1
|
Timofeeva АА, Minina VI, Torgunakova AV, Soboleva ОА, Тitov RА, Zakharova YА, Bakanova ML, Glushkov АN. Polymorphic variants of the hOGG1, APEX1, XPD, SOD2, and CAT genes involved in DNA repair processes and antioxidant defense and their association with breast cancer risk. Vavilovskii Zhurnal Genet Selektsii 2024; 28:424-432. [PMID: 39027127 PMCID: PMC11253018 DOI: 10.18699/vjgb-24-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/12/2024] [Accepted: 02/26/2024] [Indexed: 07/20/2024] Open
Abstract
Breast cancer is one of the leading causes of mortality among women. The most frequently encountered tumors are luminal tumors. Associations of polymorphisms in the hOGG1 (rs1052133), APEX1 (rs1130409), XPD (rs13181), SOD2 (rs4880), and CAT (rs1001179) genes were studied in 313 nonsmoking postmenopausal patients with luminal B subtype breast cancer. The control group consisted of 233 healthy nonsmoking postmenopausal women. Statistically significant associations of the XPD and APEX1 gene polymorphisms with the risk of developing luminal B Her2-negative subtype of breast cancer were observed in a log-additive inheritance model, while the CAT gene polymorphism showed an association in a dominant inheritance model (OR = 1.41; CI 95 %: 1.08-1.85; Padj.= 0.011; OR = 1.39; CI 95 %: 1.07-1.81; Padj = 0.013 и OR = 1.70; CI 95 %: 1.19-2.43; Padj = 0.004, respectively). In the group of elderly women (aged 60-74 years), an association of the CAT gene polymorphism with the risk of developing luminal B subtype of breast cancer was found in a log-additive inheritance model (OR = 1.87; 95 % CI: 1.22-2.85; Padj = 0.0024). Using MDR analysis, the most optimal statistically significant 3-locus model of gene-gene interactions in the development of luminal B Her2-negative subtype breast cancer was found. MDR analysis also showed a close interaction and mutual enhancement of effects between the APEX1 and SOD2 loci and the independence of the effects of these loci from the CAT locus in the formation of luminal B subtype breast cancer.
Collapse
Affiliation(s)
- А А Timofeeva
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| | - V I Minina
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia Kemerovo State University, Kemerovo, Russia
| | - A V Torgunakova
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia Kemerovo State University, Kemerovo, Russia
| | - О А Soboleva
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| | - R А Тitov
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia Kemerovo State University, Kemerovo, Russia
| | - Ya А Zakharova
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia Kemerovo State University, Kemerovo, Russia
| | - M L Bakanova
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| | - А N Glushkov
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| |
Collapse
|
2
|
Rajan A, Varghese GR, Yadev I, Anandan J, Latha NR, Patra D, Krishnan N, Kuppusamy K, Warrier AV, Bhushan S, Nadhan R, Ram Kumar RM, Srinivas P. Modulation of BRCA1 mediated DNA damage repair by deregulated ER-α signaling in breast cancers. Am J Cancer Res 2022; 12:17-47. [PMID: 35141003 PMCID: PMC8822286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023] Open
Abstract
BRCA1 mutation carriers have a greater risk of developing cancers in hormone-responsive tissues like breasts and ovaries. However, this tissue-specific incidence of BRCA1 related cancers remains elusive. The majority of the BRCA1 mutated breast cancers exhibit typical histopathological features of high-grade tumors, with basal epithelial phenotype, classified as triple-negative molecular subtype and have a higher percentage of DNA damage and chromosomal abnormality. Though there are many studies relating BRCA1 with ER-α (Estrogen receptor-α), it has not been reported whether E2 (Estrogen) -ER-α signaling can modulate the DNA repair activities of BRCA1. The present study analyzes whether deregulation of ER-α signaling, arising as a result of E2/ER-α deficiency, could impact the BRCA1 dependent DDR (DNA Damage Response) pathways, predominantly those of DNA-DSB (Double Strand break) repair and oxidative damage response. We demonstrate that E2/E2-stimulated ER-α can augment BRCA1 mediated high fidelity repairs like HRR (Homologous Recombination Repair) and BER (Base Excision Repair) in breast cancer cells. Conversely, a condition of ER-α deficiency itself or any interruption in ligand-dependent ER-α transactivation resulted in delayed DNA damage repair, leading to persistent activation of γH2AX and retention of unrepaired DNA lesions, thereby triggering tumor progression. ER-α deficiency not only limited the HRR in cells but also facilitated the DSB repair through error prone pathways like NHEJ (Non Homologous End Joining). ER-α deficiency associated persistence of DNA lesions and reduced expression of DDR proteins were validated in human mammary tumors.
