1
|
Vicente JS, Valdés-Hernández J, Marco-Jiménez F. Transcriptomic Signatures of the Foetal Liver and Late Prenatal Development in Vitrified Rabbit Embryos. Vet Sci 2024; 11:347. [PMID: 39195801 PMCID: PMC11360234 DOI: 10.3390/vetsci11080347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Assisted reproduction technologies (ARTs) are generally considered safe; however, emerging evidence highlights the need to evaluate potential risks in adulthood to improve safety further. ART procedures like rederivation of embryos by vitrification differ from natural conditions, causing significant disparities between in vitro and in vivo embryos, affecting foetal physiology and postnatal life. This study aims to investigate whether hepatic transcriptome and metabolome changes observed postnatally are already present in foetal livers at the end of gestation. This study compared fresh and vitrified rabbit embryos, finding differences between foetuses obtained by the transfer of fresh and vitrified embryos at 24 days of gestation. Rederived embryos had reduced foetal and liver weights and crown-rump length. However, the offspring of vitrified embryos tended to be born with higher weight, showing compensatory growth in the final week of gestation (59.2 vs. 49.8 g). RNA-Seq analysis revealed 43 differentially expressed genes (DEGs) in the foetal liver of vitrified embryos compared to the fresh group. Notably, downregulated genes included BRAT1, CYP4A7, CYP2B4, RPL23, RPL22L1, PPILAL1, A1BG, IFGGC1, LRRC57, DIPP2, UGT2B14, IRGM1, NUTF2, MPST, and PPP1R1B, while upregulated genes included ACOT8, ERICH3, UBXN2A, METTL9, ALDH3A2, DERPC-like, NR5A2-like, AP-1, COG8, INHBE, and PLA2G4C. Overall, a functional annotation of these DEGs indicated an involvement in lipid metabolism and the stress and inflammatory process or immune response. Thus, our results suggest that vitrification and embryo transfer manipulation induce an adaptive response that can be observed in the liver during the last week of gestation.
Collapse
Affiliation(s)
| | | | - Francisco Marco-Jiménez
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain; (J.S.V.); (J.V.-H.)
| |
Collapse
|
2
|
Kong W, Cao X, Lu C. Clinical characteristics of BRAT1-related disease: a systematic literature review. Acta Neurol Belg 2024; 124:1281-1288. [PMID: 38607605 DOI: 10.1007/s13760-024-02507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND BRAT1 (BRCA1-associated ataxia telangiectasia mutated activator 1) is involved in many important biological processes, including DNA damage response and maintenance of mitochondrial homeostasis. Dysfunctional BRAT1 causes variable clinical phenotypes, which hinders BRAT1-related disease from recognition and diagnosis. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement was the guideline for this systematic review. MEDLINE was searched by terms ("BAAT1" and "BRAT1") from inception until June 21, 2022. RESULTS Twenty-eight studies, screened out of 49 records, were included for data extraction. The data from fifty patients with mutated BRAT1 were collected. There are 3 high relevant phenotypes, 4 medium relevant phenotypes and 3 low relevant phenotypes. Eye-related abnormal features were most frequently reported: 27 abnormal features were observed. Thirty-nine kinds of pathogenic nucleotide change in BRAT1 were reported. Top three common mutations of BRAT1 were c.638_639insA (16 cases), c.1395G > A (5 cases) and c.294dupA (4 cases). Homozygous mutations in BRAT1 presented a more severe phenotype than those who are compound heterozygotes. CONCLUSIONS This is the first comprehensive systematic review to present quantitative data about clinical characteristics of BRAT1-related disease, which helps doctors to recognize and diagnose it easier.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Xianying Cao
- Rehabilitation Department, Ju County Maternal and Child Health Hospital, Shandong, 276500, China
| | - Cheng Lu
- Beijing Hong Jian Medical Device Company, Beijing, 100176, China
| |
Collapse
|
3
|
Sood V, Holewinski R, Andresson T, Larson DR, Misteli T. Identification of molecular determinants of gene-specific bursting patterns by high-throughput imaging screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597999. [PMID: 38903099 PMCID: PMC11188098 DOI: 10.1101/2024.06.08.597999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Stochastic transcriptional bursting is a universal property of active genes. While different genes exhibit distinct bursting patterns, the molecular mechanisms for gene-specific stochastic bursting are largely unknown. We have developed and applied a high-throughput-imaging based screening strategy to identify cellular factors and molecular mechanisms that determine the bursting behavior of human genes. Focusing on epigenetic regulators, we find that protein acetylation is a strong acute modulator of burst frequency, burst size and heterogeneity of bursting. Acetylation globally affects the Off-time of genes but has gene-specific effects on the On-time. Yet, these effects are not strongly linked to promoter acetylation, which do not correlate with bursting properties, and forced promoter acetylation has variable effects on bursting. Instead, we demonstrate acetylation of the Integrator complex as a key determinant of gene bursting. Specifically, we find that elevated Integrator acetylation decreases bursting frequency. Taken together our results suggest a prominent role of non-histone proteins in determining gene bursting properties, and they identify histone-independent acetylation of a transcription cofactor as an allosteric modulator of bursting via a far-downstream bursting checkpoint.
Collapse
Affiliation(s)
- Varun Sood
- National Cancer Institute, Bethesda, MD, USA
| | - Ronald Holewinski
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | | | - Tom Misteli
- National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
4
|
Dokaneheifard S, Gomes Dos Santos H, Guiselle Valencia M, Arigela H, Edupuganti RR, Shiekhattar R. Neuronal differentiation requires BRAT1 complex to remove REST from chromatin. Proc Natl Acad Sci U S A 2024; 121:e2318740121. [PMID: 38805275 PMCID: PMC11161795 DOI: 10.1073/pnas.2318740121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/17/2024] [Indexed: 05/30/2024] Open
Abstract
Repressor element-1 silencing transcription factor (REST) is required for the formation of mature neurons. REST dysregulation underlies a key mechanism of neurodegeneration associated with neurological disorders. However, the mechanisms leading to alterations of REST-mediated silencing of key neurogenesis genes are not known. Here, we show that BRCA1 Associated ATM Activator 1 (BRAT1), a gene linked to neurodegenerative diseases, is required for the activation of REST-responsive genes during neuronal differentiation. We find that INTS11 and INTS9 subunits of Integrator complex interact with BRAT1 as a distinct trimeric complex to activate critical neuronal genes during differentiation. BRAT1 depletion results in persistence of REST residence on critical neuronal genes disrupting the differentiation of NT2 cells into astrocytes and neuronal cells. We identified BRAT1 and INTS11 co-occupying the promoter region of these genes and pinpoint a role for BRAT1 in recruiting INTS11 to their promoters. Disease-causing mutations in BRAT1 diminish its association with INTS11/INTS9, linking the manifestation of disease phenotypes with a defect in transcriptional activation of key neuronal genes by BRAT1/INTS11/INTS9 complex. Finally, loss of Brat1 in mouse embryonic stem cells leads to a defect in neuronal differentiation assay. Importantly, while reconstitution with wild-type BRAT1 restores neuronal differentiation, the addition of a BRAT1 mutant is unable to associate with INTS11/INTS9 and fails to rescue the neuronal phenotype. Taken together, our study highlights the importance of BRAT1 association with INTS11 and INTS9 in the development of the nervous system.
Collapse
Affiliation(s)
- Sadat Dokaneheifard
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL33136
| | - Helena Gomes Dos Santos
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL33136
| | - Monica Guiselle Valencia
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL33136
| | - Harikumar Arigela
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL33136
| | - Raghu Ram Edupuganti
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL33136
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL33136
| |
Collapse
|
5
|
Khayachi A, Abuzgaya M, Liu Y, Jiao C, Dejgaard K, Schorova L, Kamesh A, He Q, Cousineau Y, Pietrantonio A, Farhangdoost N, Castonguay CE, Chaumette B, Alda M, Rouleau GA, Milnerwood AJ. Akt and AMPK activators rescue hyperexcitability in neurons from patients with bipolar disorder. EBioMedicine 2024; 104:105161. [PMID: 38772282 PMCID: PMC11134542 DOI: 10.1016/j.ebiom.2024.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a multifactorial psychiatric illness affecting ∼1% of the global adult population. Lithium (Li), is the most effective mood stabilizer for BD but works only for a subset of patients and its mechanism of action remains largely elusive. METHODS In the present study, we used iPSC-derived neurons from patients with BD who are responsive (LR) or not (LNR) to lithium. Combined electrophysiology, calcium imaging, biochemistry, transcriptomics, and phosphoproteomics were employed to provide mechanistic insights into neuronal hyperactivity in BD, investigate Li's mode of action, and identify alternative treatment strategies. FINDINGS We show a selective rescue of the neuronal hyperactivity phenotype by Li in LR neurons, correlated with changes to Na+ conductance. Whole transcriptome sequencing in BD neurons revealed altered gene expression pathways related to glutamate transmission, alterations in cell signalling and ion transport/channel activity. We found altered Akt signalling as a potential therapeutic effect of Li in LR neurons from patients with BD, and that Akt activation mimics Li effect in LR neurons. Furthermore, the increased neural network activity observed in both LR & LNR neurons from patients with BD were reversed by AMP-activated protein kinase (AMPK) activation. INTERPRETATION These results suggest potential for new treatment strategies in BD, such as Akt activators in LR cases, and the use of AMPK activators for LNR patients with BD. FUNDING Supported by funding from ERA PerMed, Bell Brain Canada Mental Research Program and Brain & Behavior Research Foundation.
Collapse
Affiliation(s)
- Anouar Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - Malak Abuzgaya
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Yumin Liu
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Chuan Jiao
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Kurt Dejgaard
- McIntyre Institute, Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Lenka Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - Anusha Kamesh
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Qin He
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Yuting Cousineau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Alessia Pietrantonio
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Nargess Farhangdoost
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Charles-Etienne Castonguay
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France; Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - Austen J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
6
|
Hooshmand SJ, Chohan KL, Raghunathan A, Renaud DL, Ruff MW. BRAT1-Associated Leukodystrophy Exacerbated by Classic Hodgkin Lymphoma-Directed Therapy. Neurologist 2024; 29:170-172. [PMID: 38019165 DOI: 10.1097/nrl.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
INTRODUCTION BRCA1-associated ataxia-telangiectasia-mutated activator-1 (BRAT1) is responsible for cell cycle surveillance and mitochondrial function. The implications of adult-onset BRAT1-variant and the resulting phenotypic neurocognitive and imaging features have not been previously described. CASE REPORT A 66-year-old man with a recent diagnosis of classic Hodgkin lymphoma was referred to neuro-oncology for cognitive and motor decline, and progressive cerebral white matter changes noted on magnetic resonance imaging (MRI). A neurological examination revealed global weakness, broad-based gait, and bilateral extensor plantar responses. Brain MRI demonstrated periventricular, deep, and subcortical white matter T2/FLAIR hyperintensities without contrast enhancement. Cerebral spinal fluid studies were unremarkable. A GeneDX genetic leukodystrophy panel conduction revealed a pathogenic variant (c.294dupA; p.L99TfsX92) resulting in a truncated protein of BRAT1, along with a variant of uncertain significance (c.746A>G;p.E249G). A presumptive diagnosis of late-onset leukoencephalopathy secondary to the BRAT1 variant was made. In an attempt to combat his mitochondrial dysfunction, he was initiated on a mitochondrial cocktail, including B-100 complex and coenzyme Q10. He began lymphoma-directed combination chemotherapy and developed precipitous functional decline after 2 cycles of therapy. Compared with prechemotherapy imaging, repeat positron emission tomography/computed tomography metabolic imaging showed a response after 3 cycles of chemotherapy; however, repeat brain MRI showed worsening diffuse white matter hyperintensities and cerebral atrophy. CONCLUSION Given the variability in phenotypes and clinical onset, leukodystrophies can be a diagnostic challenge. This case demonstrated progressive BRAT1-associated leukodystrophy exacerbated by chemotherapy-induced toxic leukoencephalopathy. Mitochondrial energy deficiency in the context of multiple metabolic insults was likely underlying the progressive neurological decline observed in this case of genetic leukodystrophy.
