:1-22. [PMID: 38066655 DOI: 10.1093/carcin/bgad091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/13/2024] Open
Abstract
Lung cancer (LC) causes few symptoms in the earliest stages, leading to one of the highest mortality rates among cancers. Low-dose computerised tomography (LDCT) is used to screen high-risk individuals, reducing the mortality rate by 20%. However, LDCT results in a high number of false positives and is associated with unnecessary follow-up and cost. Biomarkers with high sensitivities and specificities could assist in the early detection of LC, especially in patients with high-risk features. Carcinoembryonic antigen (CEA), cytokeratin 19 fragments and cancer antigen 125 have been found to be highly expressed during the later stages of LC but have low sensitivity in the earliest stages. We determined the best biomarkers for the early diagnosis of LC, using a systematic review of eight databases. We identified 98 articles that focussed on the identification and assessment of diagnostic biomarkers and achieved a pooled area under curve of 0.85 (95% CI 0.82-0.088), indicating that the diagnostic performance of these biomarkers when combined was excellent. Of the studies, 30 focussed on single/antigen panels, 22 on autoantibodies, 31 on miRNA and RNA panels, and 15 suggested the use of circulating DNA combined with CEA or neuron-specific enolase (NSE) for early LC detection. Verification of blood biomarkers with high sensitivities (Ciz1, exoGCC2, ITGA2B), high specificities (CYFR21-1, antiHE4, OPNV) or both (HSP90α, CEA) along with miR-15b and miR-27b/miR-21 from sputum may improve early LC detection. Further assessment is needed using appropriate sample sizes, control groups that include patients with non-malignant conditions, and standardised cut-off levels for each biomarker.
Collapse
Affiliation(s)
- Eithar Mohamed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | - Daniel J García Martínez
- Department of Biotechnology, Pozuelo de Alarcón, University Francisco De Vitoria, Madrid, 28223, Spain
| | - Mohammad-Salar Hosseini
- Research Centre for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Si Qi Yoong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Daniel Fletcher
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | - Simon Hart
- Respiratory Medicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | - Barbara-Ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| |
Collapse
|
3
|
Hara A, Lu E, Johnstone L, Wei M, Sun S, Hallmark B, Watkins JC, Zhang HH, Yao G, Chilton FH. Identification of an allele-specific transcription factor binding interaction that regulates PLA2G2A gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571290. [PMID: 38168258 PMCID: PMC10760018 DOI: 10.1101/2023.12.12.571290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The secreted phospholipase A 2 (sPLA 2 ) isoform, sPLA 2 -IIA, has been implicated in a variety of diseases and conditions, including bacteremia, cardiovascular disease, COVID-19, sepsis, adult respiratory distress syndrome, and certain cancers. Given its significant role in these conditions, understanding the regulatory mechanisms impacting its levels is crucial. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs), including rs11573156, that are associated with circulating levels of sPLA 2 -IIA. Through Genotype-Tissue Expression (GTEx), 234 expression quantitative trait loci (eQTLs) were identified for the gene that encodes for sPLA 2 -IIA, PLA2G2A . SNP2TFBS ( https://ccg.epfl.ch/snp2tfbs/ ) was utilized to ascertain the binding affinities between transcription factors (TFs) to both the reference and alternative alleles of identified SNPs. Subsequently, ChIP-seq peaks highlighted the TF combinations that specifically bind to the SNP, rs11573156. SP1 emerged as a significant TF/SNP pair in liver cells, with rs11573156/SP1 interaction being most prominent in liver, prostate, ovary, and adipose tissues. Further analysis revealed that the upregulation of PLA2G2A transcript levels through the rs11573156 variant was affected by tissue SP1 protein levels. By leveraging an ordinary differential equation, structured upon Michaelis-Menten enzyme kinetics assumptions, we modeled the PLA2G2A transcription's dependence on SP1 protein levels, incorporating the SNP's influence. Collectively, these data strongly suggest that the binding affinity differences of SP1 for the different rs11573156 alleles can influence PLA2G2A expression. This, in turn, can modulate sPLA2-IIA levels, impacting a wide range of human diseases.
Collapse
|
4
|
Paez R, Kammer MN, Tanner NT, Shojaee S, Heideman BE, Peikert T, Balbach ML, Iams WT, Ning B, Lenburg ME, Mallow C, Yarmus L, Fong KM, Deppen S, Grogan EL, Maldonado F. Update on Biomarkers for the Stratification of Indeterminate Pulmonary Nodules. Chest 2023; 164:1028-1041. [PMID: 37244587 PMCID: PMC10645597 DOI: 10.1016/j.chest.2023.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. Early detection and diagnosis are critical, as survival decreases with advanced stages. Approximately 1.6 million nodules are incidentally detected every year on chest CT scan images in the United States. This number of nodules identified is likely much larger after accounting for screening-detected nodules. Most of these nodules, whether incidentally or screening detected, are benign. Despite this, many patients undergo unnecessary invasive procedures to rule out cancer because our current stratification approaches are suboptimal, particularly for intermediate probability nodules. Thus, noninvasive strategies are urgently needed. Biomarkers have been developed to assist through the continuum of lung cancer care and include blood protein-based biomarkers, liquid biopsies, quantitative imaging analysis (radiomics), exhaled volatile organic compounds, and bronchial or nasal epithelium genomic classifiers, among others. Although many biomarkers have been developed, few have been integrated into clinical practice as they lack clinical utility studies showing improved patient-centered outcomes. Rapid technologic advances and large network collaborative efforts will continue to drive the discovery and validation of many novel biomarkers. Ultimately, however, randomized clinical utility studies showing improved patient outcomes will be required to bring biomarkers into clinical practice.
