1
|
Hickson SE, Brekke E, Schwerk J, Saluhke I, Zaver S, Woodward J, Savan R, Hyde JL. Sequence Diversity in the 3' Untranslated Region of Alphavirus Modulates IFIT2-Dependent Restriction in a Cell Type-Dependent Manner. J Interferon Cytokine Res 2025; 45:133-149. [PMID: 40079162 DOI: 10.1089/jir.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Alphaviruses (family Togaviridae) are a diverse group of positive-sense RNA (+ssRNA) viruses that are transmitted by arthropods and are the causative agent of several significant human and veterinary diseases. Interferon (IFN)-induced proteins with tetratricopeptide repeats (IFITs) are a family of RNA-binding IFN-stimulated genes (ISGs) that are highly upregulated following viral infection and have been identified as potential restrictors of alphaviruses. The mechanism by which IFIT1 restricts RNA viruses is dependent on self and non-self-discrimination of RNA, and alphaviruses evade this recognition via their 5' untranslated region (UTR). However, the role of IFIT2 during alphavirus replication and the mechanism of viral replication inhibition is unclear. In this study, we identify IFIT2 as a restriction factor for Venezuelan equine encephalitis virus (VEEV) and show that IFIT2 binds the 3' 3'UTR of the virus. We investigated the potential role of variability in the 3'UTR of the virus affecting IFIT2 antiviral activity by studying infection with VEEV. Comparison of recombinant VEEV clones containing 3'UTR sequences derived from epizootic and enzootic isolates exhibited differential sensitivity to IFIT2 restriction in vitro infection studies, suggesting that the alphavirus 3'UTR sequence may function in part to evade IFIT2 restriction. In vitro binding assays demonstrate that IFIT2 binds to the VEEV 3'UTR; however, in contrast to previous studies, VEEV restriction did not appear to be dependent on the ability of IFIT2 to inhibit translation of viral RNA, suggesting a novel mechanism of IFIT2 restriction. Our study demonstrates that IFIT2 is a restriction factor for alphaviruses and variability in the 3'UTR of VEEV can modulate viral restriction by IFIT2. Ongoing studies are exploring the biological consequences of IFIT2-VEEV RNA interaction in viral pathogenesis and defining sequence and structural features of RNAs that regulate IFIT2 recognition.
Collapse
Affiliation(s)
- Sarah E Hickson
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Eden Brekke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Indraneel Saluhke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Shivam Zaver
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua Woodward
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jennifer L Hyde
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Zhao Y, Zhang Y, Lu W, Sun R, Guo R, Cao X, Liu X, Lyu C, Zhao M. The diagnostic/prognostic roles and biological function of the IFIT family members in acute myeloid leukemia. BMC Med Genomics 2023; 16:296. [PMID: 37980495 PMCID: PMC10657597 DOI: 10.1186/s12920-023-01735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The Interferon-induced protein with tetratricopeptide repeat (IFIT) family, IFIT1/2/3/5, play an important role in different tumors progression. However, the prognosis significance and biological role of IFIT family members in acute myeloid leukemia (AML) remains unclear. METHODS We obtained the gene expression data and clinical information of 173 AML patients from The Cancer Genome Atlas (TCGA) database. Several databases were used in our study, including GEPIA, MethSurv, STRING, GSCA and GeneMANIA database. RESULTS The mRNA expression of IFIT1/2/3/5 was elevated in AML patients and had a high ability to distinguish AML from controls based on the receiver operating characteristic (ROC) curve (AUC > 0.9). Kaplan-Meier survival analysis showed that higher levels of IFIT2/3/5 expression predict poor prognosis in AML patients. Besides, the DNA methylation analysis suggested that 7 CpG sites of IFIT2, 4 CpG sites of IFIT3 and 10 CpG sites of IFIT5 were significantly associated with the prognosis of AML patients. In addition, IFIT2/3/5 expression was significantly positively associated with the immune cell infiltration and immune checkpoint expression, such as CTLA4, PDCD1, LAG3, and TIGIT. Finally, drug sensitivity analysis revealed that AML patients with high expression of IFIT2/3/5 were resistant to multiple drugs, but sensitive to dasatinib. CONCLUSION IFIT family genes might serve as biomarkers for diagnosis, prognosis and drug sensitivity in AML patients. The activation or blocking of IFIT-related signaling pathways may provide novel insights into immunotherapy for patients with AML.
Collapse
Affiliation(s)
- YiFan Zhao
- First Center Clinic College of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, People's Republic of China
| | - WenYi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - RuiTing Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, People's Republic of China
| | - XinPing Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, People's Republic of China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Cuicui Lyu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, People's Republic of China.
| | - MingFeng Zhao
- First Center Clinic College of Tianjin Medical University, Tianjin, People's Republic of China.
- Department of Hematology, Tianjin First Central Hospital, Tianjin, People's Republic of China.
| |
Collapse
|
3
|
IFIT2 Depletion Promotes Cancer Stem Cell-like Phenotypes in Oral Cancer. Biomedicines 2023; 11:biomedicines11030896. [PMID: 36979874 PMCID: PMC10045464 DOI: 10.3390/biomedicines11030896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
(1) Background: Cancer stem cells (CSCs) are a small cell population associated with chemoresistance, metastasis and increased mortality rate in oral cancer. Interferon-induced proteins with tetratricopeptide repeats 2 (IFIT2) depletion results in epithelial to mesenchymal transition, invasion, metastasis, and chemoresistance in oral cancer. To date, no study has demonstrated the effect of IFIT2 depletion on the CSC-like phenotype in oral cancer cells. (2) Methods: Q-PCR, sphere formation, Hoechst 33,342 dye exclusion, immunofluorescence staining, and flow cytometry assays were performed to evaluate the expression of the CSC markers in IFIT2-depleted cells. A tumorigenicity assay was adopted to assess the tumor formation ability. Immunohistochemical staining was used to examine the protein levels of IFIT2 and CD24 in oral cancer patients. (3) Results: The cultured IFIT2 knockdown cells exhibited an overexpression of ABCG2 and CD44 and a downregulation of CD24 and gave rise to CSC-like phenotypes. Clinically, there was a positive correlation between IFIT2 and CD24 in the patients. IFIT2high/CD24high/CD44low expression profiles predicted a better prognosis in HNC, including oral cancer. The TNF-α blockade abolished the IFIT2 depletion-induced sphere formation, indicating that TNF-α may be involved in the CSC-like phenotypes in oral cancer. (4) Conclusions: The present study demonstrates that IFIT2 depletion promotes CSC-like phenotypes in oral cancer.
