1
|
PLD2 deletion alleviates disruption of tight junctions in sepsis-induced ALI by regulating PA/STAT3 phosphorylation pathway. Int Immunopharmacol 2023; 114:109561. [PMID: 36700766 DOI: 10.1016/j.intimp.2022.109561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Increased inflammatory exudation caused by endothelium and endothelial junction damage is a typical pathological feature of acute respiratory distress syndrome/acute lung injury (ARDS/ALI). Previous studies have shown that phospholipase D2 (PLD2) can increase the inflammatory response and has a close relationship with the severity of sepsis-induced ALI and the mortality of sepsis, but its mechanism is unknown. This study explored the effect and mechanism of PLD2 deletion on the structure and function of endothelial tight junction (TJ) in lipopolysaccharide (LPS)-induced ALI. METHODS We used C57BL/6 mice (wild-type and PLD2 knockout (PLD2-/-)) and human umbilical vein endothelial cell (HUVEC) models of sepsis-ALI. The pathological changes were evaluated by hematoxylin-eosin staining. Pulmonary vascular permeability was detected using wet-dry ratio, fluorescein isothiocyanate (FITC)-dextran, FITC-albumin, and immunoglobulin M concentration of bronchoalveolar lavage fluid. FITC-dextran and trans-endothelial electrical resistance assay were used to evaluate endothelial permeability on LPS-stimulated HUVECs. The mRNA expressions of TJ proteins were detected by real-time quantitative polymerase chain reaction. Then, protein levels were detected through Western blot analysis and immunofluorescence. The content of phosphatidic acid (PA), a downstream product of PLD2, was detected using an enzyme-linked immunosorbent assay kit. RESULTS PLD2 deficiency not only alleviated lung histopathological changes and improved pulmonary vascular permeability but also increased the survival rate of ALI mice. Knockout of PLD2 or treatment with the PLD2 inhibitor can reduce the damage of endothelial TJ proteins, namely, claudin5, occludin and zonula occludens protein-1, in sepsis-ALI mice and LPS-stimulated HUVECs. The level of the PLD2 catalytic product PA increased in LPS-stimulated HUVECs, and exogenous PA can reduce the TJ protein expression and increase signal transducer and activator of transcription 3 (STAT3) phosphorylation in vitro. Inhibition of STAT3 phosphorylation attenuated PA-induced degradation of endothelial TJs. CONCLUSION PLD2 knockout or inhibition may protect against LPS-induced lung injury by regulating the PA/STAT3 phosphorylation/endothelial TJ axis.
Collapse
|
2
|
Wolf A, Tanguy E, Wang Q, Gasman S, Vitale N. Phospholipase D and cancer metastasis: A focus on exosomes. Adv Biol Regul 2023; 87:100924. [PMID: 36272918 DOI: 10.1016/j.jbior.2022.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 03/01/2023]
Abstract
In mammals, phospholipase D (PLD) enzymes involve 6 isoforms, of which only three have established lipase activity to produce the signaling lipid phosphatidic acid (PA). This phospholipase activity has been postulated to contribute to cancer progression for over three decades now, but the exact mechanisms involved have yet to be uncovered. Indeed, using various models, an altered PLD activity has been proposed altogether to increase cell survival rate, promote angiogenesis, boost rapamycin resistance, and favor metastasis. Although for some part, the molecular pathways by which this increase in PA is pro-oncogenic are partially known, the pleiotropic functions of PA make it quite difficult to distinguish which among these simple signaling pathways is responsible for each of these PLD facets. In this review, we will describe an additional potential contribution of PA generated by PLD1 and PLD2 in the biogenesis, secretion, and uptake of exosomes. Those extracellular vesicles are now viewed as membrane vehicles that carry informative molecules able to modify the fate of receiving cells at distance from the original tumor to favor homing of metastasis. The perspectives for a better understanding of these complex role of PLDs will be discussed.
