1
|
Kayahashi K, Hasan M, Khatun A, Kohno S, Terakawa J, Horike SI, Toyoda N, Matsuoka A, Iizuka T, Obata T, Ono M, Mizumoto Y, Takahashi C, Fujiwara H, Daikoku T. Androgen-responsive FOXP4 is a target for endometrial carcinoma. Commun Biol 2024; 7:740. [PMID: 38890503 PMCID: PMC11189448 DOI: 10.1038/s42003-024-06433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Although low estrogen is considered to suppress uterine endometrial carcinoma, the most cases occur in the postmenopausal stage. After menopause, the production of androgen level also declines. Therefore, to resolve the above enigma, we hypothesize that the postmenopausal decline of androgen is a trigger of its progression. In the present study, to validate this hypothesis, we examine the pathological roles of androgen/AR by analyzing clinical data, culturing endometrioid cancer cell lines, and using murine models. Clinical data show that androgen receptor (AR) expression and serum dihydrotestosterone (DHT) are associated with lower disease-free survival (DFS). DHT suppresses malignant behaviors in AR-transfected human endometrial cancer cells (ECC). In ovariectomized Ptenff/PRcre/+ mice, DHT decreases the proliferation of spontaneously developed murine ECC. In AR-transfected human ECC and Ptenff/PRcre/+ mice, DHT suppresses FOXP4 expression. FOXP4-overexpressed human ECC increases, while FOXP4-knocked-down ECC shows decreased malignant behaviors. DHT/AR-mediated ECC suppression is restored by FOXP4 overexpression. The high FOXP4 expression is significantly correlated with low postoperative DFS. These findings indicate that the androgen/AR system suppresses the malignant activity of endometrial carcinoma and that downstream FOXP4 is another target molecule. These findings will also impact developments in clinical approaches to elderly health.
Collapse
Affiliation(s)
- Kayo Kayahashi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mahadi Hasan
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Anowara Khatun
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Susumu Kohno
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Jumpei Terakawa
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
- Laboratory of Toxicology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Shin-Ichi Horike
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Natsumi Toyoda
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Ayumi Matsuoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takeshi Obata
- Department of Obstetrics and Gynecology, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Nishi-Shinjuku, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Takahashi
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
- Ochi Yume Clinic, Nagoya, Aichi, Japan.
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
2
|
Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov 2024; 10:172. [PMID: 38605023 PMCID: PMC11009302 DOI: 10.1038/s41420-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
FOXA1 (Forkhead Box A1) and FOXA2 (Forkhead Box A2) serve as pioneering transcription factors that build gene expression capacity and play a central role in biological processes, including organogenesis and differentiation, glycolipid metabolism, proliferation, migration and invasion, and drug resistance. Notably, FOXA1 and FOXA2 may exert antagonistic, synergistic, or complementary effects in the aforementioned biological processes. This article focuses on the molecular mechanisms and clinical relevance of FOXA1 and FOXA2 in steroid hormone-induced malignancies and highlights potential strategies for targeting FOXA1 and FOXA2 for cancer therapy. Furthermore, the article describes the prospect of targeting upstream regulators of FOXA1/FOXA2 to regulate its expression for cancer therapy because of the drug untargetability of FOXA1/FOXA2.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Anran Wang
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Mengen Xue
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China.
| |
Collapse
|
3
|
Diniz WJS, Afonso J, Kertz NC, Dyce PW, Banerjee P. Mapping Expression Quantitative Trait Loci Targeting Candidate Genes for Pregnancy in Beef Cows. Biomolecules 2024; 14:150. [PMID: 38397387 PMCID: PMC10886872 DOI: 10.3390/biom14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Despite collective efforts to understand the complex regulation of reproductive traits, no causative genes and/or mutations have been reported yet. By integrating genomics and transcriptomics data, potential regulatory mechanisms may be unveiled, providing opportunities to dissect the genetic factors governing fertility. Herein, we identified regulatory variants from RNA-Seq data associated with gene expression regulation in the uterine luminal epithelial cells of beef cows. We identified 4676 cis and 7682 trans eQTLs (expression quantitative trait loci) affecting the expression of 1120 and 2503 genes, respectively (FDR < 0.05). These variants affected the expression of transcription factor coding genes (71 cis and 193 trans eQTLs) and genes previously reported as differentially expressed between pregnant and nonpregnant cows. Functional over-representation analysis highlighted pathways related to metabolism, immune response, and hormone signaling (estrogen and GnRH) affected by eQTL-regulated genes (p-value ≤ 0.01). Furthermore, eQTLs were enriched in QTL regions for 13 reproduction-related traits from the CattleQTLdb (FDR ≤ 0.05). Our study provides novel insights into the genetic basis of reproductive processes in cattle. The underlying causal mechanisms modulating the expression of uterine genes warrant further investigation.
Collapse
Affiliation(s)
- Wellison J. S. Diniz
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| | - Juliana Afonso
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, s/n, Fazenda Canchim, São Carlos 13560-970, SP, Brazil;
| | - Nicholas C. Kertz
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| | - Paul W. Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| | - Priyanka Banerjee
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| |
Collapse
|
4
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
5
|
Dahmani C, Caron P, Simonyan D, Turcotte V, Grégoire J, Plante M, Guillemette C. Circulating adrenal 11-oxygenated androgens are associated with clinical outcome in endometrial cancer. Front Endocrinol (Lausanne) 2023; 14:1156680. [PMID: 37288302 PMCID: PMC10242140 DOI: 10.3389/fendo.2023.1156680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Context Recent evidence support that androgens play an important role in the etiology of endometrial cancer (EC). Adrenal-derived 11-oxygenated androgens are highly potent agonists of the androgen receptor (AR), comparable to testosterone (T) and dihydrotestosterone (DHT) that have not been studied in the context of EC. Methodology We studied a cohort of 272 newly diagnosed postmenopausal EC cases undergoing surgical treatment. Circulating concentrations of seven 11-oxygenated androgens including precursors, potent androgens and their metabolites were established in serum samples collected before and 1 month after surgery using a validated liquid chromatography tandem mass spectrometry method (LC-MS/MS). Free (unconjugated) and total (free + sulfate and glucuronide conjugates following enzymatic hydrolysis) were analyzed in relation to clinicopathological features, recurrence and disease-free survival (DFS). Results Levels of 11-oxygenated androgens were weakly correlated to those of canonical androgens such as testosterone (T) and dihydrotestosterone (DHT), with no evidence of their association with clinicopathological features. Levels of 11-oxygenated androgens declined after surgery but remained higher in overweight and obese compared to normal weight cases. Higher levels of preoperative free 11-ketoandrosterone (11KAST) were associated with an increased risk of recurrence (Hazard ratio (HR) of 2.99 (95%CI=1.09-8.18); P=0.03). Postoperative free 11β-hydroxyandrosterone (11OHAST) levels were adversely associated with recurrence and DFS (HR = 3.23 (1.11-9.40); P=0.03 and 3.27 (1.34-8.00); P=0.009, respectively). Conclusion 11-oxygenated androgen metabolites emerge as potential prognostic markers of EC.
Collapse
Affiliation(s)
- Cylia Dahmani
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center, Cancer Research Center (CRC) of Université Laval and Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Patrick Caron
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center, Cancer Research Center (CRC) of Université Laval and Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - David Simonyan
- Statistical and Clinical Research Platform, CHU de Québec Research Center, Québec, QC, Canada
| | - Véronique Turcotte
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center, Cancer Research Center (CRC) of Université Laval and Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Jean Grégoire
- Gynecologic Oncology Service, CHU de Québec, and Department of Obstetrics, Gynecology, Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie Plante
- Gynecologic Oncology Service, CHU de Québec, and Department of Obstetrics, Gynecology, Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center, Cancer Research Center (CRC) of Université Laval and Faculty of Pharmacy, Université Laval, Québec, QC, Canada
- Canada Research Chair in Pharmacogenomics, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Lv M, Yu J, Huang Y, Ma J, Xiang J, Wang Y, Li L, Zhang Z, Liao H. Androgen Signaling in Uterine Diseases: New Insights and New Targets. Biomolecules 2022; 12:1624. [PMID: 36358974 PMCID: PMC9687413 DOI: 10.3390/biom12111624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 12/06/2023] Open
Abstract
Common uterine diseases include endometriosis, uterine fibroids, endometrial polyps, endometrial hyperplasia, endometrial cancer, and endometrial dysfunction causing infertility. Patients with uterine diseases often suffer from abdominal pain, menorrhagia, infertility and other symptoms, which seriously impair their health and disturb their lives. Androgens play important roles in the normal physiological functions of the uterus and pathological progress of uterine diseases. Androgens in women are synthesized in the ovaries and adrenal glands. The action of androgens in the uterus is mainly mediated by its ligand androgen receptor (AR) that regulates transcription of the target genes. However, much less is known about the signaling pathways through which androgen functions in uterine diseases, and contradictory findings have been reported. This review summarizes and discusses the progress of research on androgens and the involvement of AR in uterine diseases. Future studies should focus on developing new therapeutic strategies that precisely target specific AR and their related signaling pathways in uterine diseases.
Collapse
Affiliation(s)
- Mu Lv
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Juanjuan Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China
| | - Jie Ma
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Xiang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yanqiu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Linxia Li
- Department of Obstetrics and Gynecology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai 200137, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Hong Liao
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| |
Collapse
|
7
|
Nardone A, Qiu X, Spisak S, Nagy Z, Feiglin A, Feit A, Cohen Feit G, Xie Y, Font-Tello A, Guarducci C, Hermida-Prado F, Syamala S, Lim K, Munoz Gomez M, Pun M, Cornwell M, Liu W, Ors A, Mohammed H, Cejas P, Brock JB, Freedman ML, Winer EP, Fu X, Schiff R, Long HW, Metzger Filho O, Jeselsohn R. A Distinct Chromatin State Drives Therapeutic Resistance in Invasive Lobular Breast Cancer. Cancer Res 2022; 82:3673-3686. [PMID: 35950920 PMCID: PMC9588703 DOI: 10.1158/0008-5472.can-21-3186] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
Most invasive lobular breast cancers (ILC) are of the luminal A subtype and are strongly hormone receptor-positive. Yet, ILC is relatively resistant to tamoxifen and associated with inferior long-term outcomes compared with invasive ductal cancers (IDC). In this study, we sought to gain mechanistic insights into these clinical findings that are not explained by the genetic landscape of ILC and to identify strategies to improve patient outcomes. A comprehensive analysis of the epigenome of ILC in preclinical models and clinical samples showed that, compared with IDC, ILC harbored a distinct chromatin state linked to gained recruitment of FOXA1, a lineage-defining pioneer transcription factor. This resulted in an ILC-unique FOXA1-estrogen receptor (ER) axis that promoted the transcription of genes associated with tumor progression and poor outcomes. The ILC-unique FOXA1-ER axis led to retained ER chromatin binding after tamoxifen treatment, which facilitated tamoxifen resistance while remaining strongly dependent on ER signaling. Mechanistically, gained FOXA1 binding was associated with the autoinduction of FOXA1 in ILC through an ILC-unique FOXA1 binding site. Targeted silencing of this regulatory site resulted in the disruption of the feed-forward loop and growth inhibition in ILC. In summary, ILC is characterized by a unique chromatin state and FOXA1-ER axis that is associated with tumor progression, offering a novel mechanism of tamoxifen resistance. These results underscore the importance of conducting clinical trials dedicated to patients with ILC in order to optimize treatments in this breast cancer subtype. SIGNIFICANCE A unique FOXA1-ER axis in invasive lobular breast cancer promotes disease progression and tamoxifen resistance, highlighting a potential therapeutic avenue for clinical investigations dedicated to this disease. See related commentary by Blawski and Toska, p. 3668.