Collapse
|
4
|
Chen X, Wei C, Huang L, Syrigos K, Li Y, Li P. Non-coding RNAs regulate mitochondrial dynamics in the development of gastric cancer. Front Mol Biosci 2023; 10:1107651. [PMID: 36714260 PMCID: PMC9877238 DOI: 10.3389/fmolb.2023.1107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Gastric cancer (GC) is a malignant cancer that reduces life expectancy worldwide. Although treatment strategies have improved, patients with GC still have poor prognoses. Hence, it is necessary to understand the molecular mechanisms of GC and to find new therapeutic targets. Mitochondrial dynamics and mitochondrial dysfunction are associated with cancer cell growth and progression. Numerous studies have reported that non-coding RNAs (ncRNAs) can participate in the occurrence and development of GC by regulating mitochondrial dynamics. Elucidating the crosstalk between ncRNAs and mitochondria would be helpful in preventing and treating GC. Herein, we review and summarize the functions of oncogenes and tumor suppressors in suppressing ncRNAs and regulating mitochondrial dynamics in GC tumor growth, proliferation, invasion and metastasis. This review provides new insights into the pathogenesis of and intervention for GC.
Collapse
Affiliation(s)
- Xiatian Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chuang Wei
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Liting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Yuzhen Li
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yuzhen Li, ; Peifeng Li,
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,*Correspondence: Yuzhen Li, ; Peifeng Li,
| |
Collapse
|
5
|
Jiang Y, Zhang C, Zhang J, Han D, Shi X. Comprehensive analysis of the prognosis and biological significance for IFIT family in skin cutaneous melanoma. Int Immunopharmacol 2021; 101:108344. [PMID: 34763233 DOI: 10.1016/j.intimp.2021.108344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022]
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFITs) genes, consisting of four members named IFIT1, IFIT2, IFIT3 and IFIT5, are involved in the progression of multiple cancer types, but their roles in skin cutaneous melanoma (SKCM) are still largely unknown. The TCGA-SKCM dataset, GSE15605 dataset and GSE100508 dataset were obtained in our study, and multiple online databases were used for data analysis and visualization, including GEPIA, GSCALite, MethSurv, DAVID, starBase and TIMER database. The mRNA expressing levels of all the four members included in IFIT family were elevated in SKCM tissues. In addition, ROC curve showed that the combined IFITs had a higher tumor prediction performance. Kaplan-Meier survival analysis revealed that the low expression of IFIT1/2/3/5 was associated with poor overall survival (OS) and disease-specific survival (DSS) in SKCM patients. Moreover, univariate and multivariate Cox regression analysis suggested that the low expression of IFIT2/3/5 was an independent risk factor for the prognosis of SKCM patients. Besides, cancer pathway activity analysis certified that the IFITs were involved in the apoptosis pathways, epithelial-mesenchymal transition (EMT) and cell cycle. Furthermore, drug sensitivity analysis indicated that the high expression of IFIT1/2/3 was sensitive to dasatinib drug. Additionally, the expressing levels of IFITs were found to be positively correlated with the level of immune cell infiltrates, immune biomarkers and m6A regulators. Finally, using bioinformatics analysis, we predicted that PAX8-AS1/Z83843.1-miR-92a-3p-IFIT2 axis might play crucial roles in the development and progression of SKCM. This study explored the prognostic values and biological significance of the IFITs in SKCM microenvironment. IFITs may serve as novel biomarkers for the diagnosis and prognosis of melanoma and potential immunotherapeutic targets.
Collapse
Affiliation(s)
- Yuxiong Jiang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Chen Zhang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Jieping Zhang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Dongxu Han
- Tongji University School of Medicine, Shanghai 200092, China
| | - Xiujuan Shi
- Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
6
|
Ferretti VA, León IE. Long Non-coding RNAs in Cisplatin Resistance in Osteosarcoma. Curr Treat Options Oncol 2021; 22:41. [PMID: 33745006 DOI: 10.1007/s11864-021-00839-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
OPINION STATEMENT Osteosarcoma (OS), the most common primary malignant bone tumor, is a vastly aggressive disease in children and adolescents. Although dramatic progress in therapeutic strategies have achieved over the past several decades, the outcome remains poor for most patients with metastatic or recurrent OS. Nowadays, conventional treatment for OS patients is surgery combined with multidrug chemotherapy including doxorubicin, methotrexate, and cisplatin (CDDP). In this sense, cisplatin (CDDP) is one of the most drugs used in the treatment of OS but drug resistance to CDDP appears as a serious problem in the use of this drug in the treatment of OS. Thus, we consider that the understanding the molecular mechanisms and the genes involved that lead to CDDP resistance is essential to developing more effective treatments against OS. In this review, we present an outline of the key role of the long non-coding RNAs (lncRNAs) in CDDP resistance in OS. This overview is expected to contribute to understand the mechanisms of CDDP resistance in OS and the relationship of the expression regulation of several lncRNAs.
Collapse
Affiliation(s)
- Valeria A Ferretti
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv, 120 1465, La Plata, Argentina
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv, 120 1465, La Plata, Argentina.
| |
Collapse
|
7
|
Wang R, Shen J, Su N, Wang Q, Zhang M, Liu C. MiR-645 regulates the proliferation and apoptosis of diffuse large B-cell lymphoma by targeting DACH1. Hum Cell 2020; 33:1091-1098. [PMID: 32529465 DOI: 10.1007/s13577-020-00321-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/02/2020] [Indexed: 10/24/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of malignant non-Hodgkin lymphoma cases. An increasing body of evidence has indicated the critical roles of microRNAs (miRNAs) in regulating the progression of DLBCL. In this study, we found that miR-645 was up-regulated in DLBCL tissues and cell lines. Down-regulation of miR-645 significantly inhibited the proliferation, cell cycle progression and promoted the apoptosis of DLBCL cells. Experimental study identified Dachshund family transcription factor 1 (DACH1) as a target of miR-645. MiR-645 bound the 3'-untranslated region of DACH1 and reduced the expression of DACH1 in DLBCL cells. Decreased expression of DACH1 was inversely correlated with that of miR-645 in DLBCL tissues. The promoting effect of miR-645 on the proliferation of DLBCL cells was attenuated with the overexpression of DACH1. These results demonstrated the novel mechanism of miR-645 in DLBCL, which indicated miR-645 as a potential target for the diagnosis and prognostics of DLBCL.