Collapse
Affiliation(s)
- Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Qili Wang
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
3
|
Li C, Zhu L, Fu L, Han M, Li Y, Meng Z, Qiu X. CircRNA NRIP1 promotes papillary thyroid carcinoma progression by sponging mir-195-5p and modulating the P38 MAPK and JAK/STAT pathways. Diagn Pathol 2021; 16:93. [PMID: 34689819 PMCID: PMC8543861 DOI: 10.1186/s13000-021-01153-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have become a hot topic in the area of tumor biology due to its closed structure and the post-transcriptional regulatory effect. This study aims to clarify the roles of circRNA nuclear receptor-interacting protein 1 (NRIP1; circNRIP1) and the possible mechanisms in papillary thyroid carcinoma (PTC). METHODS The real-time PCR was used to detect the expression level of CircRNA NRIP1 in PTC specimens and cell lines. The effects of CircRNA NRIP1 and miR-195-5p on the PTC cell functions were detected by MTT, transwell, and flow cytometry assays. Dual-luciferase reporter assays and pull down assays were used to verify the association between circRNA NRIP1 and miR-195-5p. The murine xenograft models were constructed to detect the roles of CircRNA NRIP1 and miR-195-5p. Western blot was applied to detect the effects of CircRNA NRIP1 and miR-195-5p on the P38 MAPK and JAK/STAT singling pathways. RESULTS CircRNA NRIP1 was over-expressed in PTC tissues and cells and the high levels of CircRNA NRIP1 were correlated with advanced PTC stage. Depletion of CircRNA NRIP1 inhibited PTC cell proliferation, invasion, while accelerated apoptosis. miR-195-5p upregulation repressed proliferation and invasion capabilities, and accelerated apoptosis of PTC cell lines and restraining the growth of tumor xenografts, while the functions were reversed following CircRNA NRIP1 overexpression in PTC cells and tumor xenografts. Besides, the protein levels of p-p38, p-JAK2 and p-STAT1 were remarkably down-regulated in miR-195-5p overexpressed PTC cells and tumor xenografts, whereas CircRNA NRIP1 up-regulation overturned the impacts. CONCLUSIONS In conclusion, CircRNA NRIP1 promoted PTC progression by accelerating PTC cells proliferation, invasion and tumor growth, while impeding apoptosis by way of sponging miR-195-5p and regulating the P38 MAPK and JAK/STAT pathways.
Collapse
Affiliation(s)
- Chuang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China
- Department of Thyroid and Neck, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Lijuan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lijun Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ya Li
- Institute for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450000, Zhengzhou, China
| | - Zhaozhong Meng
- Department of Thyroid and Neck, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China.
| |
Collapse
|
4
|
Yao Y, Wang X, Li H, Fan J, Qian X, Li H, Xu Y. Phospholipase D as a key modulator of cancer progression. Biol Rev Camb Philos Soc 2020; 95:911-935. [PMID: 32073216 DOI: 10.1111/brv.12592] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
The phospholipase D (PLD) family has a ubiquitous expression in cells. PLD isoforms (PLDs) and their hydrolysate phosphatidic acid (PA) have been demonstrated to engage in multiple stages of cancer progression. Aberrant expression of PLDs, especially PLD1 and PLD2, has been detected in various cancers. Inhibition or elimination of PLDs activity has been shown to reduce tumour growth and metastasis. PLDs and PA also serve as downstream effectors of various cell-surface receptors, to trigger and regulate propagation of intracellular signals in the process of tumourigenesis and metastasis. Here, we discuss recent advances in understanding the functions of PLDs and PA in discrete stages of cancer progression, including cancer cell growth, invasion and migration, and angiogenesis, with special emphasis on the tumour-associated signalling pathways mediated by PLDs and PA and the functional importance of PLDs and PA in cancer therapy.
