1
|
Kim H, Yoo S, Park SG. Young cancer survivors have lower bone mineral density compared with healthy controls: a nationwide population-based study in Korea. Sci Rep 2020; 10:654. [PMID: 31959794 PMCID: PMC6971234 DOI: 10.1038/s41598-020-57503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/02/2020] [Indexed: 11/17/2022] Open
Abstract
Direct effects of cancer cells and various cancer treatments can cause bone loss in cancer survivors. The aim of this study was to assess the risk of bone loss in Korean cancer survivors, and the relationship between body composition and bone mineral density (BMD). We hypothesized that cancer survivors would have lower BMD than healthy people, and increased muscle mass has a protective effect on BMD. We measured BMD and body composition in 259 cancer survivors (99 men and 160 women). Subjects were selected from the Korean National Health and Nutrition Survey conducted from 2008 to 2011. Body composition and BMD were measured by dual-energy X-ray absorptiometry. We examined the linear trend of lumbar BMD according to tertiles of lean mass (LM) and fat mass (FM) by linear regression, adjusting for age, alcohol consumption, smoking, exercise, 25-hydroxyvitamin D, height, protein intake, and menopausal status. Cancer survivors under 50 years of age had lower lumbar BMD compared with healthy controls (0.93 ± 0.04 g/cm2 vs. 1.02 ± 0.01 g/cm2, p = 0.032 in males; 0.95 ± 0.02 g/cm2 vs. 0.98 ± 0.01 g/cm2, p = 0.015 in females). Lumbar BMD significantly increased from the lowest to highest tertiles of LM in male (p for trend < 0.001) and marginally significantly increased in female survivors (p for trend = 0.060). In this study of Korean cancer survivors, young survivors were at higher risk of having low lumbar BMD. Higher LM had beneficial effects on BMD in cancer survivors. To prevent osteoporosis and fractures, efforts to increase lean body mass, including bone, are needed for young cancer survivors.
Collapse
Affiliation(s)
- Hyoeun Kim
- Department of Family Medicine, Inje University Haeundae Paik Hospital, Busan, (48108), Republic of Korea
| | - Sunmi Yoo
- Department of Family Medicine, Inje University Haeundae Paik Hospital, Busan, (48108), Republic of Korea.
| | - Seung Guk Park
- Department of Family Medicine, Inje University Haeundae Paik Hospital, Busan, (48108), Republic of Korea
| |
Collapse
|
2
|
Inglis JE, Lin PJ, Kerns SL, Kleckner IR, Kleckner AS, Castillo DA, Mustian KM, Peppone LJ. Nutritional Interventions for Treating Cancer-Related Fatigue: A Qualitative Review. Nutr Cancer 2019; 71:21-40. [PMID: 30688088 DOI: 10.1080/01635581.2018.1513046] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer-related fatigue (CRF) is a debilitating syndrome that persists for many cancer survivors for years after treatment. Symptoms include early and persistent fatigue, functional decline, depression, and cognitive difficulties. Inflammation, assessed using pro-inflammatory biomarkers, is increased in cancer survivors with fatigue and treatments for fatigue are often aimed at reducing inflammation. Additionally, cancer and its treatment lead to nutritional complications, changes in body composition, and nutritional deficiencies that potentially weaken the cancer survivor and impact CRF. We conducted a qualitative review of clinical trials that assessed nutritional interventions for preventing and treating CRF. Further studies were examined that used nutritional interventions to address inflammation and fatigue, due to the dearth of nutrition research directly related to CRF. Dietary intake prior to, during, and after cancer treatment appears to affect fatigue levels. Increased protein intake may help preserve lean mass and body composition. Dietary patterns that reduce inflammation, such as the Mediterranean diet and other plant-based diets, appear tolerable to cancer survivors and may reduce fatigue. Supplementation with ginseng, ginger, or probiotics may improve cancer survivors' energy levels. Nutritional interventions, alone or in combination with other interventions should be considered as therapy for fatigue in cancer survivors.