Collapse
Affiliation(s)
- Arathi Rajan
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
- Department of Biotechnology, University of KeralaThiruvananthapuram 695011, Kerala, India
| | - Geetu R Varghese
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
| | - Induprabha Yadev
- Goverment Medical CollegeThiruvananthapuram 695011, Kerala, India
| | - Jaimie Anandan
- Goverment Medical CollegeThiruvananthapuram 695011, Kerala, India
| | - Neetha R Latha
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
| | - Dipyaman Patra
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
| | - Neethu Krishnan
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
| | - Krithiga Kuppusamy
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
| | - Arathy V Warrier
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
| | - Satej Bhushan
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
| | - Revathy Nadhan
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
- OU Health Stephenson Cancer CentreOklahoma, United State
| | - Ram Mohan Ram Kumar
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
| | - Priya Srinivas
- Cancer Research Program, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram 695014, Kerala, India
| |
Collapse
|
3
|
Zoraiz K, Attique M, Shahbaz S, Ahmed MW, Kayani MA, Mahjabeen I. Deregulation of mitochondrial sirtuins and OGG1-2a acts as a prognostic and diagnostic biomarker in leukemia. Future Oncol 2021; 17:3561-3577. [PMID: 34189942 DOI: 10.2217/fon-2020-1155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purpose: The present study was planned to explore the expression variations of mitochondrial sirtuins and the mitochondrial DNA repair enzyme OGG1-2a in leukemia patients. Oxidative stress and deacetylation levels of leukemia patients were measured in the present study. Methods: A total of 200 leukemia patients along with 200 healthy controls were evaluated using quantitative PCR, 8OXOG assay and deacetylation assay. Results: Significant deregulation of SIRT3 (p < 0.0001), SIRT4 (p < 0.0001), SIRT5 (p < 0.0001), Ki-67 (p < 0.0001) and OGG1-2a (p < 0.0001) was detected in patients versus controls. Survival analysis showed that deregulation of said genes was associated with decreased survival of leukemia patients (SIRT3: p < 0.004; SIRT4: p < 0.0009; SIRT5: p < 0.0001; OGG1-2a: p < 0.03). Receiver operating characteristic curve analysis confirmed the diagnostic values of selected genes in leukemia patients. Levels of 8OXOG adducts were measured, and significantly increased 8OXOG adduct levels were observed in patients versus controls. Conclusion: These data suggest that deregulation of SIRT3, SIRT4, SIRT5 and OGG1-2a acts as a diagnostic and prognostic marker in leukemia.
Collapse
Affiliation(s)
- Kinza Zoraiz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Attique
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Malik Waqar Ahmed
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Ishrat Mahjabeen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
4
|
Aybastıer Ö, Dawbaa S, Demir C, Akgün O, Ulukaya E, Arı F. Quantification of DNA damage products by gas chromatography tandem mass spectrometry in lung cell lines and prevention effect of thyme antioxidants on oxidative induced DNA damage. Mutat Res 2018; 808:1-9. [PMID: 29366947 DOI: 10.1016/j.mrfmmm.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Lung cancer has a high treatment cost and poor prognosis in comparison to other types of cancers. This work was involved in studying oxidative DNA base damage inhibition. Accordingly, standard carvacrol, thymol, thymoquinone with water and water-methanol extract of thyme (Origanum vulgare L. subsp. hirtum (link.) Ietswaart), thyme oil and thyme water were prepared and investigated for their efficacy to inhibit DNA oxidative damage formed by H2O2 in malignant lung cells (A549). The antioxidant capacity by ABTS assay was 271.73 ± 11.45 mg trolox equivalent/mL for thyme oil. HPLC analysis was carried out to determine the contents of different thyme extracts, results showing the presence of carvacrol, thymol, protocatechuic acid, caffeic acid, epicatechin and rosmarinic acid in water and water-methanol extracts while only carvacrol and thymol were found in thyme oil and thyme water. After DNA isolation from the cultured cells, the formed oxidative induced DNA damage products were analysed using GC-MS/MS. It was proven that the antioxidants in the cell culture media have succeeded to inhibit oxidative DNA base damage. Thymoquinone was shown to be the best protectant antioxidant among other antioxidants against the formation of oxidative DNA damage, whereas water-methanol extract of thyme was the best among the plant-sourced samples. Thymoquinone and thyme water-methanol extract were investigated for their efficacy on cultured healthy lung cells (BEAS-2B), and it was proven that they are efficient in protection against the oxidation of DNA of healthy lung cells too.
Collapse
Affiliation(s)
- Önder Aybastıer
- University of Uludag, Faculty of Science and Arts, Department of Chemistry, 16059 Bursa, Turkey
| | - Sam Dawbaa
- University of Uludag, Faculty of Science and Arts, Department of Chemistry, 16059 Bursa, Turkey; Thamar University, Faculty of Medicine and Health Sciences, Department of Pharmacy, Dhamar, Yemen
| | - Cevdet Demir
- University of Uludag, Faculty of Science and Arts, Department of Chemistry, 16059 Bursa, Turkey.
