1
|
Nowak N, Sas-Nowosielska H, Szymański J. Nuclear Rac1 controls nuclear architecture and cell migration of glioma cells. Biochim Biophys Acta Gen Subj 2024; 1868:130632. [PMID: 38677529 DOI: 10.1016/j.bbagen.2024.130632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Rac1 (Ras-related C3 botulinum toxin substrate 1) protein has been found in the cell nucleus many years ago, however, its nuclear functions are still poorly characterized but some data suggest its nuclear accumulation in cancers. We investigated nuclear Rac1 in glioma cancer cells nuclei and compared its levels and activity to normal astrocytes, and also characterized the studied cells on various nuclear properties and cell migration patterns. Nuclear Rac1 indeed was found accumulated in glioma cells, but only a small percentage of the protein was in active, GTP-bound state in comparison to healthy control. Altering the nuclear activity of Rac1 influenced chromatin architecture and cell motility in GTP-dependent and independent manner. This suggests that the landscape of Rac1 nuclear interactions might be as complicated and wide as its well-known, non-nuclear signaling.
Collapse
Affiliation(s)
- Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| | - Hanna Sas-Nowosielska
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland; Institute of Epigenetics, Department of Cell Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jędrzej Szymański
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| |
Collapse
|
2
|
Martínez-Sánchez LDC, Ngo PA, Pradhan R, Becker LS, Boehringer D, Soteriou D, Kubankova M, Schweitzer C, Koch T, Thonn V, Erkert L, Stolzer I, Günther C, Becker C, Weigmann B, Klewer M, Daniel C, Amann K, Tenzer S, Atreya R, Bergo M, Brakebusch C, Watson AJM, Guck J, Fabry B, Atreya I, Neurath MF, López-Posadas R. Epithelial RAC1-dependent cytoskeleton dynamics controls cell mechanics, cell shedding and barrier integrity in intestinal inflammation. Gut 2023; 72:275-294. [PMID: 35241625 PMCID: PMC9872254 DOI: 10.1136/gutjnl-2021-325520] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/29/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD. DESIGN Taking advantage of conditional GGTase and RAC1 knockout mice in intestinal epithelial cells (Pggt1b iΔIEC and Rac1 iΔIEC mice), intravital microscopy, immunostaining, mechanobiology, organoid techniques and RNA sequencing, we analysed cell shedding alterations within the intestinal epithelium. Moreover, we examined human gut tissue and intestinal organoids from patients with IBD for cell shedding alterations and RAC1 function. RESULTS Epithelial Pggt1b deletion led to cytoskeleton rearrangement and tight junction redistribution, causing cell overcrowding due to arresting of cell shedding that finally resulted in epithelial leakage and spontaneous mucosal inflammation in the small and to a lesser extent in the large intestine. Both in vivo and in vitro studies (knockout mice, organoids) identified RAC1 as a GGTase target critically involved in prenylation-dependent cytoskeleton dynamics, cell mechanics and epithelial cell shedding. Moreover, inflamed areas of gut tissue from patients with IBD exhibited funnel-like structures, signs of arrested cell shedding and impaired RAC1 function. RAC1 inhibition in human intestinal organoids caused actin alterations compatible with arresting of cell shedding. CONCLUSION Impaired epithelial RAC1 function causes cell overcrowding and epithelial leakage thus inducing chronic intestinal inflammation. Epithelial RAC1 emerges as key regulator of cytoskeletal dynamics, cell mechanics and intestinal cell shedding. Modulation of RAC1 might be exploited for restoration of epithelial integrity in the gut of patients with IBD.