Collapse
Affiliation(s)
- Ruihuan Wang
- The Second Hematology Department, Cangzhou Central Hospital, No. 16 Xinhua West Street, Cangzhou, 061001, Hebei, China.
| | - Jie Shen
- The Second Hematology Department, Cangzhou Central Hospital, No. 16 Xinhua West Street, Cangzhou, 061001, Hebei, China
| | - Na Su
- The CDC of Xinhua District, Cangzhou, 061000, Hebei, China
| | - Qing Wang
- The Second Hematology Department, Cangzhou Central Hospital, No. 16 Xinhua West Street, Cangzhou, 061001, Hebei, China
| | - Minjuan Zhang
- The Second Hematology Department, Cangzhou Central Hospital, No. 16 Xinhua West Street, Cangzhou, 061001, Hebei, China
| | - Chunyan Liu
- The Second Hematology Department, Cangzhou Central Hospital, No. 16 Xinhua West Street, Cangzhou, 061001, Hebei, China
| |
Collapse
|
8
|
Li S, Hou X, Wu C, Han L, Li Q, Wang J, Luo S. MiR-645 promotes invasiveness, metastasis and tumor growth in colorectal cancer by targeting EFNA5. Biomed Pharmacother 2020; 125:109889. [PMID: 32036212 DOI: 10.1016/j.biopha.2020.109889] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
MicroRNA-645 (miR-645) has been implicated in numerous types of human cancers including colon cancer. However, the effects and mechanisms of action of miR-645 dysregulation on the growth and malignancy of colorectal cancer (CRC) remain unclear. In this study, we demonstrated that miR-645 knockdown significantly diminished CRC cell migration and invasion and repressed epithelial-mesenchymal transition (EMT). Conversely, miR-645 overexpression enhanced CRC cell migration, invasion, and EMT. In vivo assays confirmed that miR-645 knockdown substantially reduced CRC growth and metastasis. Regarding the mechanism, ephrin-A5 (EFNA5) was identified as a direct target gene of miR-645. MiR-645 specifically targeted the 3'-untranslated region of EFNA5 mRNA and hindered its expression. EFNA5 knockdown attenuated the effects of miR-645 knockdown on CRC cell migration and invasion. Additionally, we noted a statistically significant inverse correlation between EFNA5 mRNA and miR-645 levels in tumors from 28 patients with CRC. Hence, miR-645 acts as an oncogenic miRNA that may increase CRC cell migration, invasiveness, and metastasis by targeting EFNA5.
Collapse
Affiliation(s)
- Shuai Li
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xinfang Hou
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Chen Wu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Lili Han
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Qian Li
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jufeng Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Suxia Luo
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Pidugu VK, Pidugu HB, Wu MM, Liu CJ, Lee TC. Emerging Functions of Human IFIT Proteins in Cancer. Front Mol Biosci 2019; 6:148. [PMID: 31921891 PMCID: PMC6930875 DOI: 10.3389/fmolb.2019.00148] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFIT) genes are prominent interferon-stimulated genes (ISGs). The human IFIT gene family consists of four genes named IFIT1, IFIT2, IFIT3, and IFIT5. The expression of IFIT genes is very low in most cell types, whereas their expression is greatly enhanced by interferon treatment, viral infection, and pathogen-associated molecular patterns (PAMPs). The proteins encoded by IFIT genes have multiple tetratricopeptide repeat (TPR) motifs. IFIT proteins do not have any known enzymatic roles. However, they execute a variety of cellular functions by mediating protein-protein interactions and forming multiprotein complexes with cellular and viral proteins through their multiple TPR motifs. The versatile tertiary structure of TPR motifs in IFIT proteins enables them to be involved in distinct biological functions, including host innate immunity, antiviral immune response, virus-induced translation initiation, replication, double-stranded RNA signaling, and PAMP recognition. The current understanding of the IFIT proteins and their role in cellular signaling mechanisms is limited to the antiviral immune response and innate immunity. However, recent studies on IFIT protein functions and their involvement in various molecular signaling mechanisms have implicated them in cancer progression and metastasis. In this article, we focused on critical molecular, biological and oncogenic functions of human IFIT proteins by reviewing their prognostic significance in health and cancer. Research suggests that IFIT proteins could be novel therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Meei-Maan Wu
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
10
|
Retraction: Multidrug-Resistance Related Long Non-Coding RNA Expression Profile Analysis of Gastric Cancer. PLoS One 2019; 14:e0226210. [PMID: 31794596 PMCID: PMC6890251 DOI: 10.1371/journal.pone.0226210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Su W, Xiao W, Chen L, Zhou Q, Zheng X, Ju J, Jiang J, Wang Z. Decreased IFIT2 Expression In Human Non-Small-Cell Lung Cancer Tissues Is Associated With Cancer Progression And Poor Survival Of The Patients. Onco Targets Ther 2019; 12:8139-8149. [PMID: 31632065 PMCID: PMC6781603 DOI: 10.2147/ott.s220698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Background IFIT2 (interferon-induced proteins with tetratricopeptide repeats 2), also known as ISG54, is an important interferon-stimulated gene family protein, which has been confirmed to play a crucial role in anti-cancer as well as anti-virus process. In the present study, we aimed to investigate the IFIT2 expression in human non-small-cell cancer (NSCLC) tissues and its clinical implications. Methods The immunohistochemistry assay was used to identify the clinical significance and prognostic value of IFIT2 expression in NSCLC tissues. The depletion of IFIT2 was achieved using RNAi approach to assess the role of IFIT2 in the regulation of biological behaviors in human lung cancer cell lines. Results Decreased IFIT2 expression was found in human NSCLC tissues (both in lung adenocarcinoma and lung squamous cell carcinoma) in contrast to the adjacent normal tissues (both P<0.0001, respectively). We did not find any significant correlations between the IFIT2 expression and patient’s clinicopathological features. The survival analysis showed that the overall survival (OS) of patients in IFIT2 low expression group was significantly poorer than that in IFIT2 high expression group (in lung adenocarcinoma: P=0.027; and in lung squamous cell carcinoma: P=0.029). The Cox model analysis also indicated that the distant metastasis (P=0.043) could be used as an independent prognostic factor for lung adenocarcinoma patients, and the lymph node metastasis (P=0.045) and IFIT2 low expression (P=0.020) could be used as independent prognostic factors for lung squamous cell carcinoma patients. Moreover, the depletion of IFIT2 in human lung cancer cell lines A549, H1975 and SK-MES-1 significantly increased the cellular abilities, such as viability, migration and invasion. Conclusion Decreased IFIT2 was involved in the initiation and the progression of human NSCLC, and its underlying mechanisms still needs further investigation.