| | - Oğuzhan Akgün
- University of Uludag, Faculty of Science and Arts, Department of Biology, 16059 Bursa, Turkey
| | - Engin Ulukaya
- University of İstinye, Faculty of Medicine, Department of Medical Biochemistry, İstanbul, Turkey
| | - Ferda Arı
- University of Uludag, Faculty of Science and Arts, Department of Biology, 16059 Bursa, Turkey
| |
Collapse
|
5
|
Yuan TA, Yourk V, Farhat A, Ziogas A, Meyskens FL, Anton-Culver H, Liu-Smith F. A Case-Control Study of the Genetic Variability in Reactive Oxygen Species-Metabolizing Enzymes in Melanoma Risk. Int J Mol Sci 2018; 19:ijms19010242. [PMID: 29342889 PMCID: PMC5796190 DOI: 10.3390/ijms19010242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that ultraviolet (UV)-induced chemiexcitation of melanin fragments leads to DNA damage; and chemiexcitation of melanin fragments requires reactive oxygen species (ROS), as ROS excite an electron in the melanin fragments. In addition, ROS also cause DNA damages on their own. We hypothesized that ROS producing and metabolizing enzymes were major contributors in UV-driven melanomas. In this case-control study of 349 participants, we genotyped 23 prioritized single nucleotide polymorphisms (SNPs) in nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4 (NOX1 and NOX4, respectively), CYBA, RAC1, superoxide dismutases (SOD1, SOD2, and SOD3) and catalase (CAT), and analyzed their associated melanoma risk. Five SNPs, namely rs1049255 (CYBA), rs4673 (CYBA), rs10951982 (RAC1), rs8031 (SOD2), and rs2536512 (SOD3), exhibited significant genotypic frequency differences between melanoma cases and healthy controls. In simple logistic regression, RAC1 rs10951982 (odds ratio (OR) 8.98, 95% confidence interval (CI): 5.08 to 16.44; p < 0.001) reached universal significance (p = 0.002) and the minor alleles were associated with increased risk of melanoma. In contrast, minor alleles in SOD2 rs8031 (OR 0.16, 95% CI: 0.06 to 0.39; p < 0.001) and SOD3 rs2536512 (OR 0.08, 95% CI: 0.01 to 0.31; p = 0.001) were associated with reduced risk of melanoma. In multivariate logistic regression, RAC1 rs10951982 (OR 6.15, 95% CI: 2.98 to 13.41; p < 0.001) remained significantly associated with increased risk of melanoma. Our results highlighted the importance of RAC1, SOD2, and SOD3 variants in the risk of melanoma.
Collapse
Affiliation(s)
- Tze-An Yuan
- Program in Public Health, University of California Irvine, Irvine, CA 92697, USA.
| | - Vandy Yourk
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA.
| | - Ali Farhat
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA.
| | - Argyrios Ziogas
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | - Frank L Meyskens
- Program in Public Health, University of California Irvine, Irvine, CA 92697, USA.
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
- Chao Family Comprehensive Cancer Center, Irvine, CA 92697, USA.
| | - Hoda Anton-Culver
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | - Feng Liu-Smith
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
- Chao Family Comprehensive Cancer Center, Irvine, CA 92697, USA.
| |
Collapse
|
6
|
Abstract
There are many approaches used to control breast cancer, although the most efficient strategy is the reactivation of apoptosis. Since mitochondria play an important role in cellular metabolism and homeostasis, as well as in the regulation of cell death pathways, we focus here on metabolic remodeling and mitochondrial alterations present in breast tumor cells. We review strategies including classes of compounds and delivery systems that target metabolic and specific mitochondrial alterations to kill tumor cells without affecting their normal counterparts. We present here the arguments for the improvement of already existent molecules and the design of novel promising anticancer drug candidates that target breast cancer mitochondria.
Collapse
|
7
|
Dizdaroglu M, Coskun E, Jaruga P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radic Res 2015; 49:525-48. [PMID: 25812590 DOI: 10.3109/10715762.2015.1014814] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidatively induced damage caused by free radicals and other DNA-damaging agents generate a plethora of products in the DNA of living organisms. There is mounting evidence for the involvement of this type of damage in the etiology of numerous diseases including carcinogenesis. For a thorough understanding of the mechanisms, cellular repair, and biological consequences of DNA damage, accurate measurement of resulting products must be achieved. There are various analytical techniques, with their own advantages and drawbacks, which can be used for this purpose. Mass spectrometric techniques with isotope dilution, which include gas chromatography (GC) and liquid chromatography (LC), provide structural elucidation of products and ascertain accurate quantification, which are absolutely necessary for reliable measurement. Both gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS), in single or tandem versions, have been used for the measurement of numerous DNA products such as sugar and base lesions, 8,5'-cyclopurine-2'-deoxynucleosides, base-base tandem lesions, and DNA-protein crosslinks, in vitro and in vivo. This article reviews these techniques and their applications in the measurement of oxidatively induced DNA damage and its repair.
Collapse
Affiliation(s)
- M Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, MD , USA
| | | | | |
Collapse
|
8
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
9
|
Deng RP, He X, Guo SJ, Liu WF, Tao Y, Tao SC. Global identification of O-GlcNAc transferase (OGT) interactors by a human proteome microarray and the construction of an OGT interactome. Proteomics 2014; 14:1020-30. [PMID: 24536041 DOI: 10.1002/pmic.201300144] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 11/10/2022]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAcylation) is an important protein PTM, which is very abundant in mammalian cells. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT), whose substrate specificity is believed to be regulated through interactions with other proteins. There are a handful of known human OGT interactors, which is far from enough for fully elucidating the substrate specificity of OGT. To address this challenge, we used a human proteome microarray containing ~17,000 affinity-purified human proteins to globally identify OGT interactors and identified 25 OGT-binding proteins. Bioinformatics analysis showed that these interacting proteins play a variety of roles in a wide range of cellular functions and are highly enriched in intra-Golgi vesicle-mediated transport and vitamin biosynthetic processes. Combining newly identified OGT interactors with the interactors identified prior to this study, we have constructed the first OGT interactome. Bioinformatics analysis suggests that the OGT interactome plays important roles in protein transportation/localization and transcriptional regulation. The novel OGT interactors that we identified in this study could serve as a starting point for further functional analysis. Because of its high-throughput and parallel analysis capability, we strongly believe that protein microarrays could be easily applied for the global identification of regulators for other key enzymes.
