1
|
Jang SH, Choi HW, Ahn J, Jang S, Yoon JH, Lee MG, Chi SG. XAF1 antagonizes TRIM28 activity through the assembly of a ZNF313-mediated destruction complex to suppress tumor malignancy. MOLECULAR BIOMEDICINE 2024; 5:58. [PMID: 39532800 PMCID: PMC11557793 DOI: 10.1186/s43556-024-00224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a stress-inducible pro-apoptotic protein that is commonly inactivated in multiple human cancers. Nevertheless, the molecular basis for its tumor suppression function remains largely uncharacterized. Here we report that XAF1 antagonizes the oncogenic activity of tripartite motif containing 28 (TRIM28) ubiquitin E3 ligase through zinc finger protein 313 (ZNF313)-induced ubiquitination and proteasomal degradation. XAF1 exerts apoptosis-promoting effect more strongly in TRIM28+/+ versus XAF1-/- tumor cells and suppresses tumor cell growth, migration, invasion, and epithelial-to-mesenchymal transition and xenograft tumor growth in a highly TRIM28-dependent fashion. Mechanistically, XAF1 interacts directly with the RING domains of TRIM28 and ZNF313 through the ZF6 and ZF7 domain, respectively, thereby facilitating ZNF313 interaction with and ubiquitination of TRIM28. A mutant XAF1 lacking either ZF6 or ZF7 domain exhibits no activity to promote TRIM28 ubiquitination. By destabilizing TRIM28, XAF1 blocks TRIM28-driven ubiquitination of p53 and RLIM, p53-HDAC1 interaction, and TWIST1 stabilization. Intriguingly, TRIM28 destabilizes XAF1 through K48-linked polyubiquitination and proteasomal degradation to protect tumor cells from apoptotic stress, indicating its role as an intrinsic antagonist against XAF1 and the antagonistic interplay of XAF1 and TRIM28. XAF1 expression is inversely correlated with TRIM28 expression in cancer cell lines and tumor tissues and more tightly associated with the survival of TRIM28-high versus TRIM28-low patients. Together, this study uncovers a novel mechanism by which XAF1 suppresses tumor malignancy and an important role for XAF1-TRIM28 interplay in governing stress response, illuminating the mechanistic consequence of its alteration during tumorigenic process.
Collapse
Affiliation(s)
- Seung-Hun Jang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hwi-Wan Choi
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jieun Ahn
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sungchan Jang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Hye Yoon
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Fu J, Chen J, Meng X, Luo Z, Liu Y, Wei L. Molecular identification and functional analysis of X-linked inhibitor of apoptosis -associated factor-1 (XAF1) in grass carp, Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108635. [PMID: 36822382 DOI: 10.1016/j.fsi.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) -associated factor 1 (XAF1) is an interferon-stimulated gene which exhibits pro-apoptosis effect. In this study, XAF1 was characterized from grass carp Ctenopharyngodon idella and its expression pattern and function were analyzed. The open reading frame (orf) of XAF1 is 789 nucleotides (nt) encoding 262 amino acids. SMART online search results showed that a C2H2-type and six C2HC-type zinc-fingers were found in XAF1, however, the XAF1 of grass carp showed high sequence identity to zebrafish (71%), low sequence identity to tetrapods (21-22%). Rt-qPCR results showed that XAF1 was constitutively expressed in all tested organs/tissues with highest expression in blood. An inductive expression of XAF1 at mRNA level was observed in peripheral blood leucocytes (PBLs) and C. idellus kidney cells (CIKs) after treatment with C. idellus recombinant interferon-γ (rIFNg). Overexpressing XAF1 in CIKs exhibited resistance against grass carp reovirus (GCRV) and more sensitivity to cisplatin. These results implied a functional homologue of XAF1 in evolution, however the mechanism may require further investigation.
Collapse
Affiliation(s)
- Jianping Fu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Jun Chen
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - XinYan Meng
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Zhang Luo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Yi Liu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China.
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China.
| |
Collapse
|
3
|
Abstract
XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.
Collapse
|
4
|
XAF1 drives apoptotic switch of endoplasmic reticulum stress response through destabilization of GRP78 and CHIP. Cell Death Dis 2022; 13:655. [PMID: 35902580 PMCID: PMC9334361 DOI: 10.1038/s41419-022-05112-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
X-linked inhibitor of apoptosis-associated factor-1 (XAF1) is a stress-inducible tumor suppressor that is commonly inactivated in many human cancers. Despite accumulating evidence for the pro-apoptotic role for XAF1 under various stressful conditions, its involvement in endoplasmic reticulum (ER) stress response remains undefined. Here, we report that XAF1 increases cell sensitivity to ER stress and acts as a molecular switch in unfolded protein response (UPR)-mediated cell-fate decisions favoring apoptosis over adaptive autophagy. Mechanistically, XAF1 interacts with and destabilizes ER stress sensor GRP78 through the assembly of zinc finger protein 313 (ZNF313)-mediated destruction complex. Moreover, XAF1 expression is activated through PERK-Nrf2 signaling and destabilizes C-terminus of Hsc70-interacting protein (CHIP) ubiquitin E3 ligase, thereby blocking CHIP-mediated K63-linked ubiquitination and subsequent phosphorylation of inositol-required enzyme-1α (IRE1α) that is involved in in the adaptive ER stress response. In tumor xenograft assays, XAF1-/- tumors display substantially lower regression compared to XAF1+/+ tumors in response to cytotoxic dose of ER stress inducer. XAF1 and GRP78 expression show an inverse correlation in human cancer cell lines and primary breast carcinomas. Collectively this study uncovers an important role for XAF1 as a linchpin to govern the sensitivity to ER stress and the outcomes of UPR signaling, illuminating the mechanistic consequence of XAF1 inactivation in tumorigenesis.
Collapse
|
5
|
Lim JS, Lee KW, Ko KP, Jeong SI, Ryu BK, Lee MG, Chi SG. XAF1 destabilizes estrogen receptor α through the assembly of a BRCA1-mediated destruction complex and promotes estrogen-induced apoptosis. Oncogene 2022; 41:2897-2908. [DOI: 10.1038/s41388-022-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
|
6
|
刘 娟, 刘 星, 魏 宝, 刘 洁, 王 悦, 刘 辉. [Effect of stable overexpression of XAF1 gene on biological characteristics of ovarian cancer A2780 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:760-766. [PMID: 34134965 PMCID: PMC8214961 DOI: 10.12122/j.issn.1673-4254.2021.05.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct an ovarian cancer cell line stably overexpressing XAF1 gene and observe the effects of XAF1 gene overexpression on proliferation, apoptosis, cell cycle and sensitivity to paclitaxel of the cells. OBJECTIVE Ovarian cancer A2780 cells were transfected with the plasmids pcDNA3.1(+) or pcDNA3.1(+)-XAF1, and the cells stably Over expressing XAF1 (A2780/XAF1 cells) were screened using G418. Cell clone formation assay and CCK8 assay were used to evaluate the changes in proliferation and paclitaxel sensitivity of the transfected cells, and cell cycle and apoptosis of the cells were analyzed using flow cytometry. OBJECTIVE We successfully obtained A2780/XAF1 cells stably overexpressing XAF1, which exhibited no significant changes in cell morphology. Compared with the negative control cells (A2780/NC), A2780/XAF1 cells had lowered clone formation ability (P=0.0016) and attenuated proliferative activity on the first (P=0.009) and third (P=0.0035) days after cell adherence with also a significantly increased percentage of cells in G2-M phase (P < 0.001). A2780/XAF1 cells showed significantly higher apoptosis rates than A2780/NC cells in the absence of apoptotic stimulation, in serum-free culture or following paclitaxel induction (P < 0.001). The proliferative activity of A2780/XAF1 cells was significantly lower than that of A2780/NC cells after exposure to different paclitaxel concentrations (P < 0.001). The half inhibitory concentration of paclitaxel was significantly lower in A2780/XAF1 than in A2780/NC cells. OBJECTIVE Overexpression of XAF1 significantly inhibits the proliferation, induces cell cycle arrest, promotes apoptosis, and increases paclitaxel sensitivity in ovarian cancer cells.