Collapse
Affiliation(s)
- Wenya Su
- Department of Respiration, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, People's Republic of China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu 213003, People's Republic of China.,Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu 213003, People's Republic of China
| | - Wenlu Xiao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu 213003, People's Republic of China.,Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu 213003, People's Republic of China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu 213003, People's Republic of China.,Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu 213003, People's Republic of China
| | - Qi Zhou
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu 213003, People's Republic of China.,Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu 213003, People's Republic of China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu 213003, People's Republic of China.,Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu 213003, People's Republic of China
| | - Jingfang Ju
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu 213003, People's Republic of China.,Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu 213003, People's Republic of China
| | - Zhigang Wang
- Department of Respiration, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, People's Republic of China
| |
Collapse
|
12
|
Baicalein Suppresses Stem Cell-Like Characteristics in Radio- and Chemoresistant MDA-MB-231 Human Breast Cancer Cells through Up-Regulation of IFIT2. Nutrients 2019; 11:nu11030624. [PMID: 30875792 PMCID: PMC6471144 DOI: 10.3390/nu11030624] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Resistance to both chemotherapy and radiation therapy is frequent in triple-negative breast cancer (TNBC) patients. We established treatment-resistant TNBC MDA-MB-231/IR cells by irradiating the parental MDA-MB-231 cells 25 times with 2 Gy irradiation and investigated the molecular mechanisms of acquired resistance. The resistant MDA-MB-231/IR cells were enhanced in migration, invasion, and stem cell-like characteristics. Pathway analysis by the Database for Annotation, Visualization and Integrated Discovery revealed that the NF-κB pathway, TNF signaling pathway, and Toll-like receptor pathway were enriched in MDA-MB-231/IR cells. Among 77 differentially expressed genes revealed by transcriptome analysis, 12 genes involved in drug and radiation resistance, including interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were identified. We found that baicalein effectively reversed the expression of IFIT2, which is reported to be associated with metastasis, recurrence, and poor prognosis in TNBC patients. Baicalein sensitized radio- and chemoresistant cells and induced apoptosis, while suppressing stem cell-like characteristics, such as mammosphere formation, side population, expression of Oct3/4 and ABCG2, and CD44highCD24low population in MDA-MB-231/IR cells. These findings improve our understanding of the genes implicated in radio- and chemoresistance in breast cancer, and indicate that baicalein can serve as a sensitizer that overcomes treatment resistance.
Collapse
|
13
|
MicroRNA-645 represses hepatocellular carcinoma progression by inhibiting SOX30-mediated p53 transcriptional activation. Int J Biol Macromol 2018; 121:214-222. [PMID: 30312695 DOI: 10.1016/j.ijbiomac.2018.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Amount of evidence demonstrate that aberrant microRNAs (miRNAs) are involved in tumorigenesis and progression in hepatocellular carcinoma (HCC). Among them, miR-645 is recently recognized as cancer-related miRNA and its significance in HCC remains largely unknown. In this study, we reported for the first that miR-645 expression was markedly elevated in HCC tissues and cell lines, and its up-regulation was associated with malignant clinical features, including tumor size and venous infiltration and poor prognosis. Our data revealed that miR-645 promoted cell proliferation, colony formation and inhibited apoptosis by gain- and loss-of function experiments in vitro. In vivo assays showed that miR-645 overexpression enhanced tumor growth. Moreover, miR-645 directly bound to the SOX30 3'-UTR and post-transcriptionally repressed SOX30 expression in HCC cells. Furthermore, miR-645 inversely correlated with SOX30 expression in HCC tissues. Restoration of SOX30 expression at least partially abolished the biological effects of miR-645 on HCC cells. SOX30 regulated HCC progression through aberrant activation of p53 by directly binding to its promoter. Taken together, this research supports the first evidence that miR-645 exerts an oncogenic role in HCC progression and may be a therapeutic target for HCC treatment.
Collapse
|
14
|
Mears HV, Sweeney TR. Better together: the role of IFIT protein-protein interactions in the antiviral response. J Gen Virol 2018; 99:1463-1477. [PMID: 30234477 DOI: 10.1099/jgv.0.001149] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of antiviral proteins conserved throughout all vertebrates. IFIT1 binds tightly to non-self RNA, particularly capped transcripts lacking methylation on the first cap-proximal nucleotide, and inhibits their translation by out-competing the cellular translation initiation apparatus. This exerts immense selection pressure on cytoplasmic RNA viruses to maintain mechanisms that protect their messenger RNA from IFIT1 recognition. However, it is becoming increasingly clear that protein-protein interactions are necessary for optimal IFIT function. Recently, IFIT1, IFIT2 and IFIT3 have been shown to form a functional complex in which IFIT3 serves as a central scaffold to regulate and/or enhance the antiviral functions of the other two components. Moreover, IFITs interact with other cellular proteins to expand their contribution to regulation of the host antiviral response by modulating innate immune signalling and apoptosis. Here, we summarize recent advances in our understanding of the IFIT complex and review how this impacts on the greater role of IFIT proteins in the innate antiviral response.
Collapse
Affiliation(s)
- Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
15
|
Jadideslam G, Ansarin K, Sakhinia E, Alipour S, Pouremamali F, Khabbazi A. The MicroRNA-326: Autoimmune diseases, diagnostic biomarker, and therapeutic target. J Cell Physiol 2018; 233:9209-9222. [PMID: 30078204 DOI: 10.1002/jcp.26949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are uniquely regulated in healthy, inflamed, activated, cancerous, or other cells and tissues of a pathological state. Many studies confirm that immune dysregulation and autoimmune diseases with inflammation are correlated with various miRNA expression changes in targeted tissues and cells in innate or adaptive immunity. In this review, we will explain the history and classification of epigenetic changes. Next, we will describe the role of miRNAs changes, especially mir-326 in autoimmunity, autoinflammatory, and other pathological conditions. A systematic search of MEDLINE, Embase, and Cochrane Library was presented for all related studies from 1899 to 2017 with restrictions in the English language. In recent years, researchers have concentrated on mostly those roles of miRNA that are correlated with the inflammatory and anti-inflammatory process. Latest studies have proposed a fundamental pathogenic role in cancers and autoinflammatory diseases. Studies have described the role of microRNAs in autoimmunity and autoinflammatory diseases, cancers, and so on. The miRNA-326 expression plays a significant role in autoimmune and other types of diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Alipour
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| |
Collapse
|
16
|
Jiao GJ, Zhang SJ, Li Y, Wu WL, Liu HC. MicroRNA-645 promotes metastasis of osteosarcoma via targeting tumor suppressor NM23 nucleoside diphosphate kinase 2. Clin Exp Pharmacol Physiol 2018; 45:1317-1324. [PMID: 29956840 DOI: 10.1111/1440-1681.13006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022]
Abstract
Osteosarcoma is the most common non-hematological primary bony malignancy in children and young adults with tumor metastasis being a common event at diagnosis. Understanding the pathogenesis of metastatic osteosarcoma may help identify potential therapeutic targets. In this study, we found that the level of microRNA-645 (miR-645) in osteosarcoma tumor tissues was significantly increased compared with their paired non-tumorous tissues, and was associated with histologic grade, TNM staging, lymph metastasis and distant metastasis. Knockdown of miR-645 caused a remarkable inhibition of migration of osteosarcoma U2OS cells. Furthermore, miR-645 inhibited NME2 (nucleoside diphosphate kinase 2) expression through directly binding to its 3' untranslated region. In human osteosarcoma tissues, we also found that NME2 was significantly decreased in tumor tissues, and its level was negatively correlated with miR-645. In addition, silencing NME2 attenuated the decreased cell migration by knockdown of miR-645, suggesting that it was involved in the miR-645 induced cell migration of osteosarcoma cells. Taken together, we found that miR-645 was up-regulated in osteosarcoma tissues and could promote osteosarcoma cell migration through directly inhibiting the tumor suppressor NME2. Our data provide novel insight into the role of miR-645 in osteosarcoma and indicate that miR-645 might be a potential therapeutic target of osteosarcoma.