Collapse
Affiliation(s)
| | | | | | - Deborah L Renaud
- Department of Neurology
- Department of Pediatrics, Mayo Clinic College of Medicine and Science, Rochester, MN
| | | |
Collapse
|
7
|
Du W, Tu S, Zhang W, Zhang Y, Liu W, Xiong K, Zhou F, Li N, Zhang R, Yu J, Li M, Xiang W, Qian K, Wang G, Xiao Y, Wang X, Ju L. UPP1 enhances bladder cancer progression and gemcitabine resistance through AKT. Int J Biol Sci 2024; 20:1389-1409. [PMID: 38385072 PMCID: PMC10878145 DOI: 10.7150/ijbs.83774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
UPP1, a crucial pyrimidine metabolism-related enzyme, catalyzes the reversible phosphorylation of uridine to uracil and ribose-1-phosphate. However, the effects of UPP1 in bladder cancer (BLCA) have not been elucidated. AKT, which is activated mainly through dual phosphorylation (Thr308 and Ser473), promotes tumorigenesis by phosphorylating downstream substrates. This study demonstrated that UPP1 promotes BLCA cell proliferation, migration, invasion, and gemcitabine resistance by activating the AKT signaling pathway in vitro and in vivo. Additionally, UPP1 promoted AKT activation by facilitating the binding of AKT to PDK1 and PDK2 and the recruitment of phosphatidylinositol 3,4,5-triphosphate to AKT. Moreover, the beneficial effects of UPP1 on BLCA tumorigenesis were mitigated upon UPP1 mutation with Arg94 or MK2206 treatment (AKT-specific inhibitor). AKT overexpression or SC79 (AKT-specific activator) treatment restored tumor malignancy and drug resistance. Thus, this study revealed that UPP1 is a crucial oncogene and a potential therapeutic target for BLCA and that UPP1 activates the AKT signaling pathway and enhances tumorigenesis and drug resistance to gemcitabine.
Collapse
Affiliation(s)
- Wenzhi Du
- Hubei Key Laboratory of Urological Diseases, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
| | - Sheng Tu
- Hubei Key Laboratory of Urological Diseases, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenxiu Zhang
- Department of Pediatrics, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Wei Liu
- Department of Urology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Kangping Xiong
- Hubei Key Laboratory of Urological Diseases, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Na Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-sen University, Guangzhou, China
| | - Renjie Zhang
- Hubei Key Laboratory of Urological Diseases, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingtian Yu
- Hubei Key Laboratory of Urological Diseases, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Xiang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Hubei Key Laboratory of Urological Diseases, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Frontier Science Center of Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lingao Ju
- Hubei Key Laboratory of Urological Diseases, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Engel C, Valence S, Delplancq G, Maroofian R, Accogli A, Agolini E, Alkuraya FS, Baglioni V, Bagnasco I, Becmeur-Lefebvre M, Bertini E, Borggraefe I, Brischoux-Boucher E, Bruel AL, Brusco A, Bubshait DK, Cabrol C, Cilio MR, Cornet MC, Coubes C, Danhaive O, Delague V, Denommé-Pichon AS, Di Giacomo MC, Doco-Fenzy M, Engels H, Cremer K, Gérard M, Gleeson JG, Heron D, Goffeney J, Guimier A, Harms FL, Houlden H, Iacomino M, Kaiyrzhanov R, Kamien B, Karimiani EG, Kraus D, Kuentz P, Kutsche K, Lederer D, Massingham L, Mignot C, Morris-Rosendahl D, Nagarajan L, Odent S, Ormières C, Partlow JN, Pasquier L, Penney L, Philippe C, Piccolo G, Poulton C, Putoux A, Rio M, Rougeot C, Salpietro V, Scheffer I, Schneider A, Srivastava S, Straussberg R, Striano P, Valente EM, Venot P, Villard L, Vitobello A, Wagner J, Wagner M, Zaki MS, Zara F, Lesca G, Yassaee VR, Miryounesi M, Hashemi-Gorji F, Beiraghi M, Ashrafzadeh F, Galehdari H, Walsh C, Novelli A, Tacke M, Sadykova D, Maidyrov Y, Koneev K, Shashkin C, Capra V, Zamani M, Van Maldergem L, Burglen L, Piard J. BRAT1-related disorders: phenotypic spectrum and phenotype-genotype correlations from 97 patients. Eur J Hum Genet 2023; 31:1023-1031. [PMID: 37344571 PMCID: PMC10474045 DOI: 10.1038/s41431-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17).
Collapse
Affiliation(s)
- Camille Engel
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France.
| | - Stéphanie Valence
- Service de Neurologie Pédiatrique, Hôpital Armand Trousseau, APHP Sorbonne Université, Paris, France
| | - Geoffroy Delplancq
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Reza Maroofian
- Department of Neuromuscular Diseases UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Valentina Baglioni
- Department of Human Neurosciences, Institute of Child and Adolescent Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Irene Bagnasco
- Division of Neuropsychiatry, Epilepsy Center for Children, Martini Hospital, 10141, Turin, Italy
| | | | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ingo Borggraefe
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University of Munich, 80337, Munich, Germany
| | - Elise Brischoux-Boucher
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Ange-Line Bruel
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
| | - Dalal K Bubshait
- Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Christelle Cabrol
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Maria Roberta Cilio
- Department of Pediatrics, Division of Pediatric Neurology Saint-Luc University Hospital, and Institute of Neuroscience (IoNS), Catholic University of Louvain, Brussels, Belgium
| | - Marie-Coralie Cornet
- Department of Pediatrics, Division of Neonatology, University of California San Francisco, San Francisco, CA, USA
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Olivier Danhaive
- Division of Neonatology, Saint-Luc university Hospital, and Institut of Clinical and Experimental Research (IREC), Bruxelles, Belgium
| | - Valérie Delague
- Aix Marseille Univ, INSERM, Marseille Medical Genetics Center, MMG, Marseille, France
| | - Anne-Sophie Denommé-Pichon
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Marilena Carmela Di Giacomo
- Medical Genetics Service and Laboratory of Cytogenetics, SIC Anatomia Patologica, "San Carlo" Hospital, 85100, Potenza, Italy
| | - Martine Doco-Fenzy
- CHU Reims, Service de Génétique, Reims, France
- CHU de Nantes, service de génétique médicale, Nantes, France
- L'institut du thorax, INSERM, UNIV Nantes, Nantes, France
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marion Gérard
- Clinical Genetics, Côte de Nacre University Hospital Center, Caen, France
| | - Joseph G Gleeson
- University of California San Diego, Department of Neurosciences, Rady Children's Institute for Genomic Medicine, San Diego, CA, 92037, USA
| | - Delphine Heron
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Joanna Goffeney
- Service de neuropédiatrie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Anne Guimier
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker Enfants Malades, Institut Imagine et Université Paris-Cité, Paris, France
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genova, Italy
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Benjamin Kamien
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Ehsan Ghayoor Karimiani
- Department of Molecular Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Dror Kraus
- Department of Neurology, Schneider Children's Medical Center of Israel, Petah Tiqva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Paul Kuentz
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Damien Lederer
- Institute for Pathology and Genetics, 6040, Gosselies, Belgium
| | - Lauren Massingham
- Division of Medical Genetics, Department of Pediatrics, Hasbro Children's Hospital, Providence, RI, USA
| | - Cyril Mignot
- APHP, Sorbonne Université, Département de Génétique, Paris, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, GH Pitié-Salpêtrière/Hôpital Armand Trousseau, Paris, France
| | - Déborah Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- NHLI, Imperial College London, London, UK
| | - Lakshmi Nagarajan
- Department of Neurology, Perth Children's Hospital, Nedlands, WA, Australia
- University of Western Australia, Nedlands, WA, Australia
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Référence "Déficiences Intellectuelles de causes rares" (CRDI), Centre Référence Anomalies du développement (CLAD-Ouest), CHU Rennes, Univ Rennes, Rennes, France
| | - Clothilde Ormières
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker Enfants Malades, Institut Imagine et Université Paris-Cité, Paris, France
| | - Jennifer Neil Partlow
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre Référence "Déficiences Intellectuelles de causes rares" (CRDI), Centre Référence Anomalies du développement (CLAD-Ouest), CHU Rennes, Univ Rennes, Rennes, France
| | - Lynette Penney
- Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Christophe Philippe
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | - Cathryn Poulton
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Audrey Putoux
- Hospices Civils de Lyon, Service de Génétique, Bron, France
- Équipe GENDEV, Centre de Recherche en Neurosciences de Lyon, INSERM U1028 CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Rio
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker Enfants Malades, Institut Imagine et Université Paris-Cité, Paris, France
| | | | - Vincenzo Salpietro
- Department of Neuromuscular Diseases UCL Queen Square Institute of Neurology, University College London, London, UK
- IRCCS Giannina Gaslini Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Ingrid Scheffer
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
- Royal Children's Hospital, Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Amy Schneider
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | | | - Rachel Straussberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Pasquale Striano
- IRCCS Giannina Gaslini Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Perrine Venot
- Neonatal Intensive Care Unit, Institut Alix de Champagne, Reims, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, Marseille Medical Genetics Center, MMG, Marseille, France
- Département de Génétique Médicale, AP-HM, Hôpital d'Enfants de La Timone, Marseille, France
| | - Antonio Vitobello
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Johanna Wagner
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University of Munich, 80337, Munich, Germany
| | - Matias Wagner
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University of Munich, 80337, Munich, Germany
- Institute for Neurogenomics, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Federizo Zara
- IRCCS Giannina Gaslini Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Vahid Reza Yassaee
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Beiraghi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Christopher Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Moritz Tacke
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University of Munich, 80337, Munich, Germany
| | | | - Yerdan Maidyrov
- S. D. Asfendiyarov Kazakh National Medical University Almaty, Almaty, Kazakhstan
| | - Kairgali Koneev
- Department of Neurology and Neurosurgery, Asfendiyarov Kazakh National Medical University, Almaty, 050000, Kazakhstan
| | - Chingiz Shashkin
- Department of Neurology, The International Institute of Postraduate Education, Almaty, Kazakhstan
| | - Valeria Capra
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genova, Italy
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, Paris, France
| | - Juliette Piard
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
9
|
Dokaneheifard S, Gomes Dos Santos H, Valencia MG, Arigela H, Shiekhattar R. BRAT1 associates with INTS11/INTS9 heterodimer to regulate key neurodevelopmental genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552743. [PMID: 37609215 PMCID: PMC10441392 DOI: 10.1101/2023.08.10.552743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Integrator is a multi-subunits protein complex involved in regulation of gene expression. Several Integrator subunits have been found to be mutated in human neurodevelopmental disorders, suggesting a key role for the complex in the development of nervous system. BRAT1 is similarly linked with neurodegenerative diseases and neurodevelopmental disorders such as rigidity and multifocal-seizure syndrome. Here, we show that INTS11 and INTS9 subunits of Integrator complex interact with BRAT1 and form a trimeric complex in human HEK293T cells as well as in pluripotent human embryonal carcinoma cell line (NT2). We find that BRAT1 depletion disrupts the differentiation of NT2 cells into astrocytes and neural cells. Loss of BRAT1 results in inability to activate many neuronal genes that are targets of REST, a neuronal silencer. We identified BRAT1 and INTS11 co-occupying the promoter region of these genes and pinpoint a role for BRAT1 in recruiting INTS11 to their promoters. Disease-causing mutations in BRAT1 diminish its association with INTS11/INTS9, linking the manifestation of disease phenotypes with a defect in transcriptional activation of key neuronal genes by BRAT1/INTS11/INTS9 complex. Highlights Integrator subunits INTS9 and INTS11 tightly interact with BRAT1 Depletion of BRAT1 causes a dramatic delay in human neural differentiation BRAT1 and INTS11 module targets the promoters of neural marker genes and co-regulates their expression. The recruitment of INTS11 to these sites is BRAT1-dependent. Pathogenic E522K mutation in BRAT1 disrupts its interaction with INTS11/INTS9 heterodimer.
Collapse
|
10
|
Santana ML, Bignardi AB, Pereira RJ, Oliveira Junior GA, Freitas AP, Carvalheiro R, Eler JP, Ferraz JBS, Cyrillo JNSG, Mercadante MEZ. Genotype by Prenatal Environment Interaction for Postnatal Growth of Nelore Beef Cattle Raised under Tropical Grazing Conditions. Animals (Basel) 2023; 13:2321. [PMID: 37508098 PMCID: PMC10376603 DOI: 10.3390/ani13142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The prenatal environment is recognized as crucial for the postnatal performance in cattle. In tropical regions, pregnant beef cows commonly experience nutritional restriction during the second half of the gestation period. Thus, the present study was designed to analyze the genotype by prenatal environment interaction (G × Epn) and to identify genomic regions associated with the level and response in growth and reproduction-related traits of beef cattle to changes in the prenatal environment. A reaction norm model was applied to data from two Nelore herds using the solutions of contemporary groups for birth weight as a descriptor variable of the gestational environment quality. A better gestational environment favored weights until weaning, scrotal circumference at yearling, and days to first calving of the offspring. The G × Epn was strong enough to result in heterogeneity of variance components and genetic parameters in addition to reranking of estimated breeding values and SNPs effects. Several genomic regions associated with the level of performance and specific responses of the animals to variations in the gestational environment were revealed, which harbor QTLs and can be exploited for selection purposes. Therefore, genetic evaluation models considering G × Epn and special management and nutrition care for pregnant cows are recommended.