Collapse
Affiliation(s)
- Agostina Nardone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsuzsanna Nagy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Avery Feit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gabriela Cohen Feit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alba Font-Tello
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Francisco Hermida-Prado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Klothilda Lim
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Miguel Munoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew Pun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - MacIntosh Cornwell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Weihan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aysegul Ors
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon
| | - Hisham Mohammed
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jane B Brock
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eric P Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Otto Metzger Filho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Elevated FOXA1 Expression Indicates Poor Prognosis in Liver Cancer due to Its Effects on Cell Proliferation and Metastasis. DISEASE MARKERS 2022; 2022:3317315. [PMID: 35968505 PMCID: PMC9374549 DOI: 10.1155/2022/3317315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
Abstract
Purpose Studying the pathogenesis of liver cancer is conducive to the exploration of effective diagnostic and prognostic biomarkers. In this study, we investigated the expression of FOXA1 and its oncogenic role in hepatocellular carcinoma (HCC). Methods Transcriptome data of HCC tissues were downloaded from The Cancer Genome Atlas (TCGA) and GEO databases and analyzed using R software. We also upregulated FOXA1 expression in HCC cells and investigated the role of FOXA1 in the proliferation and migration of HCC cells through proliferation, colony formation, wound healing, and Transwell assays. Results An analysis of the transcriptome data in TCGA database revealed found that FOXA1 is highly expressed in HCC tissues and that patients with low FOXA1 expression have a better prognosis. High FOXA1 expression was mainly associated with extracellular matrix organization, cancer, and mitosis. The results of an immunohistochemistry (IHC) assay showed that FOXA1 protein was highly expressed in HCC tissues, and patients with low FOXA1 expression showed longer disease-specific survival times and progression-free intervals. The results from quantitative reverse transcription–PCR (RT–qPCR) and Western blot experiments showed that the expression of FOXA1 in liver cancer cell lines was higher than that in immortalized human liver cell lines. Proliferation, wound healing, and Transwell experiments showed that FOXA1 enhanced the proliferation and migration abilities of liver cancer and immortalized human cell lines. Conclusion Our research suggests that FOXA1 plays an important role in promoting the recurrence and metastasis of HCC by increasing cell proliferation and metastasis.
Collapse
|
9
|
Molecular Regulation of Androgen Receptors in Major Female Reproductive System Cancers. Int J Mol Sci 2022; 23:ijms23147556. [PMID: 35886904 PMCID: PMC9322163 DOI: 10.3390/ijms23147556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
There are three main types of cancer in the female reproductive system, specifically ovarian cancer (OVCA), endometrial cancer (EC), and cervical cancer (CC). They are common malignant tumors in women worldwide, with high morbidity and mortality. In recent years, androgen receptors (ARs) have been found to be closely related to the occurrence, progression, prognosis, and drug resistance of these three types of tumors. This paper summarizes current views on the role of AR in female reproductive system cancer, the associations between female reproductive system cancers and AR expression and polymorphisms. AR regulates the downstream target genes transcriptional activity and the expression via interacting with coactivators/corepressors and upstream/downstream regulators and through the gene transcription mechanism of “classical A/AR signaling” or “non-classical AR signaling”, involving a large number of regulatory factors and signaling pathways. ARs take part in the processes of cancer cell proliferation, migration/invasion, cancer cell stemness, and chemotherapeutic drug resistance. These findings suggest that the AR and related regulators could target the treatment of female reproductive system cancer.
Collapse
|
10
|
Wu H, Feng H, Miao X, Ma J, Liu C, Zhang L, Yang L. Construction and validation of a prognostic model based on 11 lymph node metastasis-related genes for overall survival in endometrial cancer. Cancer Med 2022; 11:4641-4655. [PMID: 35778922 PMCID: PMC9741985 DOI: 10.1002/cam4.4844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endometrial cancer (EC) is one of the most common malignant tumors in female reproductive system. The incidence of lymph node metastasis (LNM) is only about 10% in clinically suspected early-stage EC patients. Discovering prognostic models and effective biomarkers for early diagnosis is important to reduce the mortality rate. METHODS A least absolute shrinkage and selection operator (LASSO) regression was conducted to identify the characteristic dimension decrease and distinguish porgnostic LNM related genes signature. Subsequently, a novel prognosis-related nomogram was constructed to predict overall survival (OS). Survival analysis was carried out to explore the individual prognostic significance of the risk model and key gene was validated in vitro. RESULTS In total, 89 lymph node related genes (LRGs) were identified. Based on the LASSO Cox regression, 11 genes were selected for the development of a risk evaluation model. The Kaplan-Meier curve indicated that patients in the low-risk group had considerably better OS (p = 3.583e-08). The area under the ROC curve (AUC) of this model was 0.718 at 5 years of OS. Then, we developed an OS-associated nomogram that included the risk score and clinicopathological features. The concordance index of the nomogram was 0.769. The survival verification performed in three subgroups from the nomogram demonstrated the validity of the model. The AUC of the nomogram was 0.787 at 5 years OS. Proliferation and metastasis of HMGB3 were explored in EC cell line. External validation with 30 patients in our hospital showed that patients with low-risk scores had a longer OS (p-value = 0.03). Finally, we revealed that the most frequently mutated genes in the low-risk and high-risk groups are PTEN and TP53, respectively. CONCLUSIONS Our results suggest that LNM plays an important role in the prognosis, and HMGB3 was potential as a biomarker for EC patients.
Collapse
Affiliation(s)
- Hong Wu
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Haiqin Feng
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Xiaoli Miao
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Jiancai Ma
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Cairu Liu
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Lina Zhang
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Liping Yang
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| |
Collapse
|
11
|
Wang Q, Wang XX, Xie JF, Yao TT, Xu LL, Wang LS, Yu Y, Xu LC. Cypermethrin inhibits proliferation of Sertoli cells through AR involving DAB2IP/PI3K/AKT signaling pathway in vitro. Toxicol Res (Camb) 2022; 11:583-591. [DOI: 10.1093/toxres/tfac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cypermethrin (CP) exhibits anti-androgenic effects through antagonism on androgen receptor (AR) activation. This study was to identify whether AR-mediated disabled 2 interacting protein (DAB2IP)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway was involved in CP-induced mouse Sertoli cells (TM4) proliferation disorder. Real-Time Cell Analysis-iCELLigence system was to measure cell proliferation. Bioinformatic analyses were performed to identify AR-regulated genes. Quantitative Real-Time PCR and western blot were to detect the genes and proteins levels in AR-mediated DAB2IP/PI3K/AKT pathway. Results showed CP suppressed TM4 proliferation and the expression of AR. Activation of AR restored the inhibition efficacy of CP on TM4 proliferation. AR regulated DAB2IP expression and phosphorylation levels of PI3K and AKT in CP-exposed TM4 cells. In addition, knockdown of DAB2IP alleviated the inhibition efficacy of CP on cell proliferation and phosphorylation of PI3K and AKT. Taken together, AR was a modulator in CP-induced inhibition of Sertoli cells proliferation by negatively regulating DAB2IP/PI3K/AKT signaling pathway. The study may provide a new insight for the mechanisms of male reproductive toxicity induced by CP.
Collapse
Affiliation(s)
- Qi Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Xu-Xu Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Jia-Fei Xie
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Ting-Ting Yao
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Lin-Lin Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Lu-Shan Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Yue Yu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Li-Chun Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| |
Collapse
|
12
|
Li K, Diakite D, Austin J, Lee J, Lantvit DD, Murphy BT, Burdette JE. The Flavonoid Baicalein Negatively Regulates Progesterone Target Genes in the Uterus in Vivo. JOURNAL OF NATURAL PRODUCTS 2022; 85:237-247. [PMID: 34935393 PMCID: PMC9164990 DOI: 10.1021/acs.jnatprod.1c01008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Baicalein is a flavonoid extracted from the root of Scutellaria baicalensis (Chinese skullcap) and is consumed as part of this botanical dietary supplement to reduce oxidative stress, pain, and inflammation. We previously reported that baicalein can also modify receptor signaling through the progesterone receptor (PR) and glucocorticoid receptor (GR) in vitro, which is interesting due to the well-established roles of both PR and GR in reducing inflammation. To understand the effects of baicalein on PR and GR signaling in vivo in the uterus, ovariectomized CD-1 mice were treated with DMSO, progesterone (P4), baicalein, P4 with baicalein, and P4 with RU486, a PR antagonist, for a week. The uteri were collected for histology and RNA sequencing. Our results showed that baicalein attenuated the antiproliferative effect of P4 on luminal epithelium as well as on the PR target genes HAND2 and ZBTB16. Baicalein did not change levels of PR or GR RNA or protein in the uterus. RNA sequencing data indicated that many transcripts significantly altered by baicalein were regulated in the opposite direction by P4. Similarly, a large portion of GO/KEGG terms and GSEA gene sets were altered in the opposite direction by baicalein as compared to P4 treatment. Treatment of baicalein did not change body weight, organ weight, or blood glucose level. In summary, baicalein functioned as a PR antagonist in vivo and therefore may oppose P4 action under certain conditions such as uterine hyperplasia, fibroids, and uterine cancers.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Djeneba Diakite
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Julia Austin
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jeongho Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D. Lantvit
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
13
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
14
|
Torab P, Yan Y, Ahmed M, Yamashita H, Warrick JI, Raman JD, DeGraff DJ, Wong PK. Intratumoral Heterogeneity Promotes Collective Cancer Invasion through NOTCH1 Variation. Cells 2021; 10:3084. [PMID: 34831307 PMCID: PMC8619970 DOI: 10.3390/cells10113084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cellular and molecular heterogeneity within tumors has long been associated with the progression of cancer to an aggressive phenotype and a poor prognosis. However, how such intratumoral heterogeneity contributes to the invasiveness of cancer is largely unknown. Here, using a tumor bioengineering approach, we investigate the interaction between molecular subtypes within bladder microtumors and the corresponding effects on their invasiveness. Our results reveal heterogeneous microtumors formed by multiple molecular subtypes possess enhanced invasiveness compared to individual cells, even when both cells are not invasive individually. To examine the molecular mechanism of intratumoral heterogeneity mediated invasiveness, live single cell biosensing, RNA interference, and CRISPR-Cas9 gene editing approaches were applied to investigate and control the composition of the microtumors. An agent-based computational model was also developed to evaluate the influence of NOTCH1 variation on DLL4 expression within a microtumor. The data indicate that intratumoral variation in NOTCH1 expression can lead to upregulation of DLL4 expression within the microtumor and enhancement of microtumor invasiveness. Overall, our results reveal a novel mechanism of heterogeneity mediated invasiveness through intratumoral variation of gene expression.