Collapse
Affiliation(s)
- Julia E Inglis
- a Department of Surgery , University of Rochester Medical Center (URMC) , Rochester , New York , USA
| | - Po-Ju Lin
- a Department of Surgery , University of Rochester Medical Center (URMC) , Rochester , New York , USA
| | - Sarah L Kerns
- b Department of Radiation Oncology , University of Rochester Medical Center (URMC) , Rochester , New York , USA
| | - Ian R Kleckner
- a Department of Surgery , University of Rochester Medical Center (URMC) , Rochester , New York , USA
| | - Amber S Kleckner
- a Department of Surgery , University of Rochester Medical Center (URMC) , Rochester , New York , USA
| | - Daniel A Castillo
- c Edward G. Miner Library, University of Rochester Medical Center (URMC) , Rochester , New York , USA
| | - Karen M Mustian
- a Department of Surgery , University of Rochester Medical Center (URMC) , Rochester , New York , USA
| | - Luke J Peppone
- a Department of Surgery , University of Rochester Medical Center (URMC) , Rochester , New York , USA
| |
Collapse
|
3
|
Metzger CE, Swift SN, Baek K, De Souza MJ, Bloomfield SA. Fat and Lean Mass Predict Bone Mass During Energy Restriction in Sedentary and Exercising Rodents. Front Physiol 2018; 9:1346. [PMID: 30356821 PMCID: PMC6190840 DOI: 10.3389/fphys.2018.01346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 09/06/2018] [Indexed: 01/25/2023] Open
Abstract
Energy restriction (ER) causes bone loss, but the impact of exercise during ER is less understood. In this study, we examined the impact of metabolic hormones and body composition on both total body bone mineral content (BMC) and local (proximal tibia) volumetric bone mineral density (vBMD) during short- (4 weeks) and long-term (12 weeks) ER with and without exercise in adult female rats. Our first goal was to balance energy between sedentary and exercising groups to determine the impact of exercise during ER. Second, we aimed to determine the strongest predictors of bone outcomes during ER with energy-matched exercising groups. Methods: Female Sprague–Dawley rats were divided into three sedentary groups (ad libitum, –20% ER, and –40% ER) and three exercising groups (ad libitum, –10% ER, and –30% ER). Approximately a 10% increase in energy expenditure was achieved via moderate treadmill running (∼60–100 min 4 days/week) in EX groups. n per group = 25–35. Data were analyzed as a 2 × 3 ANOVA with multiple linear regression to predict bone mass outcomes. Results: At 4 weeks, fat and lean mass and serum insulin-like growth factor-I (IGF-I) predicted total body BMC (R2 = 0.538). Fat mass decreased with ER at all levels, while lean mass was not altered. Serum IGF-I declined in the most severe ER groups (–40 and –30%). At 12 weeks, only fat and lean mass predicted total body BMC (R2 = 0.718). Fat mass declined with ER level regardless of exercise status and lean mass increased due to exercise (+5.6–6.7% vs. energy-matched sedentary groups). At the same time point, BMC declined with ER, but increased with exercise (+7.0–12.5% vs. energy-matched sedentary groups). None of our models predicted vBMD at the proximal tibia at either time point. Conclusion: Both fat and lean mass statistically predicted total body BMC during both short- and long-term ER. Fat and lean mass decreased with ER, while lean mass increased with EX at each energy level. Measures that predicted total body skeletal changes did not predict site-specific changes. These data highlight the importance of maintaining lean mass through exercise during periods of ER.