Collapse
Affiliation(s)
- Guang-Jun Jiao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Shi-Jun Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Liang Wu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-Chun Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Peraldo Neia C, Cavalloni G, Chiorino G, Ostano P, Aglietta M, Leone F. Gene and microRNA modulation upon trabectedin treatment in a human intrahepatic cholangiocarcinoma paired patient derived xenograft and cell line. Oncotarget 2018; 7:86766-86780. [PMID: 27902465 PMCID: PMC5349952 DOI: 10.18632/oncotarget.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive and lethal malignancy with limited therapeutic options. Trabectedin has a high antitumor activity in preclinical models of biliary tract carcinoma (BTC), being a promising alternative treatment. Here, we studied the effect of trabectedin at transcriptomic level on an ICC patient derived xenograft (PDX) and on the derived cell line, MT-CHC01. Further, putative targets of trabectedin were explored in the in vitro model. In vitro, trabectedin inhibited genes involved in protein modification, neurogenesis, migration, and motility; it induced the expression of genes involved in keratinization, tissues development, and apoptotic processes. In the PDX model, trabectedin affected ECM-receptor interaction, focal adhesion, complement and coagulation cascades, Hedgehog, MAPK, EGFR signaling via PIP3 pathway, and apoptosis. Among down-regulated genes, we selected SYK and LGALS1; their silencing caused a significantly reduction of migration, but did not affect proliferation in in vitro models. In MT-CHC01 cells, 24 microRNAs were deregulated upon drug treatment, while only 5 microRNAs were perturbed by trabectedin in PDX. The target prediction analysis showed that SYK and LGALS1 are putative targets of up-regulated microRNAs. In conclusion, we described that trabectedin affected genes and microRNAs involved in tumor progression and metastatic processes, reflecting data previously obtained at macroscopically level; in particular, we identified SYK and LGALS1 as new putative targets of trabectedin.
Collapse
Affiliation(s)
- Caterina Peraldo Neia
- University of Turin Medical School, Department of Oncology, IRCCS-Institute Candiolo, Italy
| | - Giuliana Cavalloni
- Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), IRCCS-Institute Candiolo, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Paola Ostano
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Massimo Aglietta
- University of Turin Medical School, Department of Oncology, IRCCS-Institute Candiolo, Italy.,Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), IRCCS-Institute Candiolo, Italy
| | - Francesco Leone
- University of Turin Medical School, Department of Oncology, IRCCS-Institute Candiolo, Italy.,Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), IRCCS-Institute Candiolo, Italy
| |
Collapse
|
18
|
PLZF inhibits proliferation and metastasis of gallbladder cancer by regulating IFIT2. Cell Death Dis 2018; 9:71. [PMID: 29358655 PMCID: PMC5833736 DOI: 10.1038/s41419-017-0107-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Gallbladder cancer (GBC) is a malignant cancer with very poor prognosis. Although promyelocytic leukemia zinc-finger protein (PLZF) was reported to be deregulated in numerous cancers and also relevant to clinical prognosis, its role in GBC progression has been little known. In this study, we found PLZF expression was decreased in GBC, correlating to advanced TNM stage, distant metastasis, and shorter overall survival. Moreover, ectopic PLZF expression in GBC cells (NOZ and GBC-SD) significantly reduced the cell proliferation, migration, and invasion. Consistently, overexpression of PLZF in xenograft mice model could suppress tumor growth and liver metastasis. Mechanical investigations verified PLZF could regulate the expression of cell cycle arrest-associated gene p21 and epithelial–mesenchymal transition (EMT)-related genes (E-cadherin and N-cadherin) in GBC cell lines. Importantly, PLZF remarkably increased the mRNA transcription of interferon-induced protein with tetratricopeptide repeat 2 (IFIT2) by increasing STAT1 protein level, a known factor involved in tumor progression. Furthermore, ablation of IFIT2 in PLZF overexpression cells abrogated the tumor-suppressive function of PLZF, at least partially, leading to impaired tumor growth and EMT program. These studies indicated PLZF inhibited the proliferation and metastasis via regulation of IFIT2. In conclusion, our study demonstrated PLZF could be a promising tumor biomarker for GBC, and also be a potential therapeutic target.
Collapse
|
19
|
Ohsugi T, Yamaguchi K, Zhu C, Ikenoue T, Furukawa Y. Decreased expression of interferon-induced protein 2 (IFIT2) by Wnt/β-catenin signaling confers anti-apoptotic properties to colorectal cancer cells. Oncotarget 2017; 8:100176-100186. [PMID: 29245969 PMCID: PMC5725011 DOI: 10.18632/oncotarget.22122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Impaired Wnt signaling pathway plays a crucial role in the development of colorectal cancer through activation of the β-catenin/TCF7L2 complex. Although genes up-regulated by Wnt/β-catenin signaling have been intensively studied, the roles of down-regulated genes are poorly understood. In this study, we explored a global gene expression of colorectal cancer cells transfected with β-catenin siRNAs or a dominant negative form of TCF7L2 (dnTCF7L2), and identified a set of genes down-regulated by Wnt/β-catenin signaling. Among the genes, we focused here on IFIT2, a gene encoding interferon-induced protein with tetratricopeptide repeats. A reporter assay using plasmids containing a 5’-flanking region of the gene showed that the reporter activity was enhanced by either transduction of β-catenin siRNA or dnTCF7L2, suggesting that the region is involved in the transcriptional regulation as a downstream of the β-catenin/TCF7L2 complex. Consistent with this result, expression of IFIT2 was significantly lower in colorectal cancer tissues than that in normal tissues. Exogenous IFIT2 expression decreased cell proliferation and increased apoptosis of colorectal cancer cells. These data suggested that the down-regulation of IFIT2 by Wnt/β-catenin signaling may play a vital role in human colorectal carcinogenesis through the suppression of apoptosis.