Collapse
Affiliation(s)
- Peter Torab
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Yue Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (Y.Y.); (M.A.)
| | - Mona Ahmed
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (Y.Y.); (M.A.)
| | - Hironobu Yamashita
- Department of Pathology and Laboratory Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (H.Y.); (J.I.W.); (D.J.D.)
| | - Joshua I. Warrick
- Department of Pathology and Laboratory Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (H.Y.); (J.I.W.); (D.J.D.)
- Penn State Health Milton S., Hershey Medical Center, Department of Surgery, Hershey, PA 17033, USA;
| | - Jay D. Raman
- Penn State Health Milton S., Hershey Medical Center, Department of Surgery, Hershey, PA 17033, USA;
| | - David J. DeGraff
- Department of Pathology and Laboratory Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (H.Y.); (J.I.W.); (D.J.D.)
- Penn State Health Milton S., Hershey Medical Center, Department of Surgery, Hershey, PA 17033, USA;
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Pak Kin Wong
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (Y.Y.); (M.A.)
- Penn State Health Milton S., Hershey Medical Center, Department of Surgery, Hershey, PA 17033, USA;
| |
Collapse
|
15
|
Karpathiou G, Chauleur C, Dal Col P, Peoc'h M. FOXA1 Expression by Immunohistochemistry in Carcinosarcomas of the Endometrium and Ovary/Fallopian Tube. Int J Gynecol Pathol 2021; 40:611-616. [PMID: 33770058 DOI: 10.1097/pgp.0000000000000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
FOXA1, a transcription factor essential for the binding of other transcription factors on chromatin, is associated with hormone receptor-associated cancers, such as breast and endometrial cancer. It is also considered an antagonist of epithelial-to-mesenchymal transition (EMT). In endometrial cancer, FOXA1 is considered a tumor suppressor; in carcinosarcoma, one of the most aggressive and rare subtypes of endometrial cancer, thought to be derived through an EMT mechanism, FOXA1 has not been studied. Thus, the aim of this study was to investigate the possible expression of FOXA1 in carcinosarcomas, and its correlation with clinicopathologic factors. This was a retrospective study of 31 patients diagnosed with carcinosarcomas of the uterus or the adnexa. Histologic and clinical factors were correlated with the immunohistochemical expression of FOXA1. FOXA1 was expressed by 38.7% of the carcinomatous components and 16.1% of the sarcomatous components. FOXA1-positive sarcomatous components were seen only with positive carcinomatous components (P=0.004). FOXA1 expression was not associated with age, primary tumor site, stage, metastases, overall survival, or tumor relapse. FOXA1 expression in the carcinomatous component was associated with an absence of lymphovascular invasion or the presence of heterologous components. FOXA1 expression in the sarcomatous component was associated with rhabdomyosarcoma, rather than the chondrosarcoma heterologous component. Carcinosarcomas harbor FOXA1 expression, although it is in their carcinomatous rather than sarcomatous components, suggesting a possible role of FOXA1 in the EMT of carcinosarcomas. FOXA1 shows no prognostic significance in this tumor group.
Collapse
|
16
|
Chen Y, Sun Y, Xu Y, Lin WW, Luo Z, Han Z, Liu S, Qi B, Sun C, Go K, Kang XR, Chen J. Single-Cell Integration Analysis of Heterotopic Ossification and Fibrocartilage Developmental Lineage: Endoplasmic Reticulum Stress Effector Xbp1 Transcriptionally Regulates the Notch Signaling Pathway to Mediate Fibrocartilage Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7663366. [PMID: 34737845 PMCID: PMC8563124 DOI: 10.1155/2021/7663366] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Regeneration of fibrochondrocytes is essential for the healing of the tendon-bone interface (TBI), which is similar to the formation of neurogenic heterotopic ossification (HO). Through single-cell integrative analysis, this study explored the homogeneity of HO cells and fibrochondrocytes. METHODS This study integrated six datasets, namely, GSE94683, GSE144306, GSE168153, GSE138515, GSE102929, and GSE110993. The differentiation trajectory and key transcription factors (TFs) for HO occurrence were systematically analyzed by integrating single-cell RNA (scRNA) sequencing, bulk RNA sequencing, and assay of transposase accessible chromatin seq. The differential expression and enrichment pathways of TFs in heterotopically ossified tissues were identified. RESULTS HO that mimicked pathological cells was classified into HO1 and HO2 cell subsets. Results of the pseudo-temporal sequence analysis suggested that HO2 is a differentiated precursor cell of HO1. The analysis of integrated scRNA data revealed that ectopically ossified cells have similar transcriptional characteristics to cells in the fibrocartilaginous zone of tendons. The modified SCENIC method was used to identify specific transcriptional regulators associated with ectopic ossification. Xbp1 was defined as a common key transcriptional regulator of ectopically ossified tissues and the fibrocartilaginous zone of tendons. Subsequently, the CellPhoneDB database was completed for the cellular ligand-receptor analysis. With further pathway screening, this study is the first to propose that Xbp1 may upregulate the Notch signaling pathway through Jag1 transcription. Twenty-four microRNAs were screened and were found to be potentially associated with upregulation of XBP1 expression after acute ischemic stroke. CONCLUSION A systematic analysis of the differentiation landscape and cellular homogeneity facilitated a molecular understanding of the phenotypic similarities between cells in the fibrocartilaginous region of tendon and HO cells. Furthermore, by identifying Xbp1 as a hub regulator and by conducting a ligand-receptor analysis, we propose a potential Xbp1/Jag1/Notch signaling pathway.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province 271000, China
| | - Wei-Wei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009 Zhejiang, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, 60657 Illinois, USA
| | - Ken Go
- Department of Clinical Training Centre, St. Marianna Hospital, Tokyo, Japan
| | - x.-R. Kang
- Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
17
|
Islam Z, Ali AM, Naik A, Eldaw M, Decock J, Kolatkar PR. Transcription Factors: The Fulcrum Between Cell Development and Carcinogenesis. Front Oncol 2021; 11:681377. [PMID: 34195082 PMCID: PMC8236851 DOI: 10.3389/fonc.2021.681377] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs' potential as biomarkers for predicting and monitoring treatment responses.
Collapse
Affiliation(s)
- Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ameena Mohamed Ali
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohamed Eldaw
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
18
|
Zhu H, Wang C. HDAC2-mediated proliferation of trophoblast cells requires the miR-183/FOXA1/IL-8 signaling pathway. J Cell Physiol 2021; 236:2544-2558. [PMID: 33164209 DOI: 10.1002/jcp.30026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Pre-eclampsia (PE) is a major cause of maternal and perinatal death. Previous research has indicated the role of histone deacetylase 2 (HDAC2) in the pathogenesis of PE but the relevant molecular mechanisms are unknown. However, there is hitherto little information concerning the molecular mechanism behind HDAC2 in PE. Herein, we hypothesized that HDAC2 promotes trophoblast cell proliferation and this requires the involvement of microRNA-183 (miR-183), forkhead box protein A1 (FOXA1), and interleukin 8 (IL-8). We collected placental specimens from 30 PE affected and 30 normal pregnant women. HDAC2 and FOXA1 were poorly expressed while miR-183 and IL-8 were highly expressed in placental tissues in PE. In vitro, HDAC2 overexpression enhanced the proliferation, migration, and invasion of human trophoblast cells HTR-8/SVNEO. HDAC2 inhibited the expression of miR-183 by diminishing H4 acetylation in the miR-183 promoter region. miR-183 inhibition by its specific inhibitor increased the expression of FOXA1 and thus enhanced HTR-8/SVNEO cell proliferation, migration, and invasion. FOXA1, a transcriptional factor, enhanced HTR-8/SVNEO cell proliferation, migration, and invasion by inhibiting the transcription of IL-8. We also observed HDAC2 knockdown was lost upon FOXA1 overexpression, suggesting that HDAC2 could promote HTR-8/SVNEO proliferation, migration, and invasion through the miR-183/FOXA1/IL-8 pathway. In summary, the results highlighted the role of the HDAC2/miR-183/FOXA1/IL-8 pathway in PE pathogenesis and thus suggest a novel molecular target for PE.
Collapse
Affiliation(s)
- Hanhong Zhu
- Obstetrics Department, Linyi People's Hospital, Linyi, China
| | - Changxiu Wang
- Obstetrics Department, Linyi People's Hospital, Linyi, China
| |
Collapse
|
19
|
Abu Shahin N, Aladily T, Abu Alhaj N, Al-Khader A, Alqaqa S, Aljaberi R, Amer L, Elshebli S. Differential Expression of Androgen Receptor in Type I and Type II Endometrial Carcinomas: A Clinicopathological Analysis and Correlation with Outcome. Oman Med J 2021; 36:e245. [PMID: 33833869 PMCID: PMC8015675 DOI: 10.5001/omj.2021.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Objectives Endometrial carcinomas (EC) are the most common gynecological malignancies and are conventionally divided into type I and type II due to diagnostic and prognostic considerations. Female hormone expression in EC is extensively studied; however, data about androgen receptor (AR) expression in EC are sparse. We aimed to study AR expression in different types of EC at our institute and whether it had an impact on patient outcomes. Methods A retrospective analysis of EC cases diagnosed and treated from 2010–2019. AR immunohistochemical expression was tested in 52 EC cases (type I = 40; type II = 12). Histological typing was verified according to conventional diagnostic criteria. Only primary EC were included without neoadjuvant therapy. Histologic score was calculated as: stain intensity (graded 0–3) × positive cells percentage (graded 0–4). Level of expression was scored from 0 to 12. Results The mean age of the selected patients was 60.3 years (range = 31–88 ± 12.6). Recurrence was detected in 11 (21.2%) patients. The outcome was 40 patients were alive without disease, eight alive with disease, three dead of disease, and one dead of other causes. About 62.5% of type I-EC and 25.0% of type II-EC were AR positive. AR expression was analyzed against different clinicopathological parameters including: type (p = 0.005), histotype (p = 0.044); grade (p = 0.035); age group (p = 0.207); menopause (p = 0.086); estrogen receptor (ER) expression (p = 0.284); atypical complex hyperplasia (p = 0.594); tumor stage (p = 0.994); tumor recurrence (p = 0.530); node status (p = 0.110); and outcome (p = 0.202). Conclusion AR expression was higher in type I EC, endometrial endometrioid carcinoma histotype, and with a lower grade. AR expression was not significantly correlated with age, stage, ER, atypical hyperplasia, recurrence, node status, or outcome. Results agree with recent literature that AR expression is associated with better-differentiated EC and may be a potential hormonal therapeutic tool.