Collapse
Affiliation(s)
- Mário L Santana
- Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis (UFR), Rondonópolis 78735-901, Brazil
| | - Annaiza B Bignardi
- Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis (UFR), Rondonópolis 78735-901, Brazil
| | - Rodrigo J Pereira
- Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis (UFR), Rondonópolis 78735-901, Brazil
| | - Gerson A Oliveira Junior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Anielly P Freitas
- Centro de Pesquisa em Bovinos de Corte, Instituto de Zootecnia (IZ), Sertãozinho 14160-900, Brazil
| | - Roberto Carvalheiro
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal 14884-900, Brazil
| | - Joanir P Eler
- Grupo de Melhoramento Animal e Biotecnologia (GMAB), Departamento de Medicina Veterinária, FZEA, Universidade de São Paulo (USP), Pirassununga 13635-900, Brazil
| | - José B S Ferraz
- Grupo de Melhoramento Animal e Biotecnologia (GMAB), Departamento de Medicina Veterinária, FZEA, Universidade de São Paulo (USP), Pirassununga 13635-900, Brazil
| | - Joslaine N S G Cyrillo
- Centro de Pesquisa em Bovinos de Corte, Instituto de Zootecnia (IZ), Sertãozinho 14160-900, Brazil
| | - Maria E Z Mercadante
- Centro de Pesquisa em Bovinos de Corte, Instituto de Zootecnia (IZ), Sertãozinho 14160-900, Brazil
| |
Collapse
|
11
|
Zhang J, Wu S, Wen Y, Lai D, Kuang S, Zhang R, Xu X, Jin F, Xu H, Yu XQ, Shao X. Eurycomanone (EN) Activates Transcription Factor FoxO by Inhibiting the Insulin Signaling Pathway to Suppress the Development of Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37384556 DOI: 10.1021/acs.jafc.3c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The insulin-like signaling (IIS) pathway is essential for insect growth and development. In this study, we showed that eurycomanone (EN) is an active compound with growth inhibitory activity against Spodoptera frugiperda larvae. Experiments in cells and RNA-seq analysis in the midgut showed that EN targeted the IIS pathway in S. frugiperda to activate the transcription factor SfFoxO (S. frugiperda forkhead boxO) to regulate mRNA levels associated with nutrient catabolism. Additionally, mass spectrometry imaging revealed that EN was distributed in the larval gut and enriched in the inner membrane of the gut. Immunofluorescence, western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results showed that EN induced program cell death (PCD) in the larvae midgut. Thus, EN targeted the insulin receptor to inhibit the IIS signaling pathway, exerting inhibitory activity on the growth and development of S. frugiperda larvae. Our results suggest that EN has great potential as a botanical pesticide, and the IIS signaling pathway may be an effective target for botanical pesticides.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Siyu Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Yingjie Wen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Duo Lai
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Shizi Kuang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Ruonan Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xuehua Shao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| |
Collapse
|
12
|
Buss CE, Afonso J, de Oliveira PSN, Petrini J, Tizioto PC, Cesar ASM, Gustani-Buss EC, Cardoso TF, Rovadoski GA, da Silva Diniz WJ, de Lima AO, Rocha MIP, Andrade BGN, Wolf JB, Coutinho LL, Mourão GB, de Almeida Regitano LC. Bivariate GWAS reveals pleiotropic regions among feed efficiency and beef quality-related traits in Nelore cattle. Mamm Genome 2023; 34:90-103. [PMID: 36463529 DOI: 10.1007/s00335-022-09969-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022]
Abstract
Feed-efficient cattle selection is among the most leading solutions to reduce cost for beef cattle production. However, technical difficulties in measuring feed efficiency traits had limited the application in livestock. Here, we performed a Bivariate Genome-Wide Association Study (Bi-GWAS) and presented candidate biological mechanisms underlying the association between feed efficiency and meat quality traits in a half-sibling design with 353 Nelore steers derived from 34 unrelated sires. A total of 13 Quantitative Trait Loci (QTL) were found explaining part of the phenotypic variations. An important transcription factor of adipogenesis in cattle, the TAL1 (rs133408775) gene located on BTA3 was associated with intramuscular fat and average daily gain (IMF-ADG), and a region located on BTA20, close to CD180 and MAST4 genes, both related to fat accumulation. We observed a low positive genetic correlation between IMF-ADG (r = 0.30 ± 0.0686), indicating that it may respond to selection in the same direction. Our findings contributed to clarifying the pleiotropic modulation of the complex traits, indicating new QTLs for bovine genetic improvement.
Collapse
Affiliation(s)
- Carlos Eduardo Buss
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Mindflow Genomics, Leuven, Flanders, Belgium
| | - Juliana Afonso
- Embrapa Southeast Cattle, Fazenda Canchim, Rodovia Washington Luiz, Km 234, S/N, São Carlos, São Paulo, Brazil
| | - Priscila S N de Oliveira
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Juliana Petrini
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | | | - Aline S M Cesar
- Department of Agroindustry, Food and Nutrition, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | - Emanuele Cristina Gustani-Buss
- Mindflow Genomics, Leuven, Flanders, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000, Leuven, Belgium
| | - Tainã Figueiredo Cardoso
- Embrapa Southeast Cattle, Fazenda Canchim, Rodovia Washington Luiz, Km 234, S/N, São Carlos, São Paulo, Brazil
| | - Gregori A Rovadoski
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | | | - Andressa Oliveira de Lima
- Division of Medical Genetics, Department of Genomics Science, University of Washington, Seattle, WA, USA
| | | | - Bruno Gabriel Nascimento Andrade
- Embrapa Southeast Cattle, Fazenda Canchim, Rodovia Washington Luiz, Km 234, S/N, São Carlos, São Paulo, Brazil
- Department of Computer Science, Munster Technological University/MTU, Cork, Ireland
| | - Jason B Wolf
- Department of Biology & Biochemistry, Milner Centre for Evolution Bath, University of Bath, Bath, BA2 7AY, UK
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | - Gerson Barreto Mourão
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
13
|
Touhami R, Foddha H, Alix E, Jalloul A, Mougou-Zerelli S, Saad A, Sanlaville D, Haj Khelil A. Case report: 7p22.3 deletion and 8q24.3 duplication in a patient with epilepsy and psychomotor delay-Does both possibly act to modulate a candidate gene region for the patient's phenotype? Front Genet 2023; 13:1061539. [PMID: 36778913 PMCID: PMC9909830 DOI: 10.3389/fgene.2022.1061539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Psychomotor delay, epilepsy and dysmorphic features are clinical signs which are described in multiple syndromes due to chromosomal imbalances or mutations involving key genes implicated in the stages of Early Embryonic Development. In this context, we report a 10 years old Tunisian patient with these three signs. Our objective is to determine the cause of developmental, behavioral and facial abnormalities in this patient. Methods: We used banding cytogenetics (karyotype) and Array Comparative Genomic Hybridization (Array CGH) to this purpose. Results: The karyotype was in favor of a derivative of chromosome 7 in the patient and Array CGH analysis revealed a loss of genetic material in 7p22.3-p22.1 (4,56 Mb) with a gain at 8q24.23-q24 (9.20 Mb) resulting from maternal 7/8 reciprocal translocation. An in silico analysis of the unbalanced region was carried out and showed that the 7p22.3-p22.1 deletion contains eight genes. Among them, BRAT1 gene, previously described in several neurodevelopmental diseases, may be a candidate gene which absence could be correlated to the patient's phenotype. However, the 8q24.23-q24 duplication could be involved in the phenotype of this patient. Conclusion: In this study, we report for the first time a 7p deletion/8q duplication in a patient with psychomoteur delay, epilepsy and facial dysmorphism. Our study showed that Array CGH still useful for delivering a conclusive genetic diagnosis for patients having neurodevelopmental abnormalities in the era of next-generation sequencing.
Collapse
Affiliation(s)
- Rahma Touhami
- Laboratory of human genome and multifactorial diseases, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia,Department of Cellular and Molecular Biology, Superior Institute of Biotechnology, University of Monastir, Monastir, Tunisia,Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Hajer Foddha
- Laboratory of human genome and multifactorial diseases, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Eudeline Alix
- Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Afef Jalloul
- Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Soumaya Mougou-Zerelli
- Laboratory of Cytogenetics, molecular genetics, and human reproduction biology, CHU Farhat Hached, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Cytogenetics, molecular genetics, and human reproduction biology, CHU Farhat Hached, Sousse, Tunisia
| | - Damien Sanlaville
- Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Amel Haj Khelil
- Laboratory of human genome and multifactorial diseases, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia,Department of Cellular and Molecular Biology, Superior Institute of Biotechnology, University of Monastir, Monastir, Tunisia,*Correspondence: Amel Haj Khelil,
| |
Collapse
|
14
|
Yeom GE, Jung YH, Kim SY, Choi SA, Kim H, Choi CW. First Successful Application of Preimplantation Genetic Diagnosis for Lethal Neonatal Rigidity and Multifocal Seizure Syndrome in Korea: A Case Report. NEONATAL MEDICINE 2022. [DOI: 10.5385/nm.2022.29.4.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Lethal neonatal rigidity and multifocal seizure syndrome (RMFSL) is a severe autosomal recessive epileptic encephalopathy characterized by rigidity, intractable multifocal seizures, microcephaly, apnea, and bradycardia immediately after birth. RMFSL is related to a mutation in breast cancer 1-associated ataxia telangiectasia mutated activation-1 protein (BRAT1). We report a case of a female infant born to non-consanguineous Korean parents who developed hypertonia, dysmorphic features, progressive encephalopathy with refractory seizures at birth, and worsening intermittent apnea, leading to intubation and death at 137 days of age. The initial repeated electroencephalographic findings were normal; however, a pattern of focal seizures emerged at 35 days of life. Rapid trio whole-exome sequencing revealed heterozygous mutations c.1313_1314delAG p.(Gln438Argfs*51) and c.1276C>T p. (Gln426*) in BRAT1. After genetic counseling for pregnancy planning, a preimplantation genetic diagnosis for targeted BRAT1 mutations was successfully performed, and a healthy baby was born. To our knowledge, this is the first reported case of a Korean patient with compound heterozygous mutations in BRAT1. An early and accurate genetic diagnosis can help provide timely treatment to patients and indicate the need for reproductive counseling for parents for family planning.
Collapse
|
15
|
Hu L, Liu J, Shimada H, Ito M, Sugimoto K, Hiwasa T, Zhou Q, Li J, Shen S, Wang H. Serum Anti-BRAT1 is a Common Molecular Biomarker for Gastrointestinal Cancers and Atherosclerosis. Front Oncol 2022; 12:870086. [PMID: 35656505 PMCID: PMC9152111 DOI: 10.3389/fonc.2022.870086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/05/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis (AS) and cancers are major global causes of mortality and morbidity. They also share common modifiable pathogenesis risk factors. As the same strategies used to predict AS could also detect certain cancers, we sought novel serum antibody biomarkers of cancers in atherosclerotic sera sampled by liquid biopsy. Using serological antigen identification by cDNA expression cloning (SEREX) and western blot, we screened and detected the antigens BRCA1-Associated ATM Activator 1 (BRAT1) and WD Repeat Domain 1 (WDR1) in the sera of patients with transient ischemic attacks (TIA). Amplified luminescence proximity homogeneous assay-linked immunosorbent assay (AlphaLISA) established the upregulation of serum BRAT1 antibody (BRAT1-Abs) and WDR1 antibody (WDR1-Abs) in patients with AS-related diseases compared with healthy subjects. ROC and Spearman’s correlation analyses showed that BRAT1-Abs and WDR1-Abs could detect AS-related diseases. Thus, serum BRAT1-Abs and WDR1-Abs are potential AS biomarkers. We used online databases and AlphaLISA detection to compare relative antigen and serum antibody expression and found high BRAT1 and BRAT1-Abs expression in patients with GI cancers. Significant increases (> 0.6) in the AUC for BRAT1-Ab vs. esophageal squamous cell carcinoma (ESCC), gastric cancer, and colorectal cancer suggested that BRAT1-Ab exhibited better predictive potential for GI cancers than WDR1-Ab. There was no significant difference in overall survival (OS) between BRAT1-Ab groups (P = 0.12). Nevertheless, a log-rank test disclosed that the highest serum BRAT1-Ab levels were associated with poor ESCC prognosis at 5–60 weeks post-surgery. We validated the foregoing conclusions by comparing serum BRAT1-Ab and WDR1-Ab levels based on the clinicopathological characteristics of the patients with ESCC. Multiple statistical approaches established a correlation between serum BRAT1-Ab levels and platelet counts. BRAT1-Ab upregulation may enable early detection of AS and GI cancers and facilitate the delay of disease progression. Thus, BRAT1-Ab is a potential antibody biomarker for the diagnosis of AS and GI cancers and strongly supports the routine clinical application of liquid biopsy in chronic disease detection and diagnosis.