Collapse
Affiliation(s)
- Rui-Ping Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P. R. China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, P. R. China
| | | | | | | | | | | |
Collapse
|
10
|
Shamsabadi FT, Khoddami A, Fard SG, Abdullah R, Othman HH, Mohamed S. Comparison of tamoxifen with edible seaweed (Eucheuma cottonii L.) extract in suppressing breast tumor. Nutr Cancer 2013; 65:255-62. [PMID: 23441613 DOI: 10.1080/01635581.2013.756528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The tropical edible red seaweed (Eucheuma cottonii L.) is rich in nutrients and polyphenolic compounds that may suppress cancer through its antioxidant and antiproliferative properties. The study reports on rat mammary tumor suppression and tissue antioxidant status modulation by E. cottonii ethanol extract (ECE). The effect of orally administered ECE (100 mg/kg body-weight) was compared with that of tamoxifen (10 mg/kg body-weight). Rat was induced to develop mammary tumor with subcutaneous injection of LA-7 cells (6 × 10(6) cells/rat). The ECE was more effective than tamoxifen in suppressing tumor growth (27%), improving tissues (plasma, liver, and kidney) malondialdehyde concentrations, superoxide dismutase activity and erythrocyte glutathione concentrations (P < 0.05). Unlike tamoxifen, the ECE displayed little toxicity to the liver and kidneys. The ECE exhibited strong anticancer effect with enzyme modulating properties, suggesting its potential as a suppressing agent for mammary gland tumor.
Collapse
Affiliation(s)
- Fatemeh T Shamsabadi
- Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|
11
|
Dizdaroglu M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 2012; 327:26-47. [PMID: 22293091 DOI: 10.1016/j.canlet.2012.01.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/23/2011] [Accepted: 01/11/2012] [Indexed: 12/12/2022]
Abstract
Endogenous and exogenous sources cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. The resulting DNA lesions are mutagenic and, unless repaired, lead to a variety of mutations and consequently to genetic instability, which is a hallmark of cancer. Oxidatively induced DNA damage is repaired in living cells by different pathways that involve a large number of proteins. Unrepaired and accumulated DNA lesions may lead to disease processes including carcinogenesis. Mutations also occur in DNA repair genes, destabilizing the DNA repair system. A majority of cancer cell lines have somatic mutations in their DNA repair genes. In addition, polymorphisms in these genes constitute a risk factor for cancer. In general, defects in DNA repair are associated with cancer. Numerous DNA repair enzymes exist that possess different, but sometimes overlapping substrate specificities for removal of oxidatively induced DNA lesions. In addition to the role of DNA repair in carcinogenesis, recent evidence suggests that some types of tumors possess increased DNA repair capacity that may lead to therapy resistance. DNA repair pathways are drug targets to develop DNA repair inhibitors to increase the efficacy of cancer therapy. Oxidatively induced DNA lesions and DNA repair proteins may serve as potential biomarkers for early detection, cancer risk assessment, prognosis and for monitoring therapy. Taken together, a large body of accumulated evidence suggests that oxidatively induced DNA damage and its repair are important factors in the development of human cancers. Thus this field deserves more research to contribute to the development of cancer biomarkers, DNA repair inhibitors and treatment approaches to better understand and fight cancer.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
12
|
Liu X, Zhao J, Liu R, Lei Z, You J, Zhou Q, Zhang HT. [Mutational analysis of hOGG1 gene promoter in patients with non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:199-204. [PMID: 21426660 PMCID: PMC5999654 DOI: 10.3779/j.issn.1009-3419.2011.03.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
背景与目的 8-羟基鸟嘌呤DNA糖苷酶(8-hydroxygumine DNA glycosylase 1, OGG1)是一种DNA修复酶,可以从DNA切除修复8-羟基鸟嘌呤(8-dihydro-8-oxoguanine, 8-OH-G)。人类OGG1基因(hOGG1)的多态性可能会改变酶的活性而影响个体修复损伤DNA的能力,促进癌变。然而,hOGG1基因启动子区域的突变与非小细胞肺癌(non-small cell lung cancer, NSCLC)的关系尚不明晰。我们拟探讨hOGG1基因启动子区域的突变与NSCLC发生发展的潜在关系。 方法 选取苏州大学附属第一医院2003年1月-2005年12月新鲜手术切除的40例NSCLC组织标本,采用PCR-SSCP和直接测序的方法检测NSCLC及其对应的癌旁组织中hOGG1基因启动子区域的突变。 结果 在40例NSCLC患者中未发现hOGG1基因启动子区域的异常突变,但发现单核苷酸多态位点rs159153与TNM分期明显相关(P=0.008);同时发现吸烟者中淋巴结转移率明显较低(P=0.034)。 结论 单核苷酸多态位点rs159153和吸烟史可能对NSCLC的侵袭和转移潜在性提供预测。
Collapse
Affiliation(s)
- Xia Liu
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 2011; 711:193-201. [DOI: 10.1016/j.mrfmmm.2010.12.016] [Citation(s) in RCA: 644] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/22/2010] [Accepted: 12/31/2010] [Indexed: 04/08/2023]
|
14
|
Abstract
Mitochondria control essential cellular activities including generation of ATP via oxidative phosphorylation. Mitochondrial DNA (mtDNA) mutations in the regulatory D-loop region and somatic mtDNA mutations are common in primary human cancers. The biological impact of a given mutation may vary, depending on the nature of the mutation and the proportion of mutant mtDNAs carried by the cell. Identification of mtDNA mutations in precancerous lesions supports their early contribution to cell transformation and cancer progression. Introduction of mtDNA mutations in transformed cells has been associated with increased ROS production and tumor growth. Studies reveal that increased and altered mtDNA plays a role in the development of cancer but further work is required to establish the functional significance of specific mitochondrial mutations in cancer and disease progression. This review offers some insight into the extent of mtDNA mutations, their functional consequences in tumorigenesis, mitochondrial therapeutics, and future clinical application.