Collapse
Affiliation(s)
- 娟 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 星辰 刘
- 成都市第 六人民医院妇科,四川 成都 610051Department of Gynecology, The Sixth People's Hospital of Chengdu, Chengdu 610051
| | - 宝宝 魏
- 成都中医药大学附属医院妇科,四川 成都 610075Department of Gynecology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 洁 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 悦华 王
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 辉 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Juraleviciute M, Nsengimana J, Newton-Bishop J, Hendriks GJ, Slipicevic A. MX2 mediates establishment of interferon response profile, regulates XAF1, and can sensitize melanoma cells to targeted therapy. Cancer Med 2021; 10:2840-2854. [PMID: 33734579 PMCID: PMC8026919 DOI: 10.1002/cam4.3846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
MX2 is an interferon inducible gene that is mostly known for its antiviral activity. We have previously demonstrated that MX2 is also associated with the tumorigenesis process in melanoma. However, it remains unknown which molecular mechanisms are regulated by MX2 in response to interferon signaling in this disease. Here, we report that MX2 is necessary for the establishment of an interferon‐induced transcriptional profile partially through regulation of STAT1 phosphorylation and other interferon‐related downstream factors, including proapoptotic tumor suppressor XAF1. MX2 and XAF1 expression tightly correlate in both cultured melanoma cell lines and in patient‐derived primary and metastatic tumors, where they also are significantly related with survival. MX2 mediates IFN growth‐inhibitory signals in both XAF1 dependent and independent ways and in a cell type and context‐dependent manner. Higher MX2 expression renders melanoma cells more sensitive to targeted therapy drugs such as vemurafenib and trametinib; however, this effect is XAF1 independent. In summary, we uncovered a new mechanism in the complex regulation of interferon signaling in melanoma that can influence both survival and response to therapy.
Collapse
Affiliation(s)
- Marina Juraleviciute
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jérémie Nsengimana
- Faculty of Medical Sciences, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Newton-Bishop
- Division of Haematology and Immunology, Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Gert J Hendriks
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ana Slipicevic
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Elmallah MIY, Micheau O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11060850. [PMID: 31248188 PMCID: PMC6627638 DOI: 10.3390/cancers11060850] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology and recent advances in the development of HDACi will be presented and put into perspective as potential drugs synergizing with TRAIL's pro-apoptotic potential.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt.
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
| |
Collapse
|
9
|
Liu N, Wu Z, Chen A, Chai D, Li L, Zhang L, Zheng J. ISG12a and its interaction partner NR4A1 are involved in TRAIL-induced apoptosis in hepatoma cells. J Cell Mol Med 2019; 23:3520-3529. [PMID: 30821058 PMCID: PMC6484314 DOI: 10.1111/jcmm.14251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in cancer cells while sparing normal cells, thereby leading to the development of TRAIL receptor agonists for cancer treatment. However, these agonist-based therapeutics exhibit little clinical benefits due to the lack of biomarkers to predict whether patients are responsive to the treatment, as well as determine the resistance of cancer cells to TRAIL-based agonists. Our previous study has demonstrated that ISG12a enhances TRAIL-induced apoptosis and might serve as a biomarker to predict the TRAIL response. The downstream mechanism by which ISG12a augments TRAIL-induced apoptosis remains to be elucidated. In this study, we found that ISG12a was localized in the mitochondria and nucleus and augmented TRAIL-induced apoptosis through intrinsic apoptotic pathway. In addition, ISG12a interacted with NR4A1 and promoted its nuclear-to-cytoplasm translocation. Upon translocate to cytoplasm, NR4A1 targeted mitochondria and induced Bcl2 conformational change, thereby exposing its BH3 domain. Moreover, TRAIL treatment can induce NR4A1 expression through the activation of NF-κB in TRAIL-resistant Huh7 hepatoma cells. Knockdown of NR4A1 could overcome TRAIL resistance. However, in TRAIL-sensitive LH86 liver cancer cells, TRAIL activated the Jun N-terminal kinases signalling pathway. Overall, these results showed that both ISG12a and its interaction partner NR4A1 are involved in TRAIL-mediated apoptosis in hepatoma cells.
Collapse
Affiliation(s)
- Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyuan Wu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Aoxing Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
10
|
Kazaana A, Sano E, Yoshimura S, Makita K, Hara H, Yoshino A, Ueda T. Promotion of TRAIL/Apo2L-induced apoptosis by low-dose interferon-β in human malignant melanoma cells. J Cell Physiol 2019; 234:13510-13524. [PMID: 30613977 DOI: 10.1002/jcp.28029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
Interferon β (IFN-β) is considered a signaling molecule with important therapeutic potential in cancer since IFN-β-induced gene transcription mediates antiproliferation and cell death induction. Whereas, TNF-related apoptosis inducing ligand/Apo2 ligand (TRAIL/Apo2L) has emerged as a promising anticancer agent because it induces apoptosis specifically in cancer cells. In this study, we elucidated that IFN-β augments TRAIL-induced apoptosis synergistically using five human malignant melanoma cells. All of these cells were induced apoptosis by TRAIL. Whereas, the response against IFN-β was different in amelanotic cells (A375 and CRL1579) and melanotic cells (G361, SK-MEL-28, and MeWo). The responsibility of amelanotic cells against IFN-β was higher than those of melanotic cells. The synergism of IFN-β and TRAIL were correlated with the responsibilities of the cells against IFN-β. The synergistic interaction was confirmed by a combination index based on the Chou-Talalay method. The upregulation of apoptosis in amelanotic cells was caused by very low doses of IFN-β (over 0.1 IU/ml). Both of p53-mediated intrinsic pathway and Fas-related extrinsic pathway were activated by IFN-β alone and combination with TRAIL. Further, TRAIL death receptors (DR4 and DR5) were upregulated by a low-dose IFN-β (over 0.1 IU/ml) and the expression was more promoted by the combination with TRAIL. It was clarified that the upregulation of DR5 is associated with the declination of viability.
Collapse
Affiliation(s)
- Akira Kazaana
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Japan
| | - Emiko Sano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Japan
| | - Sodai Yoshimura
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kotaro Makita
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroyuki Hara
- Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Atsuo Yoshino
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Japan
| |
Collapse
|
11
|
Messenger ZJ, Hall JR, Jima DD, House JS, Tam HW, Tokarz DA, Smart RC. C/EBPβ deletion in oncogenic Ras skin tumors is a synthetic lethal event. Cell Death Dis 2018; 9:1054. [PMID: 30323292 PMCID: PMC6189130 DOI: 10.1038/s41419-018-1103-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Therapeutic targeting of specific genetic changes in cancer has proven to be an effective therapy and the concept of synthetic lethality has emerged. CCAAT/enhancer-binding protein-β (C/EBPβ), a basic leucine zipper transcription factor, has important roles in cellular processes including differentiation, inflammation, survival, and energy metabolism. Using a genetically engineered mouse model, we report that the deletion C/EBPβ in pre-existing oncogenic Ha-Ras mouse skin tumors in vivo resulted in rapid tumor regression. Regressing tumors exhibited elevated levels of apoptosis and p53 protein/activity, while adjacent C/EBPβ-deleted skin did not. These results indicate that the deletion of C/EBPβ de-represses p53 in oncogenic Ras tumors but not in normal wild-type Ras keratinocytes, and that C/EBPβ is essential for survival of oncogenic Ras tumors. Co-deletion of C/EBPβ and p53 in oncogenic Ras tumors showed p53 is required for tumor regression and elevated apoptosis. In tumors, loss of a pathway that confers adaptability to a stress phenotype of cancer/tumorigenesis, such as DNA damage, could result in selective tumor cell killing. Our results show that oncogenic Ras tumors display a significant DNA damage/replicative stress phenotype and these tumors have acquired a dependence on C/EBPβ for their survival. RNAseq data analysis of regressing tumors deleted of C/EBPβ indicates a novel interface between p53, type-1 interferon response, and death receptor pathways, which function in concert to produce activation of extrinsic apoptosis pathways. In summary, the deletion of C/EBPβ in oncogenic Ras skin tumors is a synthetic lethal event, making it a promising target for future potential anticancer therapies.