Collapse
Affiliation(s)
- Liubing Hu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiyue Liu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hideaki Shimada
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Ito
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kazuo Sugimoto
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Qinghua Zhou
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jianshuang Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Si Shen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hao Wang
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
16
|
Qi Y, Ji X, Ding H, Liu L, Zhang Y, Yin A. Novel Biallelic Variant in the BRAT1 Gene Caused Nonprogressive Cerebellar Ataxia Syndrome. Front Genet 2022; 13:821587. [PMID: 35360849 PMCID: PMC8960271 DOI: 10.3389/fgene.2022.821587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 01/13/2023] Open
Abstract
Recessive mutations in BRAT1 cause lethal neonatal rigidity and multifocal seizure syndrome (RMFSL), a phenotype characterized by neonatal microcephaly, hypertonia, and refractory epilepsy with premature death. Recently, attenuated disease variants have been described, suggesting that a wider clinical spectrum of BRAT1-associated neurodegeneration exists than was previously thought. Here, we reported a 10-year-old girl with severe intellectual disability, rigidity, ataxia or dyspraxia, and cerebellar atrophy on brain MRI; two BRAT1 variants in the trans configuration [c.1014A > C (p.Pro338 = ); c.706delC (p.Leu236Cysfs*5)] were detected using whole-exome sequencing. RNA-seq confirmed significantly decreased BRAT1 transcript levels in the presence of the variant; further, it revealed an intron retention between exon 7 and exon 8 caused by the synonymous base substitute. Subsequent prenatal diagnosis for these two variants guided the parents to reproduce. We expand the phenotypic spectrum of BRAT1-associated disorders by first reporting the pathogenic synonymous variant of the BRAT1 gene, resulting in clinical severity that is mild compared to the severe phenotype seen in RMFSL. Making an accurate diagnosis and prognostic evaluation of BRAT1-associated neurodegeneration is important for reproductive consultation and disease management.
Collapse
Affiliation(s)
- Yiming Qi
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, China,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xueqi Ji
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, China,Clinical Medicine College, Guangzhou Medical University, Guangzhou, China
| | - Hongke Ding
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, China,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Liu
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, China,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yan Zhang
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, China,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Aihua Yin
- Prenatal Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, China,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China,Clinical Medicine College, Guangzhou Medical University, Guangzhou, China,*Correspondence: Aihua Yin,
| |
Collapse
|
17
|
Novel variant in BRAT1 with the lethal neonatal rigidity and multifocal seizure syndrome. Pediatr Res 2022; 91:565-571. [PMID: 33790413 DOI: 10.1038/s41390-021-01468-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/27/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Lethal neonatal rigidity and multifocal seizure syndrome (RMFSL) is caused by variants in BRAT1 (BRCA1-associated protein required for ATM activation-1). However, the molecular mechanism of RMFSL is still unclear. METHODS An RMFSL infant was recruited and the peripheral blood samples from his trio-family were collected. The genomic DNA was extracted, and then the whole-exome sequencing was performed. The expression of BRAT1 was analyzed by Western blotting. The subcellular localization of BRAT1 and MitoSOX (mitochondrial superoxide level) was investigated by confocal microscopy. The RNA samples were obtained from transfected cells, and then the RNA sequencing was performed. RESULTS In this study, a novel homozygous BRAT1 variant c.233G > C with amino acid change of R with P at residue 78 (R78P) was identified. This variant altered the peptide structure and subcellular localization, as well as the expression in vitro. However, R78P did not alter the ability of BRAT1 to downregulate MitoSOX in mitochondria. Meanwhile, R78P BRAT1 was positively correlated with temporal lobe epilepsy, autosomal recessive primary microcephaly, defective/absent horizontal voluntary eye movements, and neuron apoptotic process as indicated by gene set enrichment analysis (GSEA). CONCLUSIONS The BRAT1 variant spectrum has been expanded, which will be helpful for genetic counseling. We also explored the molecular mechanism altered by R78P, which will provide a better understanding of the pathogenesis of RMFSL. IMPACT The detailed course of an infant with lethal neonatal RMFSL was depicted. A novel disease-causing variant R78P in BRAT1 for lethal neonatal RMFSL was identified. R78P led to reduced BRAT1 expression and nuclear localization in vitro. R78P did not alter the ability of BRAT1 to downregulate MitoSOX in the mitochondria. The variant R78P in BRAT1 was positively correlated with temporal lobe epilepsy, autosomal recessive primary microcephaly, defective/absent horizontal voluntary eye movements, and neuron apoptotic process as indicated by GSEA.
Collapse
|
18
|
Nuovo S, Baglioni V, De Mori R, Tardivo S, Caputi C, Ginevrino M, Micalizzi A, Masuelli L, Federici G, Casella A, Lorefice E, Anello D, Tolve M, Farini D, Bertini E, Zanni G, Travaglini L, Vasco G, Sette C, Carducci C, Valente EM, Leuzzi V. Clinical variability at the mild end of BRAT1-related spectrum: Evidence from two families with genotype-phenotype discordance. Hum Mutat 2021; 43:67-73. [PMID: 34747546 DOI: 10.1002/humu.24293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022]
Abstract
Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal to neurodevelopmental disorder, and cerebellar atrophy with or without seizures, without obvious genotype-phenotype associations. We describe two families at the mildest end of the spectrum, differing in clinical presentation despite a common genotype at the BRAT1 locus. Two siblings displayed nonprogressive congenital ataxia and shrunken cerebellum on magnetic resonance imaging. A third unrelated patient showed normal neurodevelopment, adolescence-onset seizures, and ataxia, shrunken cerebellum, and ultrastructural abnormalities on skin biopsy, representing the mildest form of NEDCAS hitherto described. Exome sequencing identified the c.638dup and the novel c.1395G>A BRAT1 variants, the latter causing exon 10 skippings. The p53-MCL test revealed normal ATM kinase activity. Our findings broaden the allelic and clinical spectrum of BRAT1-related disease, which should be suspected in presence of nonprogressive cerebellar signs, even without a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Sara Nuovo
- Department of Human Neuroscience, Sapienza University of Rome, Roma, Italy
| | - Valentina Baglioni
- Department of Human Neuroscience, Sapienza University of Rome, Roma, Italy
| | - Roberta De Mori
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Roma, Italy
| | - Silvia Tardivo
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Roma, Italy
| | - Caterina Caputi
- Department of Human Neuroscience, Sapienza University of Rome, Roma, Italy
| | - Monia Ginevrino
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy.,Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Alessia Micalizzi
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Giulia Federici
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS - Regina Elena National Cancer Institute, Roma, Italy
| | - Antonella Casella
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Elisa Lorefice
- Department of Molecular Medicine, Sapienza University of Rome, Roma, Italy
| | - Danila Anello
- Department of Medical and Surgery Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Manuela Tolve
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Roma, Italy.,Laboratory of Neuroembryology, IRCCS Santa Lucia Foundation, Roma, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Gessica Vasco
- Neuroscience and Neurorehabilitation Department, MARlab, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Claudio Sette
- Laboratory of Neuroembryology, IRCCS Santa Lucia Foundation, Roma, Italy.,Section of Human Anatomy, Department of Neuroscience, Catholic University of the Sacred Heart, Roma, Italy
| | - Carla Carducci
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Enza M Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
19
|
Gonzalez-Rellan MJ, Fondevila MF, Fernandez U, Rodríguez A, Varela-Rey M, Veyrat-Durebex C, Seoane S, Bernardo G, Lopitz-Otsoa F, Fernández-Ramos D, Bilbao J, Iglesias C, Novoa E, Ameneiro C, Senra A, Beiroa D, Cuñarro J, Dp Chantada-Vazquez M, Garcia-Vence M, Bravo SB, Da Silva Lima N, Porteiro B, Carneiro C, Vidal A, Tovar S, Müller TD, Ferno J, Guallar D, Fidalgo M, Sabio G, Herzig S, Yang WH, Cho JW, Martinez-Chantar ML, Perez-Fernandez R, López M, Dieguez C, Mato JM, Millet O, Coppari R, Woodhoo A, Fruhbeck G, Nogueiras R. O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nat Commun 2021; 12:5068. [PMID: 34417460 PMCID: PMC8379189 DOI: 10.1038/s41467-021-25390-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/06/2021] [Indexed: 01/20/2023] Open
Abstract
p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.
Collapse
Affiliation(s)
- Maria J Gonzalez-Rellan
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Marcos F Fondevila
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Uxia Fernandez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Amaia Rodríguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Marta Varela-Rey
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Samuel Seoane
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ganeko Bernardo
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
- ATLAS Molecular Pharma S. L., Derio, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - David Fernández-Ramos
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Jon Bilbao
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Cristina Iglesias
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Eva Novoa
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Cristina Ameneiro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ana Senra
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Daniel Beiroa
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Juan Cuñarro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Maria Dp Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Coruña, Spain
| | - Maria Garcia-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Coruña, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Coruña, Spain
| | - Natalia Da Silva Lima
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Begoña Porteiro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Carmen Carneiro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Anxo Vidal
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Sulay Tovar
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) and German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Johan Ferno
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Diana Guallar
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Miguel Fidalgo
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC) and Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Won Ho Yang
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Jin Won Cho
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Maria Luz Martinez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Roman Perez-Fernandez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Miguel López
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Carlos Dieguez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Jose M Mato
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
- ATLAS Molecular Pharma S. L., Derio, Spain
| | - Oscar Millet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | | | - Ashwin Woodhoo
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- CIMUS, University of Santigo de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Nerve Disorder Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Gema Fruhbeck
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Ruben Nogueiras
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
20
|
Xu Y, Jiang E, Shao Z, Shang Z. LncRNA FENDRR in Carcinoma-Associated Fibroblasts Regulates the Angiogenesis of Oral Squamous Cell Carcinoma Through the PI3K/AKT Pathway. Front Oncol 2021; 11:616576. [PMID: 34327132 PMCID: PMC8315042 DOI: 10.3389/fonc.2021.616576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis is essential for the development of tumors. Studies have shown that carcinoma-associated fibroblasts (CAFs) are involved in regulating tumor angiogenesis, but the mechanism remains unclear. Recently, long noncoding RNAs (lncRNAs) have been proved to play an important role in the angiogenesis of various tumors. However, there is currently no research involving the regulation of CAFs on the angiogenesis of oral squamous cell carcinoma (OSCC) mediated by lncRNAs. By analyzing microarray data, we identified that the expression of lncRNA FOXF1 adjacent noncoding developmental regulatory RNA (FENDRR) in OSCC patients is downregulated, compared to that in normal tissues. Quantitative polymerase chain reaction (qPCR) results demonstrated that FENDRR expression is lower in CAFs compared to normal fibroblasts (NFs) of OSCC patients. KEGG pathway analysis revealed that some genes differentially expressed between CAFs and NFs of HNSCC patients are enriched to the PI3K/AKT pathway. Further experiments confirmed that the downregulation of FENDRR can activate the PI3K/AKT pathway in NFs and enhances the expression of matrix metalloproteinase 9 (MMP9). The overexpression of FENDRR had the opposite effect. Besides, we co-cultured human umbilical vein endothelial cells (HUVECs) with CAFs, and the tube-forming ability of HUVECs co-cultured with CAFs overexpressing FENDRR decreased significantly. However, activation of the AKT pathway of CAFs overexpressing FENDRR can weaken the inhibitory effect of FENDRR on angiogenesis. In summary, our experiments are focused on the influence of lncRNAs in CAFs on OSCC angiogenesis for the first time and prove that FENDRR mediates CAFs’ regulation of OSCC angiogenesis through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yuming Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Li W, Wu L, Sun Q, Yang Q, Xue J, Shi M, Tang H, Zhang J, Liu Q. MicroRNA-191 blocking the translocation of GLUT4 is involved in arsenite-induced hepatic insulin resistance through inhibiting the IRS1/AKT pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112130. [PMID: 33743404 DOI: 10.1016/j.ecoenv.2021.112130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Environmental exposure to arsenic can cause a variety of health problems. Epidemiological and experimental studies have established a diabetogenic role for arsenic, but the mechanisms responsible for arsenic-induced impairment of insulin action are unclear. MicroRNAs (miRNAs) are involved in various metabolic disorders, particularly in the development of insulin resistance. The present study investigated whether arsenite, an active form of arsenic, induces hepatic insulin resistance and the mechanisms underlying it. After male C57BL/6J mice were exposed to arsenite (0 or 20 ppm) in drinking water for 12 months, intraperitoneal glucose tolerance tests (IPGTTs) and insulin tolerance tests (ITTs) revealed an arsenite-induced glucose metabolism disorder. Hepatic glycogen levels were lower in arsenite-exposed mice. Further, for livers of mice exposed to arsenite, miR-191 levels were higher, and protein levels of insulin receptor substrate 1 (IRS1), p-IRS1, and phospho-protein kinase B (p-AKT) were lower. Further, glucose transporter 4 (GLUT4) had lower levels on the plasma membrane. For insulin-treated L-02 cells, arsenite decreased glucose consumption and glycogen levels, increased miR-191 levels, and inhibited the IRS1/AKT pathway and the translocation of GLUT4 from the cytoplasm to the plasma membrane. For insulin-treated L-02 cells, the decreases of glucose consumption, glycogen levels, GLUT4 on the plasma membrane, and p-AKT levels induced by arsenite were reversed by SC79 (agonist of AKT) and an miR-191 inhibitor; these effects caused by miR-191 inhibitor were restored by IRS1 siRNA. In insulin-treated L-02 cells, miR-191, via IRS1, was involved in the arsenite-induced decreases of glucose consumption and glycogen levels and in inhibition of the translocation of GLUT4. Thus, miR-191 blocking the translocation of GLUT4 was involved in arsenite-induced hepatic insulin resistance through inhibiting the IRS1/AKT pathway. Our study reveals a mechanism for arsenite-induced hepatic insulin resistance, which provides clues for discovering biomarkers for the development of type 2 diabetes and for prevention and treatment of arsenic poisoning.