Collapse
Affiliation(s)
- Rafael Paez
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Michael N Kammer
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Nicole T Tanner
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC
| | - Samira Shojaee
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Brent E Heideman
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tobias Peikert
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Meridith L Balbach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Wade T Iams
- Department of Medicine, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Boting Ning
- Department of Medicine, Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA
| | - Marc E Lenburg
- Department of Medicine, Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA
| | - Christopher Mallow
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami, Miami, FL
| | - Lonny Yarmus
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Kwun M Fong
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Stephen Deppen
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville, TN
| | - Eric L Grogan
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville, TN
| | - Fabien Maldonado
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
5
|
Mangini M, D’Angelo R, Vinciguerra C, Payré C, Lambeau G, Balestrieri B, Charles JF, Mariggiò S. Multimodal regulation of the osteoclastogenesis process by secreted group IIA phospholipase A 2. Front Cell Dev Biol 2022; 10:966950. [PMID: 36105351 PMCID: PMC9467450 DOI: 10.3389/fcell.2022.966950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence points to the involvement of group IIA secreted phospholipase A2 (sPLA2-IIA) in pathologies characterized by abnormal osteoclast bone-resorption activity. Here, the role of this moonlighting protein has been deepened in the osteoclastogenesis process driven by the RANKL cytokine in RAW264.7 macrophages and bone-marrow derived precursor cells from BALB/cJ mice. Inhibitors with distinct selectivity toward sPLA2-IIA activities and recombinant sPLA2-IIA (wild-type or catalytically inactive forms, full-length or partial protein sequences) were instrumental to dissect out sPLA2-IIA function, in conjunction with reduction of sPLA2-IIA expression using small-interfering-RNAs and precursor cells from Pla2g2a knock-out mice. The reported data indicate sPLA2-IIA participation in murine osteoclast maturation, control of syncytium formation and resorbing activity, by mechanisms that may be both catalytically dependent and independent. Of note, these studies provide a more complete understanding of the still enigmatic osteoclast multinucleation process, a crucial step for bone-resorbing activity, uncovering the role of sPLA2-IIA interaction with a still unidentified receptor to regulate osteoclast fusion through p38 SAPK activation. This could pave the way for the design of specific inhibitors of sPLA2-IIA binding to interacting partners implicated in osteoclast syncytium formation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Rosa D’Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Caterina Vinciguerra
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Christine Payré
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Barbara Balestrieri
- Jeff and Penny Vinik Center for Translational Immunology Research, Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Julia F. Charles
- Departments of Orthopaedic Surgery and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy,*Correspondence: Stefania Mariggiò,
| |
Collapse
|
6
|
Razdan A, Main NM, Chiu V, Shackel NA, de Souza P, Bryant K, Scott KF. Targeting the eicosanoid pathway in hepatocellular carcinoma. Am J Cancer Res 2021; 11:2456-2476. [PMID: 34249410 PMCID: PMC8263695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023] Open
Abstract
Liver cancer has variable incidence worldwide and high mortality. Histologically, the most common subtype of liver cancer is hepatocellular carcinoma (HCC). Approximately 30-40% of HCC patients are diagnosed at an advanced stage, and at present, there are limited treatment options for such patients. The current first-line therapy with tyrosine kinase inhibitors, sorafenib or lenvatinib, prolongs survival by a median of about 2.5-3 months after which the disease normally progresses. Additionally, many patients discontinue the use of tyrosine kinase inhibitors due to toxicity or may not be suitable candidates due to co-morbidity or frailty. It is, therefore, imperative to identify novel therapeutic targets for advanced HCC patients. Persistent injury to the liver as a result of insults such as hepatitis B or C viral (HBV or HCV) infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD), results in chronic inflammation, which progresses to hepatic fibrosis and later, cirrhosis, provides the conditions for initiation of HCC. One of the key pathways studied for its role in inflammation and carcinogenesis is the eicosanoid pathway. In this review, we briefly outline the eicosanoid pathway, describe the mechanisms by which some pathway members either facilitate or counter the development of liver diseases, with the focus on NAFLD/hepatic fibrosis/cirrhosis, and HCC. We describe the link between the eicosanoid pathway, inflammation and these liver diseases, and identify components of the eicosanoid pathway that may be used as potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Anshuli Razdan
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nathan M Main
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Vincent Chiu
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nicholas A Shackel
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
- School of Medicine, University of WollongongWollongong, NSW, Australia
| | - Katherine Bryant
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Kieran F Scott
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| |
Collapse
|
7
|
Jespersen SS, Stovgaard ES, Nielsen D, Christensen TD, Buhl ASK, Christensen IJ, Balslev E. Expression of Secretory Phospholipase A2 Group IIa in Breast Cancer and Correlation to Prognosis in a Cohort of Advanced Breast Cancer Patients. Appl Immunohistochem Mol Morphol 2021; 29:e5-e9. [PMID: 32217848 DOI: 10.1097/pai.0000000000000854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Secreted phospholipase A2 group IIa (sPLA2-IIa) has been shown to promote tumor genesis and cell proliferation. The properties of this group of enzymes are utilized in liposomal drug delivery of chemotherapy. sPLA2-IIa is also under investigation as a possible treatment target in itself, and as a prognostic marker. The expression of sPLA2-IIa in breast cancer has not been examined extensively, and never using immunohistochemistry. We sought to investigate the expression of sPLA2-IIa in a cohort of advanced breast cancer patients with correlation to known clinicopathologic risk factors and survival. Material from 525 breast cancer patients (426 primary tumors and 99 metastases or local recurrences) was examined for sPLA2-IIa expression using immunohistochemistry. Out of these, 262 showed expression of sPLA2-IIa. We found that there was no correlation to clinicopathologic characteristics, and no impact of sPLA2-IIa expression on prognosis. However, we found that a large proportion of patients in our study had high levels of sPLA2-IIa expression, and that sPLA2-IIa was equally expressed in primary tumors and metastases. These findings may be significant in the future development of liposomal drug delivery or targeted sPLA2-IIa treatment.
Collapse
Affiliation(s)
| | | | - Dorte Nielsen
- Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Troels D Christensen
- Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anna S K Buhl
- Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Detection of phospholipase A 2 in serum based on LRET mechanism between upconversion nanoparticles and SYBR green I. Anal Chim Acta 2020; 1143:37-44. [PMID: 33384128 DOI: 10.1016/j.aca.2020.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/01/2023]
Abstract
Phospholipase A2 (PLA2) may be a vital biomarker for the prediction and diagnosis of some diseases. Consequently, it is of great significance to quantitatively detect PLA2 in biologic samples. Herein, on the basis of the principle of luminescence resonance energy transfer (LRET) between upconversion nanoparticles (UCNPs) and SYBR Green I (SG), we proposed a technology for the highly sensitive detection of PLA2 amount. Therein, as an energy receptor, SG will be quantitatively loaded into liposomes firstly. Then, due to the hydrolysis of liposomes under the catalysis of PLA2, SG will be released and inserted into the double-stranded DNA (dsDNA) on the surface of UCNPs, which triggers the LRET because of the shortening of effective spatial distance between UCNPs and SG. Under exciting of NIR light, UCNPs emit luminescence at 476 nm, which makes SG emit fluorescence at 522 nm through LRET. Under optimal conditions, the emission intensity ratio (I522 nm/I476 nm) increased linearly with the PLA2 amount in the range of 20 U/L to 400 U/L, and the limit of detection (LOD) reached 15 U/L. Here, after comparing with the clinical standard method, it is found that the biosensor is expected to provide a convenient and sensitive assay for the detection of PLA2 in actual serum samples. Furthermore, such biosensor can also be used to test the inhibitor of PLA2.