Collapse
Affiliation(s)
- Nisreen Abu Shahin
- Department of Pathology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Tariq Aladily
- Department of Pathology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Nezeen Abu Alhaj
- Department of Pathology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Ali Al-Khader
- Department of Pathology, Faculty of Medicine, Al-Balqa Applied University, Salt, Jordan
| | - Shefa Alqaqa
- Department of Pathology, Faculty of Medicine, Al-Balqa Applied University, Salt, Jordan
| | | | - Lama Amer
- Faculty of Medicine,University of Jordan, Amman, Jordan
| | | |
Collapse
|
20
|
Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, Ren B. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol 2021; 9:642352. [PMID: 33681228 PMCID: PMC7928398 DOI: 10.3389/fcell.2021.642352] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Abdellah Akil
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ana K. Gutiérrez-García
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachael Guenter
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Bart Rose
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam W. Beck
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Kamińska A, Marek S, Pardyak L, Brzoskwinia M, Bilinska B, Hejmej A. Crosstalk between Androgen-ZIP9 Signaling and Notch Pathway in Rodent Sertoli Cells. Int J Mol Sci 2020; 21:ijms21218275. [PMID: 33167316 PMCID: PMC7663815 DOI: 10.3390/ijms21218275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Our recent study demonstrated altered expression of Notch ligands, receptors, and effector genes in testes of pubertal rats following reduced androgen production or signaling. Herein we aimed to explore the role of nuclear androgen receptor (AR) and membrane androgen receptor (Zrt- and Irt-like protein 9; ZIP9) in the regulation of Notch pathway activation in rodent Sertoli cells. Experiments were performed using TM4 and 15P-1 Sertoli cell lines and rat primary Sertoli cells (PSC). We found that testosterone (10-8 M-10-6 M) increased the expression of Notch1 receptor, its active form Notch1 intracellular domain (N1ICD) (p < 0.05, p < 0.01, p < 0.001), and the effector genes Hey1 (p < 0.05, p < 0.01, p < 0.001) and Hes1 (p < 0.05, p < 0.001) in Sertoli cells. Knockdown of AR or ZIP9 as well as antiandrogen exposure experiments revealed that (i) action of androgens via both AR and ZIP9 controls Notch1/N1ICD expression and transcriptional activity of recombination signal binding protein (RBP-J), (ii) AR-dependent signaling regulates Hey1 expression, (iii) ZIP9-dependent pathway regulates Hes1 expression. Our findings indicate a crosstalk between androgen and Notch signaling in Sertoli cells and point to cooperation of classical and non-classical androgen signaling pathways in controlling Sertoli cell function.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Sylwia Marek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Kraków, Poland
| | - Małgorzata Brzoskwinia
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
- Correspondence:
| |
Collapse
|
22
|
Bradfield A, Button L, Drury J, Green DC, Hill CJ, Hapangama DK. Investigating the Role of Telomere and Telomerase Associated Genes and Proteins in Endometrial Cancer. Methods Protoc 2020; 3:E63. [PMID: 32899298 PMCID: PMC7565490 DOI: 10.3390/mps3030063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Endometrial cancer (EC) is the commonest gynaecological malignancy. Current prognostic markers are inadequate to accurately predict patient survival, necessitating novel prognostic markers, to improve treatment strategies. Telomerase has a unique role within the endometrium, whilst aberrant telomerase activity is a hallmark of many cancers. The aim of the current in silico study is to investigate the role of telomere and telomerase associated genes and proteins (TTAGPs) in EC to identify potential prognostic markers and therapeutic targets. Analysis of RNA-seq data from The Cancer Genome Atlas identified differentially expressed genes (DEGs) in EC (568 TTAGPs out of 3467) and ascertained DEGs associated with histological subtypes, higher grade endometrioid tumours and late stage EC. Functional analysis demonstrated that DEGs were predominantly involved in cell cycle regulation, while the survival analysis identified 69 DEGs associated with prognosis. The protein-protein interaction network constructed facilitated the identification of hub genes, enriched transcription factor binding sites and drugs that may target the network. Thus, our in silico methods distinguished many critical genes associated with telomere maintenance that were previously unknown to contribute to EC carcinogenesis and prognosis, including NOP56, WFS1, ANAPC4 and TUBB4A. Probing the prognostic and therapeutic utility of these novel TTAGP markers will form an exciting basis for future research.
Collapse
Affiliation(s)
- Alice Bradfield
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Lucy Button
- Faculty of Health and Life Sciences, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK;
| | - Josephine Drury
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Daniel C. Green
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Christopher J. Hill
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Dharani K. Hapangama
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
- Liverpool Women’s NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK
| |
Collapse
|
23
|
Mansor R, Holly J, Barker R, Biernacka K, Zielinska H, Koupparis A, Rowe E, Oxley J, Sewell A, Martin RM, Lane A, Hackshaw-McGeagh L, Perks C. IGF-1 and hyperglycaemia-induced FOXA1 and IGFBP-2 affect epithelial to mesenchymal transition in prostate epithelial cells. Oncotarget 2020; 11:2543-2559. [PMID: 32655839 PMCID: PMC7335671 DOI: 10.18632/oncotarget.27650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022] Open
Abstract
Localized prostate cancer (PCa) is a manageable disease but for most men with metastatic disease, it is often fatal. A western diet has been linked with PCa progression and hyperglycaemia has been associated with the risk of lethal and fatal prostate cancer. Using PCa cell lines, we examined the impact of IGF-I and glucose on markers of epithelial-to-mesenchymal transition (EMT), migration and invasion. We examined the underlying mechanisms using cell lines and tumour tissue samples. IGF-I had differential effects on the process of EMT: inhibiting in normal and promoting in cancer cells, whereas hyperglycamia alone had a stimulatory effect in both. These effects were independent of IGF and in both cases, hyperglycaemia induced an increase IGFBP-2(tumour promoter) and FOXA1. A positive correlation existed between levels of IGFBP-2 and FOXA1 in benign and cancerous prostate tissue samples and in vitro and in vivo data indicated that FOXA1 strongly interacted with the IGFBP-2 gene in normal prostate epithelial cells that was associated with a negative regulation of IGFBP-2, whereas in cancer cells the level of FOXA1 associating with the IGFBP-2 gene was minimal, suggesting loss of this negative regulation. IGF-I and hyperglycaemia-induced FOXA1/IGFBP-2 play important roles in EMT.
Collapse
Affiliation(s)
- Rehanna Mansor
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, UK
- Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, MY
| | - Jeff Holly
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, UK
| | - Rachel Barker
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, UK
| | - Kalina Biernacka
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, UK
| | - Hanna Zielinska
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, UK
| | - Anthony Koupparis
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol, UK
| | - Edward Rowe
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol, UK
| | - Jon Oxley
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Alex Sewell
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Richard M. Martin
- NIHR Biomedical Research Centre, Level 3, University Hospitals Bristol Education Centre, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Athene Lane
- NIHR Biomedical Research Centre, Level 3, University Hospitals Bristol Education Centre, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Lucy Hackshaw-McGeagh
- NIHR Biomedical Research Centre, Level 3, University Hospitals Bristol Education Centre, Bristol, UK
| | - Claire Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|
24
|
Bai X, Shi S, Ai B, Jiang Y, Liu Y, Han X, Xu M, Pan Q, Wang F, Wang Q, Zhang J, Li X, Feng C, Li Y, Wang Y, Song Y, Feng K, Li C. ENdb: a manually curated database of experimentally supported enhancers for human and mouse. Nucleic Acids Res 2020; 48:D51-D57. [PMID: 31665430 PMCID: PMC7145688 DOI: 10.1093/nar/gkz973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Enhancers are a class of cis-regulatory elements that can increase gene transcription by forming loops in intergenic regions, introns and exons. Enhancers, as well as their associated target genes, and transcription factors (TFs) that bind to them, are highly associated with human disease and biological processes. Although some enhancer databases have been published, most only focus on enhancers identified by high-throughput experimental techniques. Therefore, it is highly desirable to construct a comprehensive resource of manually curated enhancers and their related information based on low-throughput experimental evidences. Here, we established a comprehensive manually-curated enhancer database for human and mouse, which provides a resource for experimentally supported enhancers, and to annotate the detailed information of enhancers. The current release of ENdb documents 737 experimentally validated enhancers and their related information, including 384 target genes, 263 TFs, 110 diseases and 153 functions in human and mouse. Moreover, the enhancer-related information was supported by experimental evidences, such as RNAi, in vitro knockdown, western blotting, qRT-PCR, luciferase reporter assay, chromatin conformation capture (3C) and chromosome conformation capture-on-chip (4C) assays. ENdb provides a user-friendly interface to query, browse and visualize the detailed information of enhancers. The database is available at http://www.licpathway.net/ENdb.