Collapse
Affiliation(s)
- Wenqi Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qian Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, People's Republic of China
| | - Qianlei Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, The Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Cui C, Dwyer BG, Liu C, Abegg D, Cai ZJ, Hoch DG, Yin X, Qiu N, Liu JQ, Adibekian A, Dai M. Total Synthesis and Target Identification of the Curcusone Diterpenes. J Am Chem Soc 2021; 143:4379-4386. [PMID: 33705657 DOI: 10.1021/jacs.1c00557] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The curcusone natural products are complex diterpenes featuring a characteristic [6-7-5] tricyclic carbon skeleton similar to the daphnane and tigliane diterpenes. Among them, curcusones A-D demonstrated potent anticancer activity against a broad spectrum of human cancer cell lines. Prior to this study, no total synthesis of the curcusones was achieved and their anticancer mode of action remained unknown. Herein, we report our synthetic and chemoproteomics studies of the curcusone diterpenes which culminate in the first total synthesis of several curcusone natural products and identification of BRCA1-associated ATM activator 1 (BRAT1) as a cellular target. Our efficient synthesis is highly convergent, builds upon cheap and abundant starting materials, features a thermal [3,3]-sigmatropic rearrangement and a novel FeCl3-promoted cascade reaction to rapidly construct the critical cycloheptadienone core of the curcusones, and led us to complete the first total synthesis of curcusones A and B in only 9 steps, C and D in 10 steps, and dimericursone A in 12 steps. The chemical synthesis of dimericursone A from curcusones C and D provided direct evidence to support the proposed Diels-Alder dimerization and cheletropic elimination biosynthetic pathway. Using an alkyne-tagged probe molecule, BRAT1, an important but previously "undruggable" oncoprotein, was identified as a key cellular target via chemoproteomics. We further demonstrate for the first time that BRAT1 can be inhibited by curcusone D, resulting in impaired DNA damage response, reduced cancer cell migration, potentiated activity of the DNA damaging drug etoposide, and other phenotypes similar to BRAT1 knockdown.
Collapse
Affiliation(s)
- Chengsen Cui
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brendan G Dwyer
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Chang Liu
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zhong-Jian Cai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dominic G Hoch
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Xianglin Yin
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nan Qiu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jie-Qing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Wang W, Zhang C, Liu H, Xu C, Duan H, Tian X, Zhang D. Heritability and genome-wide association analyses of fasting plasma glucose in Chinese adult twins. BMC Genomics 2020; 21:491. [PMID: 32682390 PMCID: PMC7368793 DOI: 10.1186/s12864-020-06898-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Currently, diabetes has become one of the leading causes of death worldwide. Fasting plasma glucose (FPG) levels that are higher than optimal, even if below the diagnostic threshold of diabetes, can also lead to increased morbidity and mortality. Here we intend to study the magnitude of the genetic influence on FPG variation by conducting structural equation modelling analysis and to further identify specific genetic variants potentially related to FPG levels by performing a genome-wide association study (GWAS) in Chinese twins. Results The final sample included 382 twin pairs: 139 dizygotic (DZ) pairs and 243 monozygotic (MZ) pairs. The DZ twin correlation for the FPG level (rDZ = 0.20, 95% CI: 0.04–0.36) was much lower than half that of the MZ twin correlation (rMZ = 0.68, 95% CI: 0.62–0.74). For the variation in FPG level, the AE model was the better fitting model, with additive genetic parameters (A) accounting for 67.66% (95% CI: 60.50–73.62%) and unique environmental or residual parameters (E) accounting for 32.34% (95% CI: 26.38–39.55%), respectively. In the GWAS, although no genetic variants reached the genome-wide significance level (P < 5 × 10− 8), 28 SNPs exceeded the level of a suggestive association (P < 1 × 10− 5). One promising genetic region (2q33.1) around rs10931893 (P = 1.53 × 10− 7) was found. After imputing untyped SNPs, we found that rs60106404 (P = 2.38 × 10− 8) located at SPATS2L reached the genome-wide significance level, and 216 SNPs exceeded the level of a suggestive association. We found 1007 genes nominally associated with the FPG level (P < 0.05), including SPATS2L, KCNK5, ADCY5, PCSK1, PTPRA, and SLC26A11. Moreover, C1orf74 (P = 0.014) and SLC26A11 (P = 0.021) were differentially expressed between patients with impaired fasting glucose and healthy controls. Some important enriched biological pathways, such as β-alanine metabolism, regulation of insulin secretion, glucagon signaling in metabolic regulation, IL-1 receptor pathway, signaling by platelet derived growth factor, cysteine and methionine metabolism pathway, were identified. Conclusions The FPG level is highly heritable in the Chinese population, and genetic variants are significantly involved in regulatory domains, functional genes and biological pathways that mediate FPG levels. This study provides important clues for further elucidating the molecular mechanism of glucose homeostasis and discovering new diagnostic biomarkers and therapeutic targets for diabetes.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, China
| | - Caixia Zhang
- The First Hospital of Yulin, Yulin, Shanxi, China
| | - Hui Liu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, China.
| |
Collapse
|
24
|
Murakami M, Ikeda Y, Nakagawa Y, Tsuji A, Kitagishi Y, Matsuda S. Special bioactive compounds and functional foods may exhibit neuroprotective effects in patients with dementia (Review). Biomed Rep 2020; 13:1. [PMID: 32509304 PMCID: PMC7271706 DOI: 10.3892/br.2020.1310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Dementia is a failure of cognitive ability characterized by severe neurodegeneration in select neural systems, and Alzheimer's disease (AD) is the most common type of neurodegenerative disease. Although numerous studies have provided insights into the pathogenesis of AD, the underlying signaling and molecular pathways mediating the progressive decline of cognitive function remain poorly understood. Recent progress in molecular biology has provided an improved understanding of the importance of molecular pathogenesis of AD, and has proposed an association between DNA repair mechanisms and AD. In particular, the fundamental roles of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and breast cancer gene 1 (BRCA1) tumor suppressors have been shown to regulate the pathogenesis of neurodegeneration. Consequently, onset of neurodegenerative diseases may be deferred with the use of dietary neuroprotective agents which alter the signaling mediated by the aforementioned tumor suppressors. In a healthy neuron, homeostasis of key intracellular molecules is of great importance, and preventing neuronal apoptosis is one of the primary goals of treatments designed for dementia-associated diseases. In the present review, progress into the understanding of dietary regulation for preventing or limiting development of dementia is discussed with a focus on the modulatory roles of PTEN and BRCA1 signaling.
Collapse
Affiliation(s)
- Mutsumi Murakami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
25
|
Zhan D, Zhang X, Li J, Ding X, Cui Y, Jia J. MTH1 Inhibitor TH287 Suppresses Gastric Cancer Development Through the Regulation of PI3K/AKT Signaling. Cancer Biother Radiopharm 2020; 35:223-232. [PMID: 32077746 DOI: 10.1089/cbr.2019.3031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Cancer cells evade oxidative stress through the MutT homologue-1 (MTH1), a member of the Nudix family. MTH1 maintains genome integrity and the viability of tumor cells. A new class of MTH1 inhibitors have attracted interest as anticancer agents, but their mechanisms of action remain poorly characterized. In this study, the authors evaluated the anticancer effects of the MTH1 inhibitor TH287 on gastric cancer (GCa) cells. Materials and Methods: BGC-823 and SGC-7901 cells were treated with TH287 and CCK-8, and colony-forming assays were performed. Cell migration was assessed through Transwell and scratch assays. Apoptotic status was measured via flow cytometry and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) staining. Cell cycle status was assessed by propidium iodide (PI) staining. The expression of PI3K/AKT signaling-related proteins was verified by western blotting. Results: TH287 inhibited cell viability, reduced cell proliferation, inhibited apoptosis, induced G2/M arrest, and suppressed cell migration. A loss of mitochondrial membrane potential and reduced Bcl-2/Bax expression were also observed in TH287-treated cells. These effects were mediated through the inhibition of pro-oncogenic PI3K/AKT signaling. Conclusions: These findings indicate that the MTH1 inhibitor TH287 mediates an array of anticancer effects in GCa cells through its effects on mitochondrial function and PI3K/AKT signaling. Collectively, these data highlight the promise of TH287 as a novel therapeutic option for GCa cells.
Collapse
Affiliation(s)
- Dankai Zhan
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xinxin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiahui Li
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xiaojiao Ding
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - YiXuan Cui
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jianguang Jia
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
26
|
Barth E, Srivastava A, Stojiljkovic M, Frahm C, Axer H, Witte OW, Marz M. Conserved aging-related signatures of senescence and inflammation in different tissues and species. Aging (Albany NY) 2019; 11:8556-8572. [PMID: 31606727 PMCID: PMC6814591 DOI: 10.18632/aging.102345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Increasing evidence indicates that chronic inflammation and senescence are the cause of many severe age-related diseases, with both biological processes highly upregulated during aging. However, until now, it has remained unknown whether specific inflammation- or senescence-related genes exist that are common between different species or tissues. These potential markers of aging could help to identify possible targets for therapeutic interventions of aging-associated afflictions and might also deepen our understanding of the principal mechanisms of aging. With the objective of identifying such signatures of aging and tissue-specific aging markers, we analyzed a multitude of cross-sectional RNA-Seq data from four evolutionarily distinct species (human, mouse and two fish) and four different tissues (blood, brain, liver and skin). In at least three different species and three different tissues, we identified several genes that displayed similar expression patterns that might serve as potential aging markers. Additionally, we show that genes involved in aging-related processes tend to be tighter controlled in long-lived than in average-lived individuals. These observations hint at a general genetic level that affect an individual’s life span. Altogether, this descriptive study contributes to a better understanding of common aging signatures as well as tissue-specific aging patterns and supplies the basis for further investigative age-related studies.