Collapse
Affiliation(s)
- Luz del Carmen Martínez-Sánchez
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Phuong Anh Ngo
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Rashmita Pradhan
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Lukas-Sebastian Becker
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - David Boehringer
- Department of Physics, University of Erlangen Nuremberg, Erlangen, Bayern, Germany
| | - Despina Soteriou
- Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany,Max Planck Institute for the Science of Light, Erlangen, Bayern, Germany
| | - Marketa Kubankova
- Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany,Max Planck Institute for the Science of Light, Erlangen, Bayern, Germany
| | - Christine Schweitzer
- Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany,Max Planck Institute for the Science of Light, Erlangen, Bayern, Germany
| | - Tatyana Koch
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany
| | - Veronika Thonn
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Monika Klewer
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Stefan Tenzer
- University Medical Center Mainz, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Martin Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Cord Brakebusch
- Biotech Research & Innovation Centre, University of Copenhagen, Kobenhavn, Hovedstaden, Denmark
| | | | - Jochen Guck
- Department of Physics, University of Erlangen Nuremberg, Erlangen, Bayern, Germany,Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany,Max Planck Institute for the Science of Light, Erlangen, Bayern, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen Nuremberg, Erlangen, Bayern, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany .,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
3
|
Identification of potent and novel inhibitors against RAC1: a Rho family GTPase. In Silico Pharmacol 2022; 10:13. [PMID: 35928028 PMCID: PMC9343513 DOI: 10.1007/s40203-022-00127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/13/2022] [Indexed: 10/16/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is one of the most common form of cancer worldwide. It has high incidence and mortality rate making it one of the top causes of cancer related deaths. Tremendous efforts have being made towards treatment of HNSCC but still the overall survival rate hasn't improved much. Unregulated activation of Rho GTPase Ras-related C3 botulinum toxin substrate 1 or Rac1 has been reported in various tumor such as HNSCC, breast cancer, pancreatic cancer, etc. Rac1 is significant in activation and regulation of multiple signaling pathways and it's aberrant activation leads to uncontrolled proliferation, invasion and metastasis which contributes to the hallmarks of cancer. Therefore for treating proliferative disorders such as cancer, inhibition of Rac1 could be a viable approach. Rho GTPases were earlier considered "undruggable" due to their picomolar binding affinity for their guanine nucleotides. In addition presence of high micromolar concentrations of GDP (> 30 μm) and GTP (> 300 μm) in the cell, led to unsuccessful attempts in identification of potent or selective nucleotide competitive GTPase inhibitors. Therefore we identified small molecule inhibitors that target the GEF binding site of the Rho GTPase instead of nucleotide binding site by performing high throughput screening, molecular dynamics simulations, free energy calculations and protein-ligand interaction studies. As a result of this study, we identified four potential inhibitors against RAC1. This study provides a significant in-depth understanding of the Rho GTPases and can prove beneficial in the development of potential therapeutics against HNSCC.
Collapse
|
4
|
Zou C, Lyu Y, Jiang J, Cao Y, Wang M, Sang C, Zhang R, Li H, Liew CC, Cheng C, Zhao S. Use of peripheral blood transcriptomic biomarkers to distinguish high-grade cervical squamous intraepithelial lesions from low-grade lesions. Oncol Lett 2020; 20:2280-2290. [PMID: 32765790 PMCID: PMC7403635 DOI: 10.3892/ol.2020.11779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/07/2020] [Indexed: 01/10/2023] Open
Abstract
It is crucial to classify cervical lesions into high-grade squamous intraepithelial lesions (HSILs) and low-grade SILs (LSILs), as LSILs are conservatively treated by observation, based on an expectation of natural regression, whereas HSILs usually require electrosurgical excision. In the present study, peripheral blood gene expression profiles were analyzed to identify transcriptomic biomarkers distinguishing HSILs from LSILs. A total of 102 blood samples were collected from women with cervical SILs (66 HSIL and 36 LSIL) for microarray hybridization. Candidate gene signatures were identified using AdaBoost algorithms, and a predictive model was constructed using logistic regression to differentiate HSILs from LSILs. To correct for possible bias as a result of the limited sample size and to verify the stability of the predictive model, a two-fold cross validation and null set analysis was conducted over 1,000 iterations. The functions of the transcriptomic biomarkers were then analyzed to elucidate the pathogenesis of cervical SIL. A total of 10 transcriptomic genes (STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1 and ARHGAP18) were identified. The predictive model based on the 10-gene panel exhibited well-discriminated power. A cross validation process using known disease status exhibited almost the same performance as that of the predictive model, whereas null-set analysis with randomly reassigned disease status exhibited much lower predictive performance for distinguishing HSILs from LSILs. These biomarkers were involved in the 'Rho GTPase cycle', 'mitochondrial protein import', 'oncogenic MAPK signaling', 'integrin cell surface interaction' and 'signaling by BRAF and RAF fusions'. In conclusion, peripheral blood gene expression analysis is a promising method for distinguishing HSILs from LSILs. The present study proposes 10 candidate genes that could be used in the future as diagnostic biomarkers and potential therapeutic targets for cervical SILs. A simple, non-invasive blood test would be clinically useful in the diagnosis and classification of patients with cervical SILs.