Collapse
Affiliation(s)
- Xuefeng Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Shanshan Shi
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Bo Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Yong Jiang
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Yuejuan Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Xiaole Han
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Mingcong Xu
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Qi Pan
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Fan Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Qiuyu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Xuecang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Yanyu Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Yuezhu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Yiwei Song
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Ke Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| |
Collapse
|
25
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
26
|
Kamińska A, Marek S, Pardyak L, Brzoskwinia M, Pawlicki P, Bilińska B, Hejmej A. Disruption of androgen signaling during puberty affects Notch pathway in rat seminiferous epithelium. Reprod Biol Endocrinol 2020; 18:30. [PMID: 32299422 PMCID: PMC7161021 DOI: 10.1186/s12958-020-00582-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Onset of spermatogenesis at puberty is critically dependent on the activity of hypothalamic-pituitary-gonadal axis and testosterone production by Leydig cells. The aim of this study was to examine whether activation of Notch receptors and expression of Notch ligands and effector genes in rat seminiferous epithelium are controlled by androgen signaling during puberty. METHODS Peripubertal (5-week-old) Wistar rats received injections of flutamide (50 mg/kg bw) daily for 7 days to reduce androgen receptor (AR) signaling or a single injection of ethanedimethane sulphonate (EDS; 75 mg/kg bw) to reduce testosterone production. Gene and protein expressions were analyzed by real-time RT-PCR and western blotting, respectively, protein distribution by immunohistochemistry, and steroid hormone concentrations by enzyme-linked immunosorbent assay. Statistical analyses were performed using one-way ANOVA followed by Tukey's post hoc test or by Kruskal-Wallis test, followed by Dunn's test. RESULTS In both experimental models changes of a similar nature in the expression of Notch pathway components were found. Androgen deprivation caused the reduction of mRNA and protein expression of DLL4 ligand, activated forms of Notch1 and Notch2 receptors and HES1 and HEY1 effector genes (p < 0.05, p < 0.01, p < 0.001). In contrast, DLL1, JAG1 and HES5 expressions increased in seminiferous epithelium of both flutamide and EDS-treated rats (p < 0.05, p < 0.01, p < 0.001). CONCLUSIONS Androgens and androgen receptor signaling may be considered as factors regulating Notch pathway activity and the expression of Hes and Hey genes in rat seminiferous epithelium during pubertal development. Further studies should focus on functional significance of androgen-Notch signaling cross-talk in the initiation and maintenance of spermatogenesis.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Sylwia Marek
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Małgorzata Brzoskwinia
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Piotr Pawlicki
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
27
|
Yan X, Zhang H, Ke J, Zhang Y, Dai C, Zhu M, Jiang F, Zhu H, Zhang L, Zuo X, Li W, Yin X, Wan X. Progesterone receptor inhibits the proliferation and invasion of endometrial cancer cells by up regulating Krüppel-like factor 9. Transl Cancer Res 2020; 9:2220-2230. [PMID: 35117582 PMCID: PMC8798504 DOI: 10.21037/tcr.2020.03.53] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Background Krüppel-like factor 9 (KLF9) is one of the most important members of the KLF family, and is abnormally expressed in many tumors. However, the detailed function of KLF9 in endometrial cancer (EC) was barely investigated. Methods In this study, a total of 52 paired EC tissues were recruited to detect the KLF9 expression. Then a serial of phenotypic experiments and mechanism researches were performed. Results The results showed that KLF9 expression was decreased in EC tissues, and the reduced expression of KLF9 is associated with highly metastatic capacity of EC cells. KLF9 could inhibit the proliferation and invasion of EC cells by inhibiting the Wnt/β-catenin signaling pathway. Progesterone receptor (PR) could bind to KLF9 promoter and a positive correlation between KLF9 and PR expression was witnessed. Conclusions Taken together, the reduction of KLF9 induced by PR might participate in the development of EC and targeting KLF9 may provide a novel strategy for EC management.
Collapse
Affiliation(s)
- Xiaofang Yan
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China.,Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China.,Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China
| | - Yongli Zhang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200080, China
| | - Chenyun Dai
- Department of Translation Medicine, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 210000, China
| | - Mei Zhu
- Department of Translation Medicine, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 210000, China
| | - Feizhou Jiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Hongdi Zhu
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Xin Zuo
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Weiling Li
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Xiufeng Yin
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China.,Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200080, China
| |
Collapse
|
28
|
Mori M, Mori T, Yamamoto A, Takagi S, Ueda M. Proliferation of poorly differentiated endometrial cancer cells through autocrine activation of FGF receptor and HES1 expression. Hum Cell 2019; 32:367-378. [PMID: 30963412 DOI: 10.1007/s13577-019-00249-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Patients with poorly differentiated endometrial cancer show poor prognosis, and effective molecular target-based therapies are needed. Endometrial cancer cells proliferate depending on the activation of HES1 (hairy and enhancer of split-1), which is induced by several pathways, such as the Notch and fibroblast growth factor receptor (FGFR) signaling pathways. In addition, aberrant, ligand-free activation of the FGFR signaling pathway resulting from mutations in FGFR2 was also reported in endometrial cancer. However, a clinical trial showed that there was no difference in the effectiveness of FGFR inhibitors between patients with and without the FGFR2 mutation, suggesting a presence of another signaling pathway for the FGFR activation. Here, we investigated the signaling pathway regulating the expression of HES1 and proliferation of poorly and well-differentiated endometrial cancer cell lines Ishikawa and HEC-50B, respectively. Whereas Ishikawa cells proliferated and expressed HES1 in a Notch signaling-dependent manner, Notch signaling was not involved in HES1 and proliferation of HEC-50B cells. The FGFR inhibitor, NVP-BGJ398, decreased HES1 expression and proliferation of HEC-50B cells; however, HEC50B cells had no mutations in the FGFR2 gene. Instead, HEC-50B cells highly expressed ligands for FGFR2, suggesting that FGFR2 is activated by an autocrine manner, not by ligand-free activation. This autocrine pathway activated Akt downstream of FGFR for cell proliferation. Our findings suggest the usefulness of HES1 as a marker for the proliferation signaling and that FGFR inhibitor may be effective for poorly differentiated endometrial cancers that harbor wild-type FGFR.
Collapse
Affiliation(s)
- Michihiro Mori
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, 2640 Nishinoura Tsurajima-cho Kurashiki-shi, Okayama, 712-8505, Japan. .,Kake Institute of Cytopathology, Okayama, Japan.
| | - Toshinori Mori
- Department of Clinical Laboratory, Mihara Medical Associations Hospital, Hiroshima, Japan.,Department of Chemical Technology, Graduate School of Science and Industrial Technology, Kurashiki University of Science and the Arts, Okayama, Japan
| | - Aina Yamamoto
- Department of Chemical Technology, Graduate School of Science and Industrial Technology, Kurashiki University of Science and the Arts, Okayama, Japan
| | - Shoji Takagi
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, 2640 Nishinoura Tsurajima-cho Kurashiki-shi, Okayama, 712-8505, Japan.,Kake Institute of Cytopathology, Okayama, Japan
| | - Masatsugu Ueda
- Faculty of Health Sciences, Kio University, Nara, Japan.,Graduate School of Health Sciences, Kio University, Nara, Japan
| |
Collapse
|
29
|
Stavropoulos A, Varras M, Vasilakaki T, Varra VK, Tsavari A, Varra FN, Nonni A, Kavantzas N, Lazaris AC. Expression of p53 and PTEN in human primary endometrial carcinomas: Clinicopathological and immunohistochemical analysis and study of their concomitant expression. Oncol Lett 2019; 17:4575-4589. [PMID: 30944646 PMCID: PMC6444490 DOI: 10.3892/ol.2019.10093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Endometrial carcinoma is a common malignancy of the female genital tract. Alterations in the expression levels of various oncogenes and tumor suppressor genes serve important roles in the carcinogenesis and biological behavior of endometrial carcinoma. The aim of the present study was to evaluate the combination and individual expression of p53 and phosphatase and tensin homolog (PTEN) protein in human endometrial carcinoma. In addition, the correlation of these proteins with clinicopathological parameters was also assessed. Retrospective immunohistochemical analysis of the expression of p53 and PTEN tumor suppressor proteins was conducted in 99 women with endometrial carcinoma. The overall rate of p53 and PTEN positivity was 89 and 77%, respectively, according to the sum of stain intensity and scores of immunopositive cells. The sum of p53 positivity correlated strongly with PTEN expression (ρ=0.256; P=0.044). The concomitant sum of p53 and PTEN expression was identified in 45% of patients with endometrial adenocarcinoma. Notably, the sum of the immunohistochemical expression of p53 was significantly correlated with patient age (P=0.037), histologic type (P=0.008), histologic grade (P=0.002) and fallopian and/or ovarian invasion (P=0.014). Furthermore, PTEN expression was associated with myometrial invasion (ρ=−0.377; P=0.002) and clinical stage (P=0.019). In addition, concomitant p53 and PTEN expression was correlated with patient age (P=0.008) and histologic differentiation (P=0.028). The findings indicated a correlation between the expression of p53 and PTEN in endometrial adenocarcinoma, which suggested an intrinsic association between expression levels of these tumor suppressor genes. The study also suggested that concomitant p53 and PTEN expression contributed in characterizing the tumor behavior of endometrial carcinoma. Taken together, the present study suggested the combined expression of p53 and PTEN in the development of high-grade endometrial carcinoma in older patients. In addition, the findings indicated activation of different molecular pathways in the tumor progression between low-grade and high-grade endometrial carcinomas.
Collapse
Affiliation(s)
- Aggelis Stavropoulos
- Fourth Obstetrics and Gynecology Department, 'Elena Venizelou' General Hospital, Athens 11521, Greece
| | - Michail Varras
- Fifth Obstetrics and Gynecology Department, 'Elena Venizelou' General Hospital, Athens 11521, Greece
| | - Thivi Vasilakaki
- Pathology Department, 'Tzaneio' General Hospital, Piraeus 18536, Greece
| | | | | | - Fani-Niki Varra
- Pharmacy Department, Frederick University, Nicosia 1036, Republic of Cyprus, Greece
| | - Aphrodite Nonni
- First Pathology Department, Medical School, National Kapodistrian University, Athens 11527, Greece
| | - Nikolaos Kavantzas
- First Pathology Department, Medical School, National Kapodistrian University, Athens 11527, Greece
| | - Andreas C Lazaris
- First Pathology Department, Medical School, National Kapodistrian University, Athens 11527, Greece
| |
Collapse
|
30
|
Chen X, Liu K, Yang P, Kuang W, Huang H, Tu E, Li B, Zhu Y, Zhou B, Yan L. microRNA-200a functions as a tumor suppressor by targeting FOXA1 in glioma. Exp Ther Med 2018; 17:221-229. [PMID: 30651786 PMCID: PMC6307448 DOI: 10.3892/etm.2018.6895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
microRNAs (miRs) serve primary roles in certain human malignancies; however, the detailed regulatory mechanism of miR-200a in glioma progression is yet to be fully elucidated. The current study aimed to assess the expression of miR-200a in glioma as well as the regulatory mechanism of miR-200a in glioma cell proliferation, survival and invasion. RT-qPCR and western blotting were performed to examine mRNA and protein expression. An MTT assay, an EdU incorporation cell proliferation assay and a transwell assay were utilized to assess cell survival, proliferation and invasion. The results indicated that the miR-200a levels were significantly reduced in glioma tissues compared with normal brain tissues. Levels were also downregulated in glioma cell lines when compared with those in normal human astrocyte cells. Furthermore, low miR-200a expression was associated with advanced progression of glioma. The overexpression of miR-200a inhibited glioma cell proliferation, survival and invasion. Results also identified that FOXA1 was a target gene of miR-200a in glioma cells and that the increased expression of FOXA1 was negatively correlated to the decreased expression of miR-200a in glioma tissues. Furthermore, FOXA1 expression was negatively mediated by miR-200a in glioma cells and the overexpression of FOXA1 eliminated the inhibitory effects of miR-200a on the survival, proliferation and invasion of glioma cells. In conclusion, the current study demonstrated that miR-200a functions acts as a tumor suppressor in glioma by directly targeting FOXA1 and may thus be a potential candidate for the treatment of glioma.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Kun Liu
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Ping Yang
- Department of Psychiatry, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Weiping Kuang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Hongxing Huang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Bo Li
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Yong Zhu
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Bin Zhou
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Lin Yan
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
31
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
32
|
Identification of Key Genes and Pathways in Triple-Negative Breast Cancer by Integrated Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2760918. [PMID: 30175120 PMCID: PMC6098886 DOI: 10.1155/2018/2760918] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/15/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022]
Abstract
Purpose Triple-negative breast cancer refers to breast cancer that does not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (Her2). This study aimed to identify the key pathways and genes and find the potential initiation and progression mechanism of triple-negative breast cancer (TNBC). Methods We downloaded the gene expression profiles of GSE76275 from Gene Expression Omnibus (GEO) datasets. This microarray Super-Series sets are composed of gene expression data from 265 samples which included 67 non-TNBC and 198 TNBC. Next, all the differentially expressed genes (DEGs) with p<0.01 and fold change ≥1.5 or ≤-1.5 were identified. Result 56 upregulated and 151 downregulated genes were listed and the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analysis was performed. These significantly changed genes were mainly involved in the biological process termed prostate gland morphogenesis, inner ear morphogenesis, cell maturation, digestive tract morphogenesis, autonomic nervous system development, monovalent inorganic anion homeostasis, neural crest cell development, regulation of dendrite extension and glial cell proliferation, immune system process termed T cell differentiation, regulation of immune response, and macrophage activation. Genes are mainly involved in the KEGG pathway termed Oocyte meiosis. All DEGs underwent survival analysis using datasets from The Cancer Genome Atlas (TCGA) integrated by cBioPortal, of which amplification of SRY-related HMG-box 8 (SOX8), androgen receptor (AR), and Chromosome 9 Open Reading Frame 152 (C9orf152) were significantly negative while Nik Related Kinase (NRK) and RAS oncogene family 30 (RAB30) were positively correlated to the life expectancy (p<0.05). Conclusions In conclusion, these pathways and genes identified could help understanding the mechanism of development of TNBC. Besides, SOX8, AR, C9orf152, NRK and RAB30, and other key genes and pathways might be promising targets for the TNBC treatment.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Androgens have been implicated in prostate growth; however, the role of androgens in prostate cancer development is not clear. Furthermore, studies suggest a role for androgens in female-hormone-dependent cancers and common nonhormone dependent cancers. This study aims to review key studies and more recent studies of dihydrotestosterone (DHT) and cancer risk. RECENT FINDINGS Epidemiological studies are reassuring as they have not associated endogenous androgens with prostate cancer risk. Intraprostatic regulation of DHT is becoming recognized as an important area of research to clarify the role of DHT in prostate cancer development. In females, further understanding of intracrine regulation of sex hormones and interactions between androgens and estrogens in influencing breast and endometrial cancer risk are required. Studies show a signal for DHT in modulating lung and colorectal cancer growth; however, research in this area is relatively scarce and further studies are required to clarify these associations. SUMMARY Although concerns of prostate cancer risk remain, there is also potential for androgens to modulate the growth and development of other common cancers. Further research is required as this may have clinical implications.