Collapse
Affiliation(s)
- Emanuel Barth
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.,FLI Leibniz Institute for Age Research, Jena, Germany
| | - Akash Srivastava
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Milan Stojiljkovic
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hubertus Axer
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Manja Marz
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.,FLI Leibniz Institute for Age Research, Jena, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
27
|
Host transcriptome and microbiome interaction modulates physiology of full-sibs broilers with divergent feed conversion ratio. NPJ Biofilms Microbiomes 2019; 5:24. [PMID: 31552140 PMCID: PMC6754422 DOI: 10.1038/s41522-019-0096-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Efficient livestock production relies on effective conversion of feed into body weight gain (BWG). High levels of feed conversion are especially important in production of broiler chickens, birds reared for meat, where economic margins are tight. Traits associated with improved broiler growth and feed efficiency have been subjected to intense genetic selection, but measures such as feed conversion ratio (FCR) remain variable, even between full siblings (sibs). Non-genetic factors such as the composition and function of microbial populations within different enteric compartments have been recognized to influence FCR, although the extent of interplay between hosts and their microbiomes is unclear. To examine host–microbiome interactions we investigated variation in the composition and functions of host intestinal-hepatic transcriptomes and the intestinal microbiota of full-sib broilers with divergent FCR. Progeny from 300 broiler families were assessed for divergent FCR set against shared genetic backgrounds and exposure to the same environmental factors. The seven most divergent full-sib pairs were chosen for analysis, exhibiting marked variation in transcription of genes as well as gut microbial diversity. Examination of enteric microbiota in low FCR sibs revealed variation in microbial community structure and function with no difference in feed intake compared to high FCR sibs. Gene transcription in low and high FCR sibs was significantly associated with the abundance of specific microbial taxa. Highly intertwined interactions between host transcriptomes and enteric microbiota are likely to modulate complex traits like FCR and may be amenable to selective modification with relevance to improving intestinal homeostasis and health.
Collapse
|
28
|
Mahjoub A, Cihlarova Z, Tétreault M, MacNeil L, Sondheimer N, Caldecott KW, Hanzlikova H, Yoon G. Homozygous pathogenic variant in BRAT1 associated with nonprogressive cerebellar ataxia. NEUROLOGY-GENETICS 2019; 5:e359. [PMID: 31742228 PMCID: PMC6773431 DOI: 10.1212/nxg.0000000000000359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022]
Abstract
Objective To investigate the pathogenicity of a novel homozygous BRAT1 variant in 2 siblings with nonprogressive cerebellar ataxia (NPCA) through functional studies on primary and immortalized patient cell lines. Methods BRAT1 protein levels and ataxia-telangiectasia mutated (ATM) kinase activity in patient-derived and control cell lines were assessed by Western blotting. The impact of the novel BRAT1 variants on mitochondrial function was also assessed, by comparing patient and control cell lines for rates of oxygen consumption and for phosphorylation (S293) of the E1⍺ subunit of pyruvate dehydrogenase (PDH). Results Two male siblings with NPCA, mild intellectual disability, and isolated cerebellar atrophy were found to be homozygous for a c.185T>A (p.Val62Glu) variant in BRAT1 by whole exome sequencing. Western blotting revealed markedly decreased BRAT1 protein levels in lymphocytes and/or fibroblast cells from both affected siblings compared to control cell lines. There were no differences between the patient and control cells in ATM kinase activation, following ionizing radiation. Mitochondrial studies were initially suggestive of a defect in regulation of PDH activity, but there was no evidence of increased phosphorylation of the E1⍺ subunit of the PDH complex. Measurement of oxygen consumption rates similarly failed to identify differences between patient and control cells. Conclusions Biallelic pathogenic variants in BRAT1 can be associated with NPCA, a phenotype considerably milder than previously reported. Surprisingly, despite the molecular role currently proposed for BRAT1 in ATM regulation, this disorder is unlikely to result from defective ATM kinase or mitochondrial dysfunction.
Collapse
Affiliation(s)
- Areej Mahjoub
- Division of Neurology (A.M., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Canada; Department of Genome Dynamics (Z.C., K.W.C., H.H.), Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science (Z.C.), Charles University in Prague, Czech Republic; Department of Neuroscience (M.T.), Université de Montréal, CHUM, Montréal, Québec, Canada; Department of Paediatric Laboratory Medicine (L.M.), Hospital for Sick Children; Department of Lab Medicine and Pathobiology (L.M.), University of Toronto, Ontario, Canada; Program in Genetics and Genome Biology (N.S.), SickKids Research Institute, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics (N.S., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada; and Genome Damage and Stability Centre (K.W.C., H.H.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Zuzana Cihlarova
- Division of Neurology (A.M., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Canada; Department of Genome Dynamics (Z.C., K.W.C., H.H.), Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science (Z.C.), Charles University in Prague, Czech Republic; Department of Neuroscience (M.T.), Université de Montréal, CHUM, Montréal, Québec, Canada; Department of Paediatric Laboratory Medicine (L.M.), Hospital for Sick Children; Department of Lab Medicine and Pathobiology (L.M.), University of Toronto, Ontario, Canada; Program in Genetics and Genome Biology (N.S.), SickKids Research Institute, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics (N.S., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada; and Genome Damage and Stability Centre (K.W.C., H.H.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Martine Tétreault
- Division of Neurology (A.M., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Canada; Department of Genome Dynamics (Z.C., K.W.C., H.H.), Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science (Z.C.), Charles University in Prague, Czech Republic; Department of Neuroscience (M.T.), Université de Montréal, CHUM, Montréal, Québec, Canada; Department of Paediatric Laboratory Medicine (L.M.), Hospital for Sick Children; Department of Lab Medicine and Pathobiology (L.M.), University of Toronto, Ontario, Canada; Program in Genetics and Genome Biology (N.S.), SickKids Research Institute, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics (N.S., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada; and Genome Damage and Stability Centre (K.W.C., H.H.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Lauren MacNeil
- Division of Neurology (A.M., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Canada; Department of Genome Dynamics (Z.C., K.W.C., H.H.), Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science (Z.C.), Charles University in Prague, Czech Republic; Department of Neuroscience (M.T.), Université de Montréal, CHUM, Montréal, Québec, Canada; Department of Paediatric Laboratory Medicine (L.M.), Hospital for Sick Children; Department of Lab Medicine and Pathobiology (L.M.), University of Toronto, Ontario, Canada; Program in Genetics and Genome Biology (N.S.), SickKids Research Institute, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics (N.S., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada; and Genome Damage and Stability Centre (K.W.C., H.H.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Neal Sondheimer
- Division of Neurology (A.M., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Canada; Department of Genome Dynamics (Z.C., K.W.C., H.H.), Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science (Z.C.), Charles University in Prague, Czech Republic; Department of Neuroscience (M.T.), Université de Montréal, CHUM, Montréal, Québec, Canada; Department of Paediatric Laboratory Medicine (L.M.), Hospital for Sick Children; Department of Lab Medicine and Pathobiology (L.M.), University of Toronto, Ontario, Canada; Program in Genetics and Genome Biology (N.S.), SickKids Research Institute, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics (N.S., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada; and Genome Damage and Stability Centre (K.W.C., H.H.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Keith W Caldecott
- Division of Neurology (A.M., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Canada; Department of Genome Dynamics (Z.C., K.W.C., H.H.), Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science (Z.C.), Charles University in Prague, Czech Republic; Department of Neuroscience (M.T.), Université de Montréal, CHUM, Montréal, Québec, Canada; Department of Paediatric Laboratory Medicine (L.M.), Hospital for Sick Children; Department of Lab Medicine and Pathobiology (L.M.), University of Toronto, Ontario, Canada; Program in Genetics and Genome Biology (N.S.), SickKids Research Institute, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics (N.S., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada; and Genome Damage and Stability Centre (K.W.C., H.H.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Hana Hanzlikova
- Division of Neurology (A.M., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Canada; Department of Genome Dynamics (Z.C., K.W.C., H.H.), Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science (Z.C.), Charles University in Prague, Czech Republic; Department of Neuroscience (M.T.), Université de Montréal, CHUM, Montréal, Québec, Canada; Department of Paediatric Laboratory Medicine (L.M.), Hospital for Sick Children; Department of Lab Medicine and Pathobiology (L.M.), University of Toronto, Ontario, Canada; Program in Genetics and Genome Biology (N.S.), SickKids Research Institute, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics (N.S., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada; and Genome Damage and Stability Centre (K.W.C., H.H.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Grace Yoon
- Division of Neurology (A.M., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Canada; Department of Genome Dynamics (Z.C., K.W.C., H.H.), Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science (Z.C.), Charles University in Prague, Czech Republic; Department of Neuroscience (M.T.), Université de Montréal, CHUM, Montréal, Québec, Canada; Department of Paediatric Laboratory Medicine (L.M.), Hospital for Sick Children; Department of Lab Medicine and Pathobiology (L.M.), University of Toronto, Ontario, Canada; Program in Genetics and Genome Biology (N.S.), SickKids Research Institute, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics (N.S., G.Y.), Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada; and Genome Damage and Stability Centre (K.W.C., H.H.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | |
Collapse
|
29
|
Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway. Molecules 2019; 24:molecules24101993. [PMID: 31137633 PMCID: PMC6572074 DOI: 10.3390/molecules24101993] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Increased glycolysis in tumor cells is associated with increased risk of tumor progression and mortality. Therefore, disruption of glycolysis, one of the main sources of cellular energy supply, can serve as a target for suppressing tumor growth and progression. Of note, hexokinase-2 (HK2) plays vital roles in glucose metabolism. Moreover, the expression of HK2 alters the metabolic phenotype and supports the continuous growth of tumor cells, making it an attractive target for cancer therapy. Quercetin (QUE), a bioactive flavonoid, has a profound anti-tumor effect on hepatocellular carcinoma (HCC), but the precise underlying mechanism of this effect is unclear. In the present study, we reported that QUE inhibited the proliferation of HCC cells that relied on aerobic glycolysis. We further found that QUE could decrease the protein levels of HK2 and suppress the AKT/mTOR pathway in HCC cells. In addition, QUE significantly restrained the growth of HCC xenografts and decreased HK-2 expression in vivo. Taken together, we have revealed that QUE suppresses the progression of HCC by inhibiting HK2-dependentglycolysis, which may have a promising potential to be an effective treatments for HCC, especially for those patients with high HK2 expression.
Collapse
|
30
|
Abstract
Although the majority of seizures in neonates are related to acute brain injury, a substantial minority are the first symptom of a neonatal-onset epilepsy often linked to a pathogenic genetic variant. Historically, studies on neonatal seizures including treatment response and long-term consequences have lumped all etiologies together. However, etiology has been consistently shown to be the most important determinant of outcome. In the past few years, an increasing number of monogenic disorders have been described and might explain up to a third of neonatal-onset epilepsy syndromes previously included under the umbrella of Ohtahara syndrome and early myoclonic encephalopathy. In this chapter, we define the concept of genetic epilepsy and review the classification. Then, we review the most relevant monogenic neonatal-onset epilepsies, detail their underlying pathophysiologic mechanisms, and present their electroclinical phenotypes. We highlight that, in some cases, such as neonates with KCNQ2 or KCNT1 gene mutations, the early recognition of the electroclinical phenotype can lead to targeted diagnostic testing and precision medicine treatment, enabling the possibility of improved outcome.
Collapse
|
31
|
Nilsen BW, Simon‐Santamaria J, Örtengren U, Jensen E, Bruun J, Michelsen VB, Sørensen KK. Dose- and time-dependent effects of triethylene glycol dimethacrylate on the proteome of human THP-1 monocytes. Eur J Oral Sci 2018; 126:345-358. [PMID: 30051916 PMCID: PMC6585793 DOI: 10.1111/eos.12559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Triethylene glycol dimethacrylate (TEGDMA) is commonly used in polymer resin-based dental materials. This study investigated the molecular mechanisms of TEGDMA toxicity by identifying its time- and dose-dependent effects on the proteome of human THP-1 monocytes. The effects of different concentrations (0.07-5 mM) and exposure times (0-72 h) of TEGDMA on cell viability, proliferation, and morphology were determined using a real-time viability assay, automated cell counting, and electron microscopy, and laid the fundament for choice of exposure scenarios in the proteomic experiments. Solvents were not used, as TEGDMA is soluble in cell culture medium (determined by photon correlation spectroscopy). Cells were metabolically labeled [using the stable isotope labeled amino acids in cell culture (SILAC) strategy], and exposed to 0, 0.3 or 2.5 mM TEGDMA for 6 or 16 h before liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. Regulated proteins were analyzed in the STRING database. Cells exposed to 0.3 mM TEGDMA showed increased viability and time-dependent upregulation of proteins associated with stress/oxidative stress, autophagy, and cytoprotective functions. Cells exposed to 2.5 mM TEGDMA showed diminished viability and a protein expression profile associated with oxidative stress, DNA damage, mitochondrial dysfunction, and cell cycle inhibition. Altered expression of immune genes was observed in both groups. The study provides novel knowledge about TEGDMA toxicity at the proteomic level. Of note, even low doses of TEGDMA induced a substantial cellular response.