Collapse
Affiliation(s)
| | - Jonathan R Hall
- Toxicology Program, Raleigh, NC, USA. .,Center of Human Health and the Environment, Raleigh, NC, USA. .,Department of Biological Sciences, Raleigh, NC, USA.
| | - Dereje D Jima
- Center of Human Health and the Environment, Raleigh, NC, USA.,Bioinformatics Research Center, Raleigh, NC, USA
| | - John S House
- Center of Human Health and the Environment, Raleigh, NC, USA.,Bioinformatics Research Center, Raleigh, NC, USA
| | | | - Debra A Tokarz
- Center of Human Health and the Environment, Raleigh, NC, USA.,Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Robert C Smart
- Toxicology Program, Raleigh, NC, USA. .,Center of Human Health and the Environment, Raleigh, NC, USA. .,Department of Biological Sciences, Raleigh, NC, USA.
| |
Collapse
|
12
|
Jeong SI, Kim JW, Ko KP, Ryu BK, Lee MG, Kim HJ, Chi SG. XAF1 forms a positive feedback loop with IRF-1 to drive apoptotic stress response and suppress tumorigenesis. Cell Death Dis 2018; 9:806. [PMID: 30042418 PMCID: PMC6057933 DOI: 10.1038/s41419-018-0867-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/18/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a proapoptotic tumor suppressor that is frequently inactivated in multiple human cancers. However, the molecular basis for the XAF1-mediated growth inhibition remains largely undefined. Here, we report that XAF1 forms a positive feedback loop with interferon regulatory factor-1 (IRF-1) and functions as a transcriptional coactivator of IRF-1 to suppress tumorigenesis. Under various stressful conditions, XAF1 transcription is activated by IRF-1, and elevated XAF1 stabilizes and activates IRF-1. Mechanistically, XAF1 binds to the multifunctional domain 2 of IRF-1 via the zinc finger domain 6, thereby hindering C-terminus of Hsc70-interacting protein (CHIP) interaction with and ubiquitination of IRF-1. Activation of the IRF-1−XAF1 loop greatly increases stress-induced apoptosis and decreases the invasive capability of tumor cells. Oncogenic Ras and growth factors interfere with the IRF-1−XAF1 interplay via Erk-mediated repression of XAF1 transcription. Furthermore, XAF1 enhances IRF-1-mediated transcription of proapoptotic genes via the XAF1-IRF-1 complex formation on these target promoters. Meanwhile, XAF1 inhibits NF-κB-mediated tumor cell malignancy by reinforcing IRF-1 binding to a subset of coregulated promoters. Expression levels of IRF-1 and XAF1 correlate tightly in both cancer cell lines and primary tumors, and XAF1-induced tumor regression is markedly attenuated in IRF-1-depleted tumors. Collectively, this study identifies a novel mechanism of XAF1-mediated tumor suppression, uncovering XAF1 as a feedback coactivator of IRF-1 under stressful conditions.
Collapse
Affiliation(s)
- Seong-In Jeong
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Jung-Wook Kim
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, 02447, Korea
| | - Kyung-Phil Ko
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Byung-Kyu Ryu
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyo-Jong Kim
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, 02447, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
13
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
14
|
Shin CH, Lee MG, Han J, Jeong SI, Ryu BK, Chi SG. Identification of XAF1-MT2A mutual antagonism as a molecular switch in cell-fate decisions under stressful conditions. Proc Natl Acad Sci U S A 2017; 114:5683-5688. [PMID: 28507149 PMCID: PMC5465913 DOI: 10.1073/pnas.1700861114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
XIAP-associated factor 1 (XAF1) is a tumor suppressor that is commonly inactivated in multiple human neoplasms. However, the molecular mechanism underlying its proapoptotic function remains largely undefined. Here, we report that XAF1 induction by heavy metals triggers an apoptotic switch of stress response by destabilizing metallothionein 2A (MT2A). XAF1 directly interacts with MT2A and facilitates its lysosomal degradation, resulting in the elevation of the free intercellular zinc level and subsequent activation of p53 and inactivation of XIAP. Intriguingly, XAF1 is activated as a unique transcription target of metal-regulatory transcription factor-1 (MTF-1) in signaling apoptosis, and its protein is destabilized via the lysosomal pathway by MTF-1-induced MT2A under cytostatic stress conditions, indicating the presence of mutual antagonism between XAF1 and MT2A. The antagonistic interplay between XAF1 and MT2A acts as a key molecular switch in MTF-1-mediated cell-fate decisions and also plays an important role in cell response to various apoptotic and survival factors. Wild-type (WT) XAF1 but not MT2A binding-deficient mutant XAF1 increases the free intracellular zinc level and accelerates WT folding of p53 and degradation of XIAP. Consistently, XAF1 evokes a more drastic apoptotic effect in p53+/+ versus isogenic p53-/- cells. Clinically, expression levels of XAF1 and MT2A are inversely correlated in primary colon tumors and multiple cancer cell lines. XAF1-depleted xenograft tumors display an increased growth rate and a decreased apoptotic response to cytotoxic heavy metals with strong MT2A expression. Collectively, this study uncovers an important role for XAF1-MT2A antagonism as a linchpin to govern cell fate under various stressful conditions including heavy metal exposure.
Collapse
Affiliation(s)
- Cheol-Hee Shin
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jikhyon Han
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Seong-In Jeong
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Byung-Kyu Ryu
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
15
|
Hu J, Gao Z, Wang X, Gu M, Liang Y, Liu X, Hu S, Liu H, Liu W, Chen S, Peng D, Liu X. iTRAQ-based quantitative proteomics reveals important host factors involved in the high pathogenicity of the H5N1 avian influenza virus in mice. Med Microbiol Immunol 2016; 206:125-147. [PMID: 28000052 DOI: 10.1007/s00430-016-0489-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023]
Abstract
We previously reported a pair of H5N1 avian influenza viruses which are genetically similar but differ greatly in their virulence in mice. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly lethal to mice, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is avirulent. In this study, to investigate the host factors that account for their virulence discrepancy, we compared the pathology and host proteome of the CK10- or GS10-infected mouse lung. Moderate lung injury was observed from CK10-infected animals as early as the first day of infection, and the pathology steadily progressed at later time point. However, only mild lesions were observed in GS10-infected mouse lung at the late infection stage. Using the quantitative iTRAQ coupled LC-MS/MS method, we first found that more significantly differentially expressed (DE) proteins were stimulated by GS10 compared with CK10. However, bio-function analysis of the DE proteins suggested that CK10 induced much stronger inflammatory response-related functions than GS10. Canonical pathway analysis also demonstrated that CK10 highly activated the "Acute Phase Response Signaling," which results in a wide range of biological activities in response to viral infection, including many inflammatory processes. Further in-depth analysis showed that CK10 exacerbated acute lung injury-associated responses, including inflammatory response, cell death, reactive oxygen species production and complement response. In addition, some of these identified proteins that associated with the lung injury were further confirmed to be regulated in vitro. Therefore, our findings suggest that the early increased lung injury-associated host response induced by CK10 may contribute to the lung pathology and the high virulence of this virus in mice.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China. .,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Lucarini V, Buccione C, Ziccheddu G, Peschiaroli F, Sestili P, Puglisi R, Mattia G, Zanetti C, Parolini I, Bracci L, Macchia I, Rossi A, D'Urso MT, Macchia D, Spada M, De Ninno A, Gerardino A, Mozetic P, Trombetta M, Rainer A, Businaro L, Schiavoni G, Mattei F. Combining Type I Interferons and 5-Aza-2'-Deoxycitidine to Improve Anti-Tumor Response against Melanoma. J Invest Dermatol 2016; 137:159-169. [PMID: 27623509 DOI: 10.1016/j.jid.2016.08.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Resistance to IFN-I-induced antineoplastic effects has been reported in many tumors and arises, in part, from epigenetic silencing of IFN-stimulated genes by DNA methylation. We hypothesized that restoration of IFN-stimulated genes by co-administration of the demethylating drug 5-aza-2'-deoxycitidine (decitabine [DAC]) may enhance the susceptibility to IFN-I-mediated antitumoral effects in melanoma. We show that combined administration of IFN-I and DAC significantly inhibits the growth of murine and human melanoma cells, both in vitro and in vivo. Compared with controls, DAC/IFN-I-treated melanoma cells exhibited reduced cell growth, augmented apoptosis, and diminished migration. Moreover, IFN-I and DAC synergized to suppress the growth of three-dimensional human melanoma spheroids, altering tumor architecture. These direct antitumor effects correlated with induction of the IFN-stimulated gene Mx1. In vivo, DAC/IFN-I significantly reduced melanoma growth via stimulation of adaptive immunity, promoting tumor-infiltrating CD8+ T cells while inhibiting the homing of immunosuppressive CD11b+ myeloid cells and regulatory T cells. Accordingly, exposure of human melanoma cells to DAC/IFN-I induced the recruitment of immune cells toward the tumor in a Matrigel (Corning Life Sciences, Kennebunkport, ME)-based microfluidic device. Our findings underscore a beneficial effect of DAC plus IFN-I combined treatment against melanoma through both direct and immune-mediated anti-tumor effects.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Buccione