Collapse
Affiliation(s)
- Tomoyuki Ohsugi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Chi Zhu
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
20
|
Guinn Z, Brown DM, Petro TM. Activation of IRF3 contributes to IFN-γ and ISG54 expression during the immune responses to B16F10 tumor growth. Int Immunopharmacol 2017; 50:121-129. [PMID: 28651122 PMCID: PMC5548377 DOI: 10.1016/j.intimp.2017.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/15/2017] [Accepted: 06/17/2017] [Indexed: 12/22/2022]
Abstract
Interferon Regulatory Factor (IRF-3) has been shown to contribute to immune control of B16 melanoma tumor growth. We have shown previously that IRF-3 has a role in IFN-γ-induced expression of pro-apoptotic interferon stimulated gene 54 (ISG54) in macrophages and IFN-γ in T cells. To investigate the IRF3-IFN-γ-ISG54 nexus, we injected C57Bl/6 (B6) and IRF3KO mice s.c. with luciferase-producing B16-F10 tumor cells. Tumor growth as measured by luciferase levels was similar between B6 and IRF3KO mice at days 2 and 6, but was significantly greater at day 9 in IRF3KO mice compared with B6 mice. Transcription factor assays on splenic protein extracts after tumor inoculation revealed peak activation of IRF3 and IRF7 at day 6 in B6 tumor-bearing mice but not in IRF3KO tumor-bearing mice. Likewise, significant induction of IFN-γ occurred in spleens and tumors in B6 mice from days 6-9 but failed to occur in tumor-bearing IRF3KO mice. Previous reports from other labs showed that the anti-tumor properties of IFN-γ are the result of cell cycle arrest. Using B16F1 cells or B16F1 cells deficient in IFN-γ receptor (B16-IRFGRKO), we found that IFN-γ alone and in synergy with the TLR3/IRF3 agonists, poly I:C, decreased B16F1 cell growth in significant correlation with increased ISG54 expression. Moreover, IFN-γ alone increased expression of the cell cycle inhibitor, p27Kip while IFN-γ plus poly I:C increased cleaved Caspase-3 in B16 cells. Thus, it is likely that an IFN-γ/IRF3/ISG54 nexus can significantly contribute to tumor cell control during anti-tumor immune responses.
Collapse
Affiliation(s)
- Zachary Guinn
- School of Biological Sciences, University of Nebraska-Lincoln, United States
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, United States; Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, United States.
| |
Collapse
|
21
|
MicroRNA-645 is an oncogenic regulator in colon cancer. Oncogenesis 2017; 6:e335. [PMID: 28504690 PMCID: PMC5523070 DOI: 10.1038/oncsis.2017.37] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/22/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023] Open
Abstract
Despite advances in early diagnosis and the development of molecularly targeted therapy, curative treatment of colon cancer once it has metastasized is yet to be accomplished. This is closely associated with deregulated CRC cell proliferation and resistance to apoptosis. Here we reveal that upregulation of microRNA-645 (miR-645) through DNA copy number gain is responsible for enhanced proliferation and resistance to apoptosis in colon cancer. MiR-645 was upregulated in most colon cancer tissues related to adjacent normal mucosa. This appeared to be associated with amplification of a section of chromosome 20q13.13, where miR-645 is located. Inhibition of miR-645 reduced proliferation and enhanced sensitivity to apoptosis triggered by the chemotherapeutic drugs 5-fluorouracil and cisplatin in CRC cells, and retarded colon cancer xenograft growth. Conversely, overexpression of miR-645 in normal colon epithelial cells enhanced proliferation and triggered anchorage-independent cell growth. Although SRY-related HMG-box 30 (SOX30) was identified as a miR-645 target, its expression was only partially affected by miR-645, suggesting that miR-645 is a fine-tuning mechanism of SOX30 expression. Moreover, overexpression of SOX30 only moderately inhibited promotion of CRC cell proliferation by miR-645, indicating that miR-645 may have more targets that contribute to its pro-proliferation effect in colon cancer. Together, this study reveals that miR-645 can regulate oncogenesis in colon cancer with SOX30 being one of its targets.
Collapse
|
22
|
Zhang Y, Kong Y, Liu S, Zeng L, Wan L, Zhang Z. Curcumin induces apoptosis in human leukemic cell lines through an IFIT2-dependent pathway. Cancer Biol Ther 2017; 18:43-50. [PMID: 28071969 DOI: 10.1080/15384047.2016.1276129] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Curcumin, the primary bioactive component isolated from turmeric, has been shown to possess variety of biologic functions including anti-cancer activity. However, molecular mechanisms in different cancer cells are various. In the present study, we demonstrated that curcumin induced G2/M cell cycle arrest and apoptosis by increasing the expression levels of cleaved caspase-3, cleaved PARP and decreasing the expression of BCL-2 in U937 human leukemic cells but not in K562 cells. We found some interferon induced genes, especially interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were significantly upregulated when treated with curcumin in U937 cells by gene expression chip array, and further confirmed that the expression of IFIT2 was obviously higher in U937 than that in K562 cells by Western blot assay. In addition, inhibiting the expression of IFIT2 by shRNA in U937 rescued curcumin-induced apoptosis and exogenous overexpression of IFIT2 by lentiviral transduction or treating with IFNγ in K562 cells enhanced anti-cancer activity of curcumin. These results indicated for the first time that curcumin induced leukemic cell apoptosis via an IFIT2-dependent signaling pathways. The present study identified a novel mechanism underlying the antitumor effects of curcumin, and may provide a theoretical basis for curcumin combined with interferon in the cancer therapeutics.