Collapse
Affiliation(s)
- Cunhua Zou
- Gynecology Center, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| | - Yali Lyu
- R&D Center, Shanghai Homeostasis Bio-Technology Inc., Shanghai 201203, P.R. China
| | - Jing Jiang
- Gynecology Center, Qingdao Lianchi Maternity and Infant Hospital, Qingdao, Shandong 266034, P.R. China
| | - Yuan Cao
- Gynecology Center, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| | - Min Wang
- R&D Center, Shanghai Homeostasis Bio-Technology Inc., Shanghai 201203, P.R. China
| | - Changmei Sang
- Gynecology Center, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| | - Ruirui Zhang
- R&D Center, Shanghai Homeostasis Bio-Technology Inc., Shanghai 201203, P.R. China
| | - Haifeng Li
- Gynecology Center, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| | - Choong-Chin Liew
- Golden Health Diagnostics Inc., Yancheng, Jiangsu 224000, P.R. China.,Department of Clinical Pathology and Laboratory Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Changming Cheng
- R&D Center, Shanghai Homeostasis Bio-Technology Inc., Shanghai 201203, P.R. China
| | - Shuping Zhao
- Gynecology Center, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| |
Collapse
|
5
|
Rho GTPases in Gynecologic Cancers: In-Depth Analysis toward the Paradigm Change from Reactive to Predictive, Preventive, and Personalized Medical Approach Benefiting the Patient and Healthcare. Cancers (Basel) 2020; 12:cancers12051292. [PMID: 32443784 PMCID: PMC7281750 DOI: 10.3390/cancers12051292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Rho guanosine triphospatases (GTPases) resemble a conserved family of GTP-binding proteins regulating actin cytoskeleton dynamics and several signaling pathways central for the cell. Rho GTPases create a so-called Ras-superfamily of GTPases subdivided into subgroups comprising at least 20 members. Rho GTPases play a key regulatory role in gene expression, cell cycle control and proliferation, epithelial cell polarity, cell migration, survival, and apoptosis, among others. They also have tissue-related functions including angiogenesis being involved in inflammatory and wound healing processes. Contextually, any abnormality in the Rho GTPase function may result in severe consequences at molecular, cellular, and tissue levels. Rho GTPases also play a key role in tumorigenesis and metastatic disease. Corresponding mechanisms include a number of targets such as kinases and scaffold/adaptor-like proteins initiating GTPases-related signaling cascades. The accumulated evidence demonstrates the oncogenic relevance of Rho GTPases for several solid malignancies including breast, liver, bladder, melanoma, testicular, lung, central nervous system (CNS), head and neck, cervical, and ovarian cancers. Furthermore, Rho GTPases play a crucial role in the development of radio- and chemoresistance e.g. under cisplatin-based cancer treatment. This article provides an in-depth overview on the role of Rho GTPases in gynecological cancers, highlights relevant signaling pathways and pathomechanisms, and sheds light on their involvement in tumor progression, metastatic spread, and radio/chemo resistance. In addition, insights into a spectrum of novel biomarkers and innovative approaches based on the paradigm shift from reactive to predictive, preventive, and personalized medicine are provided.