Collapse
|
9
|
Abstract
The 2010's saw demonstration of the power of lung cancer screening to reduce mortality. However, with implementation of lung cancer screening comes the challenge of diagnosing millions of lung nodules every year. When compared to other cancers with widespread screening strategies (breast, colorectal, cervical, prostate, and skin), obtaining a lung nodule tissue biopsy to confirm a positive screening test remains associated with higher morbidity and cost. Therefore, non-invasive diagnostic biomarkers may have a unique opportunity in lung cancer to greatly improve the management of patients at risk. This review covers recent advances in the field of liquid biomarkers and computed tomographic imaging features, with special attention to new methods for combination of biomarkers as well as the use of artificial intelligence for the discrimination of benign from malignant nodules.
Collapse
Affiliation(s)
- Michael N Kammer
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.,Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pierre P Massion
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Medical Service, Tennessee Valley Healthcare Systems, Nashville Campus, Nashville, TN, USA
| |
Collapse
|
10
|
Hossain S, Pai KR, Piyasena ME. Fluorescent Lipo-Beads for the Sensitive Detection of Phospholipase A 2 and Its Inhibitors. ACS Biomater Sci Eng 2020; 6:1989-1997. [PMID: 33455318 PMCID: PMC10012499 DOI: 10.1021/acsbiomaterials.9b01720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phospholipase A2 (PLA2) is a membrane lytic enzyme that is present in many organisms. Human PLA2 has emerged as a potential biomarker as well as a therapeutic target for several diseases including cancer, cardiovascular diseases, and some inflammatory diseases. The current study focuses on the development of lipo-beads that are very reactive and highly sensitive to PLA2. To develop the best supported lipid bilayer formulation, several lipid combinations were investigated using 10 μm porous silica beads. The reactivity of PLA2 was monitored via the decrease in particle fluorescence because of the release of entrapped fluorescent dye from the particle pores or the disintegration of a fluorescent lipid constituted on the bilayer upon lipid hydrolysis using flow cytometry. The enzyme binding studies indicate that lipo-beads with bulky fluorescent tags in the lipid head group and anionic lipids produce a more pronounced response. The kinetic studies suggest that these lipo-beads are very reactive with PLA2 and can generate a detectable signal in less than 5 min. The enzyme inhibition studies were also conducted with two known PLA2 inhibitors, varespladib and quercetin. We find that quercetin can hydrolyze the supported membrane, and thus inhibition of PLA2 is not observed; however, varespladib has shown significant PLA2 inhibition on lipo-beads. We have demonstrated that our lipo-bead-based approach can detect annexin-3, a known disease biomarker, as low as 10 nM within 5 min after incubation.
Collapse
Affiliation(s)
- Shahriare Hossain
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801, Leroy Place, Socorro, New Mexico 87801, United States
| | - Kalika R Pai
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801, Leroy Place, Socorro, New Mexico 87801, United States
| | - Menake E Piyasena
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801, Leroy Place, Socorro, New Mexico 87801, United States
| |
Collapse
|
11
|
Noreldeen HAA, Liu X, Xu G. Metabolomics of lung cancer: Analytical platforms and their applications. J Sep Sci 2019; 43:120-133. [DOI: 10.1002/jssc.201900736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Hamada A. A. Noreldeen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
- University of Chinese Academy of Sciences Beijing P. R. China
- Marine Chemistry LabMarine Environment DivisionNational Institute of Oceanography and Fisheries Hurghada Egypt
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| |
Collapse
|
12
|
A Potential Role of Phospholipase 2 Group IIA (PLA 2-IIA) in P. gingivalis-Induced Oral Dysbiosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31732936 DOI: 10.1007/978-3-030-28524-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Porphyromonas gingivalis is an oral pathogen with the ability to induce oral dysbiosis and periodontal disease. Nevertheless, the mechanisms by which P. gingivalis could abrogate the host-microbe symbiotic relationship leading to oral dysbiosis remain unclear. We have recently demonstrated that P. gingivalis specifically increased the antimicrobial properties of oral epithelial cells, through a strong induction of the expression of PLA2-IIA in a mechanism that involves activation of the Notch-1 receptor. Moreover, gingival expression of PLA2-IIA was significantly increased during initiation and progression of periodontal disease in non-human primates and interestingly, those PLA2-IIA expression changes were concurrent with oral dysbiosis. In this chapter, we present an innovative hypothesis of a potential mechanism involved in P. gingivalis-induced oral dysbiosis and inflammation based on our previous observations and a robust body of literature that supports the antimicrobial and proinflammatory properties of PLA2-IIA as well as its role in other chronic inflammatory diseases.
Collapse
|
13
|
Altered Metabolism of Phospholipases, Diacylglycerols, Endocannabinoids, and N-Acylethanolamines in Patients with Mastocytosis. J Immunol Res 2019; 2019:5836476. [PMID: 31355297 PMCID: PMC6636572 DOI: 10.1155/2019/5836476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/02/2019] [Accepted: 05/14/2019] [Indexed: 12/28/2022] Open
Abstract
Background Mastocytosis is a condition characterized by the expansion and accumulation of mast cells (MCs) in various organs. The symptoms are related to the increased release of MC-derived mediators that exert local and distant effects. MCs are a source and target of phospholipase enzymes (PLs), which catalyze the cleavage of membrane phospholipids releasing lipid mediators (e.g., diacylglycerols (DAGs) and the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG)). To date, there are no data on the role of these lipid mediators in mastocytosis. Here, we analyzed plasma levels of PLA2, PLC, DAG, ECs, and EC-related N-acylethanolamines in patients with mastocytosis. Methods In 23 patients with mastocytosis and 23 healthy individuals, we measured plasma PLA2 and PLC activities, DAG, 2-AG, anandamide (AEA), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA). Results Plasma PLA2 and PLC activities were increased in mastocytosis patients compared to controls. Concentrations of DAG (18:1 20:4 and 18:0 20:4), two second messengers produced by PLC, were higher in mastocytosis compared to controls, whereas the concentrations of their metabolite, 2-AG, were not altered. AEA was decreased in mastocytosis patients compared to controls; by contrast, AEA congener, PEA, was increased. PLA2 and PLC activities were increased only in patients with mediator-related symptoms. Moreover, PLC activity was positively correlated with disease severity and tryptase concentrations. By contrast, AEA was negatively correlated with tryptase concentrations. Conclusions PLs and some lipid mediators are altered in patients with mastocytosis. Our results may pave the way for investigating the functions of these mediators in the pathophysiology of mastocytosis and provide new potential biomarkers and therapeutic targets.