Collapse
Affiliation(s)
- Aditi Chatterjee
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
15
|
Sigounas G, Hairr JW, Cooke CD, Owen JR, Asch AS, Weidner DA, Wiley JE. Role of benzo[alpha]pyrene in generation of clustered DNA damage in human breast tissue. Free Radic Biol Med 2010; 49:77-87. [PMID: 20347033 DOI: 10.1016/j.freeradbiomed.2010.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/06/2010] [Accepted: 03/18/2010] [Indexed: 12/23/2022]
Abstract
Complex DNA damage may manifest in double-strand breaks (DSBs) and non-DSB, bistranded, oxidatively induced clustered DNA lesions (OCDLs). Although the carcinogen benzo[alpha]pyrene (B[alpha]P) has been shown to induce chromosomal aberrations and transformation of mammary cells, it is not known whether this compound engenders clustered DNA damage. Normal primary breast tissue-derived cells were treated with B[alpha]P, and the levels of DNA lesions, chromosomal aberrations, total antioxidant capacity (TAC), and reactive oxygen species (ROS) were determined. DNA from cells treated with 2 and 8 microM B[alpha]P exhibited increases of 3- and 4-fold in APE1 (p<0.001), 11- and 19-fold in Endo III (p<0.001), and 8- and 15-fold in hOGG1 (p<0.001) OCDLs, respectively, compared to the 0 microM B[alpha]P-treated (control) group. Mammary cells treated with 8 microM B[alpha]P produced 0.12 aberrations per cell (p<0.05) and there was a strong positive correlation (r=0.91) between the levels of OCDLs and those of chromosomal aberrations. Finally, TAC was decreased by 25% (p<0.02), whereas ROS production increased by 2-fold (p<0.02) in cells treated with 8 microM B[alpha]P compared to the control group. In conclusion, oxidatively induced clustered DNA damage mediated through differential expression of APE1, reduced TAC, and increased ROS may play a significant role in the chemically induced transformation of normal primary mammary cells.
Collapse
Affiliation(s)
- George Sigounas
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Saha T, Rih JK, Roy R, Ballal R, Rosen EM. Transcriptional regulation of the base excision repair pathway by BRCA1. J Biol Chem 2010; 285:19092-105. [PMID: 20185827 PMCID: PMC2885188 DOI: 10.1074/jbc.m110.104430] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/24/2010] [Indexed: 11/06/2022] Open
Abstract
Inactivation of the breast cancer susceptibility gene BRCA1 plays a significant role in the development of a subset of breast cancers, although the major tumor suppressor function of this gene remains unclear. Previously, we showed that BRCA1 induces antioxidant-response gene expression and protects cells against oxidative stress. We now report that BRCA1 stimulates the base excision repair pathway, a major mechanism for the repair of oxidized DNA, by stimulating the activity of key base excision repair (BER) enzymes, including 8-oxoguanine DNA glycosylase (OGG1), the DNA glycosylase NTH1, and the apurinic endonuclease redox factor 1/apurinic endonuclease 1 (REF1/APE1), in human breast carcinoma cells. The increase in BER enzyme activity appears to be due, primarily, to an increase in enzyme expression. The ability of BRCA1 to stimulate the expression of the three BER enzymes and to enhance NTH1 promoter activity was dependent upon the octamer-binding transcription factor OCT1. Finally, we found that OGG1, NTH1, and REF1/APE1 each contribute to the BRCA1 protection against oxidative stress due to hydrogen peroxide and that hydrogen peroxide stimulates the expression of BRCA1 and the three BER enzymes. These findings identify a novel mechanism through which BRCA1 may regulate the repair of oxidative DNA damage.