Collapse
|
6
|
Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K, Tang A. Wnt signaling in cervical cancer? J Cancer 2018; 9:1277-1286. [PMID: 29675109 PMCID: PMC5907676 DOI: 10.7150/jca.22005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer (CC) is the second most common malignant cancer in women. CC is difficult to diagnose, has a high recurrence rate, and is resistant to systemic therapies; as a result, CC patients have a relatively poor prognosis. One potential link to CC is the Wnt signaling pathway and its downstream effectors, which regulate cell differentiation, proliferation, migration, and fate. The aberrant activation of Wnt signaling is associated with various cancers, including CC. Recent studies have shown that activating or inhibiting the intracellular signal transduction in this pathway can regulate cancer cell growth and viability. This review will summarize the experimental evidence supporting the significance of the Wnt signaling pathway in CC, and will also discuss the current clinical role of Wnt signaling in CC diagnosis, therapy, and prognosis.
Collapse
Affiliation(s)
- Min Yang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xianping Li
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yixin Xie
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Tian
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Kan Zhang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Aiguo Tang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
7
|
Cardama GA, Gonzalez N, Maggio J, Menna PL, Gomez DE. Rho GTPases as therapeutic targets in cancer (Review). Int J Oncol 2017; 51:1025-1034. [PMID: 28848995 PMCID: PMC5592879 DOI: 10.3892/ijo.2017.4093] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Rho GTPases are key molecular switches controlling the transduction of external signals to cytoplasmic and nuclear effectors. In the last few years, the development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rho GTPases in cancer. The aim of the present review is to describe the cellular functions regulated by these proteins with focus in deregulated signals present in malignant tumors. Finally, we describe the state of the art in search of different experimental therapeutic strategies with Rho GTPases as molecular targets.
Collapse
Affiliation(s)
- G A Cardama
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - N Gonzalez
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - J Maggio
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - P Lorenzano Menna
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - D E Gomez
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
8
|
Marei H, Malliri A. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases 2017; 8:139-163. [PMID: 27442895 PMCID: PMC5584733 DOI: 10.1080/21541248.2016.1211398] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Pascoal-Xavier MA, Figueiredo ACC, Gomes LI, Peruhype-Magalhães V, Calzavara-Silva CE, Costa MA, Reis IA, Bonjardim CA, Kroon EG, de Oliveira JG, Ferreira PCP. RAP1 GTPase overexpression is associated with cervical intraepithelial neoplasia. PLoS One 2015; 10:e0123531. [PMID: 25856570 PMCID: PMC4391937 DOI: 10.1371/journal.pone.0123531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/19/2015] [Indexed: 01/06/2023] Open
Abstract
RAP1 (RAS proximate 1), a small GTP-binding protein of the RAS superfamily, is a putative oncogene that is highly expressed in several malignant cell lines and types of cancers, including some types of squamous cell carcinoma. However, the participation of RAP1 in cervical carcinogenesis is unknown. We conducted a cross-sectional study of paraffin-embedded cervical biopsies to determine the association of RAP1 with cervical intraepithelial neoplasia (CIN). Standard and quantitative immunohistochemistry assessment of RAP1 expression in fixed tissue was performed on 183 paraffin-embedded cervical biopsies that were classified as normal or non-dysplastic mucosa (NDM) (n = 33); CIN grade 1 (n = 84) and CIN grade 2/3 (n = 66). A gradual increase in RAP1 expression in NDM < CIN 1 < CIN 2/3 (p<0.001) specimens was observed and was in agreement with the histopathologic diagnosis. A progressive increase in the RAP1 expression levels increased the risk of CIN 1 [odds ratio (OR) = 3.50; 95% confidence interval (CI) 1.30-10.64] 3.5 fold and the risk of CIN 2/3 (OR = 19.86, 95% CI 6.40-70.79) nearly 20 fold when compared to NDM. In addition, stereotype ordinal regression analysis showed that this progressive increase in RAP1 expression more strongly impacted CIN 2/3 than CIN 1. Our findings suggest that RAP1 may be a useful biomarker for the diagnosis of CIN.