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Ziccheddu
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Peschiaroli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Sestili
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Puglisi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Cristiana Zanetti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella Parolini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Bracci
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Iole Macchia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Rossi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Teresa D'Urso
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Annamaria Gerardino
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Pamela Mozetic
- Unit of Tissue Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, Italy
| | - Marcella Trombetta
- Unit of Tissue Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, Italy
| | - Alberto Rainer
- Unit of Tissue Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy; UCBM-CNR Joint Lab for Nanotechnologies for the Life Sciences, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanna Schiavoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Mattei
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
17
|
Salah FS, Ebbinghaus M, Muley VY, Zhou Z, Al-Saadi KRD, Pacyna-Gengelbach M, O'Sullivan GA, Betz H, König R, Wang ZQ, Bräuer R, Petersen I. Tumor suppression in mice lacking GABARAP, an Atg8/LC3 family member implicated in autophagy, is associated with alterations in cytokine secretion and cell death. Cell Death Dis 2016; 7:e2205. [PMID: 27124579 PMCID: PMC4855672 DOI: 10.1038/cddis.2016.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
GABARAP belongs to an evolutionary highly conserved gene family that has a fundamental role in autophagy. There is ample evidence for a crosstalk between autophagy and apoptosis as well as the immune response. However, the molecular details for these interactions are not fully characterized. Here, we report that the ablation of murine GABARAP, a member of the Atg8/LC3 family that is central to autophagosome formation, suppresses the incidence of tumor formation mediated by the carcinogen DMBA and results in an enhancement of the immune response through increased secretion of IL-1β, IL-6, IL-2 and IFN-γ from stimulated macrophages and lymphocytes. In contrast, TGF-β1 was significantly reduced in the serum of these knockout mice. Further, DMBA treatment of these GABARAP knockout mice reduced the cellularity of the spleen and the growth of mammary glands through the induction of apoptosis. Gene expression profiling of mammary glands revealed significantly elevated levels of Xaf1, an apoptotic inducer and tumor-suppressor gene, in knockout mice. Furthermore, DMBA treatment triggered the upregulation of pro-apoptotic (Bid, Apaf1, Bax), cell death (Tnfrsf10b, Ripk1) and cell cycle inhibitor (Cdkn1a, Cdkn2c) genes in the mammary glands. Finally, tumor growth of B16 melanoma cells after subcutaneous inoculation was inhibited in GABARAP-deficient mice. Together, these data provide strong evidence for the involvement of GABARAP in tumorigenesis in vivo by delaying cell death and its associated immune-related response.
Collapse
Affiliation(s)
- F S Salah
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany.,Iraqi Centre for Cancer and Medical Genetics Research, Al-Mustansiriya University, Baghdad, Iraq
| | - M Ebbinghaus
- Institute of Physiology 1, University Hospital - Friedrich Schiller University Jena, Teichgraben 8, Jena D-07743, Germany
| | - V Y Muley
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11, Jena D-07745, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, Jena D-07747, Germany
| | - Z Zhou
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany
| | - K R D Al-Saadi
- Iraqi Centre for Cancer and Medical Genetics Research, Al-Mustansiriya University, Baghdad, Iraq
| | - M Pacyna-Gengelbach
- Institute of Pathology, University Medicine Berlin, Campus Charité Mitte, Berlin D-10098, Germany
| | - G A O'Sullivan
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt D-60528, Germany
| | - H Betz
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt D-60528, Germany.,Max-Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany
| | - R König
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11, Jena D-07745, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, Jena D-07747, Germany
| | - Z-Q Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Bachstrasse 18k, Jena D-07743, Germany
| | - R Bräuer
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany
| | - I Petersen
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany
| |
Collapse
|
18
|
TRAIL Promotes Tumor Growth in a Syngeneic Murine Orthotopic Pancreatic Cancer Model and Affects the Host Immune Response. Pancreas 2016; 45:401-8. [PMID: 26390425 DOI: 10.1097/mpa.0000000000000469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is currently being evaluated as a possible biological agent for cancer treatment. However, many tumor cells are resistant to TRAIL-induced apoptosis. In these cases, TRAIL may activate different pathways promoting tumor growth as well as showing different interactions with the immunological tumor microenvironment. In this study, the impact of TRAIL on tumor growth and survival in a syngeneic model of TRAIL-resistant pancreatic cancer cells was investigated. METHODS Murine 6606PDA pancreatic cancer cells were injected into the pancreatic heads of TRAIL mice and their littermates. To examine a direct effect of TRAIL on tumor cells, cultures of 6606PDA were TRAIL stimulated. RESULTS The TRAIL mice displayed significantly decreased tumor volumes and an enhanced overall survival in pancreatic cancer. The decreased tumor growth in TRAIL mice was accompanied by a decrease of regulatory CD4 cells within tumors. Concordantly, TRAIL treatment of wild-type mice enhanced tumor growth and increased the fraction of regulatory CD4 cells. Yet, a direct effect of TRAIL on 6606PDA cells was not detected. CONCLUSIONS Thus, TRAIL can promote tumor growth in TRAIL-resistant tumor cells. This may restrict possible future clinical applications of TRAIL in pancreatic cancer.
Collapse
|
19
|
Victoria-Acosta G, Vazquez-Santillan K, Jimenez-Hernandez L, Muñoz-Galindo L, Maldonado V, Martinez-Ruiz GU, Melendez-Zajgla J. Epigenetic silencing of the XAF1 gene is mediated by the loss of CTCF binding. Sci Rep 2015; 5:14838. [PMID: 26443201 PMCID: PMC4595840 DOI: 10.1038/srep14838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022] Open
Abstract
XAF1 is a tumour suppressor gene that compromises cell viability by modulating different cellular events such as mitosis, cell cycle progression and apoptosis. In cancer, the XAF1 gene is commonly silenced by CpG-dinucleotide hypermethylation of its promoter. DNA demethylating agents induce transcriptional reactivation of XAF1, sensitizing cancer cells to therapy. The molecular mechanisms that mediate promoter CpG methylation have not been previously studied. Here, we demonstrate that CTCF interacts with the XAF1 promoter in vivo in a methylation-sensitive manner. By transgene assays, we demonstrate that CTCF mediates the open-chromatin configuration of the XAF1 promoter, inhibiting both CpG-dinucleotide methylation and repressive histone posttranslational modifications. In addition, the absence of CTCF in the XAF1 promoter inhibits transcriptional activation induced by well-known apoptosis activators. We report for the first time that epigenetic silencing of the XAF1 gene is a consequence of the loss of CTCF binding.