Collapse
Affiliation(s)
- Corinne E Metzger
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Sibyl N Swift
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Kyunghwa Baek
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Mary Jane De Souza
- Department of Kinesiology, Pennsylvania State University, State College, PA, United States.,Department of Physiology, Pennsylvania State University, State College, PA, United States
| | - Susan A Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Cole CL, Kleckner IR, Jatoi A, Schwarz E, Dunne RF. The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM CLINICAL REPORTS 2018. [DOI: 10.17987/jcsm-cr.v3i2.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progressive skeletal muscle wasting in cancer cachexia involves a process of dysregulated protein synthesis and breakdown. This catabolism may be the result of mal-nutrition, and an upregulation of both pro-inflammatory cytokines and the ubiquitin proteasome pathway (UPP), which can subsequently increase myostatin and activin A release. The skeletal muscle wasting associated with cancer cachexia is clinically significant, it can contribute to treatment toxicity or the premature discontinuation of treatments resulting in increases in morbidity and mortality. Thus, there is a need for further investigation into the pathophysiology of muscle wasting in cancer cachexia to develop effective prophylactic and therapeutic interventions. Several studies have identified a central role for chronic-systemic inflammation in initiating and perpetuating muscle wasting in patients with cancer. Interestingly, while exercise has shown efficacy in improving muscle quality, only recently have investigators begun to assess the impact that exercise has on chronic-systemic inflammation. To put this new information into context with established paradigms, here we review several biological pathways (e.g. dysfunctional inflammatory response, hypothalamus pituitary adrenal axis, and increased myostatin/activin A activity) that may be responsible for the muscle wasting in patients with cancer. Additionally, we discuss the potential impact that exercise has on these pathways in the treatment of cancer cachexia. Exercise is an attractive intervention for muscle wasting in this population, partially because it disrupts chronic-systemic inflammation mediated catabolism. Most importantly, exercise is a potent stimulator of muscle synthesis, and therefore this therapy may reverse muscle damage caused by cancer cachexia.
Collapse
|
5
|
Morishita S, Tsubaki A, Fu JB, Mitobe Y, Onishi H, Tsuji T. Cancer survivors exhibit a different relationship between muscle strength and health-related quality of life/fatigue compared to healthy subjects. Eur J Cancer Care (Engl) 2018; 27:e12856. [PMID: 29767832 DOI: 10.1111/ecc.12856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 01/22/2023]
Abstract
We investigated the difference in relationship between muscle strength and quality of life (QOL)/fatigue in long-term cancer survivors and healthy subjects. Thirty-six cancer survivors and 29 healthy subjects were assessed for body composition and bone status at the calcaneus using the Osteo Sono Assessment Index. Muscle strength was evaluated via handgrip and knee extensor strength. Health-related QOL was assessed using the Medical Outcome Study 36-item Short-Form Health Survey. Fatigue was measured using the brief fatigue inventory. Cancer survivors exhibited lower QOL scores in the physical functioning, physical role function, bodily pain and general health domains (p < .05). Grip and knee extension muscle strength in cancer survivors was positively correlated with the physical function and bodily pain of QOL (p < .05). The usual fatigue subscale score was only significantly higher in cancer survivors than in healthy subjects (p < .05). However, there were no correlations between muscle strength and fatigue in cancer survivors. Our results showed that muscle strength was an important factor for improving QOL in cancer survivors. We believe that the findings of this study will be relevant in the context of planning rehabilitation for cancer survivors.
Collapse
Affiliation(s)
- S Morishita
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - A Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - J B Fu
- Department of Palliative, Rehabilitation and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Y Mitobe
- Department of Nursing, Niigata University of Health and Welfare, Niigata, Japan
| | - H Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - T Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Cole CL, Kleckner IR, Jatoi A, Schwarz EM, Dunne RF. The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM CLINICAL REPORTS 2018; 3:e00065. [PMID: 31134216 PMCID: PMC6534125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Progressive skeletal muscle wasting in cancer cachexia involves a process of dysregulated protein synthesis and breakdown. This catabolism may be the result of mal-nutrition, and an upregulation of both pro-inflammatory cytokines and the ubiquitin proteasome pathway (UPP), which can subsequently increase myostatin and activin A release. The skeletal muscle wasting associated with cancer cachexia is clinically significant, it can contribute to treatment toxicity or the premature discontinuation of treatments resulting in increases in morbidity and mortality. Thus, there is a need for further investigation into the pathophysiology of muscle wasting in cancer cachexia to develop effective prophylactic and therapeutic interventions. Several studies have identified a central role for chronic-systemic inflammation in initiating and perpetuating muscle wasting in patients with cancer. Interestingly, while exercise has shown efficacy in improving muscle quality, only recently have investigators begun to assess the impact that exercise has on chronic-systemic inflammation. To put this new information into context with established paradigms, here we review several biological pathways (e.g. dysfunctional inflammatory response, hypothalamus pituitary adrenal axis, and increased myostatin/activin A activity) that may be responsible for the muscle wasting in patients with cancer. Additionally, we discuss the potential impact that exercise has on these pathways in the treatment of cancer-related muscle wasting. Exercise is an attractive intervention for muscle wasting in this population, partially because it disrupts chronic-systemic inflammation mediated catabolism. Most importantly, exercise is a potent stimulator of muscle synthesis, and therefore this therapy may reverse muscle damage caused by cancer cachexia.