Collapse
Affiliation(s)
- Marcelo Antonio Pascoal-Xavier
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | | | | | | | | | - Marcelo Azevedo Costa
- Departamento de Engenharia de Produção, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ilka Afonso Reis
- Departamento de Estatística, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Claudio Antônio Bonjardim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | | | - Paulo César Peregrino Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
10
|
Rac1 GTPase-deficient HeLa cells present reduced DNA repair, proliferation, and survival under UV or gamma irradiation. Mol Cell Biochem 2015; 404:281-97. [DOI: 10.1007/s11010-015-2388-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
|
11
|
Kim EG, Shin EY. Nuclear Rac1 regulates the bFGF-induced neurite outgrowth in PC12 cells. BMB Rep 2014; 46:617-22. [PMID: 24195795 PMCID: PMC4133861 DOI: 10.5483/bmbrep.2013.46.12.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/13/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023] Open
Abstract
Rac1 plays a key role in neurite outgrowth via reorganization of the actin cytoskeleton. The molecular mechanisms underlying Rac1-mediated actin dynamics in the cytosol and plasma membrane have been intensively studied, but the nuclear function of Rac1 in neurite outgrowth has not yet been addressed. Using subcellular fractionation and immunocytochemistry, we sought to explore the role of nuclear Rac1 in neurite outgrowth. bFGF, a strong agonist for neurite outgrowth in PC12 cells, stimulated the nuclear accumulation of an active form of Rac1. Rac1-PBR (Q) mutant, in which six basic residues in the polybasic region at the C-terminus were replaced by glutamine, didn’t accumulate in the nucleus. In comparison with control cells, cells expressing this mutant form of Rac1 displayed a marked defect in extending neurites that was concomitant with reduced expression of MAP2 and MEK-1. These results suggest that Rac1 translocation to the nucleus functionally correlates with bFGF-induced neurite outgrowth. [BMB Reports 2013; 46(12): 617-622]
Collapse
Affiliation(s)
| | - Eun-Young Shin
- Department of Biochemistry, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-763, Korea
| |
Collapse
|
12
|
|
13
|
Rac1 as a potential therapeutic target for chemo-radioresistant head and neck squamous cell carcinomas (HNSCC). Br J Cancer 2014; 110:2677-87. [PMID: 24786604 PMCID: PMC4037830 DOI: 10.1038/bjc.2014.221] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/10/2014] [Accepted: 03/27/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND In order to improve therapy for HNSCC patients, novel methods to predict and combat local and/or distant tumour relapses are urgently needed. This study has been dedicated to the hypothesis that Rac1, a Rho GTPase, is implicated in HNSCC insensitivity to chemo-radiotherapy resulting in tumour recurrence development. METHODS Parental and radiation-resistant (IRR) HNSCC cells were used to support this hypothesis. All cells were investigated for their sensitivity to ionising radiation and cisplatin, Rac1 activity, its intracellular expression and subcellular localisation. Additionally, tumour tissues obtained from 60 HNSCC patients showing different therapy response were evaluated for intratumoral Rac1 expression. RESULTS Radiation-resistant IRR cells also revealed resistance to cisplatin accompanied by increased expression, activity and trend towards nuclear translocation of Rac1 protein. Chemical inhibition of Rac1 expression and activity resulted in significant improvement of HNSCC sensitivity to ionising radiation and cisplatin. Preclinical results were confirmed in clinical samples. Although Rac1 was poorly presented in normal mucosa, tumour tissues revealed increased Rac1 expression. The most pronounced Rac1 presence was observed in HNSCC patients with poor early or late responses to chemo-radiotherapy. Tissues taken at recurrence were characterised not only by enhanced Rac1 expression but also increased nuclear Rac1 content. CONCLUSIONS Increased expression, activity and subcellular localisation of Rac1 could be associated with lower early response rate and higher risk of tumour recurrences in HNSCC patients and warrants further validation in larger independent studies. Inhibition of Rac1 activity can be useful in overcoming treatment resistance and could be proposed for HNSCC patients with primary or secondary chemo-radioresistance.