Collapse
Affiliation(s)
- Yuanfa Yao
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Clinical Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jiannan Fan
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Xiaohan Qian
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Respiratory Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Noble AR, Hogg K, Suman R, Berney DM, Bourgoin S, Maitland NJ, Rumsby MG. Phospholipase D2 in prostate cancer: protein expression changes with Gleason score. Br J Cancer 2019; 121:1016-1026. [PMID: 31673104 PMCID: PMC6964697 DOI: 10.1038/s41416-019-0610-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined. METHODS PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa cell viability and cell motility were measured using MTS, colony forming and wound-healing assays. RESULTS PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored Gleason 6-8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2 inhibition reduces PCa cell viability, colony forming ability and directional cell movement. CONCLUSIONS PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa progression.
Collapse
Affiliation(s)
- Amanda R Noble
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Karen Hogg
- Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Rakesh Suman
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Daniel M Berney
- Department of Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sylvain Bourgoin
- Centre de Recherche du CHU de Québec, Axe des Maladies Infectieuses et Immunitaires, local T1-58, 2705 boulevard Laurier, Québec, G1V 4G2, QC, Canada
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Martin G Rumsby
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
6
|
Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation. Br J Cancer 2017; 118:189-199. [PMID: 29136407 PMCID: PMC5785744 DOI: 10.1038/bjc.2017.391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/17/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Phospholipases D1 and D2 (PLD1/2) hydrolyse cell membrane glycerophospholipids to generate phosphatidic acid, a signalling lipid, which regulates cell growth and cancer progression through effects on mTOR and PKB/Akt. PLD expression and/or activity is raised in breast, colorectal, gastric, kidney and thyroid carcinomas but its role in prostate cancer (PCa), the major cancer of men in the western world, is unclear. Methods: PLD1 protein expression in cultured PNT2C2, PNT1A, P4E6, LNCaP, PC3, PC3M, VCaP, 22RV1 cell lines and patient-derived PCa cells was analysed by western blotting. PLD1 protein localisation in normal, benign prostatic hyperplasia (BPH), and castrate-resistant prostate cancer (CRPC) tissue sections and in a PCa tissue microarray (TMA) was examined by immunohistochemistry. PLD activity in PCa tissue was assayed using an Amplex Red method. The effect of PLD inhibitors on PCa cell viability was measured using MTS and colony forming assays. Results: PLD1 protein expression was low in the luminal prostate cell lines (LNCaP, VCaP, 22RV1) compared with basal lines (PC3 and PC3M). PLD1 protein expression was elevated in BPH biopsy tissue relative to normal and PCa samples. In normal and BPH tissue, PLD1 was predominantly detected in basal cells as well in some stromal cells, rather than in luminal cells. In PCa tissue, luminal cells expressed PLD1. In a PCa TMA, the mean peroxidase intensity per DAB-stained Gleason 6 and 7 tissue section was significantly higher than in sections graded Gleason 9. In CRPC tissue, PLD1 was expressed prominently in the stromal compartment, in luminal cells in occasional glands and in an expanding population of cells that co-expressed chromogranin A and neurone-specific enolase. Levels of PLD activity in normal and PCa tissue samples were similar. A specific PLD1 inhibitor markedly reduced the survival of both prostate cell lines and patient-derived PCa cells compared with two dual PLD1/PLD2 inhibitors. Short-term exposure of PCa cells to the same specific PLD1 inhibitor significantly reduced colony formation. Conclusions: A new specific inhibitor of PLD1, which is well tolerated in mice, reduces PCa cell survival and thus has potential as a novel therapeutic agent to reduce prostate cancer progression. Increased PLD1 expression may contribute to the hyperplasia characteristic of BPH and in the progression of castrate-resistant PCa, where an expanding population of neuroendocrine-like cells express PLD1.