Collapse
Affiliation(s)
- Yonglu Zhang
- a Department of Clinical Laboratory , The First Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Yunyuan Kong
- a Department of Clinical Laboratory , The First Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Shuyuan Liu
- a Department of Clinical Laboratory , The First Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Lingbing Zeng
- a Department of Clinical Laboratory , The First Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Lagen Wan
- a Department of Clinical Laboratory , The First Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Zhanglin Zhang
- a Department of Clinical Laboratory , The First Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| |
Collapse
|
23
|
Wang Y, Zhang L, Zheng X, Zhong W, Tian X, Yin B, Tian K, Zhang W. Long non-coding RNA LINC00161 sensitises osteosarcoma cells to cisplatin-induced apoptosis by regulating the miR-645-IFIT2 axis. Cancer Lett 2016; 382:137-146. [PMID: 27609068 DOI: 10.1016/j.canlet.2016.08.024] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/25/2016] [Accepted: 08/28/2016] [Indexed: 12/20/2022]
Abstract
Chemotherapeutic insensitivity remains a major obstacle to osteosarcoma treatment. Recently, increasing evidence has suggested that long non-coding RNAs (lncRNAs) play an essential role in tumourigenesis. However, the potential biological roles and regulatory mechanisms of novel lncRNAs in response to cisplatin treatment are poorly understood. Here, we found that lncRNA LINC00161 was induced by cisplatin in osteosarcoma cells. Elevated LINC00161 increased cisplatin-induced apoptosis and reversed the cisplatin-resistant phenotype of osteosarcoma cells by upregulating IFIT2. Further mechanistic studies revealed that LINC00161 could sponge endogenous miR-645 and inhibit its activity leading to IFIT2 increase. In addition, we identified that LINC00161 enhanced cisplatin-induced apoptosis through regulation of the miR-645-IFIT2 pathway. Thus, these findings demonstrate that LINC00161 is an essential regulator in cisplatin-induced apoptosis, and the LINC00161-miR-645-IFIT2 signalling axis plays an important role in reducing osteosarcoma chemoresistance.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Li Zhang
- Laboratory of Pathogenic Biology, College of Basic Medical Science of Dalian Medical University, Dalian 116027, China
| | - Xifu Zheng
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Weiliang Zhong
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xiliang Tian
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Baosheng Yin
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Kang Tian
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Weiguo Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
24
|
陈 帅, 周 永, 陈 颖, 陈 小, 李 光, 杨 加, 雷 玉, 赵 光, 黄 秋, 杨 长, 杜 亚, 黄 云. [Specific microRNA expression profiles of lung adenocarcinoma in Xuanwei region and bioinformatic analysis for predicting their target genes and related signaling pathways]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:238-244. [PMID: 28219870 PMCID: PMC6779667 DOI: 10.3969/j.issn.1673-4254.2017.02.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To identify differentially expressed microRNAs (miRNAs) related to lung adenocarcinoma in Xuanwei region and predict their target genes and related signaling pathways based on bioinformatic analysis. METHODS High-throughput microarray assay was performed to detect miRNA expression profiles in 34 paired human lung adenocarcinoma and adjacent normal tissues (including 24 cases in Xuanwei region and 10 in other regions). Gene ontology and KEGG pathway analyses were used to predict the target genes and the regulatory signaling pathways. RESULTS Thirty-four miRNAs were differentially expressed in lung adenocarcinoma tissues in cases in Xuanwei region as compared with cases in other regions, including 23 upregulated and 11 downregulated miRNAs. The predicted target genes included GF, RTK, SOS, IRS1, BCAP, CYTOKINSR, ECM, ITGB, FAK and Gbeta;Y involving the PI3K/Alt, WNT and MAPK pathways. CONCLUSION The specific microRNA expression profiles of lung adenocarcinoma in cases found in Xuanwei region allow for a better understanding of the pathogenesis of lung adenocarcinoma in Xuanwei. The predicted target genes may involve the PI3K/Alt, WNT and MAPK pathways.
Collapse
Affiliation(s)
- 帅 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 永春 周
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 颖 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 小波 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 光剑 李
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 加鹏 杨
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 玉洁 雷
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 光强 赵
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 秋博 黄
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 长绍 杨
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 亚茜 杜
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 云超 黄
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| |
Collapse
|
25
|
Yang Q, Zhang RW, Sui PC, He HT, Ding L. Dysregulation of non-coding RNAs in gastric cancer. World J Gastroenterol 2015; 21:10956-10981. [PMID: 26494954 PMCID: PMC4607897 DOI: 10.3748/wjg.v21.i39.10956] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/28/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers in the world and a significant threat to the health of patients, especially those from China and Japan. The prognosis for patients with late stage GC receiving the standard of care treatment, including surgery, chemotherapy and radiotherapy, remains poor. Developing novel treatment strategies, identifying new molecules for targeted therapy, and devising screening techniques to detect this cancer in its early stages are needed for GC patients. The discovery of non-coding RNAs (ncRNAs), primarily microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), helped to elucidate the mechanisms of tumorigenesis, diagnosis and treatment of GC. Recently, significant research has been conducted on non-coding RNAs and how the regulatory dysfunction of these RNAs impacts the tumorigenesis of GC. In this study, we review papers published in the last five years concerning the dysregulation of non-coding RNAs, especially miRNAs and lncRNAs, in GC. We summarize instances of aberrant expression of the ncRNAs in GC and their effect on survival-related events, including cell cycle regulation, AKT signaling, apoptosis and drug resistance. Additionally, we evaluate how ncRNA dysregulation affects the metastatic process, including the epithelial-mesenchymal transition, stem cells, transcription factor activity, and oncogene and tumor suppressor expression. Lastly, we determine how ncRNAs affect angiogenesis in the microenvironment of GC. We further discuss the use of ncRNAs as potential biomarkers for use in clinical screening, early diagnosis and prognosis of GC. At present, no ideal ncRNAs have been identified as targets for the treatment of GC.