Collapse
|
14
|
|
15
|
Skvortsov S, Debbage P, Cho WCS, Lukas P, Skvortsova I. Putative biomarkers and therapeutic targets associated with radiation resistance. Expert Rev Proteomics 2014; 11:207-14. [PMID: 24564737 DOI: 10.1586/14789450.2014.893194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radiation therapy plays an important role in the management of malignant tumors, however, the problem of radiation resistance resulting in tumor recurrences after treatment is still unsolved. The emergence of novel biomarkers to predict cancer cell insensitivity to ionizing radiation could help to improve therapy results in cancer patients receiving radiation therapy. The proteomic approach could be effectively used to identify proteins associated with cancer radiation resistance. It is generally believed that radiation resistance could be associated with cancer stem cell persistence within the tumor. Therefore, determination of the molecular characteristics of cancer stem cells could provide additional possibilities to discover novel biomarkers to predict radiation resistance in cancer patients. This review addresses proteome-based findings that could be used for further biomarker identification and preclinical and clinical validation.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Innsbruck, Austria
| | | | | | | | | |
Collapse
|
16
|
Romero-Hernández MA, Eguía-Aguilar P, Perézpeña-DiazConti M, Rodríguez-Leviz A, Sadowinski-Pine S, Velasco-Rodríguez LA, Cáceres-Cortés JR, Arenas-Huertero F. Toxic effects induced by curcumin in human astrocytoma cell lines. Toxicol Mech Methods 2013; 23:650-9. [PMID: 23889520 DOI: 10.3109/15376516.2013.826768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was to describe the toxicity induced by curcumin in human astrocytoma cell lines. METHODS The effects induced by curcumin, at 100 µM for 24 h, were evaluated in four astrocytoma cell lines using crystal violet assay and through the evaluation of morphological and ultrastructural changes by electron microscopy. Also, the results of vital staining with acridine orange and propidium iodide for acidic vesicles and apoptotic bodies were analyzed and the expression of the Beclin1 gene was assessed by RT-PCR. RESULTS The cells treated with curcumin at 100 µM induced an inhibitory concentration50 of viability with morphological changes characterized by a progressive increase in large, non-acidic vesicles devoid of cytoplasmic components and organelles, but that conserved the cell nuclei. No DNA breakage was observed. The astrocytoma cells showed no apoptosis, necrosis or autophagy. Expression of BECLIN1 was not induced (p < 0.05) by curcumin in the astrocytoma cells. CONCLUSIONS Curcumin at 100 µm induced a new type of death cell in astrocytoma cell lines.
Collapse
Affiliation(s)
- Mirna A Romero-Hernández
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo , México D.F. , México
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chahdi A, Raufman JP. The Cdc42/Rac nucleotide exchange factor protein β1Pix (Pak-interacting exchange factor) modulates β-catenin transcriptional activity in colon cancer cells: evidence for direct interaction of β1PIX with β-catenin. J Biol Chem 2013; 288:34019-34029. [PMID: 24129564 DOI: 10.1074/jbc.m113.480103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Wnt/β-catenin signaling is highly regulated and critical for intestinal epithelial development and repair; aberrant β-catenin signaling is strongly associated with colon cancer. The small GTPase Rac1 regulates β-catenin nuclear translocation and signaling. Here we tested the hypothesis that β1Pix, a Cdc42/Rac guanine nucleotide exchange factor (GEF), regulates β-catenin-dependent transcriptional activity and cell function. We report the novel observations that β1Pix binds directly to β-catenin, an action requiring both the β1Pix DH and dimerization domains but not β1Pix GEF activity. In human colon cancer cells, activation of β-catenin signaling with LiCl decreased β1Pix/β-catenin association in the cytosol and increased nuclear binding of β-catenin to β1Pix. Nuclear association of β1Pix and β-catenin was independent of Rac1 expression and activation; down- and up-regulating Rac1 expression levels did not alter nuclear β1Pix/β-catenin association. Ectopic β1Pix expression enhanced LiCl-induced β-catenin transcriptional activity. Conversely, siRNA knockdown of β1Pix attenuated both LiCl-induced β-catenin transcriptional activity and colon cancer cell proliferation. Ectopic expression of β1Pix stimulated β-catenin transcriptional activity, whereas β1PixΔ(602-611), which is unable to bind β-catenin, had no effect. Altogether, these findings suggest that β1Pix functions as a transcriptional regulator of β-catenin signaling through direct interaction with β-catenin, an action that may be functionally relevant to colon cancer biology.