Collapse
|
14
|
Inhibition of secretory phospholipase A2 IIa attenuates prostaglandin E2-induced invasiveness in lung adenocarcinoma. Mol Cell Biochem 2019; 456:145-156. [PMID: 30684134 DOI: 10.1007/s11010-019-03500-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
Secretory phospholipase A2 IIa (sPLA2 IIa) catalyzes the production of multiple inflammatory mediators that influence the development of lung and other cancers. The most potent of these carcinogenic mediators is prostaglandin E2 (PGE2). We hypothesize that sPLA2 IIa inhibition modulates the production of PGE2, and sPLA2 IIa inhibition exerts its antineoplastic effects via downregulation of PGE2 production. We aim to evaluate these relationships via analysis of PGE2-mediated growth regulation pathways. A549 and H1650 lung adenocarcinoma cells were assayed for PGE2 production in the presence of sPLA2 IIa inhibitor. A549 and H1650 cells were treated with PGE2 and immune blotting was performed to assess ICAM-1 expression and STAT-3 activity. PGE2-induced ICAM-1 expression was measured via immunofluorescence. A549 and H1650 cells were treated with PGE2 in the presence of STAT3 inhibitor and assayed for ICAM-1 expression. A549 cells were treated with PGE2 in the presence ICAM-1 blocking antibody and assayed for invasion. PGE2 stimulation significantly increased the invasiveness and proliferation of lung adenocarcinoma (invasion p < 0.05, proliferation p < 0.05 A549 cells, p < 0.005 H1650 cells). sPLA2 IIa inhibition reduced PGE2 secretion (p < 0.05). PGE2 stimulation significantly upregulated the expression of cell adhesion molecule ICAM-1 and the phosphorylation of anti-apoptotic transcription factor STAT3 (p < 0.05). STAT3 inhibition attenuated ICAM-1 expression demonstrating the dependence of ICAM-1 on the STAT3 pathway (p < 0.05). ICAM-1 blockade attenuated the pro-invasive effects of PGE2 (p < 0.05). sPLA2 IIa inhibition attenuates the potent effects of PGE2-induced invasiveness. This is mediated by decreasing pro-inflammatory and invasion-promoting ICAM-1via the STAT-3 pathway. These data further describe how sPLA2 IIa inhibition mechanistically exerts its anticancer effects and support its use as an antineoplastic agent.
Collapse
|
15
|
Dore E, Boilard E. Roles of secreted phospholipase A 2 group IIA in inflammation and host defense. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:789-802. [PMID: 30905346 DOI: 10.1016/j.bbalip.2018.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Among all members of the secreted phospholipase A2 (sPLA2) family, group IIA sPLA2 (sPLA2-IIA) is possibly the most studied enzyme. Since its discovery, many names have been associated with sPLA2-IIA, such as "non-pancreatic", "synovial", "platelet-type", "inflammatory", and "bactericidal" sPLA2. Whereas the different designations indicate comprehensive functions or sources proposed for this enzyme, the identification of the precise roles of sPLA2-IIA has remained a challenge. This can be attributed to: the expression of the enzyme by various cells of different lineages, its limited activity towards the membranes of immune cells despite its expression following common inflammatory stimuli, its ability to interact with certain proteins independently of its catalytic activity, and its absence from multiple commonly used mouse models. Nevertheless, elevated levels of the enzyme during inflammatory processes and associated consistent release of arachidonic acid from the membrane of extracellular vesicles suggest that sPLA2-IIA may contribute to inflammation by using endogenous substrates in the extracellular milieu. Moreover, the remarkable potency of sPLA2-IIA towards bacterial membranes and its induced expression during the course of infections point to a role for this enzyme in the defense of the host against invading pathogens. In this review, we present current knowledge related to mammalian sPLA2-IIA and its roles in sterile inflammation and host defense.
Collapse
Affiliation(s)
- Etienne Dore
- Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious Diseases and Immunity, Québec City, QC, Canada
| | - Eric Boilard
- Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious Diseases and Immunity, Québec City, QC, Canada; Canadian National Transplantation Research Program, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Loffredo S, Ferrara AL, Bova M, Borriello F, Suffritti C, Veszeli N, Petraroli A, Galdiero MR, Varricchi G, Granata F, Zanichelli A, Farkas H, Cicardi M, Lambeau G, Marone G. Secreted Phospholipases A 2 in Hereditary Angioedema With C1-Inhibitor Deficiency. Front Immunol 2018; 9:1721. [PMID: 30083168 PMCID: PMC6064723 DOI: 10.3389/fimmu.2018.01721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hereditary angioedema (HAE) caused by deficiency (type I) or dysfunction (type II) of the C1 inhibitor protein (C1-INH-HAE) is a disabling, potentially fatal condition characterized by recurrent episodes of swelling. We have recently found that patients with C1-INH-HAE have increased plasma levels of vascular endothelial growth factors and angiopoietins (Angs), which have been associated with vascular permeability in several diseases. Among these and other factors, blood endothelial cells and vascular permeability can be modulated by extracellular or secreted phospholipases A2 (sPLA2s). Objective We sought to investigate the enzymatic activity and biological functions of sPLA2 in patients with C1-INH-HAE. Methods sPLA2s enzymatic activity was evaluated in the plasma from 109 adult patients with C1-INH-HAE and 68 healthy donors in symptom-free period and attacks. Plasma level of group IIA sPLA2 (hGIIA) protein was measured in selected samples. The effect of C1-INH-HAE plasma on endothelial permeability was examined in vitro using a vascular permeability assay. The role of hGIIA was determined using highly specific sPLA2 indole inhibitors. The effect of recombinant hGIIA on C1-INH activity was examined in vitro by functional assay. Results Plasma sPLA2 activity and hGIIA levels are increased in symptom-free C1-INH-HAE patients compared with controls. sPLA2 activity negatively correlates with C1-INH protein level and function. C1-INH-HAE plasma increases endothelial permeability in vitro, and this effect is partially reverted by a specific hGIIA enzymatic inhibitor. Finally, recombinant hGIIA inhibits C1-INH activity in vitro. Conclusion sPLA2 enzymatic activity (likely attributable to hGIIA), which is increased in C1-INH-HAE patients, can promote vascular permeability and impairs C1-INH activity. Our results may pave the way for investigating the functions of sPLA2s (in particular, hGIIA) in the pathophysiology of C1-INH-HAE and may inform the development of new therapeutic targets.