Collapse
Affiliation(s)
- Bo W. Nilsen
- Department of Clinical DentistryUiT – The Arctic University of NorwayTromsøNorway
| | | | - Ulf Örtengren
- Department of Clinical DentistryUiT – The Arctic University of NorwayTromsøNorway
- Department of CariologyInstitute of Odontology/Sahlgrenska AcademyGöteborgSweden
| | - Einar Jensen
- Department of PharmacyUiT The Arctic University of NorwayTromsøNorway
| | - Jack‐Ansgar Bruun
- Department of Medical BiologyUiT – The Arctic University of NorwayTromsøNorway
| | | | - Karen K. Sørensen
- Department of Medical BiologyUiT – The Arctic University of NorwayTromsøNorway
| |
Collapse
|
32
|
A Novel Aurora-A Inhibitor (MLN8237) Synergistically Enhances the Antitumor Activity of Sorafenib in Hepatocellular Carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:176-188. [PMID: 30292139 PMCID: PMC6172479 DOI: 10.1016/j.omtn.2018.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023]
Abstract
Currently, sorafenib-based therapy is the standard treatment for advanced hepatocellular carcinoma (HCC), and there is a strong rationale for investigating its use in combination with other agents to achieve better therapeutic effects. Aurora-A, a member of a family of mitotic serine/threonine kinases, is frequently overexpressed in human cancers and therefore represents a target for therapy. Here, we investigated a novel Aurora-A inhibitor, MLN8237, together with sorafenib in HCC cells in vitro and in vivo, and elucidated the possible molecular mechanism. Here, it was found that MLN8237 was strongly synergistic with sorafenib in inhibition of HCC progression by altering cell growth, cell-cycle regulation, apoptosis, migration, invasion, and angiogenesis. Mechanism dissection suggests that the combination of MLN8237 and sorafenib led to significant inhibition of the activation of phospho-Akt (p-Akt) and phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) and their downstream genes including CDK4, cyclinD1, and VEGFA. The activators of p-Akt and p-p38 MAPK signaling partially reversed the synergistic inhibitory effects of sorafenib and MLN8237 on HCC progression. Subsequent in vivo studies further confirmed the synergistic effects of sorafenib and MLN8237. Collectively, the newly developed sorafenib-MLN8237 combination may be a novel therapy to better inhibit HCC progression.
Collapse
|
33
|
Bin Y, Jingbo W, Hong Z, Guoqing T, Yuqin L. Effect of icariin on apoptosis in hippocampal neurons cultured in high glucose. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30887-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Yang Q, Cui Y, Luo F, Liu X, Wang Q, Bai J, Dong F, Sun Q, Lu L, Xu H, Xue J, Chen C, Xiang Q, Liu Q, Zhang Q. MicroRNA-191, acting via the IRS-1/Akt signaling pathway, is involved in the hepatic insulin resistance induced by cigarette smoke extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22400-22407. [PMID: 28963693 DOI: 10.1007/s11356-017-0277-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Cigarette smoke causes insulin resistance, which is associated with type 2 diabetes mellitus (T2DM). However, the mechanism by which this occurs remains poorly understood. Because the involvement of microRNAs (miRNAs) in the development of insulin resistance is largely unknown, we investigated, in hepatocytes, the roles of miR-191 in cigarette smoke extract (CSE)-induced insulin resistance. In L-02 cells, CSE not only decreased glucose uptake and glycogen levels but also reduced levels of insulin receptor substrate-1 (IRS-1) and Akt activation, effects that were blocked by SC79, an activator of Akt. CSE also increased miR-191 levels in L-02 cells. Furthermore, the inhibition of miR-191 blocked the decreases of IRS-1 and p-Akt levels, which antagonized the decreases of glucose uptake and glycogen levels in L-02 cells induced by CSE. These results reveal a mechanism by which miR-191 is involved in CSE-induced hepatic insulin resistance via the IRS-1/Akt signaling pathway, which helps to elucidate the mechanism for cigarette smoke-induced T2DM.
Collapse
Affiliation(s)
- Qianlei Yang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qiushi Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyan, 621010, Sichuan, People's Republic of China
| | - Qian Sun
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Hui Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Chao Chen
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Quanyong Xiang
- Jiangsu Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
35
|
Chen X, Zhi X, Cao L, Weng W, Pan P, Hu H, Liu C, Zhao Q, Zhou Q, Cui J, Su J. Matrine derivate MASM uncovers a novel function for ribosomal protein S5 in osteoclastogenesis and postmenopausal osteoporosis. Cell Death Dis 2017; 8:e3037. [PMID: 28880271 PMCID: PMC5636967 DOI: 10.1038/cddis.2017.394] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 02/08/2023]
Abstract
Postmenopausal osteoporosis (POMP) is a public health problem characterized by decreased bone density and increased fracture risk. Over-activated osteoclastogenesis plays a vital role in POMP. Here we developed a novel bioactive compound MASM (M19) based on sophocarpine. Although it showed no significant effects on osteogenesis and adipogenesis for bone marrow-derived mesenchymal stem cells (BMSCs) in vitro, it could significantly inhibit RANKL/M-CSF induced osteoclastogenesis through suppressing NF-κB, MAPKs and PI3K/Akt pathways in vitro and ameliorate bone loss in ovariectomized mice in vivo. Ribosomal protein s5 (RPS5) has been identified as a target of M19 and regulates PI3K/Akt, NF-κB and MAPKs pathways in osteoclastogenesis. Overexpressions of RPS5 synergistically inhibited osteoclastogenesis with M19 while silencing RPS5 compromised M19 inhibitory effects on osteoclastogenesis in vitro. Among the three pathways, Akt plays a major role in M19 effects. The Akt activator SC79 partially reversed the inhibitory effects on osteoclastogenesis by M19 and RPS5-knocking-down. It indicates that RPS5 serves as a potential candidate target for inhibiting osteoclastogenesis and osteoporosis therapy and M19 is a promising agent for POMP treatment.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Second Military Medical University, Yangpu District, Shanghai 200433, China.,China-South Korea Bioengineering Center, Jiading District, Shanghai 201802, China
| | - Xin Zhi
- Graduate Management Unit, Shanghai Changhai Hospital, Second Military Medical University, Yangpu District, Shanghai 200433, China
| | - Liehu Cao
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Second Military Medical University, Yangpu District, Shanghai 200433, China.,China-South Korea Bioengineering Center, Jiading District, Shanghai 201802, China
| | - Weizong Weng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Second Military Medical University, Yangpu District, Shanghai 200433, China.,China-South Korea Bioengineering Center, Jiading District, Shanghai 201802, China
| | - Panpan Pan
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Second Military Medical University, Yangpu District, Shanghai 200433, China.,China-South Korea Bioengineering Center, Jiading District, Shanghai 201802, China
| | - Honggang Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chao Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qirong Zhou
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Second Military Medical University, Yangpu District, Shanghai 200433, China.,China-South Korea Bioengineering Center, Jiading District, Shanghai 201802, China
| | - Jin Cui
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Second Military Medical University, Yangpu District, Shanghai 200433, China.,China-South Korea Bioengineering Center, Jiading District, Shanghai 201802, China
| | - Jiacan Su
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Second Military Medical University, Yangpu District, Shanghai 200433, China.,China-South Korea Bioengineering Center, Jiading District, Shanghai 201802, China
| |
Collapse
|
36
|
Liang GC, Zheng HF, Chen YX, Li TC, Liu W, Fang YQ. Light of DNA-alkylating agents in castration-resistant prostate cancer cells: a novel mixed EGFR/DNA targeting combi-molecule. Am J Transl Res 2017; 9:3245-3257. [PMID: 28804543 PMCID: PMC5553875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE The mechanism underlying the therapeutic effects of combi-molecule JDF12 on prostate cancer (PCa) DU145 cells remains still unclear. This study aimed to investigate the proteomic profile after JDF12 treatment in DU145 cells by comparing with that in Iressa treated cells and untreated cells. METHODS MTT was used to evaluate drug cytotoxicity, DAPI staining was done to assess apoptosis of cells, and flow cytometry was used to analyze cell cycle. iTRAQ and qPCR were employed to obtain the proteomic profiles of JDF12 treated, Iressa treated, and untreated DU145 cells, and validate the expression of selected differentially expressed proteins, respectively. RESULTS JDF12 could significantly inhibit the proliferation and increase the apoptosis of DU145 cells when compared with Iressa or blank group. In total, 5071 proteins were obtained, out of which, 42, including 21 up-regulated and 21 down-regulated proteins, were differentially expressed in JDF12 group when compared with Iressa and blank groups. The up-regulated proteins were mainly involved in DNA damage/repair and energy metabolism; while the down-regulated proteins were mainly associated with cell apoptosis. qPCR confirmed the expression of several biologically important proteins in DU145 cells after JDF12 treatment. CONCLUSION The molecular mechanisms of DNA alkylating agents on PCa therapy that with the assistant of EGFR-blocker were revealed on proteomic level, which may increase the possible applications of DNA alkylating agents and JDF12 on PCa therapy.
Collapse
Affiliation(s)
- Guan-Can Liang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, China
| | - Hao-Feng Zheng
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, China
| | - Yan-Xiong Chen
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, China
| | - Teng-Cheng Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, China
| | - You-Qiang Fang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, China
| |
Collapse
|
37
|
Oatts JT, Duncan JL, Hoyt CS, Slavotinek AM, Moore AT. Inner retinal dystrophy in a patient with biallelic sequence variants in BRAT1. Ophthalmic Genet 2017. [DOI: 10.1080/13816810.2017.1290118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Julius T. Oatts
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, USA
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, USA
| | - Creig S. Hoyt
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, USA
| | - Anne M. Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Anthony T. Moore
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, USA
- UCL Institute of Ophthalmology, University College London, London, UK
- Inherited Eye Disease and Medical Retina Service, Moorfields Eye Hospital, London, UK
| |
Collapse
|
38
|
Abstract
Investigators from Institut für Medizinische Genetik und Humangenetik have highlighted the role of compound heterozygous BRAT1 variants in two German brothers with variable presentations of intractable epilepsy, poor development, postnatal microcephaly, hypertonia, apnea, and infantile/childhood death.
Collapse
Affiliation(s)
| | - Sakkubai Naidu
- Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MA
| |
Collapse
|
39
|
Smith NJ, Lipsett J, Dibbens LM, Heron SE. BRAT1-associated neurodegeneration: Intra-familial phenotypic differences in siblings. Am J Med Genet A 2016; 170:3033-3038. [DOI: 10.1002/ajmg.a.37853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/02/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nicholas J. Smith
- Department of Neurology; Women's and Children's Health Network; Adelaide South Australia Australia
- School of Medicine; University of Adelaide; South Australia Australia
| | - Jill Lipsett
- Department of Anatomical Pathology; SA Pathology; Adelaide South Australia Australia
| | - Leanne M. Dibbens
- Epilepsy Research Program; School of Pharmacy and Medical Sciences; University of South Australia; Adelaide South Australia Australia
- Sansom Institute for Health Research; University of South Australia; Adelaide South Australia Australia
- Centre for Cancer Biology; University of South Australia; Adelaide South Australia Australia
| | - Sarah E. Heron
- Epilepsy Research Program; School of Pharmacy and Medical Sciences; University of South Australia; Adelaide South Australia Australia
- Sansom Institute for Health Research; University of South Australia; Adelaide South Australia Australia
- Centre for Cancer Biology; University of South Australia; Adelaide South Australia Australia
| |
Collapse
|
40
|
Horn D, Weschke B, Knierim E, Fischer-Zirnsak B, Stenzel W, Schuelke M, Zemojtel T. BRAT1mutations are associated with infantile epileptic encephalopathy, mitochondrial dysfunction, and survival into childhood. Am J Med Genet A 2016; 170:2274-81. [DOI: 10.1002/ajmg.a.37798] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Denise Horn
- Institut für Medizinische Genetik und Humangenetik; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Bernhard Weschke
- Klinik für Pädiatrie m.S. Neurologie & NeuroCure Clinical Research Center; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Ellen Knierim
- Klinik für Pädiatrie m.S. Neurologie & NeuroCure Clinical Research Center; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Björn Fischer-Zirnsak
- Institut für Medizinische Genetik und Humangenetik; Charité-Universitätsmedizin Berlin; Berlin Germany
- Max-Planck-Institut für Molekulare Genetik; FG Development & Disease; Berlin Germany
| | - Werner Stenzel
- Institut für Neuropathologie; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Markus Schuelke
- Klinik für Pädiatrie m.S. Neurologie & NeuroCure Clinical Research Center; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Tomasz Zemojtel
- Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznan Poland
- Labor Berlin-Charité Vivantes GmbH; Humangenetik; Berlin Germany
| |
Collapse
|
41
|
Fernández-Jaén A, Álvarez S, So EY, Ouchi T, Jiménez de la Peña M, Duat A, Fernández-Mayoralas DM, Fernández-Perrone AL, Albert J, Calleja-Pérez B. Mutations in BRAT1 cause autosomal recessive progressive encephalopathy: Report of a Spanish patient. Eur J Paediatr Neurol 2016; 20:421-5. [PMID: 26947546 PMCID: PMC4979314 DOI: 10.1016/j.ejpn.2016.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/19/2015] [Accepted: 02/14/2016] [Indexed: 01/23/2023]
Abstract
We describe a 4-year-old male child born to non-consanguineous Spanish parents with progressive encephalopathy (PE), microcephaly, and hypertonia. Whole exome sequencing revealed compound heterozygous BRAT1 mutations [c.1564G > A (p.Glu522Lys) and c.638dup (p.Val214Glyfs*189)]. Homozygous and compound heterozygous BRAT1 mutations have been described in patients with lethal neonatal rigidity and multifocal seizure syndrome (MIM# 614498). The seven previously described patients suffered from uncontrolled seizures, and all of those patients died in their first months of life. BRAT1 acts as a regulator of cellular proliferation and migration and is required for mitochondrial function. The loss of these functions may explain the cerebral atrophy observed in this case of PE. This case highlights the extraordinary potential of next generation technologies for the diagnosis of rare genetic diseases, including PE. Making a prompt diagnosis of PE is important for genetic counseling and disease management.