Collapse
Affiliation(s)
- Ahmed Chahdi
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595; Veterans Affairs Maryland Health Care System, Baltimore, Maryland 21201-1595.
| |
Collapse
|
18
|
Yang Q, Luo GY, Li Y, Shan HB, Wang HY, Xu GL. Expression of Rac-1 related to tumor depth, lymph node metastasis and patient prognosis in esophageal squamous cell carcinoma. Med Oncol 2013; 30:689. [PMID: 24026656 DOI: 10.1007/s12032-013-0689-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/06/2013] [Indexed: 11/30/2022]
Abstract
Rac-1, which is a member of the Rho guanosine triphosphatase (GTPase) family, has been demonstrated to play an important role in cancer invasion and metastasis. In this study, we investigated the clinical and prognostic significance of Rac-1 in esophageal squamous cell carcinoma (ESCC). The protein and messenger ribonucleic acid (mRNA) levels of Rac-1 in normal esophageal epithelia cells and paired ESCC tissues were examined by Western blot and reverse transcription polymerase chain reaction. The results showed that Rac-1 was upregulated at the protein and mRNA levels in ESCC cancerous specimens compared with normal esophageal tissues. We then examined the correlation between Rac-1 expression and clinicopathological features using immunochemical analysis of 233 surgically resected ESCC. Rac-1 protein was expressed in 228 (97.85%) cancer tissues with cytoplasm staining, and there were significant correlations between Rac-1 expression and tumor location (P = 0.045), tumor stage (P = 0.020), tumor depth (P = 0.023) and lymph node metastasis (P = 0.009). The overall survival and disease-free rates of ESCC patients with high Rac-1 expression were much lower than those with low Rac-1 expression (P < 0.001; P < 0.001, respectively). Multivariate analysis showed that high Rac-1 expression and lymph node metastasis were two independent factors for poor survival (P < 0.001; P < 0.001, respectively). The results in this study indicate, for the first time, that Rac-1 is involved in the invasion and metastatic progression of ESCC and may be a potential marker for evaluating the prognosis of ESCC patients and a therapy target for ESCC.
Collapse
Affiliation(s)
- Qing Yang
- Department of Endoscopy and Laser, Sun Yat-Sen University Cancer Center, 651Dong Feng Road, Guangzhou, 510060, China
| | | | | | | | | | | |
Collapse
|
19
|
DeMei M, XiangXin L, YongPing X, YongXia Y, YunHai Y, Lin Z. Vascular endothelial growth factor C expression is closely correlated with lymph node recurrence and poor prognosis in patients with early stage cervical cancer. J Int Med Res 2013; 41:1541-9. [PMID: 23963849 DOI: 10.1177/0300060513493038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To detect vascular endothelial growth factor (VEGF)-C mRNA expression in surgically resected tissues of 'pathologic N0' (pN0) cervical cancer; to investigate the relevance of VEGF-C mRNA expression to clinicopathological factors, lymph node recurrence and prognosis in early stage cervical cancer. METHODS Patients with pN0 cervical cancer who successfully underwent radical hysterectomy with bilateral adnexectomy and bilateral pelvic lymphadenectomy were enrolled sequentially into this retrospective study. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to detect VEGF-C mRNA. RESULTS Seventy-eight patients entered the study. VEGF-C mRNA was detected in 35 (44.87%) patients and was significantly correlated with tumour differentiation. VEGF-C mRNA expression was significantly associated with lymph node recurrence and poor overall survival 5 years after surgery. Multivariate analysis confirmed that VEGF-C mRNA expression was an independent predictor for lymph node recurrence and unfavourable overall survival. CONCLUSIONS These findings indicate that detection of VEGF-C mRNA has clinical potential as a predictor for identifying patients with pN0 cervical cancer at high risk of lymph node recurrence and poor prognosis.