Collapse
Affiliation(s)
- Georgina Victoria-Acosta
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico
| | | | - Luis Jimenez-Hernandez
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Laura Muñoz-Galindo
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Vilma Maldonado
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Gustavo Ulises Martinez-Ruiz
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico.,Unit of Investigative Research on Oncological Disease, Children's Hospital of Mexico "Federico Gomez", Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico
| |
Collapse
|
20
|
Hatakeyama K, Yamakawa Y, Fukuda Y, Ohshima K, Wakabayashi-Nakao K, Sakura N, Tanizawa Y, Kinugasa Y, Yamaguchi K, Terashima M, Mochizuki T. A novel splice variant of XIAP-associated factor 1 (XAF1) is expressed in peripheral blood containing gastric cancer-derived circulating tumor cells. Gastric Cancer 2015; 18:751-61. [PMID: 25216542 DOI: 10.1007/s10120-014-0426-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND XIAP-associated factor 1 (XAF1) is ubiquitously expressed in normal tissues, but its suppression in cancer cells is strongly associated with tumor progression. Although downregulation of XAF1 is observed in tumors, its expression profile in the peripheral blood of cancer patients has not yet been investigated. Here, we identified a novel XAF1 splice variant in cancer cells and then investigated the expression level of this variant in peripheral blood containing gastric cancer-derived circulating tumor cells (CTCs). METHODS To identify splice variants, RT-PCR and DNA sequencing were performed in mRNAs extracted from many cancer cells. We then carried out quantitative RT-PCR to investigate expression in peripheral blood from all 96 gastric cancer patients and 22 healthy volunteers. RESULTS The XAF1 variant harbored a premature termination codon (PTC) and was differentially expressed in highly metastatic cancer cells versus the parental cells, and that nonsense-mediated mRNA decay (NMD) was suppressed in the variant-expressing cells. Furthermore, splice variants of XAF1 were upregulated in peripheral blood containing CTCs. In XAF1 variant-expressing patients, the expression levels of other NMD-targeted genes also increased, suggesting that the NMD pathway was suppressed in CTCs. CONCLUSIONS Our study identified a novel splice variant of XAF1 in cancer cells. This variant was regulated through the NMD pathway and accumulated in NMD-suppressed metastatic cancer cells and peripheral blood containing CTCs. The presence of XAF1 transcripts harboring the PTC in the peripheral blood may be useful as an indicator of NMD inhibition in CTCs.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yushi Yamakawa
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, 1077 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yorikane Fukuda
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- G&G Science, Fukushima, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | | - Naoki Sakura
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yutaka Tanizawa
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, 1077 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yusuke Kinugasa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, 1077 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
21
|
XAF1 directs apoptotic switch of p53 signaling through activation of HIPK2 and ZNF313. Proc Natl Acad Sci U S A 2014; 111:15532-7. [PMID: 25313037 DOI: 10.1073/pnas.1411746111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a tumor suppressor that is frequently inactivated in many human cancers. However, the molecular mechanism underlying its growth-inhibitory function remains largely unknown. Here, we report that XAF1 forms a positive feedback loop with p53 and acts as a molecular switch in p53-mediated cell-fate decisions favoring apoptosis over cell-cycle arrest. XAF1 binds directly to the N-terminal proline-rich domain of p53 and thus interferes with E3 ubiquitin ligase MDM2 binding and ubiquitination of p53. XAF1 stimulates homeodomain-interacting protein kinase 2 (HIPK2)-mediated Ser-46 phosphorylation of p53 by blocking E3 ubiquitin ligase Siah2 interaction with and ubiquitination of HIPK2. XAF1 also steps up the termination of p53-mediated cell-cycle arrest by activating zinc finger protein 313 (ZNF313), a p21(WAF1)-targeting ubiquitin E3 ligase. XAF1 interacts with p53, Siah2, and ZNF313 through the zinc finger domains 5, 6, and 7, respectively, and truncated XAF1 isoforms preferentially expressed in cancer cells fail to form a feedback loop with p53. Together, this study uncovers a novel role for XAF1 in p53 stress response, adding a new layer of complexity to the mechanisms by which p53 determines cell-fate decisions.
Collapse
|
22
|
Abramowski P, Otto B, Martin R. The orally available, synthetic ether lipid edelfosine inhibits T cell proliferation and induces a type I interferon response. PLoS One 2014; 9:e91970. [PMID: 24667731 PMCID: PMC3965404 DOI: 10.1371/journal.pone.0091970] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/17/2014] [Indexed: 01/24/2023] Open
Abstract
The drug edelfosine is a synthetic analog of 2-lysophosphatidylcholine. Edelfosine is incorporated by highly proliferating cells, e.g. activated immune cells. It acts on cellular membranes by selectively aggregating the cell death receptor Fas in membrane rafts and interference with phosphatidylcholine (PC) synthesis with subsequent induction of apoptosis. Edelfosine has been proposed for the treatment of autoimmune diseases like multiple sclerosis (MS). Earlier studies on the animal model of MS, experimental autoimmune encephalomyelitis (EAE), have generated first evidence for the efficacy of edelfosine treatment. However, it is unknown if the previously described mechanisms for edelfosine action, which are derived from in vitro studies, are solely responsible for the amelioration of EAE or if edelfosine may exert additional effects, which may be beneficial in the context of autoimmunity. Since it was the purpose of our studies to assess the potential usefulness of edelfosine for the treatment of MS, we examined its mechanism/s of action on immune functions in human T cells. Low doses of edelfosine led to a decrease in homeostatic proliferation, and further studies of the mechanism/s of action by genome-wide transcriptional profiling showed that edelfosine reduces the expression of MHC class II molecules, of molecules involved in MHC class II-associated processing and presentation, and finally upregulated a series of type I interferon-associated genes. The inhibition of homeostatic proliferation, as well as the effects on MHC class II expression and -presentation, and the induction of type I interferon-associated genes are novel and interesting in the context of developing edelfosine for clinical use in MS and possibly also other T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Pierre Abramowski
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (inims), ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Otto
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Chemistry, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Martin
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (inims), ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neuroimmunology and MS Research, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Han J, Kim YL, Lee KW, Her NG, Ha TK, Yoon S, Jeong SI, Lee JH, Kang MJ, Lee MG, Ryu BK, Baik JH, Chi SG. ZNF313 is a novel cell cycle activator with an E3 ligase activity inhibiting cellular senescence by destabilizing p21(WAF1.). Cell Death Differ 2013; 20:1055-67. [PMID: 23645206 DOI: 10.1038/cdd.2013.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/21/2013] [Accepted: 03/27/2013] [Indexed: 02/02/2023] Open
Abstract
ZNF313 encoding a zinc-binding protein is located at chromosome 20q13.13, which exhibits a frequent genomic amplification in multiple human cancers. However, the biological function of ZNF313 remains largely undefined. Here we report that ZNF313 is an ubiquitin E3 ligase that has a critical role in the regulation of cell cycle progression, differentiation and senescence. In this study, ZNF313 is initially identified as a XIAP-associated factor 1 (XAF1)-interacting protein, which upregulates the stability and proapoptotic effect of XAF1. Intriguingly, we found that ZNF313 activates cell cycle progression and suppresses cellular senescence through the RING domain-mediated degradation of p21(WAF1). ZNF313 ubiquitinates p21(WAF1) and also destabilizes p27(KIP1) and p57(KIP2), three members of the CDK-interacting protein (CIP)/kinase inhibitor protein (KIP) family of cyclin-dependent kinase inhibitors, whereas it does not affect the stability of the inhibitor of CDK (INK4) family members, such as p16(INK4A) and p15(INK4B). ZNF313 expression is tightly controlled during the cell cycle and its elevation at the late G1 phase is crucial for the G1-to-S phase transition. ZNF313 is induced by mitogenic growth factors and its blockade profoundly delays cell cycle progression and accelerates p21(WAF1)-mediated senescence. Both replicative and stress-induced senescence are accompanied with ZNF313 reduction. ZNF313 is downregulated during cellular differentiation process in vitro and in vivo, while it is commonly upregulated in many types of cancer cells. ZNF313 shows both the nuclear and cytoplasmic localization in epithelial cells of normal tissues, but exhibits an intense cytoplasmic distribution in carcinoma cells of tumor tissues. Collectively, ZNF313 is a novel E3 ligase for p21(WAF1), whose alteration might be implicated in the pathogenesis of several human diseases, including cancers.