Collapse
Affiliation(s)
- Yi X Chan
- School of Medicine, University of Western Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Bu B Yeap
- School of Medicine, University of Western Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| |
Collapse
|
34
|
17β-Hydroxysteroid Dehydrogenase Type 2 Expression Is Induced by Androgen Signaling in Endometrial Cancer. Int J Mol Sci 2018; 19:ijms19041139. [PMID: 29642629 PMCID: PMC5979403 DOI: 10.3390/ijms19041139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/26/2018] [Accepted: 04/09/2018] [Indexed: 01/13/2023] Open
Abstract
Endometrial cancer is one of the most common female pelvic cancers and has been considered an androgen-related malignancy. Several studies have demonstrated the anti-cell proliferative effect of androgen on endometrial cancer cells; however, the mechanisms of the anti-cancer effect of androgen remain largely unclear. 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2), which catalyzes the conversion of E2 to E1, is known to be upregulated by androgen treatment in breast cancer cells. In this study, we therefore focused on the role of androgen on estrogen dependence in endometrial cancer. Dihydrotestosterone (DHT) was found to induce 17β-HSD2 mRNA and protein expression in HEC-1B endometrial cancer cells. DHT could also inhibit cell proliferation of HEC-1B when induced by estradiol treatment. In 19 endometrioid endometrial adenocarcinoma (EEA) tissues, intratumoral DHT concentration was measured by liquid chromatography/electrospray tandem mass spectrometry and was found to be significantly correlated with 17β-HSD2 immunohistochemical status. We further examined the correlations between 17β-HSD2 immunoreactivity and clinicopathological parameters in 53 EEA tissues. 17β-HSD2 status was inversely associated with the histological grade, clinical stage, and cell proliferation marker Ki-67, and positively correlated with progesterone receptor expression. 17β-HSD2 status tended to be positively associated with androgen receptor status. In 53 EEA cases, the 17β-HSD2-positive group tended to have better prognosis than that for the negative group with respect to progression-free survival and endometrial cancer-specific survival. These findings suggest that androgen suppresses the estrogen dependence of endometrial cancer through the induction of 17β-HSD2 in endometrial cancer.
Collapse
|
35
|
Tangen IL, Onyango TB, Kopperud R, Berg A, Halle MK, Øyan AM, Werner HMJ, Trovik J, Kalland KH, Salvesen HB, Krakstad C. Androgen receptor as potential therapeutic target in metastatic endometrial cancer. Oncotarget 2018; 7:49289-49298. [PMID: 27384477 PMCID: PMC5226508 DOI: 10.18632/oncotarget.10334] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/13/2016] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The expression and involvement of estrogen (ER) and progesterone receptor (PR) is extensively studied in endometrial cancer. Androgen receptor (AR) is a hormone receptor less studied in female cancers, and we here aim to investigate the expression level of AR in endometrial cancer precursor lesions, primary tumors and metastases, and its potential as therapeutic target. RESULTS Expression of AR was observed in 93% of hyperplasias, but only in 41% of non-endometrioid tumors. Compared to estrogen and progesterone receptor AR is more commonly expressed in metastatic lesions, and AR status is discordant in primary and metastatic lesions in a large proportion of cases. AR protein level was significantly associated with survival (P < 0.001), and a calculated AR to ERα ratio identified a subgroup of patients with particular poor outcome. The anti-androgen enzalutamide may have a growth inhibitory effect in endometrial cancer cells based on experiments with primary endometrial tumor cells. MATERIALS AND METHODS 718 primary endometrial cancers and 298 metastatic lesions (from 142 patients) were investigated for expression of AR in relation to survival, clinical and histopathological data. Protein levels were investigated by immunohistochemistry and reverse phase protein array; mRNA levels by DNA oligonucleotide microarray. The effect of androgen stimulation and inhibition was tested on primary endometrial tumor cells. CONCLUSIONS A large proportion of metastatic endometrial cancer lesions express AR, which may be a potential target in these patients. Treatment targeting AR may be of particular benefit in patients with high AR levels compared to ERα levels.
Collapse
Affiliation(s)
- Ingvild Løberg Tangen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Norway
| | - Therese Bredholt Onyango
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Norway
| | - Reidun Kopperud
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Norway
| | - Anna Berg
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Norway
| | - Mari K Halle
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Norway
| | - Anne M Øyan
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Norway
| | - Henrica M J Werner
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Norway
| | - Jone Trovik
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Norway
| | - Karl Henning Kalland
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Norway
| | - Helga B Salvesen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Norway
| | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Norway.,Centre for Cancer Biomarkers, Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
36
|
Zhang X, Wang L, Liu Y, Huang W, Cheng D. MiR-760 enhances TRAIL sensitivity in non-small cell lung cancer via targeting the protein FOXA1. Biomed Pharmacother 2018; 99:523-529. [PMID: 29665655 DOI: 10.1016/j.biopha.2018.01.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading cause of death worldwide. TNF-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent with the ability to kill tumor cells while spare normal ones. MicroRNAs (miRNAs) are small, non-coding RNAs that play vital roles in carcinogenesis. Although miR-760 has been reported to be dysregulated in a variety of cancers, the role of miR-760 in NSCLC is not fully understood, and the relationship between miR-760 dysregulation and TRAIL sensitivity is still elusive. In the current study, we found that miR-760 is significantly downregulated in NSCLC tissues and cell lines. We also found that ectopic expression of miR-760, by targeting the FOXA1, enhanced TRAIL sensitivity in NSCLC cells. Correspondingly, silencing of FOXA1 also sensitized NSCLC cell to TRAIL-induced apoptosis and proliferation inhibition. In summary, these findings suggest that miR-760 should be considered as a tumor suppressor since it negatively regulates the oncogene protein FOXA1 and regulated TRAIL sensitivity in NSCLC cells.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lei Wang
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yu Liu
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weicong Huang
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dezhi Cheng
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
37
|
Linking type 2 diabetes and gynecological cancer: an introductory overview. ACTA ACUST UNITED AC 2018; 56:1413-1425. [DOI: 10.1515/cclm-2017-0982] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
Abstract
Abstract
Type 2 diabetes (T2D) is a chronic disease with a growing prevalence and a leading cause of death in many countries. Several epidemiological studies observed an association between T2D and increased risk of many types of cancer, such as gynecologic neoplasms (endometrial, cervical, ovarian and vulvar cancer). Insulin resistance, chronic inflammation and high free ovarian steroid hormones are considered the possible mechanisms behind this complex relationship. A higher risk of endometrial cancer was observed in T2D, even though this association largely attenuated after adjusting for obesity. A clear relationship between the incidence of cervical cancer (CC) and T2D has still not be determined; however T2D might have an impact on prognosis in patients with CC. To date, studies on the association between T2D and ovarian cancer (OC) are limited. The effect of pre-existing diabetes on cancer-specific mortality has been evaluated in several studies, with less clear results. Other epidemiological and experimental studies focused on the potential role of diabetes medications, mainly metformin, in cancer development in women. The correct understanding of the link between T2D and gynecologic cancer risk and mortality is currently imperative to possibly modify screening and diagnostic-therapeutic protocols in the future.
Collapse
|
38
|
Kumari K, Keshari S, Sengupta D, Sabat SC, Mishra SK. Transcriptome analysis of genes associated with breast cancer cell motility in response to Artemisinin treatment. BMC Cancer 2017; 17:858. [PMID: 29246124 PMCID: PMC5732364 DOI: 10.1186/s12885-017-3863-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Well-known anti-malarial drug artemisinin exhibits potent anti-cancerous activities. In-vivo and in-vitro studies showed its anti-tumor and immunomodulatory properties signifying it as a potent drug candidate for study. The studies of mechanisms of cell movement are relevant which can be understood by knowing the involvement of genes in an effect of a drug. Although cytotoxicity and anti-proliferative activity of artemisinin is evident, the genes participating in its anti-migratory and reduced invasive effect are not well studied. The present study reports the alteration in the expression of 84 genes involved in cell motility upon artemisinin treatment in MCF-7 breast cancer cells using pathway focused gene expression PCR array. In addition, the effect of artemisinin on epigenetic modifier HDACs is studied. Methods We checked the functional stimulus of artemisinin on cell viability, migration, invasion and apoptosis in breast cancerous cell lines. Using qRT-PCR and western blot, we validated the altered expression of relevant genes associated with proliferation, migration, invasion, apoptosis and mammary gland development. Results Artemisinin inhibited cell proliferation of estrogen receptor negative breast cancer cells with fewer efficacies in comparison to estrogen receptor positive ones. At the same time, cell viability and proliferation of normal breast epithelial MCF10A cells was un-affected. Artemisinin strongly inhibited cancer cell migration and invasion. Along with orphan nuclear receptors (ERRα, ERRβ and ERRγ), artemisinin altered the ERα/ERβ/PR/Her expression status of MCF-7 cells. The expression of genes involved in the signaling pathways associated with proliferation, migration, invasion and apoptosis was significantly altered which cooperatively resulted into reduced growth promoting activities of breast cancer cells. Interestingly, artemisinin exhibited inhibitory effect on histone deacetylases (HDACs). Conclusions Upregulated expression of tumor suppressor genes along with reduced expression of oncogenes significantly associated with growth stimulating signaling pathways in response to artemisinin treatment suggests its efficacy as an effective drug in breast cancer treatment.