Collapse
|
7
|
Xu Y, Han YF, Zhu SJ, Dong JD, Ye B. miRNA‑148a inhibits cell growth of papillary thyroid cancer through STAT3 and PI3K/AKT signaling pathways. Oncol Rep 2017; 38:3085-3093. [PMID: 28901486 DOI: 10.3892/or.2017.5947] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/07/2017] [Indexed: 11/05/2022] Open
Abstract
The function of miRNA‑148a in lymphatic metastases of papillary thyroid cancer and its mechanism were tested. In this investigation, miRNA‑148a expression of lymphatic metastases of papillary thyroid cancer patients was inhibited, compared with normal group. We found that miRNA‑148a overexpression was effectively reduced cell cell proliferation and metastases, and induced apoptosis of papillary thyroid cancer in vitro. Overexpression of miRNA‑148a significantly induced Bax protein expression and caspase‑3/9 levels, and suppressed phosphorylation STAT3 (p‑STAT3), PI3K and p‑Akt protein expression of papillary thyroid cancer in vitro. Next, si‑STAT3, could inhibit p‑STAT3 protein expression, reducing cell-cell proliferation and metastases, and inducing apoptosis of papillary thyroid cancer following miRNA‑148a overexpression. Then, the PI3K inhibitor was able to inhibit PI3K and p‑Akt protein expression, reduced cell cell proliferation and metastases, and induced apoptosis of papillary thyroid cancer following miRNA‑148a overexpression. Taken together, our results suggest that miRNA‑148a inhibits lymphatic metastases of papillary thyroid cancer through STAT3 and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Yuan Xu
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yi-Fan Han
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shao-Jun Zhu
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jian-Da Dong
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bing Ye
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
8
|
Yi HS, Chang JY, Kim KS, Shong M. Oncogenes, mitochondrial metabolism, and quality control in differentiated thyroid cancer. Korean J Intern Med 2017; 32:780-789. [PMID: 28823142 PMCID: PMC5583459 DOI: 10.3904/kjim.2016.420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 02/02/2023] Open
Abstract
Thyroid cancer is one of the most common malignancies of endocrine organs, and its incidence rate has increased steadily over the past several decades. Most differentiated thyroid tumors derived from thyroid epithelial cells exhibit slow-growing cancers, and patients with these tumors can achieve a good prognosis with surgical removal and radioiodine treatment. However, a small proportion of patients present with advanced thyroid cancer and are unusually resistant to current drug treatment modalities. Thyroid tumorigenesis is a complex process that is regulated by the activation of oncogenes, inactivation of tumor suppressors, and alterations in programmed cell death. Mitochondria play an essential role during tumor formation, progression, and metastasis of thyroid cancer. Recent studies have successfully observed the mitochondrial etiology of thyroid carcinogenesis. This review focuses on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism.
Collapse
Affiliation(s)
- Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Correspondence to Minho Shong, M.D. Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Korea Tel: +82-42-280-6994 Fax: +82-42-280-7995 E-mail:
| |
Collapse
|
9
|
Gomez-Cambronero J, Fite K, Miller TE. How miRs and mRNA deadenylases could post-transcriptionally regulate expression of tumor-promoting protein PLD. Adv Biol Regul 2017; 68:107-119. [PMID: 28964725 DOI: 10.1016/j.jbior.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Phospholipase D (PLD) plays a key role in both cell membrane lipid reorganization and architecture, as well as a cell signaling protein via the product of its enzymatic reaction, phosphatidic acid (PA). PLD is involved in promoting breast cancer cell growth, proliferation, and metastasis and both gene and protein expression are upregulated in breast carcinoma human samples. In spite of all this, the ultimate reason as to why PLD expression is high in cancer cells vs. their normal counterparts remains largely unknown. Until we understand this and the associated signaling pathways, it will be difficult to establish PLD as a bona fide target to explore new potential cancer therapeutic approaches. Recently, our lab has identified several molecular mechanisms by which PLD expression is high in breast cancer cells and they all involve post-transcriptional control of its mRNA. First, PA, a mitogen, functions as a protein and mRNA stabilizer that counteracts natural decay and degradation. Second, there is a