Collapse
Affiliation(s)
- J Han
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Long X, Li Y, Qi Y, Xu J, Wang Z, Zhang X, Zhang D, Zhang L, Huang J. XAF1 contributes to dengue virus-induced apoptosis in vascular endothelial cells. FASEB J 2012. [PMID: 23207547 DOI: 10.1096/fj.12-213967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mechanism of vascular leakage in severe dengue infection remains unclear. Here, we used primary human umbilical vein endothelial cells (HUVECs) and the EA.hy926 cell line to study the molecular events that occur after dengue virus serotype 2 (DENV2) infection. DENV2-induced apoptosis was confirmed using nuclear staining, TUNEL assay, and electron microscopy. A genome-wide transcriptome analysis was performed using a microarray of DENV2-infected HUVECs. Notably, interferon-inducible genes were differentially expressed after DENV2 infection. Prominent among these genes was the X chromosome-linked inhibitor of apoptosis protein (XIAP)-associated factor 1 (XAF1; up-regulated 1.2-fold in the microarray analysis and ∼8-fold by qRT-PCR after DENV2 infection). XAF1 protein levels were up-regulated after DENV2 infection in both HUVECs and EA.hy926 cells. Evidence indicated interaction between XAF1 and XIAP during DENV2 infection based on their cellular localization, as observed by confocal microscopy and the coimmunoprecipitation of XIAP with an anti-XAF1 antibody. Next, recombinant EA.hy926 cell lines in which XAF1 was either knocked down or overexpressed were constructed. The expression levels of the apoptosis-related genes caspase 3, caspase 8, caspase 9, and poly-(ADP-ribose) polymerase (PARP) were down-regulated in the XAF1 knockdown (24-48 h postinfection) but were up-regulated in XAF1 overexpressing cells (36 h postinfection). This is the first study of the role of XAF1 in promoting apoptosis in vascular endothelial cells after DENV2 infection.
Collapse
Affiliation(s)
- Xigui Long
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Treeck O, Belgutay D, Häring J, Schüler S, Lattrich C, Ortmann O. Network analysis of icb-1 gene function in human breast cancer cells. J Cell Biochem 2012; 113:2979-88. [PMID: 22565810 DOI: 10.1002/jcb.24175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Icb-1 is a human gene previously described by our group to exert important functions in cancer cells of different origin. We now performed microarray-based gene expression profiling with subsequent network modeling to further elucidate the role of icb-1 in breast cancer cells. Analyzing the effect of icb-1 knockdown on the transcriptome of MCF-7 cells, we found 151 differentially expressed genes exhibiting more than twofold changes, 97 of which were up- and 54 downregulated. Most of the upregulated genes were cancer-related genes associated with poor prognosis, invasion and metastasis, building an oncogenic network of TNF target genes. On the other hand, network analysis identified the downregulated genes to be primarily involved in interferon signaling and cellular apoptosis. Confirming these network data, we observed that cells with reduced levels of icb-1 exhibited an impaired response to the apoptosis inducers tamoxifen, staurosporine, actinomycin, and camptothecin. The data of this study suggest that icb-1 might exert a tumor-suppressor function in breast cancer and that its loss might confer relative resistance of breast cancer cells to apoptotic drugs.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Obstetrics and Gynecology, Laboratory of Molecular Oncology, University Medical Center Regensburg, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Chen XY, He QY, Guo MZ. XAF1 is frequently methylated in human esophageal cancer. World J Gastroenterol 2012; 18:2844-9. [PMID: 22719195 PMCID: PMC3374990 DOI: 10.3748/wjg.v18.i22.2844] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore epigenetic changes in the gene encoding X chromosome-linked inhibitor of apoptosis-associated factor 1 (XAF1) during esophageal carcinogenesis.
METHODS: Methylation status of XAF1 was detected by methylation-specific polymerase chain reaction (MSP) in four esophageal cancer cell lines (KYSE30, KYSE70, BIC1 and partially methylated in TE3 cell lines), nine cases of normal mucosa, 72 cases of primary esophageal cancer and matched adjacent tissue. XAF1 expression was examined by semi-quantitative reverse transcriptional polymerase chain reaction and Western blotting before and after treatment with 5-aza-deoxycytidine (5-aza-dc), a demethylating agent. To investigate the correlation of XAF1 expression and methylation status in primary esophageal cancer, immunohistochemistry for XAF1 expression was performed in 32 cases of esophageal cancer and matched adjacent tissue. The association of methylation status and clinicopathological data was analyzed by logistic regression.
RESULTS: MSP results were as follows: loss of XAF1 expression was found in three of four esophageal cell lines with promoter region hypermethylation (completely methylated in KYSE30, KYSE70 and BIC1 cell lines and partially in TE3 cells); all nine cases of normal esophageal mucosa were unmethylated; and 54/72 (75.00%) samples from patients with esophageal cancer were methylated, and 25/72 (34.70%) matched adjacent tissues were methylated (75.00% vs 34.70%, χ2 = 23.5840, P = 0.000). mRNA level of XAF1 measured with semi-quantitative reverse transcription polymerase chain reaction was detectable only in TE3 cells, and no expression was detected in KYSE30, KYSE70 or BIC1 cells. Protein expression was not observed in KYSE30 cells by Western blotting before treatment with 5-aza-dc. After treatment, mRNA level of XAF1 was detectable in KYSE30, KYSE70 and BIC1 cells. Protein expression was detected in KYSE30 after treatment with 5-aza-dc. Immunohistochemistry was performed on 32 cases of esophageal cancer and adjacent tissue, and demonstrated XAF1 in the nucleus and cytoplasm. XAF1 staining was found in 20/32 samples of adjacent normal tissue but was present in only 8/32 samples of esophageal cancer tissue (χ2= 9.143, P = 0.002). XAF1 expression was decreased in cancer samples compared with adjacent tissues. In 32 cases of esophageal cancer, 24/32 samples were methylated, and 8/32 esophageal cancer tissues were unmethylated. XAF1 staining was found in 6/8 samples of unmethylated esophageal cancer and 2/24 samples of methylated esophageal cancer tissue. XAF1 staining was inversely correlated with XAF1 promoter region methylation (Fisher’s exact test, P = 0.004). Regarding methylation status and clinicopathological data, no significant differences were found in sex, age, tumor size, tumor stage, or metastasis with respect to methylation of XAF1 for the 72 tissue samples from patients with esophageal cancer.
CONCLUSION: XAF1 is frequently methylated in esophageal cancer, and XAF1 expression is regulated by promoter region hypermethylation.
Collapse
|
27
|
Antiretroviral therapy down-regulates innate antiviral response genes in patients with AIDS in sub-saharan Africa. J Acquir Immune Defic Syndr 2011; 55:428-38. [PMID: 20838227 DOI: 10.1097/qai.0b013e3181ef4963] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE HIV pathogenesis is characterized by destructive imbalances between virus-mediated immune damage, antiviral immune responses, and immune activation. We characterized the effects of successful antiretroviral therapy (ART) to identify the breadth and patterns of HIV-associated gene expression. METHODS In a prospective observational, longitudinal cohort study of 10 ART-naive Ugandans with AIDS (median 30 CD4/μL), we measured mRNA gene profiles in peripheral blood using Affymetrix U133_Plus2.0 microarrays at 0, 2, 4, 8, and 24 weeks after ART initiation. RESULTS We identified 160 mRNA transcripts that were consistently down-regulated and 48 that were up-regulated after ART at each point over 24 weeks based on linear regression modeling (adjusted P < 0.05), Of these 208 transcripts, approximately half represent heretofore unrecognized ART-responsive genes and one-third have no known function. The down-regulated genes with known function encoded mediators of innate antiviral responses, including antiviral restriction factors, pattern recognition receptors, and interferon response proteins, and mediators of immune activation, cellular proliferation, and apoptosis. CONCLUSIONS By using ART to block the viral stimulus, we identified transcripts involved in innate antiviral immunity, including antiviral restriction factors and pattern recognition receptors, that were not previously known to be induced by HIV infection.