Collapse
Affiliation(s)
| | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Eui Young So
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Toru Ouchi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mar Jiménez de la Peña
- Neuro-Radiology Unit, Magnetic Resonance Unit, Hospital Universitario Quirón, Madrid, Spain
| | - Anna Duat
- Pediatric Neurology Unit, Hospital Universitario Niño Jesús, Madrid, Spain
| | | | | | - Jacobo Albert
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
42
|
Mitochondrial dysfunction in DDR-related cancer predisposition syndromes. Biochim Biophys Acta Rev Cancer 2016; 1865:184-9. [DOI: 10.1016/j.bbcan.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
|
43
|
PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ 2016; 23:1448-57. [PMID: 26943323 DOI: 10.1038/cdd.2016.23] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 01/26/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) promotes cell survival in response to genotoxic stress by inducing the expression of anti-apoptotic proteins including Bcl-xL, which protects mitochondria from stress-induced mitochondrial outer membrane permeabilization (MOMP). Here we show that the multifunctional sorting protein Pacs-2 (phosphofurin acidic cluster sorting protein-2) is required for Bcl-xL induction following DNA damage in primary mouse thymocytes. Consequently, in response to DNA damage, Pacs-2(-/-) thymocytes exhibit a blunted induction of Bcl-xL, increased MOMP and accelerated apoptosis. Biochemical studies show that cytoplasmic PACS-2 promotes this DNA damage-induced anti-apoptotic pathway by interacting with ataxia telangiectasia mutated (ATM) to drive NF-κB activation and induction of Bcl-xL. However, Pacs-2 was not required for tumor necrosis factor-α-induced NF-κB activation, suggesting a role for PACS-2 selectively in NF-κB activation in response to DNA damage. These findings identify PACS-2 as an in vivo mediator of the ATM and NF-κB-dependent induction of Bcl-xL that promotes cell survival in response to DNA damage.
Collapse
|
44
|
So EY, Ouchi M, Cuesta-Sancho S, Olson SL, Reif D, Shimomura K, Ouchi T. Tumor suppression by resistant maltodextrin, Fibersol-2. Cancer Biol Ther 2016; 16:460-5. [PMID: 25692338 DOI: 10.1080/15384047.2015.1009269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Resistant maltodextrin Fibersol-2 is a soluble and fermentable dietary fiber that is Generally Recognized As Safe (GRAS) in the United States. We tested whether Fibersol-2 contains anti-tumor activity. Human colorectal cancer cell line, HCT116, and its isogenic cells were treated with FIbersol-2. Tumor growth and tumorigenesis were studied in vitro and in vivo. Apoptotic pathway and generation of reactive oxygen species (ROS) were investigated. We discovered that Fibersol-2 significantly inhibits tumor growth of HCT116 cells by inducing apoptosis. Fibersol-2 strongly induces mitochondrial ROS and Bax-dependent cleavage of caspase 3 and 9, which is shown by isogenic HCT116 variants. Fibersol-2 induces phosphorylation of Akt, mTOR in parental HCT116 cells, but not in HCT116 deficient for Bax or p53. It prevents growth of tumor xenograft without any apparent signs of toxicity in vivo. These results identify Fibersol-2 as a mechanism-based dietary supplement agent that could prevent colorectal cancer development.
Collapse
Affiliation(s)
- Eui Young So
- a Department of Cancer Genetics ; Roswell Park Cancer Institute ; Buffalo , NY USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Mundy SA, Krock BL, Mao R, Shen JJ. BRAT1-related disease--identification of a patient without early lethality. Am J Med Genet A 2015; 170:699-702. [PMID: 26494257 DOI: 10.1002/ajmg.a.37434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/03/2015] [Indexed: 01/22/2023]
Abstract
We present a patient with neonatal onset of hypertonia and seizures identified through whole exome sequencing to have compound heterozygous variants, c.294dupA (p.Leu99fs) and c.1925C>A (p.Ala642Glu), in the BRCA1-associated protein required for ATM activation-1 (BRAT1) gene. Variants in BRAT1 have been identified to cause lethal neonatal rigidity and multifocal seizure syndrome (OMIM# 614498), which consistently manifests a severe neurological phenotype that includes neonatal presentation of rigidity and hypertonia, microcephaly and arrested head growth, intractable seizures, absence of developmental progress, apneic episodes, and death usually by 6 months of age. Our patient initially had a similarly severe neurological picture but remains alive at 6 years of age, expanding the phenotype to include longer term survival and providing further insights into genotype-phenotype correlations and the natural history of this disease.
Collapse
Affiliation(s)
- Sheraden A Mundy
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, California.,Natera Inc., San Carlos, California
| | - Bryan L Krock
- Department of Pathology, University of Utah, Salt Lake City, Utah.,ARUP Laboratories, Salt Lake City, Utah
| | - Rong Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah.,ARUP Laboratories, Salt Lake City, Utah
| | - Joseph J Shen
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, California
| |
Collapse
|
46
|
Low LH, Chow YL, Li Y, Goh CP, Putz U, Silke J, Ouchi T, Howitt J, Tan SS. Nedd4 family interacting protein 1 (Ndfip1) is required for ubiquitination and nuclear trafficking of BRCA1-associated ATM activator 1 (BRAT1) during the DNA damage response. J Biol Chem 2015; 290:7141-50. [PMID: 25631046 PMCID: PMC4358134 DOI: 10.1074/jbc.m114.613687] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/14/2015] [Indexed: 12/20/2022] Open
Abstract
During injury, cells are vulnerable to apoptosis from a variety of stress conditions including DNA damage causing double-stranded breaks. Without repair, these breaks lead to aberrations in DNA replication and transcription, leading to apoptosis. A major response to DNA damage is provided by the protein kinase ATM (ataxia telangiectasia mutated) that is capable of commanding a plethora of signaling networks for DNA repair, cell cycle arrest, and even apoptosis. A key element in the DNA damage response is the mobilization of activating proteins into the cell nucleus to repair damaged DNA. BRAT1 is one of these proteins, and it functions as an activator of ATM by maintaining its phosphorylated status while also keeping other phosphatases at bay. However, it is unknown how BRAT1 is trafficked into the cell nucleus to maintain ATM phosphorylation. Here we demonstrate that Ndfip1-mediated ubiquitination of BRAT1 leads to BRAT1 trafficking into the cell nucleus. Without Ndfip1, BRAT1 failed to translocate to the nucleus. Under genotoxic stress, cells showed increased expression of both Ndfip1 and phosphorylated ATM. Following brain injury, neurons show increased expression of Ndfip1 and nuclear translocation of BRAT1. These results point to Ndfip1 as a sensor protein during cell injury and Ndfip1 up-regulation as a cue for BRAT1 ubiquitination by Nedd4 E3 ligases, followed by nuclear translocation of BRAT1.
Collapse
Affiliation(s)
- Ley-Hian Low
- From the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Yuh-Lit Chow
- From the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Yijia Li
- From the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Choo-Peng Goh
- From the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Ulrich Putz
- From the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - John Silke
- the Walter & Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, 3010 Victoria, Australia, and
| | - Toru Ouchi
- the Department of Cancer Genetics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, New York 14263
| | - Jason Howitt
- From the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3010 Victoria, Australia,
| | - Seong-Seng Tan
- From the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3010 Victoria, Australia,
| |
Collapse
|
47
|
Moreira JBN, Wohlwend M, Alves MNM, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med 2015; 13:76. [PMID: 25889299 PMCID: PMC4352273 DOI: 10.1186/s12967-015-0444-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 02/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background Activation of protein kinase AKT is required for cardioprotection by ischemic preconditioning, and transgenic overexpression of AKT protects the heart against ischemia. However, it is unknown whether acute pharmacological activation of AKT alone, using a therapeutically relevant strategy, induces cardioprotection. In this study we provide the first evidence to clarify this question. Methods We used a recently described specific activator of AKT, the small molecule SC79, to treat rat hearts submitted to ischemia and reperfusion. Initially, isolated rat hearts were perfused with increasing doses of SC79 to verify the magnitude of AKT activation. Low and high doses were determined and used to treat hearts submitted to ischemia (35 minutes) and reperfusion (60 minutes), in a randomized and blinded design. AKT activation was verified by western immunobloting. Metabolic profile was determined by cardiac ATP content and mitochondrial enzyme activity, while cytosolic levels of cytochrome C and caspase-3 activity were used as markers of apoptosis. Ischemic injury was assessed by quantification of infarct size and cardiac release of creatine kinase and lactate dehydrogenase. Results SC79 activated cardiac AKT within 30 minutes in a dose-dependent fashion. ATP content was largely reduced by ischemia, but was not rescued by SC79. Similarly, mitochondrial enzyme activity was not affected by SC79. SC79 administered before ischemia or at reperfusion did not prevent cytosolic accumulation of cytochrome C and overactivation of caspase-3. Finally, SC79 failed to reduce infarct size or release of cardiac injury biomarkers at reperfusion. Conclusion We conclude that selective AKT activation by the synthetic molecule SC79 does not protect the rat heart against ischemic injury, indicating that acute pharmacological activation of AKT is not sufficient for cardioprotection.
Collapse
Affiliation(s)
- Jose B N Moreira
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway. .,Norwegian Council on Cardiovascular Disease, Oslo, Norway.
| | - Martin Wohlwend
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway.
| | - Marcia N M Alves
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway.
| | - Ulrik Wisløff
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway.
| | - Anja Bye
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway. .,Norwegian Council on Cardiovascular Disease, Oslo, Norway.
| |
Collapse
|
48
|
Straussberg R, Ganelin-Cohen E, Goldberg-Stern H, Tzur S, Behar DM, Smirin-Yosef P, Salmon-Divon M, Basel-Vanagaite L. Lethal neonatal rigidity and multifocal seizure syndrome--report of another family with a BRAT1 mutation. Eur J Paediatr Neurol 2015; 19:240-2. [PMID: 25500575 DOI: 10.1016/j.ejpn.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/20/2014] [Accepted: 11/23/2014] [Indexed: 11/19/2022]
Abstract
We describe two siblings born to consanguineous Arab-Muslim parents who presented in early infancy with myoclonic seizures, hypertonia and contractures, arrested head growth, inability to swallow, and bouts of apnea-bradycardia, culminating in cardiac arrest and death. Whole-genome sequencing yielded a c.1173delG mutation in the BRAT1 gene. Three recent reports identified mutations in the same gene in three infants from three Amish sibships, one Mexican neonate and two Japanese siblings with similar clinical manifestations. The authors speculated that the destabilization of the encoded protein may underlie the catastrophic epilepsy and corticobasal neuronal degeneration. We suggest that BRAT1 be added to the growing list of genes that are related to severe early infantile (neonatal) epileptic encephalopathy.
Collapse
Affiliation(s)
- Rachel Straussberg
- Neurgenetics Clinic, Department of Child Neurology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Esther Ganelin-Cohen
- Neurgenetics Clinic, Department of Child Neurology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hadassah Goldberg-Stern
- Neurgenetics Clinic, Department of Child Neurology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shay Tzur
- Molecular Medicine Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Doron M Behar
- Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel; Molecular Medicine Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Pola Smirin-Yosef
- Felsenstein Medical Research Center, Petach Tikva, Israel; Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Lina Basel-Vanagaite
- Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel; Felsenstein Medical Research Center, Petach Tikva, Israel
| |
Collapse
|