Collapse
Affiliation(s)
- Stefania Loffredo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Maria Bova
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy.,Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chiara Suffritti
- Department of Biomedical and Clinical Sciences, University of Milan, Luigi Sacco Hospital Milan, Milan, Italy
| | - Nóra Veszeli
- Hungarian Angioedema Center, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Angelica Petraroli
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Andrea Zanichelli
- Department of Biomedical and Clinical Sciences, University of Milan, Luigi Sacco Hospital Milan, Milan, Italy
| | - Henriette Farkas
- Hungarian Angioedema Center, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Marco Cicardi
- Department of Biomedical and Clinical Sciences, University of Milan, Luigi Sacco Hospital Milan, Milan, Italy
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Gianni Marone
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| |
Collapse
|
17
|
Ye M, Li S, Huang W, Wang C, Liu L, Liu J, Liu J, Pan H, Deng Q, Tang H, Jiang L, Huang W, Chen X, Shao D, Peng Z, Wu R, Zhong J, Wang Z, Zhang X, Kristiansen K, Wang J, Yin Y, Mao M, He J, Liang W. Comprehensive targeted super-deep next generation sequencing enhances differential diagnosis of solitary pulmonary nodules. J Thorac Dis 2018; 10:S820-S829. [PMID: 29780628 DOI: 10.21037/jtd.2018.04.09] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background A non-invasive method to predict the malignancy of surgery-candidate solitary pulmonary nodules (SPN) is urgently needed. Methods Super-depth next generation sequencing (NGS) of 35 paired tissues and plasma DNA was performed as an attempt to develop an early diagnosis approach. Results Only ~6% of malignant nodule patients had driver mutations in the circulating tumour DNA (ctDNA) with >10,000-fold sequencing depth, and the concordance of mutation between tDNA and ctDNA was 3.9%. The first innovative whole mutation scored model in this study predicted 33.3% of malignant SPN with 100% specificity. Conclusions These results showed that lung cancer gene-targeted deep capture sequencing is not efficient enough to achieve ideal sensitivity by simply increasing the sequencing depth of ctDNA from early candidates. The sequencing could not be evaluated hotspot mutations in the early tumour stage. Nevertheless, a larger cohort is required to optimize this model, and more techniques may be incorporated to benefit the SPN high-risk population.
Collapse
Affiliation(s)
- Mingzhi Ye
- BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou 510006, China.,The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,BGI-Guangzhou, Guangzhou Key Laboratory of Cancer Trans-Omics Research, Guangzhou 510006, China.,BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shiyong Li
- BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou 510006, China.,BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Weizhe Huang
- The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Chunli Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Liping Liu
- The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Jun Liu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Jilong Liu
- BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou 510006, China
| | - Hui Pan
- The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Qiuhua Deng
- The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Hailing Tang
- The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Long Jiang
- The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Weizhe Huang
- The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Xi Chen
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Di Shao
- BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou 510006, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Renhua Wu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Jing Zhong
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhe Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Jian Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Ye Yin
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mao Mao
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jianxing He
- The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Wenhua Liang
- The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
18
|
Platelet microparticle-mediated transfer of miR-939 to epithelial ovarian cancer cells promotes epithelial to mesenchymal transition. Oncotarget 2017; 8:97464-97475. [PMID: 29228624 PMCID: PMC5722576 DOI: 10.18632/oncotarget.22136] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/26/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) patients frequently suffer from thrombocytosis, which leads to a poor prognosis. However, the mechanism underlying platelet regulation of biological behavior in EOC remains unclear. The associations between clinicopathological characteristics and thrombocytosis in 171 EOC patients were studied, preoperative thrombocytosis was significantly associated with the stage, metastasis scope, level of preoperative CA125 and overall survival. When SKOV3 cells were cocultured with platelet microparticles (PMPs), the expression of molecules associated with epithelial-mesenchymal transition (EMT) was increased. The proliferation and migration of SKOV3 cells were also enhanced. Based on the miRNA microarray of the PMPs derived between thrombin-stimulating and apoptotic platelets, we demonstrated that over-expression or complete knockdown of miR-939 in the SKOV3 cells strengthened or weakened EMT. Secretory phospholipase A2 type IIA (sPLA2-IIa) has been shown to mediate PMPs intake by SKOV3 cells. The knockdown of sPLA2-IIa in SKOV3 cells verified that PMPs were involved in crosstalk during the regulation of cancer cells by transferring miRNA. This study revealed an important role for PMPs in the crosstalk of platelets and cancer cells through miR-939 shedding mediated by sPLA2-IIa, which enables EOC to undergo EMT and enhances cancer progression. Our findings pave the way for developing a novel therapeutic strategy for EOC targets such as PMPs, miR-939 or sPLA2-IIa.