Collapse
Affiliation(s)
- Kanchan Kumari
- Cancer Biology Laboratory, Institute of Life Sciences (Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | | | | | - Surendra C Sabat
- Molecular biology of abiotic stress, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sandip K Mishra
- Cancer Biology Laboratory, Institute of Life Sciences (Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
39
|
Williams E, Villar-Prados A, Bowser J, Broaddus R, Gladden AB. Loss of polarity alters proliferation and differentiation in low-grade endometrial cancers by disrupting Notch signaling. PLoS One 2017; 12:e0189081. [PMID: 29206870 PMCID: PMC5716545 DOI: 10.1371/journal.pone.0189081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/18/2017] [Indexed: 01/03/2023] Open
Abstract
Cell adhesion and apicobasal polarity together maintain epithelial tissue organization and homeostasis. Loss of adhesion has been described as a prerequisite for the epithelial to mesenchymal transition. However, what role misregulation of apicobasal polarity promotes tumor initiation and/or early progression remains unclear. We find that human low-grade endometrial cancers are associated with disrupted localization of the apical polarity protein Par3 and Ezrin while, the adhesion molecule E-cadherin remains unchanged, accompanied by decreased Notch signaling, and altered Notch receptor localization. Depletion of Par3 or Ezrin, in a cell-based model, results in loss of epithelial architecture, differentiation, increased proliferation, migration and decreased Notch signaling. Re-expression of Par3 in endometrial cancer cell lines with disrupted Par3 protein levels blocks proliferation and reduces migration in a Notch dependent manner. These data uncover a function for apicobasal polarity independent of cell adhesion in regulating Notch-mediated differentiation signals in endometrial epithelial cells.
Collapse
Affiliation(s)
- Erin Williams
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
| | - Alejandro Villar-Prados
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
| | - Jessica Bowser
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Russell Broaddus
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Andrew B. Gladden
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
| |
Collapse
|
40
|
Kim JY, Kim CH, Lee Y, Lee JH, Chae YS. Tumour infiltrating lymphocytes are predictors of lymph node metastasis in early gastric cancers. Pathology 2017; 49:589-595. [PMID: 28843920 DOI: 10.1016/j.pathol.2017.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/04/2017] [Accepted: 06/28/2017] [Indexed: 01/13/2023]
Abstract
Lymph node metastasis (LNM) is an important factor for predicting prognosis and selecting appropriate treatment in early gastric cancers (EGCs). We investigated the histopathological and microenvironmental predictors of LNM in EGCs. We retrieved 43 cases of EGC without LNM and 59 cases with LNM. Clinicopathological variables and tumour-infiltrating lymphocytes (TILs), Crohn's-like lymphoid reaction (CLR), tumour stromal percentage (TSP), and FOXA1 expression were evaluated and correlated with LNM. Among the 102 cases, 68 cases (66.7%) had low TILs and 34 cases (33.3%) had high TILs. High TILs were significantly correlated with the absence of LNM (p<0.001), less extent of invasion (p=0.004), absence of LVI (p=0.035), conspicuous CLR (p<0.001), and the absence of TSP (p=0.009). Conspicuous CLR was observed in 47 cases (46.1%) and TSP was present in 17 cases (16.7%) and neither was correlated with LNM. High FOXA1 expression was significantly associated with presence of LNM, low TILs, and submucosal invasion. In multivariate analysis, low TILs (p=0.023), LVI (p=0.008), and submucosal invasion (p=0.001) were independent predictive factors for LNM in EGCs. Evaluation of TILs in biopsied or endoscopically resected EGC specimens may help to predict LNM and select subsequent proper treatment modalities and follow-up.
Collapse
Affiliation(s)
- Joo Young Kim
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Chul Hwan Kim
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Youngseok Lee
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jeong Hyeon Lee
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Yang-Seok Chae
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
41
|
Shen SQ, Huang LS, Xiao XL, Zhu XF, Xiong DD, Cao XM, Wei KL, Chen G, Feng ZB. miR-204 regulates the biological behavior of breast cancer MCF-7 cells by directly targeting FOXA1. Oncol Rep 2017; 38:368-376. [DOI: 10.3892/or.2017.5644] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/30/2016] [Indexed: 11/06/2022] Open
|
42
|
Chen S, Chen X, Sun KX, Xiu YL, Liu BL, Feng MX, Sang XB, Zhao Y. MicroRNA-93 Promotes Epithelial-Mesenchymal Transition of Endometrial Carcinoma Cells. PLoS One 2016; 11:e0165776. [PMID: 27829043 PMCID: PMC5102435 DOI: 10.1371/journal.pone.0165776] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 10/18/2016] [Indexed: 01/07/2023] Open
Abstract
MicroRNA-93, derived from a paralog (miR-106b-25) of the miR-17-92 cluster, is involved in the tumorigenesis and progression of many cancers such as breast, colorectal, hepatocellular, lung, ovarian, and pancreatic cancer. However, the role of miR-93 in endometrial carcinoma and the potential molecular mechanisms involved remain unknown. Our results showed that miR-93 was overexpressed in endometrial carcinoma tissues than normal endometrial tissues. The endometrial carcinoma cell lines HEC-1B and Ishikawa were transfected with miR-93-5P, after which cell migration and invasion ability and the expression of relevant molecules were detected. MiR-93 overexpression promoted cell migration and invasion, and downregulated E-cadherin expression while increasing N-cadherin expression. Dual-luciferase reporter assay showed that miR-93 may directly bind to the 3' untranslated region of forkhead box A1 (FOXA1); furthermore, miR-93 overexpression downregulated FOXA1 expression while miR-93 inhibitor transfection upregulated FOXA1 expression at both mRNA and protein level. In addition, transfection with the most effective FOXA1 small interfering RNA promoted both endometrial cancer cell migration and invasion, and downregulated E-cadherin expression while upregulating N-cadherin expression. Therefore, we suggest that miR-93 may promote the process of epithelial-mesenchymal transition in endometrial carcinoma cells by targeting FOXA1.
Collapse
MESH Headings
- 3' Untranslated Regions
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Binding Sites
- Cadherins/genetics
- Cadherins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Endometrium/metabolism
- Endometrium/pathology
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- HEK293 Cells
- Hepatocyte Nuclear Factor 3-alpha/antagonists & inhibitors
- Hepatocyte Nuclear Factor 3-alpha/genetics
- Hepatocyte Nuclear Factor 3-alpha/metabolism
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xi Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin-Ling Xiu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo-Liang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao-Xiao Feng
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiu-Bo Sang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
43
|
Liu J, Chen B, Yue B, Yang J. MicroRNA-212 suppresses the proliferation and migration of osteosarcoma cells by targeting forkhead box protein A1. Exp Ther Med 2016; 12:4135-4141. [PMID: 28101191 DOI: 10.3892/etm.2016.3880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/06/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting the 3' untranslated region (UTR) of mRNA, causing translational repression or mRNA degradation. Deregulation of specific miRNAs, including miR-212, has been identified in patients with osteosarcoma. However, the underlying mechanism is yet to be fully elucidated. The present study aimed to reveal the regulatory mechanism of miR-212 in osteosarcoma cell viability and migration. Quantitative polymerase chain reaction data revealed that miR-212 was significantly downregulated in osteosarcoma tissues compared with normal bone tissues. miR-212 was also downregulated in osteosarcoma cell lines compared with normal osteoblast cell lines. Overexpression of miR-212 significantly suppressed the viability and migration of human osteosarcoma MG-63 and Saos-2 cell lines. In addition, forkhead box protein A1 (FOXA1), an oncogene in osteosarcoma, was predicted to be a putative target of miR-212 by bioinformatical analysis. Furthermore, luciferase reporter assay data confirmed that miR-212 could directly bind to the seed sequences within the 3'UTR of FOXA1 mRNA, and miR-212 negatively mediated the protein levels of FOXA1 in osteosarcoma MG-63 and Saos-2 cells. Moreover, knockdown of FOXA1 also led to a significant decrease in the viability and migration of osteosarcoma MG-63 and Saos-2 cells and the expression levels of FOXA1 were significantly upregulated in osteosarcoma tissues and cell lines. These data suggest that miR-212 inhibits the viability and migration of osteosarcoma cells by targeting FOXA1. Accordingly, miR-212 may become a potential candidate for osteosarcoma therapy.
Collapse
Affiliation(s)
- Jian Liu
- Department of Orthopedics, Eighth People's Hospital of Qingdao, Medical School of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Bohua Chen
- Department of Orthopedics, Eighth People's Hospital of Qingdao, Medical School of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Bin Yue
- Department of Orthopedics, Eighth People's Hospital of Qingdao, Medical School of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Junde Yang
- Department of Orthopedics, Eighth People's Hospital of Qingdao, Medical School of Qingdao University, Qingdao, Shandong 266100, P.R. China
| |
Collapse
|
44
|
Gupta S, Li J, Kemeny G, Bitting RL, Beaver J, Somarelli JA, Ware KE, Gregory S, Armstrong AJ. Whole Genomic Copy Number Alterations in Circulating Tumor Cells from Men with Abiraterone or Enzalutamide-Resistant Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2016; 23:1346-1357. [DOI: 10.1158/1078-0432.ccr-16-1211] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022]
|
45
|
Qiu MT, Fan Q, Zhu Z, Kwan SY, Chen L, Chen JH, Ying ZL, Zhou Y, Gu W, Wang LH, Cheng WW, Zeng J, Wan XP, Mok SC, Wong KK, Bao W. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1. Oncotarget 2016; 6:31702-20. [PMID: 26397136 PMCID: PMC4741634 DOI: 10.18632/oncotarget.5165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/29/2015] [Indexed: 01/05/2023] Open
Abstract
Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity.