Collapse
Affiliation(s)
- Tapas Saha
- From the Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057
| | - Jeong Keun Rih
- From the Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057
| | - Rabindra Roy
- From the Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057
| | - Rahul Ballal
- From the Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057
| | - Eliot M. Rosen
- From the Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057
| |
Collapse
|
17
|
BRCA1 role in the mitigation of radiotoxicity and chromosomal instability through repair of clustered DNA lesions. Chem Biol Interact 2010; 188:350-8. [PMID: 20371364 DOI: 10.1016/j.cbi.2010.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/22/2010] [Accepted: 03/30/2010] [Indexed: 02/07/2023]
Abstract
Oxidatively-induced clustered DNA lesions are considered the signature of any ionizing radiation like the ones human beings are exposed daily from various environmental sources (medical X-rays, radon, etc.). To evaluate the role of BRCA1 deficiencies in the mitigation of radiation-induced toxicity and chromosomal instability we have used two human breast cancer cell lines, the BRCA1 deficient HCC1937 cells and as a control the BRCA1 wild-type MCF-7 cells. As an additional control for the DNA damage repair measurements, the HCC1937 cells with partially reconstituted BRCA1 expression were used. Since clustered DNA damage is considered the signature of ionizing radiation, we have measured the repair of double strand breaks (DSBs), non-DSB bistranded oxidative clustered DNA lesions (OCDLs) as well as single strand breaks (SSBs) in cells exposed to radiotherapy-relevant γ-ray doses. Parallel measurements were performed in the accumulation of chromatid and isochromatid breaks. For the measurement of OCDL repair, we have used a novel adaptation of the denaturing single cell gel electrophoresis (Comet assay) and pulsed field gel electrophoresis with Escherichia coli repair enzymes as DNA damage probes. Independent monitoring of the γ-H2AX foci was also performed while metaphase chromatid lesions were measured as an indicator of chromosomal instability. HCC1937 cells showed a significant accumulation of all types of DNA damage and chromatid breaks compared to MCF-7 while BRCA1 partial expression contributed significantly in the overall repair of OCDLs. These results further support the biological significance of repair resistant clustered DNA damage leading to chromosomal instability. The current results combined with previous findings on the minimized ability of base clusters to induce cell death (mainly induced by DSBs), enhance the potential association of OCDLs with breast cancer development especially in the case of a BRCA1 deficiency leading to the survival of breast cells carrying a high load of unrepaired DNA damage clusters.
Collapse
|
18
|
Ballal R, Cheema A, Ahmad W, Rosen EM, Saha T. Fluorescent oligonucleotides can serve as suitable alternatives to radiolabeled oligonucleotides. J Biomol Tech 2009; 20:190-194. [PMID: 19721820 PMCID: PMC2729480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Prolonged exposure to radiation from radionuclei used in medical research can cause DNA damage and mutation, which lead to several diseases including cancer. Radioactivity-based experiments are expensive and associated with specialized training, dedication of instruments, approvals, and cleanup with potential hazardous waste. The objective of this study was to find an alternative to the use of radioactivity in medical research using nucleic acid chemistry. FITC-labeled oligonucleotides that contain wild-type (wt) and modified base (8-oxo-G) at the same position and their complementary unlabeled strand were synthesized. Purified DNA repair enzyme, OGG1, and nuclear lysates from MCF-7 breast cancer cells were incubated with double-stranded FITC-labeled wt and 8-oxo-G oligonucleotide to demonstrate the OGG1 incision assay. We found that FITC-coupled oligonucleotides do not impose a steric hindrance during duplex formation, and the fluorescence intensity of the oligonucleotide is comparable with the intensity of the radioactive oligonucleotide. Moreover, we have seen that the OGG1 incision assay can be performed using these fluorescence oligonucleotides, replacing conventional use of radiolabeled oligonucleotides in the assay. Although the use of fluorescent-labeled oligonucleotides was described in detail for incision assays, the technique can be applied to replace a broad range of experiments, where radioactive oligonucleotides are used, eliminating the hazardous consequences of radiation.
Collapse
Affiliation(s)
- Rahul Ballal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
19
|
Corti A, Duarte TL, Giommarelli C, De Tata V, Paolicchi A, Jones GDD, Pompella A. Membrane gamma-glutamyl transferase activity promotes iron-dependent oxidative DNA damage in melanoma cells. Mutat Res 2009; 669:112-21. [PMID: 19505483 DOI: 10.1016/j.mrfmmm.2009.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/09/2009] [Accepted: 05/27/2009] [Indexed: 11/28/2022]
Abstract
A number of recent observations have suggested a potential role for membrane-bound gamma-glutamyltransferase (GGT) in tumor progression and appearance of more aggressive and resistant phenotypes, through redox interactions leading to production of reactive oxygen species. The present study was aimed to evaluate whether such pro-oxidant activity of GGT can promote oxidative DNA damage, thus contributing to cancer genomic instability. Human GGT-transfected melanoma cells were studied, and DNA damage was measured by using the alkaline comet assay. Our results indicate that higher levels of GGT activity are associated with higher levels of background DNA damage and oxidized bases. This association cannot be explained by differences in cell cycle distribution or apoptotic rates. GGT-over-expressing cells also presented with a markedly higher glucose uptake, a phenomenon potentially leading to higher metabolic rate and oxidative DNA damage. Anyway, when GGT-over-expressing cells were incubated in the presence of GGT substrates and a source of catalytic iron, increased levels of DNA damage and oxidized bases were observed, an effect completely prevented in the presence of GGT inhibitors or various antioxidants.The findings reported indicate that GGT activity is able to promote iron-dependent DNA oxidative damage, thus potentially representing an important mechanism in initiation/progression of neoplastic transformation.