Collapse
|
19
|
Hou H, Xu Z, Zhang H, Xu Y. Combination diagnosis of multi-slice spiral computed tomography and secretary phospholipase A2-IIa for solitary pulmonary nodules. J Clin Lab Anal 2017; 32. [PMID: 28493533 DOI: 10.1002/jcla.22250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION This study was aimed to compare the diagnostic value of multi-slice spiral computed tomography (CT) and secretary phospholipase A2-IIa (sPLA2-IIa) in differentiating between malignant and benign solitary pulmonary nodules (SPNs). METHODS A total of 223 patients with SPNs (91 patients with malignant SPNs and 132 patients with benign SPNs) were included from Weihai Central Hospital during October 2014 to December 2016. SPN diagnosis was confirmed in all patients using needle biopsy, surgery and bronchoscopy. The patients were managed with dynamic multi-slice CT scans, and their sPLA2-IIa levels were also detected. By selecting the area of interest of focus, the perfusion parameters of multi-slice CT targeting the focus were obtained. RESULTS The levels of MTT, PS, BV, BF and sPLA2-IIa significantly increased with increasing severity of SPNs (P<.05). Notably, BV (area under the ROC curve [AUC]=0.915; 95%CI: 0.88-0.95; sensitivity=91.21%; specificity=78.79%) showed a higher potential to discriminate patients with malignant SPNs from those with benign SPNs than did BF (AUC=0.712; 95%CI: 0.65-0.78; sensitivity=72.50%; specificity=59.10%), PS (AUC=0.772; 95%CI: 0.71-0.84; sensitivity=65.93%; specificity=82.58%) and MTT (AUC=0.600; 95%CI: 0.52-0.68; sensitivity=52.75%; specificity=78.03%). Finally, the combined diagnostic value of BV and sPLA2-IIa was quite ideal (AUC=0.947; 95%CI: 0.92-0.97; sensitivity=85.70%; specificity=92.70%) for malignant and benign SPNs. CONCLUSIONS The combined diagnostic value of BV and sPLA2-IIa appeared as a desirable detection method for malignant and benign SPNs.
Collapse
Affiliation(s)
- Hongjun Hou
- Department of Radiology, Weihai Central Hospital, Weihai City, Shandong Province, China
| | - Zushan Xu
- Department of Radiology, Weihai Central Hospital, Weihai City, Shandong Province, China
| | - Hongsheng Zhang
- Department of Radiology, Weihai Central Hospital, Weihai City, Shandong Province, China
| | - Yan Xu
- Department of Radiology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| |
Collapse
|
20
|
Lu S, Dong Z. Overexpression of secretory phospholipase A2-IIa supports cancer stem cell phenotype via HER/ERBB-elicited signaling in lung and prostate cancer cells. Int J Oncol 2017; 50:2113-2122. [PMID: 28440478 DOI: 10.3892/ijo.2017.3964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Resistance to conventional chemotherapies remains a significant clinical challenge in treatment of cancer. The cancer stem cells (CSCs) have properties necessary for tumor initiation, resistance to therapy, and progression. HER/ERBB‑elicited signaling supports CSC properties. Our previous studies revealed that secretory phospholipase A2 group IIa (sPLA2‑IIa) is overexpressed in both prostate and lung cancer cells, leading to an aberrant high level in the interstitial fluid, i.e., tumor microenvironment and blood. HER/ERBB-PI3K-Akt-NF-κB signaling stimulates sPLA2‑IIa overexpression, and in turn, sPLA2‑IIa activates EGFR family receptors and HER/ERBB-elicited signaling and stimulates sPLA2‑IIa overexpression in a positive feedback manner. The present study determined the molecular mechanisms of sPLA2‑IIa in stimulating HER/ERBB-elicited signaling and supporting CSC properties. We found that sPLA2‑IIa binds both EGFR and HER3 demonstrated by co-immunoprecipitation experiments and also indirectly interacts with HER2, suggesting that sPLA2‑IIa functions as a ligand for both EGFR and HER3. Furthermore, both side population CSCs from non-small cell lung cancer (NSCLC) A549 and H1975 cells and ALDH1‑high CSCs from castration-resistant prostate cancer (CRPC) 22Rv1 cells overexpress sPLA2‑IIa and produce tumors when inoculated into subcutis of nude mice. Given an aberrant high level of sPLA2‑IIa in the tumor microenvironment that should be much higher than that in the blood, our findings support the notion that sPLA2‑IIa functions as a ligand for EGFR family receptors and supports CSC properties via HER/ERBB-elicited signaling, which may contribute to resistance to therapy and cancer progression.
Collapse
Affiliation(s)
- Shan Lu
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongyun Dong
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
21
|
A dangerous liaison: Leptin and sPLA2-IIA join forces to induce proliferation and migration of astrocytoma cells. PLoS One 2017; 12:e0170675. [PMID: 28249041 PMCID: PMC5331986 DOI: 10.1371/journal.pone.0170675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/09/2017] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma, the most aggressive type of primary brain tumour, shows worse prognosis linked to diabetes or obesity persistence. These pathologies are chronic inflammatory conditions characterized by altered profiles of inflammatory mediators, including leptin and secreted phospholipase A2-IIA (sPLA2-IIA). Both proteins, in turn, display diverse pro-cancer properties in different cell types, including astrocytes. Herein, to understand the underlying relationship between obesity and brain tumors, we investigated the effect of leptin, alone or in combination with sPLA2-IIA on astrocytoma cell functions. sPLA2-IIA induced up-regulation of leptin receptors in 1321N1 human astrocytoma cells. Leptin, as well as sPLA2-IIA, increased growth and migration in these cells, through activation/phosphorylation of key proteins of survival cascades. Leptin, at concentrations with minimal or no activating effects on astrocytoma cells, enhanced growth and migration promoted by low doses of sPLA2-IIA. sPLA2-IIA alone induced a transient phosphorylation pattern in the Src/ERK/Akt/mTOR/p70S6K/rS6 pathway through EGFR transactivation, and co-addition of leptin resulted in a sustained phosphorylation of these signaling regulators. Mechanistically, EGFR transactivation and tyrosine- and serine/threonine-protein phosphatases revealed a key role in this leptin-sPLA2-IIA cross-talk. This cooperative partnership between both proteins was also found in primary astrocytes. These findings thus indicate that the adipokine leptin, by increasing the susceptibility of cells to inflammatory mediators, could contribute to worsen the prognosis of tumoral and neurodegenerative processes, being a potential mediator of some obesity-related medical complications.
Collapse
|
22
|
Fabrication of liposomal doxorubicin exhibiting ultrasensitivity against phospholipase A 2 for efficient pulmonary drug delivery to lung cancers. Int J Pharm 2017; 517:35-41. [DOI: 10.1016/j.ijpharm.2016.11.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
|
23
|
Abstract
Aim: In present study, the anti-inflammatory activities of a new series of benzimidazole derivatives were studied, investigating their inhibition of secretory phospholipase A2, lipoxygenase, COXs and lipopolysaccharide-induced secretion of TNF-α and IL-6 in mouse RAW264.7 macrophages. Results: Synthesized compounds effectively inhibited proinflammatory enzymes and cytokines. Conclusion: A strong inhibition of secretory phospholipases A2 was exhibited by benzimidazole derivatives with trifluoromethyl and methoxy substitutions at position 4 of attached phenyl, whereas compound 8 containing pyridine ring substituted with amino group showed very potent 5-lipoxygenase inhibition. Molecular docking experiments were carried out to elucidate the molecular basis of the observed inhibitory activities.