Collapse
|
26
|
Song S, Wang Y, Xu P, Yang R, Ma Z, Liang S, Zhang G. The inhibition of histone deacetylase 8 suppresses proliferation and inhibits apoptosis in gastric adenocarcinoma. Int J Oncol 2015; 47:1819-28. [PMID: 26412386 DOI: 10.3892/ijo.2015.3182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase 8 (HDAC8), a unique member of class I HDACs, shows remarkable correlation with advanced disease stage. The depletion of HDAC8 leads to inhibition of proliferation, apoptosis and cell cycle arrest in multiple malignant tumors. However, little is known about the contribution of HDAC8 to the tumorigenesis of gastric cancer (GC). The present study investigated expression of HDAC8 in GC cell lines and tissues, and the roles of HDAC8 inhibition in the proliferation, cell cycle and apoptosis of gastric cancer cells and explored the potential mechanisms. In the present study, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry were used to examine the mRNA and protein expression of HDAC8 in GC cell lines and tissues. Then, the correlation between the clinicopathological parameters and the expression of HDAC8 was assessed. Finally, siRNA transfection and HDAC8 plasmid was performed to explore the functions of HDAC8 in GC progression in vitro. We found that the expression of HDAC8 was significantly upregulated both in GC cell lines and tumor tissues compared to human normal gastric epithelial cell, GES-1 and matched non-tumor tissues. Furthermore, depletion of HDAC8 remarkably inhibited GC cell proliferation, increased the apoptosis rate and G0/G1 phase percentage in vitro. Western blotting showed that the expression of protein promoting apoptosis such as, Bmf, activated caspase-3, caspase-6 were elevated following HDAC8 depletion. Our data exhibited an important role of HDAC8 in promoting gastric cancer tumorigenesis and identify this HDAC8 as a potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Shiyuan Song
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ying Wang
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Po Xu
- Department of Urology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ruina Yang
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhikun Ma
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shuo Liang
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Guangping Zhang
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
27
|
Sun Q, Chen S, Zhao X, Yan M, Fang Z, Wang H, Zhao J, Sun M, Han X, Chen W, Li X. Dysregulated miR-645 affects the proliferation and invasion of head and neck cancer cell. Cancer Cell Int 2015; 15:87. [PMID: 26388702 PMCID: PMC4573489 DOI: 10.1186/s12935-015-0238-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Dysregulated miRNAs play an important role in many malignant tumors. However, elucidating the roles of miRNAs in cancer biology, especially in epithelial cancers, remains an ongoing process. In this study, we identified the differentially expressed miR-645 in the progressing of head and neck squamous cell carcinoma (HNSCC) and investigated its biological function. METHODS The association between clinicopathological parameters and the expression levels of the candidated miRNAs were analyzed by using the Kaplan-Meier survival analysis. The cell growth, invasion and migration potential, and clone formation were observed to detect the functions of the miRNAs in HNSCC cells. RESULTS In the 34 HNSCC tissues with lymph node metastasis, the expression level of miR-645 was 0.54 ± 0.12, and the expression level was 0.22 ± 0.05 in the 28 tissues with non lymph node metastasis (p = 0.017). In patients with HNSCC, higher level of miR-645 expression significantly correlates with worse overall survival (p = 0.04). Ectopic expression of miR-645 promoted cell invasion and migration. CONCLUSIONS miR-645 play a key role in cell invasion and metastasis and their expression correlates with overall survival in the patients with HNSCC.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, 450052 Henan China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, 450052 Henan China
| | - Shuai Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, 450052 Henan China
| | - Xue Zhao
- Department of Neuroimmunology Research, The Henan Academy of Medical and Pharmacologic Sciences, Zheng-Zhou University, Daxue Rd No. 40, Zhengzhou, 450052 Henan China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Zheng Fang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, 450052 Henan China
| | - Haibin Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, 450052 Henan China
| | - Junfang Zhao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, 450052 Henan China
| | - Minglei Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, 450052 Henan China
| | - Xinguang Han
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, 450052 Henan China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Xinming Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian she Road, Zhengzhou, 450052 Henan China
| |
Collapse
|
28
|
Hsu PY, Hsu HK, Hsiao TH, Ye Z, Wang E, Profit AL, Jatoi I, Chen Y, Kirma NB, Jin VX, Sharp ZD, Huang THM. Spatiotemporal control of estrogen-responsive transcription in ERα-positive breast cancer cells. Oncogene 2015; 35:2379-89. [PMID: 26300005 PMCID: PMC4865474 DOI: 10.1038/onc.2015.298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/20/2015] [Accepted: 07/05/2015] [Indexed: 12/29/2022]
Abstract
Recruitment of transcription machinery to target promoters for aberrant gene expression has been well studied, but underlying control directed by distant-acting enhancers remains unclear in cancer development. Our previous study demonstrated that distant estrogen response elements (DEREs) located on chromosome 20q13 are frequently amplified and translocated to other chromosomes in ERα-positive breast cancer cells. In this study, we used three-dimensional interphase fluorescence in situ hybridization to decipher spatiotemporal gathering of multiple DEREs in the nucleus. Upon estrogen stimulation, scattered 20q13 DEREs were mobilized to form regulatory depots for synchronized gene expression of target loci. A chromosome conformation capture assay coupled with chromatin immunoprecipitation further uncovered that ERα-bound regulatory depots are tethered to heterochromatin protein 1 (HP1) for coordinated chromatin movement and histone modifications of target loci, resulting in transcription repression. Neutralizing HP1 function dysregulated the formation of DERE-involved regulatory depots and transcription inactivation of candidate tumor-suppressor genes. Deletion of amplified DEREs using the CRISPR/Cas9 genomic-editing system profoundly altered transcriptional profiles of proliferation-associated signaling networks, resulting in reduction of cancer cell growth. These findings reveal a formerly uncharacterized feature wherein multiple copies of the amplicon congregate as transcriptional units in the nucleus for synchronous regulation of function-related loci in tumorigenesis. Disruption of their assembly can be a new strategy for treating breast cancers and other malignancies.
Collapse
Affiliation(s)
- P-Y Hsu
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - H-K Hsu
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - T-H Hsiao
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Z Ye
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - E Wang
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A L Profit
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - I Jatoi
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Surgery, The University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Y Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - N B Kirma
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - V X Jin
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Z D Sharp
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - T H-M Huang
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
29
|
WANG YUE, XIN HUA, HAN ZHIFENG, SUN HONGBING, GAO NAN, YU HAIXIANG. MicroRNA-374a promotes esophageal cancer cell proliferation via Axin2 suppression. Oncol Rep 2015; 34:1988-94. [DOI: 10.3892/or.2015.4182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022] Open
|
30
|
Xia H, Chen S, Chen K, Huang H, Ma H. MiR-96 promotes proliferation and chemo- or radioresistance by down-regulating RECK in esophageal cancer. Biomed Pharmacother 2014; 68:951-8. [PMID: 25465153 DOI: 10.1016/j.biopha.2014.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 12/18/2022] Open
Abstract
The involvement of miR-96 in esophageal cancer (EC) remains unclear. The aim of this study is to explore the functional role of miR-96 and determine whether miR-96 could be a potential therapeutic target for human esophageal cancer. MiR-96 up-regulation was demonstrated in 145 EC samples and RECK down-regulation was validated in EC cell lines. Moreover, ectopic overexpression of miR-96 in TE-1 or ECa-109 contributed to tumor growth in xenograft mouse models. Furthermore, up-regulation of miR-96 could reduce the susceptibilities of EC cells to chemotherapy or radiotherapy. RECK was identified as a target of miR-96 and RECK overexpressing could abrogate the growth of EC cells induced by miR-96. Taken together, miR-96 serves as an oncogene role in EC cells through downregulating RECK.
Collapse
Affiliation(s)
- Haifeng Xia
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province, People's Republic of China
| | - Shaomu Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province, People's Republic of China
| | - Ke Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province, People's Republic of China
| | - Haitao Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province, People's Republic of China
| | - Haitao Ma
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province, People's Republic of China.
| |
Collapse
|