Collapse
Affiliation(s)
- Ma DeMei
- Department of Obstetrics and Gynaecology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | | | | | | | | | | |
Collapse
|
20
|
Xu AL, Yu GQ, Kong XC, Qiu XH, Li PL. Effect of Rac1 downregulation mediated by shRNA on the biological behaviour of human cervical cancer cells. J Int Med Res 2013; 41:1037-48. [PMID: 23760915 DOI: 10.1177/0300060513479875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The function of Ras-related C3 botulinum toxin substrate1 (Rac1) in the progression of cervical cancer is unclear. This study used RNA interference technology to explore the involvement of Rac1 in the regulation of cervical cancer cells. METHODS A short hairpin (sh) RNA plasmid targeting Rac1 was constructed and transfected into HeLa cells. Rac1 mRNA and protein levels were investigated by reverse transcription-polymerase chain reaction and Western blot, respectively. Cell proliferation and cisplatin chemosensitivity were determined using the methyl thiazolyl tetrazolium assay. The Matrigel™ assay and flow cytometry were used to assess cell invasion and apoptosis, respectively. The concentration of matrix metalloproteinase (MMP)-2 in cell supernatants was detected by enzyme-linked immunosorbent assay. RESULTS Rac1 expression was significantly downregulated at the mRNA and protein levels in HeLa cells transfected with Rac1 shRNA, and the cell proliferation and invasion capability of cells was decreased. Rac1 downregulation was associated with a decrease in MMP-2 secretion, and increased cell chemosensitivity to cisplatin and cisplatin-induced apoptosis. CONCLUSIONS Rac1 may play an important role in cervical cancer progression and could be a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Ai Li Xu
- Department of Obstetrics and Gynaecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | | | | | |
Collapse
|
21
|
Bhinder B, Antczak C, Ramirez CN, Shum D, Liu-Sullivan N, Radu C, Frattini MG, Djaballah H. An arrayed genome-scale lentiviral-enabled short hairpin RNA screen identifies lethal and rescuer gene candidates. Assay Drug Dev Technol 2012. [PMID: 23198867 DOI: 10.1089/adt.2012.475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA interference technology is becoming an integral tool for target discovery and validation.; With perhaps the exception of only few studies published using arrayed short hairpin RNA (shRNA) libraries, most of the reports have been either against pooled siRNA or shRNA, or arrayed siRNA libraries. For this purpose, we have developed a workflow and performed an arrayed genome-scale shRNA lethality screen against the TRC1 library in HeLa cells. The resulting targets would be a valuable resource of candidates toward a better understanding of cellular homeostasis. Using a high-stringency hit nomination method encompassing criteria of at least three active hairpins per gene and filtered for potential off-target effects (OTEs), referred to as the Bhinder-Djaballah analysis method, we identified 1,252 lethal and 6 rescuer gene candidates, knockdown of which resulted in severe cell death or enhanced growth, respectively. Cross referencing individual hairpins with the TRC1 validated clone database, 239 of the 1,252 candidates were deemed independently validated with at least three validated clones. Through our systematic OTE analysis, we have identified 31 microRNAs (miRNAs) in lethal and 2 in rescuer genes; all having a seed heptamer mimic in the corresponding shRNA hairpins and likely cause of the OTE observed in our screen, perhaps unraveling a previously unknown plausible essentiality of these miRNAs in cellular viability. Taken together, we report on a methodology for performing large-scale arrayed shRNA screens, a comprehensive analysis method to nominate high-confidence hits, and a performance assessment of the TRC1 library highlighting the intracellular inefficiencies of shRNA processing in general.
Collapse
Affiliation(s)
- Bhavneet Bhinder
- High-Throughput Screening Core Facility, Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|