Collapse
|
24
|
Chapman R, Lin Y, Burnapp M, Bentham A, Hillier D, Zabron A, Khan S, Tyreman M, Stevens MM. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS NANO 2015; 9:2565-2573. [PMID: 25756526 PMCID: PMC5407437 DOI: 10.1021/nn5057595] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A rapid and highly sensitive point-of-care (PoC) lateral flow assay for phospholipase A2 (PLA2) is demonstrated in serum through the enzyme-triggered release of a new class of biotinylated multiarmed polymers from a liposome substrate. Signal from the enzyme activity is generated by the adhesion of polystreptavidin-coated gold nanoparticle networks to the lateral flow device, which leads to the appearance of a red test line due to the localized surface plasmon resonance effect of the gold. The use of a liposome as the enzyme substrate and multivalent linkers to link the nanoparticles leads to amplification of the signal, as the cleavage of a small amount of lipids is able to release a large amount of polymer linker and adhesion of an even larger amount of gold nanoparticles. By optimizing the molecular weight and multivalency of these biotinylated polymer linkers, the sensitivity of the device can be tuned to enable naked-eye detection of 1 nM human PLA2 in serum within 10 min. This high sensitivity enabled the correct diagnosis of pancreatitis in diseased clinical samples against a set of healthy controls using PLA2 activity in a point-of-care device for the first time.
Collapse
Affiliation(s)
- Robert Chapman
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Yiyang Lin
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mark Burnapp
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - Andrew Bentham
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - David Hillier
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Abigail Zabron
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Shahid Khan
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Matthew Tyreman
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
25
|
Brglez V, Lambeau G, Petan T. Secreted phospholipases A2 in cancer: Diverse mechanisms of action. Biochimie 2014; 107 Pt A:114-23. [DOI: 10.1016/j.biochi.2014.09.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022]
|
26
|
Wang W, Liu M, Wang J, Tian R, Dong J, Liu Q, Zhao X, Wang Y. Analysis of the Discriminative Methods for Diagnosis of Benign and Malignant Solitary Pulmonary Nodules Based on Serum Markers. Oncol Res Treat 2014; 37:740-6. [DOI: 10.1159/000369488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022]
|
27
|
Liu J, Mazzone PJ, Cata JP, Kurz A, Bauer M, Mascha EJ, Sessler DI. Serum Free Fatty Acid Biomarkers of Lung Cancer. Chest 2014; 146:670-679. [DOI: 10.1378/chest.13-2568] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
28
|
DONG ZHONGYUN, MELLER JAROSLAW, SUCCOP PAUL, WANG JIANG, WIKENHEISER-BROKAMP KATHRYN, STARNES SANDRA, LU SHAN. Secretory phospholipase A2-IIa upregulates HER/HER2-elicited signaling in lung cancer cells. Int J Oncol 2014; 45:978-84. [PMID: 24913497 PMCID: PMC4121404 DOI: 10.3892/ijo.2014.2486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/03/2014] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. There is an urgent need for early diagnostic tools and novel therapies in order to increase lung cancer survival. Secretory phospholipase A2 group IIa (sPLA2-IIa) is involved in inflammation, tumorigenesis and metastasis. We were the first to uncover that cancer cells secrete sPLA2‑IIa. sPLA2‑IIa is overexpressed in almost all specimens of human lung cancers examined and is significantly elevated in the plasma of lung cancer patients. High levels of plasma sPLA2-IIa are significantly associated with advanced stage and decreased overall cancer survival. In this study, we further showed that elevated HER/HER2‑PI3K-Akt-NF-κB signaling contributes to sPLA2-IIa overexpression in lung cancer cells. sPLA2-IIa in turn phosphorylates and activates HER2 and HER3 in a time- and dose‑dependent manner in lung cancer cells. The structure and sequence‑based docking analysis revealed that sPLA2-IIa β hairpin shares structural similarity with the corresponding EGF hairpin. sPLA2-IIa forms an extensive interface with EGFR and brings the two lobes of EGFR into an active conformation. sPLA2-IIa also enhances the NF-κB promoter activity. Anti-sPLA2-IIa antibody, but not the small molecule sPLA2-IIa inhibitor LY315920, significantly inhibits sPLA2‑IIa-induced activation of NF-κB promoter. Our findings support the notion that sPLA2-IIa functions as a ligand for the EGFR family of receptors leading to an elevated HER/HER2-elicited signaling. Plasma sPLA2-IIa can potentially serve as lung cancer biomarker and sPLA2‑IIa is a potential therapeutic target against lung cancer.
Collapse
Affiliation(s)
- ZHONGYUN DONG
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - JAROSLAW MELLER
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - PAUL SUCCOP
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - JIANG WANG
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | | - SANDRA STARNES
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - SHAN LU
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| |
Collapse
|
29
|
Novel and convenient method to evaluate the character of solitary pulmonary nodule-comparison of three mathematical prediction models and further stratification of risk factors. PLoS One 2013; 8:e78271. [PMID: 24205175 PMCID: PMC3812137 DOI: 10.1371/journal.pone.0078271] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/10/2013] [Indexed: 01/08/2023] Open
Abstract
Objective To study risk factors that affect the evaluation of malignancy in patients with solitary pulmonary nodules (SPN) and verify different predictive models for malignant probability of SPN. Methods Retrospectively analyzed 107 cases of SPN with definite post-operative histological diagnosis whom underwent surgical procedures in China-Japan Friendship Hospital from November of 2010 to February of 2013. Age, gender, smoking history, malignancy history of patients, imaging features of the nodule including maximum diameter, position, spiculation, lobulation, calcification and serum level of CEA and Cyfra21-1 were assessed as potential risk factors. Univariate analysis model was used to establish statistical correlation between risk factors and post-operative histological diagnosis. Receiver operating characteristic (ROC) curves were drawn using different predictive models for malignant probability of SPN to get areas under the curves (AUC values), sensitivity, specificity, positive predictive values, negative predictive values for each model, respectively. The predictive effectiveness of each model was statistically assessed subsequently. Results In 107 patients, 78 cases were malignant (72.9%), 29 cases were benign (27.1%). Statistical significant difference was found between benign and malignant group in age, maximum diameter, serum level of Cyfra21-1, spiculation, lobulation and calcification of the nodules. The AUC values were 0.786±0.053 (Mayo model), 0.682±0.060 (VA model) and 0.810±0.051 (Peking University People’s Hospital model), respectively. Conclusions Serum level of Cyfra21-1, patient’s age, maximum diameter of the nodule, spiculation, lobulation and calcification of the nodule are independent risk factors associated with the malignant probability of SPN. Peking University People’s Hospital model is of high accuracy and clinical value for patients with SPN. Adding serum index (e.g. Cyfra21-1) into the prediction models as a new risk factor and adjusting the weight of age in the models might improve the accuracy of prediction for SPN.