Collapse
|
28
|
Xing Z, Zhou Z, Yu R, Li S, Li C, Nilsson S, Liu Z. XAF1 expression and regulatory effects of somatostatin on XAF1 in prostate cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:162. [PMID: 21143993 PMCID: PMC3012038 DOI: 10.1186/1756-9966-29-162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/11/2010] [Indexed: 11/19/2022]
Abstract
Background Somatostatin prevents cell proliferation by inducing apoptosis. Downregulation of the XAF1 transcript may occur during the development of prostate cancer. It is interesting to evaluate the potential regulatory effects of somatostatin on XAF1 expression during the development of prostate cancer cells. Methods XAF1 mRNA and protein expression in human prostate epithelial cells RWPE-1, androgen dependent prostate cancer LNCaP, and androgen independent DU145 and PC3 cells were evaluated using RT-PCR and Western blot. The regulation of XAF1 mRNA and protein expression by somatostatin and its analogue Octreotide was evaluated. Results Substantial levels of XAF1 mRNA and proteins were detected in RWPE-1 cells, whereas prostate cancer cells LNCaP, DU145 and PC3 exhibited lower XAF1 expression. Somatostatin and Octreotide up-regulated XAF1 mRNA and protein expression in all prostate cancer cell lines. Conclusions XAF1 down-regulation may contribute to the prostate cancer development. The enhanced XAF1 expression by somatostatin indicates a promising strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Zhaoquan Xing
- Department of Integrated Traditional Chinese and Western Medicine, Qilu Hospital, Shandong University, Jinan, 250012 P.R. China
| | | | | | | | | | | | | |
Collapse
|
29
|
Tu SP, Sun YW, Cui JT, Zou B, Lin MCM, Gu Q, Jiang SH, Kung HF, Korneluk RG, Wong BCY. Tumor suppressor XIAP-Associated factor 1 (XAF1) cooperates with tumor necrosis factor-related apoptosis-inducing ligand to suppress colon cancer growth and trigger tumor regression. Cancer 2010; 116:1252-63. [PMID: 20082449 DOI: 10.1002/cncr.24814] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND XIAP-associated factor 1 (XAF1) antagonizes the anticaspase activity of XIAP (X-linked inhibitor of apoptosis) and functions as a tumor suppressor in colon cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known as a potential anticancer agent. In this study, the synergistic effect of XAF1 and TRAIL on colon cancer growth was investigated. METHODS Adeno-XAF1 virus was generated and purified. Cell apoptosis was detected by flow-cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Protein expression of the different genes was determined by Western blot analysis. Tumorigenesis and tumor growth were assessed in subcutaneous nude mouse xenograft experiments. RESULTS Stable overexpression of XAF1-sensitized colon cancer cells to TRAIL-induced apoptosis significantly increased the activity of caspase 3, 7, 8, and 9; released cytochrome c; and down-regulated XIAP, survivin, and c-IAP-2. The restoration of XAF1 expression mediated by adenovirus (adeno-XAF1) directly induced apoptosis, and synergized TRAIL-induced apoptosis in colon cancer cells. Ex vivo transduction of adeno-XAF1 suppressed colon cancer formation in vivo. Furthermore, adeno-XAF1 treatment of mice significantly inhibited tumor growth, strongly enhanced TRAIL-induced apoptosis and antitumor activity in colon cancer xenograft models in vivo, and markedly prolonged the survival. Notably, the combined treatment with adeno-XAF1 and TRAIL completely eradicated the established tumors without detectable toxicity in normal tissue. CONCLUSIONS The combined restoration of XAF1 expression and TRAIL treatment may be a potent strategy for colon cancer therapy.
Collapse
Affiliation(s)
- Shui Ping Tu
- Department of Gastroenterology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Serrano-Fernández P, Möller S, Goertsches R, Fiedler H, Koczan D, Thiesen HJ, Zettl UK. Time course transcriptomics of IFNB1b drug therapy in multiple sclerosis. Autoimmunity 2009; 43:172-8. [DOI: 10.3109/08916930903219040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Renson P, Blanchard Y, Le Dimna M, Felix H, Cariolet R, Jestin A, Le Potier MF. Acute induction of cell death-related IFN stimulated genes (ISG) differentiates highly from moderately virulent CSFV strains. Vet Res 2009; 41:7. [PMID: 19793538 PMCID: PMC2775166 DOI: 10.1051/vetres/2009055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 09/24/2009] [Indexed: 11/14/2022] Open
Abstract
Classical swine fever (CSF) severity is dependent on the virulence of the CSF virus (CSFV) strain. The earliest event detected following CSFV infection is a decrease in lymphocytes number. With some CSFV strains this leads to lymphopenia, the severity varying according to strain virulence. This lymphocyte depletion is attributed to an induction of apoptosis in non-infected bystander cells. We collected peripheral blood mononuclear cells (PBMC) before and during 3 days post-infection with either a highly or moderately virulent CSFV strain and subjected them to comparative microarray analysis to decipher the transcriptomic modulations induced in these cells in relation to strain virulence. The results revealed that the main difference between strains resided in the kinetics of host response to the infection: strong and immediate with the highly virulent strain, progressive and delayed with the moderately virulent one. Also although cell death/apoptosis-related IFN stimulated genes (ISG) were strongly up-regulated by both strains, significant differences in their regulation were apparent from the observed differences in onset and extent of lymphopenia induced by the two strains. Furthermore, the death receptors apoptotic pathways (TRAIL-DR4, FASL-FAS and TNFa-TNFR1) were also differently regulated. Our results suggest that CSFV strains might exacerbate the interferon alpha response, leading to bystander killing of lymphocytes and lymphopenia, the severity of which might be due to the host’s loss of control of IFN production and downstream effectors regulation.
Collapse
Affiliation(s)
- Patricia Renson
- Agence Française de Sécurité Sanitaire des Aliments, Unité Virologie et Immunologie Porcines, Ploufragan, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Kurji KH, Cui JZ, Lin T, Harriman D, Prasad SS, Kojic L, Matsubara JA. Microarray analysis identifies changes in inflammatory gene expression in response to amyloid-beta stimulation of cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2009; 51:1151-63. [PMID: 19797223 DOI: 10.1167/iovs.09-3622] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) is a common cause of irreversible vision loss in the elderly. The hypothesis was that in vitro stimulation of RPE cells with Abeta(1-40), a constituent of drusen, promotes changes in gene expression and cellular pathways associated with the pathogenesis of AMD, including oxidative stress, inflammation, and angiogenesis. METHODS Confluent human RPE cells were stimulated with Abeta(1-40), or the reverse peptide Abeta(40-1), and genome wide changes in gene expression were studied with gene microarrays. Selected genes were verified by qRT-PCR and ELISA. Pathway analysis with gene set enrichment analysis (GSEA) and ingenuity revealed top functional pathways in RPE after Abeta(1-40) stimulation. RESULTS RPE cells stimulated with Abeta(1-40) (0.3 microM) for 24 hours resulted in 63 upregulated and 22 downregulated previously known genes. The upregulated genes were predominantly in inflammatory and immune response categories, but other categories were also represented, including apoptosis, cell signaling, cell proliferation, and signal transduction. Categories of downregulated genes included immune response, transporters, metabolic functions and transcription factors. ELISA confirmed that secreted levels of IL-8 were two times higher than control levels. GSEA and ingenuity analysis confirmed that the top affected pathways in RPE cells after Abeta(1-40) stimulation were inflammation and immune response related. Surprisingly, few angiogenic pathways were activated at the doses and exposure times studied. CONCLUSIONS Abeta(1-40) promotes RPE gene expression changes in pathways associated with immune response, inflammation, and cytokine and interferon signaling pathways. Results may relate to in vivo mechanisms associated with the pathogenesis of AMD.