Collapse
Affiliation(s)
- Mei-Ting Qiu
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Fan
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Zhu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suet-Ying Kwan
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Limo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin-Hong Chen
- Departments of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, China
| | - Zuo-Lin Ying
- Department of Dermatology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Zhou
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Gu
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Hua Wang
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Cheng
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Zeng
- Department of Laboratory Medicine and the Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiao-Ping Wan
- Departments of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, China
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Bao
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
46
|
Ma W, Jiang J, Li M, Wang H, Zhang H, He X, Huang L, Zhou Q. The clinical significance of forkhead box protein A1 and its role in colorectal cancer. Mol Med Rep 2016; 14:2625-31. [PMID: 27484093 PMCID: PMC4991678 DOI: 10.3892/mmr.2016.5583] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
Forkhead box protein A1 (FOXA1) is a transcription factor; recent studies have reported that FOXA1 has an oncogenic or tumor suppressive role in human malignancies, and its expression is associated with the prognosis of patients with cancer. However, further studies are required to determine the clinical significance of FOXA1 and its role in colorectal cancer (CRC). In the present study, FOXA1 expression was detected in 90 samples of CRC tissues and matched noncancerous tissues using immunohistochemistry. In these cases, FOXA1 expression was detected in 57.8% (52/90) of the CRC samples, whereas only 37.8% (34/90) of the noncancerous specimens exhibited a positive FOXA1 signal. In addition, the present study demonstrated that the mRNA expression levels of FOXA1 were significantly increased in CRC tissues compared with in matched tumor-adjacent tissues. Furthermore, the positive expression of FOXA1 was associated with poor clinicopathological characteristics of CRC, including poor tumor differentiation, large tumor size, lymph node metastases and advanced tumor-node-metastasis tumor stage. Notably, patients with CRC with positive FOXA1 expression exhibited a significantly reduced 5-year survival rate compared with those with negative FOXA1 expression. Multivariate Cox regression analysis revealed that FOXA1 expression was an independent prognostic indicator for patients with CRC. In addition, FOXA1 knockdown evidently inhibited cell proliferation and induced apoptosis in SW480 and HCT116 CRC cells. Notably, FOXA1 knockdown also prominently reduced the expression of yes-associated protein (YAP) in SW480 and HCT116 cells. In conclusion, the results of the present study indicated that FOXA1 may be considered a potential prognostic marker, and may promote tumor growth of CRC by upregulating YAP expression.
Collapse
Affiliation(s)
- Wenqi Ma
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Miao Li
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hua Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongli Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lili Huang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
47
|
Ito K, Miki Y, Suzuki T, McNamara KM, Sasano H. In situ androgen and estrogen biosynthesis in endometrial cancer: focus on androgen actions and intratumoral production. Endocr Relat Cancer 2016; 23:R323-35. [PMID: 27287451 DOI: 10.1530/erc-15-0470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/10/2016] [Indexed: 01/20/2023]
Abstract
In situ estrogen biosynthesis is considered to play pivotal roles in the development and progression of human endometrial carcinoma. However, the biological roles of androgen have remained virtually unknown. Various epidemiological studies have revealed that elevated serum androgen levels are generally associated with an increased risk of developing endometrial carcinoma; however, studies directly examining androgens in carcinoma tissues are relatively rare and reviews summarizing this information are scarce. Therefore, we summarized recent studies on androgens in endometrial carcinoma, especially focusing androgen actions and in situ androgen biosynthesis. Among the enzymes required for local biosynthesis of androgen, 17β-hydroxysteroid dehydrogenase type 5 (conversion from androstenedione to testosterone) and 5α-reductase (reduction of testosterone to dihydrotestosterone (DHT)) are the principal enzymes involved in the formation of biologically most potent androgen, DHT. Both enzymes and androgen receptor were expressed in endometrial carcinoma tissues, and in situ production of DHT has been reported to exist in endometrial carcinoma tissues. However, testosterone is not only a precursor of DHT production, but also a precursor of estradiol synthesis, as a substrate of the aromatase enzyme. Therefore, aromatase could be another key enzyme serving as a negative regulator for in situ production of DHT by reducing amounts of the precursor. In an in vitro study, DHT was reported to exert antiproliferative effects on endometrial carcinoma cells. Intracrine mechanisms of androgens, the downstream signals of AR, which are directly related to anticancer progression, and the clinical significance of DHT-AR pathway in the patients with endometrial carcinoma have, however, not been fully elucidated.
Collapse
Affiliation(s)
- Kiyoshi Ito
- Department of Disaster Obstetrics and GynecologyInternational Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Japan Department of Disaster Obstetrics and GynecologyTohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and GynecologyInternational Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and HistotechnologyTohoku University Graduate School of Medicine, Sendai, Japan
| | - Keely May McNamara
- Department of PathologyTohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of PathologyTohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
48
|
Wang J, Bian Y, Liao Y, Xia Y, Wan X. Forkhead-box A1 induces cell senescence in endometrial cancer by regulating p16INK4a. Oncol Rep 2016; 36:795-802. [PMID: 27349269 DOI: 10.3892/or.2016.4907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/15/2016] [Indexed: 11/05/2022] Open
Abstract
We previously identified FOXA1 as a tumor-suppressor in EC cells. In the present study, we sought to delineate the different roles of FOXA1 associated with cell senescence and further investigated the correlation between FOXA1 and p16INK4a in the progression of EC. Using reverse transcription-quantitative PCR (RT-qPCR), we found that FOXA1 expression was significantly downregulated in EC cells compared to that in normal endometrial cells. Functionally, senescence‑associated β-galactosidase staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenic and Transwell assays showed that in addition to acting as a pioneer factor, FOXA1 was significantly upregulated in senescent EC cells. Furthermore, restoration of FOXA1 expression triggered multiple steps of cellular senescence in EC cells and activated p16INK4a expression. All of these findings indicate that FOXA1 promotes cell senescence in EC by interaction with p16INK4a, possibly via the AKT pathway. Notably, a selective PI3K inhibitor raised the possibility that FOXA1‑induced senescence is associated with the AKT pathway in EC cells. Collectively, the present study provides a conceivable molecular mechanism by which cell senescence acts as the barrier to EC, and is regulated by FOXA1-induced p16INK4a expression. This may be a newly identified regulatory mechanism of cell senescence in EC.
Collapse
Affiliation(s)
- Jingyun Wang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Yiding Bian
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Yun Liao
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ye Xia
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| |
Collapse
|
49
|
Guo Q, Qian Z, Yan D, Li L, Huang L. LncRNA-MEG3 inhibits cell proliferation of endometrial carcinoma by repressing Notch signaling. Biomed Pharmacother 2016; 82:589-94. [PMID: 27470401 DOI: 10.1016/j.biopha.2016.02.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The long non-coding RNA MEG3 has shown functional role as a tumor suppressor in many cancer types, excluding endometrial carcinoma (EC). Thus, this study tried to reveal the MEG3 dysregulation in EC samples and potential functional mechanism due to its regulation on Notch signaling pathway. METHODS The expression profiles of MEG3 and two Notch signaling molecules, Notch1 and Hes1, were detected in both EC tissues and cell lines through real time PCR and western blot analysis. Lentiviral vector carrying whole MEG3 transcript or shRNA targeting MEG3 (shMEG3) was transfected for MEG3 dysfunction studies, and cell proliferation was analyzed through MTT and colony-formation assays. Xenograft models were also established by subcutaneous implantation and tumor growth was compared under MEG3 dysregulation. RESULTS Significant downregulation of MEG3 was observed in EC samples compared to control, while the protein levels of Notch1 and Hes1 were both upregulated. Cell proliferation was obviously inhibited by MEG3 overexpression, while opposite improved result was obtained in MEG3 knockout cells. Interestingly, MEG3-induced changes could be reversed by Notch1 regulators. Moreover, MEG3 overexpressing tumors showed strongly repressed growth in vivo, along with Notch signaling inhibition. CONCLUSION Downregulated MEG3 exhibited an anti-proliferative role in EC by repressing Notch signaling pathway.
Collapse
Affiliation(s)
- Qingyun Guo
- Women's Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Zhida Qian
- Women's Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Dingding Yan
- Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Li Li
- Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Lili Huang
- Women's Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
50
|
Droog M, Nevedomskaya E, Kim Y, Severson T, Flach KD, Opdam M, Schuurman K, Gradowska P, Hauptmann M, Dackus G, Hollema H, Mourits M, Nederlof P, van Boven H, Linn SC, Wessels L, van Leeuwen FE, Zwart W. Comparative Cistromics Reveals Genomic Cross-talk between FOXA1 and ERα in Tamoxifen-Associated Endometrial Carcinomas. Cancer Res 2016; 76:3773-84. [PMID: 27197147 DOI: 10.1158/0008-5472.can-14-1813] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 04/13/2016] [Indexed: 11/16/2022]
Abstract
Tamoxifen, a small-molecule antagonist of the transcription factor estrogen receptor alpha (ERα) used to treat breast cancer, increases risks of endometrial cancer. However, no parallels of ERα transcriptional action in breast and endometrial tumors have been found that might explain this effect. In this study, we addressed this issue with a genome-wide assessment of ERα-chromatin interactions in surgical specimens obtained from patients with tamoxifen-associated endometrial cancer. ERα was found at active enhancers in endometrial cancer cells as marked by the presence of RNA polymerase II and the histone marker H3K27Ac. These ERα binding sites were highly conserved between breast and endometrial cancer and enriched in binding motifs for the transcription factor FOXA1, which displayed substantial overlap with ERα binding sites proximal to genes involved in classical ERα target genes. Multifactorial ChIP-seq data integration from the endometrial cancer cell line Ishikawa illustrated a functional genomic network involving ERα and FOXA1 together with the enhancer-enriched transcriptional regulators p300, FOXM1, TEAD4, FNFIC, CEBP8, and TCF12. Immunohistochemical analysis of 230 primary endometrial tumor specimens showed that lack of FOXA1 and ERα expression was associated with a longer interval between breast cancer and the emergence of endometrial cancer, exclusively in tamoxifen-treated patients. Our results define conserved sites for a genomic interplay between FOXA1 and ERα in breast cancer and tamoxifen-associated endometrial cancer. In addition, FOXA1 and ERα are associated with the interval time between breast cancer and endometrial cancer only in tamoxifen-treated breast cancer patients. Cancer Res; 76(13); 3773-84. ©2016 AACR.
Collapse
Affiliation(s)
- Marjolein Droog
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ekaterina Nevedomskaya
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands. Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yongsoo Kim
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands. Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tesa Severson
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Koen D Flach
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mark Opdam
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Karianne Schuurman
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Patrycja Gradowska
- Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michael Hauptmann
- Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gwen Dackus
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Harry Hollema
- Department of Pathology, University Medical Center Groningen, Groningen, the Netherlands
| | - Marian Mourits
- Department of Gynecological Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Petra Nederlof
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hester van Boven
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands. Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk Wessels
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands. Faculty of EEMCS, Delft University of Technology, Delft, the Netherlands
| | - Flora E van Leeuwen
- Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wilbert Zwart
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|