Collapse
|
30
|
Zhang Z, Mao Y. [Diagnosis and management of solitary pulmonary nodules]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2013; 16:499-508. [PMID: 24034999 PMCID: PMC6000634 DOI: 10.3779/j.issn.1009-3419.2013.09.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
目前,肺癌已跃居成为我国发病率及死亡率最高的恶性肿瘤,总体5年生存率较低;早诊早治是提高肺癌患者生存率及改善预后的关键,而早期肺癌患者常无任何症状和体征,只在影像学上表现为肺孤立性结节病变。提高对孤立性肺结节良恶性的鉴别诊断能力是临床诊治过程中的难点与热点。随着各种诊治技术的发展,孤立性肺结节病变性质的诊断准确率已大大提高。
Collapse
Affiliation(s)
- Zhirong Zhang
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Mediacal College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | | |
Collapse
|
31
|
Menschikowski M, Hagelgans A, Schuler U, Froeschke S, Rosner A, Siegert G. Plasma Levels of Phospholipase A2-IIA in Patients with Different Types of Malignancies: Prognosis and Association with Inflammatory and Coagulation Biomarkers. Pathol Oncol Res 2013; 19:839-46. [DOI: 10.1007/s12253-013-9652-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 05/05/2013] [Indexed: 12/13/2022]
|
32
|
Korotaeva A, Samoilova E, Pavlunina T, Panasenko OM. Halogenated phospholipids regulate secretory phospholipase A2 group IIA activity. Chem Phys Lipids 2013; 167-168:51-6. [PMID: 23438648 DOI: 10.1016/j.chemphyslip.2013.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/14/2013] [Accepted: 02/12/2013] [Indexed: 11/28/2022]
Abstract
Secretory phospholipase A2 group IIA (sPLA2-IIA) is an active participant of inflammation. The enzyme destroys bacterial cell wall and induces production of biologically active lipid mediators. It is involved in various pathological processes and high serum content and activity of sPLA2-IIA are associated with adverse cardiovascular events. Study of sPLA2-IIA regulation is of great physiological and clinical importance and is necessary for better understanding of mechanisms underlying inflammation. Another major participant of inflammatory response is the enzyme myeloperoxidase (MPO) which is secreted by neutrophils in the focus of inflammation and catalyzes formation of HOCl and HOBr. Both halogenated (chloro- and bromohydrins) and oxidized lipids are formed due to interaction between HOCl and HOBr with unsaturated bonds of phospholipid acyl chains. Previously we showed that oxidized phospholipids stimulate sPLA2-IIA activity. In this study we examined the effects of chloro- and bromohydrins of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on sPLA2-IIA activity. In contrast to POPC, chloro- and bromohydrins of POPC (POPC-Cl and POPC-Br, respectively) were not hydrolyzed by sPLA2-IIA. In addition, phospholipids which are sPLA2-IIA substrates, were not cleaved by the enzyme in the presence of POPC-Cl and POPC-Br. Halogenohydrins of POPC prevented the activity of both purified and serum sPLA2-IIA. Blocking effects of POPC-Cl and POPC-Br were abolished by increased concentrations of phospholipid-substrate. These results suggest that halogenated phospholipids formed in MPO-dependent reactions can be considered as a new class of biologically active compounds potentially capable of regulating sPLA2-IIA activity in the areas of inflammation and producing the effects opposite to those of oxidized phospholipids. Control over sPLA2-IIA can be useful in the therapy of diseases involving systemic inflammation.
Collapse
|
33
|
Group IIa secretory phospholipase expression correlates with group IIa secretory phospholipase inhibition-mediated cell death in K-ras mutant lung cancer cells. J Thorac Cardiovasc Surg 2012; 144:1479-85. [PMID: 23026567 DOI: 10.1016/j.jtcvs.2012.08.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVE There are currently no targeted therapies against lung tumors with oncogenic K-ras mutations that are found in 25% to -40% of lung cancers and are characterized by their resistance to epidermal growth factor receptor inhibitors. The isozyme group IIa secretory phospholipase A(2) (sPLA(2)IIa) is a potential biomarker and regulator of lung cancer cell invasion; however, the relationship between K-ras mutations and sPLA(2)IIa has yet to be investigated. We hypothesize that sPLA(2)IIa modulates lung cancer cell growth in K-ras mutant cells and that sPLA(2)IIa expression in human lung tumors is increased in K-ras mutant tumors. METHODS Baseline sPLA(2)IIa expression in K-ras mutant lung cancer cell lines (A549, SW1573, H358, H2009) was assessed. Cells were treated with a specific sPLA(2)IIa inhibitor and evaluated for apoptosis and cell viability. Nuclear factor kappa-b (NF-κB) and extracellular signal-regulated kinase 1/2 activity were detected by Western blot. Human tumor samples were evaluated for sPLA(2)IIa mRNA expression by quantitative reverse-transcription polymerase chain reaction. RESULTS Cytotoxicity of sPLA(2)IIa inhibition correlates with sPLA(2)IIa expression. Apoptosis in response to sPLA(2) inhibition parallels attenuation in NF-κB activity. In addition, sPLA(2)IIa expression in human tumors correlates with squamous cell pathology and increasing stage of K-ras mutant lung tumors. CONCLUSIONS Baseline sPLA(2)IIa expression predicts response to sPLA(2)IIa inhibition in some K-ras mutant lung cancer cells. This finding is independent of p53 mutation status. Furthermore, squamous tumors and advanced-stage K-ras mutant tumors express more sPLA(2)IIa. These data support a role for sPLA(2)IIa as a potential global therapeutic target in the treatment of lung cancer.
Collapse
|