Collapse
Affiliation(s)
- Calvin L. Cole
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, 14642
| | - Ian R. Kleckner
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, New York, 14642
| | - Aminah Jatoi
- Department of Oncology, Mayo Medical School, Rochester, Minnesota, 55905
| | - Edward M. Schwarz
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, 14642
| | - Richard F. Dunne
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, New York, 14642,Division of Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, 14642
| |
Collapse
|
7
|
Ferreira Poloni P, Vespoli HDL, Almeida-Filho BDS, Bueloni-Dias F, Nahas-Neto J, Nahas EAP. Low bone mineral density is associated with breast cancer in postmenopausal women: a case-control study. Climacteric 2017; 20:491-497. [PMID: 28569124 DOI: 10.1080/13697137.2017.1329290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To evaluate risk factors for low bone mineral density (BMD) in postmenopausal breast cancer survivors compared with postmenopausal women without breast cancer (controls). METHOD In this study, 112 breast cancer survivors were compared to 224 women (controls). Inclusion criteria were amenorrhea ≥12 months, age 45-75 years, treated for breast cancer, and metastasis-free for at least 5 years. The control group consisted of women without breast cancer, matched by age and menopause status (in a proportion of 1: 2 as sample calculation). The risk factors for low BMD (osteopenia/osteoporosis) were assessed by interview. BMD was measured by dual-energy X-ray absorptiometry in the lumbar spine (L1-L4) and femoral neck. Logistic regression models (odds ratio, OR) were used to identify factors associated with low BMD. RESULTS The mean (standard deviation) age of breast cancer survivors was 61.3 (9.7) years, with a mean follow-up of 10.2 (3.9) years. These women had a higher incidence of osteopenia (45.1%) and osteoporosis (22.3%) in the femoral neck than controls (39.3% and 9.0%, respectively) (p = 0.0005). Lumbar spine BMD did not differ between groups (p = 0.332). Univariate analysis adjusted for age and time since menopause revealed that chemotherapy (OR 6.90; 95% confidence interval (CI) 5.57-9.77) was associated with a higher risk of low BMD. Contrarily, regular physical exercise (OR 0.24; 95% CI 0.06-0.98) and a body mass index ≥30 kg/m2 (OR 0.09; 95% CI 0.02-0.37) reduced the risk among breast cancer survivors. CONCLUSION Postmenopausal breast cancer survivors had a higher incidence of osteopenia and osteoporosis in the femoral neck than women without breast cancer. A history of chemotherapy was a risk factor for low BMD, whereas regular physical activity and high body mass index reduced the risk among breast cancer survivors.
Collapse
Affiliation(s)
- P Ferreira Poloni
- a Department of Gynecology and Obstetrics , Botucatu Medical School, Sao Paulo State University - UNESP , Sao Paulo , Brazil
| | - H De Luca Vespoli
- a Department of Gynecology and Obstetrics , Botucatu Medical School, Sao Paulo State University - UNESP , Sao Paulo , Brazil
| | - B de Sousa Almeida-Filho
- a Department of Gynecology and Obstetrics , Botucatu Medical School, Sao Paulo State University - UNESP , Sao Paulo , Brazil
| | - F Bueloni-Dias
- a Department of Gynecology and Obstetrics , Botucatu Medical School, Sao Paulo State University - UNESP , Sao Paulo , Brazil
| | - J Nahas-Neto
- a Department of Gynecology and Obstetrics , Botucatu Medical School, Sao Paulo State University - UNESP , Sao Paulo , Brazil
| | - E Aguiar Petri Nahas
- a Department of Gynecology and Obstetrics , Botucatu Medical School, Sao Paulo State University - UNESP , Sao Paulo , Brazil
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. RECENT FINDINGS Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. SUMMARY Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.
Collapse
Affiliation(s)
- Gary R Hunter
- Division of Kinesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|