Collapse
Affiliation(s)
- Alessandro Corti
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Cheng B, Guo X, Zheng Y, Wang Y, Liu C, Li P. The effects of HBx gene on the expression of DNA repair enzymes hOGG1 and hMYHalpha mRNA in HepG2 cells. ACTA ACUST UNITED AC 2009; 29:187-92. [PMID: 19399402 DOI: 10.1007/s11596-009-0210-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Indexed: 12/26/2022]
Abstract
To observe the alteration in the expression of DNA repair enzymes hOGG1 and hMYHalpha and the change in 8-OHdG levels in the HBx gene-transfected cells HepG2/HBx and to explore the mechanisms of the HBV-associated hepatocellular carcinoma, the gene-transfected cells HepG2/HBx which stably expressed HBx was established, and the effect of HBx on the cell cycle and proliferation of HepG2 was examined. By using the beta-actin as the interior control, real-time polymerase chain reaction (Real-time qPCR) was employed to quantitatively detect the expression of DNA repair enzymes hOGG1 and hMYHalpha in the HepG2/HBx, the control cells HepG2 and HepG2 transfected with pcDNA3.1 vector (HepG2/pDNA3.1). The 8-OHdG levels were determined by HPLC/ECD in the established gene-transfected cells HepG2/HBx and the control cells HepG2 and HepG2/pcDNA3.1. Our results showed that the expression of DNA repair enzyme hMYHalpha in the HepG2/HBx (0.021+/-0.007) was significantly lower than that of HepG2 (0.099+/-0.041) (P<0.05) and HepG2/pDNA3.1 (0.121+/-0.005) (P<0.05). However, the no significant differences existed in the expression of DNA repair enzyme hOGG1 among the three cell strains (P>0.05). The 8-OHdG level in the HepG2/HBx was significantly higher than that in HepG2 and HepG2/pcDNA3.1 (P<0.05). It is concluded that HBx gene may inhibit the expression of DNA repair enzyme hMYHalpha mRNA to impair the ability to repair the intracellular DNA oxidative damage, to increase the oxidative DNA-adduct 8-OHdG and to affect the nucleotide excision repair function, thus participate in the occurrence and development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | | | | | | | |
Collapse
|
21
|
Srivastava A, Srivastava K, Pandey SN, Choudhuri G, Mittal B. Single-nucleotide polymorphisms of DNA repair genes OGG1 and XRCC1: association with gallbladder cancer in North Indian population. Ann Surg Oncol 2009; 16:1695-703. [PMID: 19266243 DOI: 10.1245/s10434-009-0354-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 01/10/2009] [Accepted: 01/10/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND DNA damage by endogenous or exogenous source of reactive oxygen species (ROS) plays an important role in induction and progression of various cancers. Physiologically, gallbladder is likely to be exposed to various ROS which leads to extensive DNA damage. Cells overcome the DNA damage by repair mechanisms. Genetic variants of OGG1 and XRCC1, important enzymes participating in base excision repair pathway, may confer interindividual variations in susceptibility to gallbladder cancer (GBC). This study was aimed to examine the role of OGG1 Ser326Cys (rs1052133) and XRCC1 Arg194Trp (C > T) (rs25487) and Arg399Gln (G > A) (rs1799782) polymorphisms in GBC susceptibility. METHODS The study included 173 GBC patients and 204 controls. Genotyping was done by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method. Differences in the frequencies were estimated by chi-square test and risk was estimated by using unconditional logistic regression after adjusting for age and gender. RESULTS OGG1 Cys/Cys genotype frequency was significantly higher in GBC patients [odds ratio (OR) = 2.93; 95% confidence interval (CI) = 1.14-7.51]. The increased risk was more pronounced in female GBC patients (OR = 5.92; 95%CI = 1.20-29.13), patients with gallstone (OR = 5.50; 95%CI = 1.99-15.16), female gender, and late onset of disease (OR = 4.72, 95%CI = 1.43-15.53). In XRCC1 Arg399Gln polymorphism, significant differences in frequencies of Gln/Gln and Arg/Gln genotypes conferred significantly low risk for GBC (OR = 0.62; 95%CI = 0.39-0.97 and OR = 0.37; 95%CI = 0.19-0.71 respectively). However, XRCC1 Arg194Trp polymorphism was not associated with GBC. The carriers of Arg-Gln haplotype consisting of 194Arg and 399Gln alleles of XRCC1 were also at significant low risk for GBC (OR = 0.59, 95%CI = 0.42-0.82). Interaction of genotypes and tobacco usage did not modulate the risk. CONCLUSION Results suggest that Cys/Cys genotype of OGG1 Ser326Cys polymorphism is associated with increased risk of GBC. However, Arg399Gln polymorphism and Arg-Gln haplotype comprising XRCC1 Arg194Trp and Arg399Gln polymorphisms conferred low risk for GBC susceptibility.