Collapse
Affiliation(s)
- Khaliq H Kurji
- Department of Ophthalmology and Visual Sciences, University of British Columbia, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Tu SP, Liston P, Cui JT, Lin MCM, Jiang XH, Yang Y, Gu Q, Jiang SH, Lum CT, Kung HF, Korneluk RG, Wong BCY. Restoration of XAF1 expression induces apoptosis and inhibits tumor growth in gastric cancer. Int J Cancer 2009; 125:688-97. [PMID: 19358264 DOI: 10.1002/ijc.24282] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
XAF1 (XIAP-associated factor 1) is a novel XIAP binding protein that can antagonize XIAP and sensitize cells to other cell death triggers. Our previous results have shown that aberrant hypermethylation of the CpG sites in XAF1 promoter is strongly associated with lower expression of XAF1 in gastric cancers. In our study, we investigated the effect of restoration of XAF1 expression on growth of gastric cancers. We found that the restoration of XAF1 expression suppressed anchorage-dependent and -independent growth and increased sensitivity to TRAIL and drug-induced apoptosis. Stable cell clones expressing XAF1 exhibited delayed tumor initiation in nude mice. Restoration of XAF1 expression mediated by adenovirus vector greatly increased apoptosis in gastric cancer cell lines in a time- and dose-dependent manner and sensitized cancer cells to TRAIL and drugs-induced apoptosis. Adeno-XAF1 transduction induced cell cycle G2/M arrest and upregulated the expression of p21 and downregulated the expression of cyclin B1 and cdc2. Notably, adeno-XAF1 treatment significantly inhibited tumor growth, strongly enhanced the antitumor activity of TRAIL in a gastric cancer xenograft model in vivo, and significantly prolonged the survival time of animals bearing tumor xenografts. Complete eradication of established tumors was achieved on combined treatment with adeno-XAF1 and TRAIL. Our results document that the restoration of XAF1 inhibits gastric tumorigenesis and tumor growth and that XAF1 is a promising candidate for cancer gene therapy.
Collapse
Affiliation(s)
- Shui Ping Tu
- Department of Gastroenterology, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang J, Zhang W, Zhang Y, Chen Y, Zou B, Jiang B, Pang R, Gu Q, Qiao L, Lan H, Kung HF, Wong BCY. c-Jun N-terminal kinase (JNK1) upregulates XIAP-associated factor 1 (XAF1) through interferon regulatory factor 1 (IRF-1) in gastrointestinal cancer. Carcinogenesis 2008; 30:222-9. [PMID: 19056926 DOI: 10.1093/carcin/bgn271] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS X-linked inhibitor of apoptosis protein-associated factor 1 (XAF1) is a tumor suppressor that can sensitize cancer cell to apoptosis. Intrinsic expression of XAF1 in cancer cell is low. Our purpose is to determine the effect of c-Jun N-terminal kinase 1 (JNK1) on XAF1 expression and the putative mechanism. METHODS XAF1 expression in gastrointestinal (GI) cancer cell line AGS and SW1116 was detected by reverse transcription-polymerase chain reaction (PCR), real-time PCR and immunoblotting. The role of JNK1 was assessed by ectopic overexpression with wild-type (JNK1-WT) and dominant-negative (JNK1-DN) JNK1 constructs. The effects of JNK1 activator, interferon (IFN)-alpha, tumor necrosis factor (TNF)-alpha and phorbol-12-myristate-13-acetate (PMA), or JNK1 inhibitor, SP600125, were evaluated. An XAF1 promoter reporter pLUC107 with WT or mutated interferon regulatory factor 1-binding element (IRF-E) was used to assess JNK1-induced transcription by dual luciferase assay. RESULT Ectopic overexpression of JNK1-WT or treatment with IFN-alpha, TNF-alpha and PMA induced whereas SP600125 suppressed intrinsic and induced XAF1 expression. Induction of XAF1 required de novo protein synthesis. Moreover, JNK1 stimulated whereas SP600125 suppressed XAF1 promoter activity. JNK1 stimulated interferon regulatory factor 1 (IRF-1) expression, whereas both IRF-1 small-interfering RNA and site mutation of IRF-E within XAF1 promoter abrogated the effect of JNK1. CONCLUSION JNK1 stimulated and mediated the effects of IFN and TNF-alpha on XAF1 expression through transcriptional regulation by induction of IRF-1. The linkage of JNK1, IRF-1 and XAF1 in the same signal pathway may unravel a novel mechanism in regulation of apoptosis and differentiation of GI cancers.
Collapse
Affiliation(s)
- Jide Wang
- Department of Digestive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP-targeted therapies for cancer. Oncogene 2008; 27:6252-75. [PMID: 18931692 DOI: 10.1038/onc.2008.302] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA damage, chromosomal abnormalities, oncogene activation, viral infection, substrate detachment and hypoxia can all trigger apoptosis in normal cells. However, cancer cells acquire mutations that allow them to survive these threats that are part and parcel of the transformation process or that may affect the growth and dissemination of the tumor. Eventually, cancer cells accumulate further mutations that make them resistant to apoptosis mediated by standard cytotoxic chemotherapy or radiotherapy. The inhibitor of apoptosis (IAP) family members, defined by the presence of a baculovirus IAP repeat (BIR) protein domain, are key regulators of cytokinesis, apoptosis and signal transduction. Specific IAPs regulate either cell division, caspase activity or survival pathways mediated through binding to their BIR domains, and/or through their ubiquitin-ligase RING domain activity. These protein-protein interactions and post-translational modifications are the subject of intense investigations that shed light on how these proteins contribute to oncogenesis and resistance to therapy. In the past several years, we have seen multiple approaches of IAP antagonism enter the clinic, and the rewards of such strategies are about to reap benefit. Significantly, small molecule pan-IAP antagonists that mimic an endogenous inhibitor of the IAPs, called Smac, have demonstrated an unexpected ability to sensitize cancer cells to tumor necrosis factor-alpha and to promote autocrine or paracrine production of this cytokine by the tumor cell and possibly, other cells too. This review will focus on these and other developmental therapeutics that target the IAPs in cancer.
Collapse
Affiliation(s)
- E C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
36
|
Arora V, Cheung HH, Plenchette S, Micali OC, Liston P, Korneluk RG. Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)-XAF1 complex. J Biol Chem 2007; 282:26202-9. [PMID: 17613533 DOI: 10.1074/jbc.m700776200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a putative tumor suppressor in which expression is significantly reduced in human cancer cell lines and primary tumors. The proapoptotic effects of XAF1 have been attributed to both caspase-dependent and -independent means. In particular, XAF1 reverses the anti-caspase activity of XIAP, a physiological inhibitor of apoptosis. We further investigated the function of XAF1 by examining its relationship with other IAPs. Immunoprecipitation studies indicate that XAF1 binds to XIAP, cIAP1, cIAP2, Livin, TsIAP, and NAIP but not Survivin, an IAP that prevents mitotic catastrophe and in which antiapoptotic activity is exerted through direct XIAP interaction and stabilization. We found that overexpressed XAF1 down-regulates the protein expression of Survivin. Under these conditions, Survivin expression was restored in the presence of the proteasome inhibitor MG132 or a XIAP RING mutant that is defective in ubiquitin-protein isopeptide ligase (E3) activity, suggesting that XAF1 interaction activates E3 activity of XIAP and targets Survivin by direct ubiquitination. In addition, RNA interference targeting endogenous XIAP protected Survivin degradation by XAF1. Furthermore, interferon-beta-mediated XAF1 induction promoted formation of an endogenous XIAP-XAF1-Survivin complex. This complex facilitated Survivin degradation, which was prevented in XAF1(-/-) stable clones. Altogether, our study demonstrates that XAF1 mediates Survivin down-regulation through a complex containing XIAP, supporting dual roles for XAF1 in apoptosis and mitotic catastrophe.
Collapse
Affiliation(s)
- Vinay Arora
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | | | | | | | | | | |
Collapse
|