Collapse
Affiliation(s)
- Anvesha Srivastava
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, UP, India
| | | | | | | | | |
Collapse
|
22
|
Deficient repair of 8-hydroxyguanine in the BxPC-3 pancreatic cancer cell line. Biochem Biophys Res Commun 2008; 376:336-40. [PMID: 18774780 DOI: 10.1016/j.bbrc.2008.08.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 11/23/2022]
Abstract
Elevated levels of oxidatively induced DNA lesions have been reported in malignant pancreatic tissues relative to normal pancreatic tissues. However, the ability of the pancreatic cancer cells to remove these lesions has not previously been addressed. This study analyzed the effectiveness of the pancreatic cancer cell line, BxPC-3 to repair 8-hydroxyguanine (8-OH-Gua) relative to a nonmalignant cell line. We show that BxPC-3 cells repair 8-OH-Gua less effectively than the nonmalignant cells. This repair deficiency correlated with significant downregulation of the hOGG1 protein and the corresponding mRNA (30-fold lower than GAPDH) in BxPC-3 cell line. The repair defect was complemented in vivo by transient transfection of the hOGG1 gene and in vivo by recombinant hOGG1. These results are the first to show a deficiency of 8-OH-Gua repair in BxPC-3 cells, implicating this defect in the risk factor of pancreatic cancer.
Collapse
|
23
|
Francisco DC, Peddi P, Hair JM, Flood BA, Cecil AM, Kalogerinis PT, Sigounas G, Georgakilas AG. Induction and processing of complex DNA damage in human breast cancer cells MCF-7 and nonmalignant MCF-10A cells. Free Radic Biol Med 2008; 44:558-69. [PMID: 18005669 DOI: 10.1016/j.freeradbiomed.2007.10.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/12/2007] [Accepted: 10/13/2007] [Indexed: 02/04/2023]
Abstract
Oxidatively induced stress and DNA damage have been associated with various human pathophysiological conditions, including cancer and aging. Complex DNA damage such as double-strand breaks (DSBs) and non-DSB bistranded oxidatively induced clustered DNA lesions (OCDL) (two or more DNA lesions within a short DNA fragment of 1-10 bp on opposing DNA strands) are hypothesized to be repair-resistant lesions challenging the repair mechanisms of the cell. To evaluate the induction and processing of complex DNA damage in breast cancer cells exposed to radiotherapy-relevant gamma-ray doses, we measured single-strand breaks (SSBs), DSBs, and OCDL in MCF-7 and HCC1937 malignant cells as well as MCF-10A nonmalignant human breast cells. For the detection and measurement of SSBs, DSBs, and OCDL, we used the alkaline single-cell gel electrophoresis, gamma-H2AX assay, and an adaptation of pulsed-field gel electrophoresis with E. coli repair enzymes as DNA damage probes. Increased levels for most types of DNA damage were detected in MCF-7 cells while the processing of DSBs and OCDL was deficient in these cells compared to MCF-10A cells. Furthermore, the total antioxidant capacity of MCF-7 cells was lower compared to their nonmalignant counterparts. These findings point to the important role of complex DNA damage in breast cancer and its potential association with breast cancer development especially in the case of deficient BRCA1 expression.
Collapse
Affiliation(s)
- Dave C Francisco
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Rao AK, Ziegler YS, McLeod IX, Yates JR, Nardulli AM. Effects of Cu/Zn superoxide dismutase on estrogen responsiveness and oxidative stress in human breast cancer cells. Mol Endocrinol 2008; 22:1113-24. [PMID: 18258688 DOI: 10.1210/me.2007-0381] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The effects of estrogen on gene expression in mammary cells are mediated by interaction of the estrogen receptor (ER) with estrogen response elements in target DNA. Whereas the ER is the primary initiator of transcription, the recruitment of coregulatory proteins to the DNA-bound receptor influences estrogen responsiveness. To better understand how estrogen alters gene expression, we identified proteins associated with the DNA-bound ERalpha. Surprisingly, the antioxidant enzyme Cu/Zn superoxide dismutase (SOD1), which is known primarily as a scavenger of superoxide, was associated with the DNA-bound receptor. We have now demonstrated that SOD1 interacts with ERalpha from MCF-7 cell nuclear extracts and with purified ERalpha and that SOD1 enhances binding of ERalpha to estrogen response element-containing DNA. Although SOD1 decreases transcription of an estrogen-responsive reporter plasmid in transiently transfected U2 osteosarcoma cells, RNA interference assays demonstrate that SOD1 is required for effective estrogen responsiveness of the endogenous pS2, progesterone receptor, cyclin D1, and Cathepsin D genes in MCF-7 breast cancer cells. Furthermore, ERalpha and SOD1 are associated with regions of the pS2 and progesterone receptor genes involved in conferring estrogen-responsive gene expression. Interestingly, when MCF-7 cells are exposed to 17beta-estradiol and superoxide generated by addition of potassium superoxide (KO2) to the cell medium, SOD1 levels are increased and tyrosine nitration, which is an indicator of oxidative stress-induced protein damage, is significantly diminished. Our studies have identified a new role for SOD1 in regulating estrogen-responsive gene expression and suggest that the 17beta-estradiol- and KO2-induced increase in SOD1 may play a role in the survival of breast cancer cells and the progression of mammary tumors.
Collapse
Affiliation(s)
- Abhi K Rao
- Department of Cellular and Development Biology, University of Illinois at Urbana, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|