repertoire of microRNAs (miRs) that keep PLD mRNA translation at low levels in normal cells, but their effects change with starvation and during endothelial-to-mesenchymal transition (EMT) in cancer cells. Third, there is a novel way of post-transcriptional regulation of PLD involving 3'-exonucleases, specifically the deadenylase, Poly(A)-specific Ribonuclease (PARN), which tags mRNA for mRNA for degradation. This would enable PLD accumulation and ultimately breast cancer cell growth. We review in depth the emerging field of post-transcriptional regulation of PLD, which is only recently beginning to be understood. Since, surprisingly, so little is known about post-transcriptional regulation of PLD and related phospholipases (PLC or PLA), this new knowledge could help our understanding of how post-transcriptional deregulation of a lipid enzyme expression impacts tumor growth.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | - Kristen Fite
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Taylor E Miller
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| |
Collapse
|
10
|
Henkels KM, Muppani NR, Gomez-Cambronero J. PLD-Specific Small-Molecule Inhibitors Decrease Tumor-Associated Macrophages and Neutrophils Infiltration in Breast Tumors and Lung and Liver Metastases. PLoS One 2016; 11:e0166553. [PMID: 27851813 PMCID: PMC5112812 DOI: 10.1371/journal.pone.0166553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
Abstract
Phospholipase D-2 (PLD2) has a key role in breast cancer formation and metastasis formation with PLD small inhibitors reducing primary tumor growth. This study aimed to evaluate the importance of targeting PLD on the tumor microenvironment. We provide evidence about the beneficial effect of PLD inhibitors [FIPI (dual PLD1/PLD2) or VU0155072-2 (PLD2 inhibitor)] on avoiding infiltration of tumor-helping macrophages and neutrophils. Tumor growth and metastasis within the primary tumors had low (<20% over controls) PLD enzyme activity. Unexpectedly, we found that the inhibitors also affected PLD2 gene expression and protein albeit at a lesser extent. The later could indicate that targeting both the actual PLD enzyme and its activity could be beneficial for potential cancer treatments in vivo. F4/80 and Ly6G staining of macrophages and neutrophils, respectively, and Arg1 staining data were consistent with M2 and N2 polarization. NOS2 staining increased in xenotransplants upon treatment with PLD2 inhibitors suggesting the novel observation that an increased recruitment of M1 macrophages occurred in primary tumors. PLD inhibitor-treated primary tumors had large, fragile, necrotic areas that were Arg1+ for M2 macrophages. The xenotransplants also caused the formation of large F4/80+ and Ly6G+ (>100 μm) clusters in lungs. However, PLD inhibitors, particularly FIPI, were able to diminish leukocyte presence. Ex vivo chemotaxis and PLD activity of peripheral blood neutrophils (PMN) and peritoneal macrophages was also determined. Whereas PMN had impaired functionality, macrophages did not. This significantly increased ("emboldened") macrophage function was due to PLD inhibition. Since tumor-associated leukocytes in primary tumors and metastases were targeted via PLD inhibition, we posit that these inhibitors have a key role in cancer regression, while still affording an appropriate inflammatory response at least from off-site innate immunity macrophages.
Collapse
Affiliation(s)
- Karen M. Henkels
- Wright State University Boonshoft School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio 45435, United States of America
| | - Naveen Reddy Muppani
- Wright State University Boonshoft School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio 45435, United States of America
| | - Julian Gomez-Cambronero
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States of America
- Wright State University Boonshoft School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio 45435, United States of America
- * E-mail:
| |
Collapse
|
11
|
Jin S, Borkhuu O, Bao W, Yang YT. Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications. J Clin Med Res 2016; 8:284-96. [PMID: 26985248 PMCID: PMC4780491 DOI: 10.14740/jocmr2480w] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancer is a common malignancy of endocrine system, and has now become the fastest increasing cancer among all the malignancies. The development, progression, invasion, and metastasis are closely associated with multiple signaling pathways and the functions of related molecules, such as Src, Janus kinase (JAK)-signal transducers and activators of transcription (STAT), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, NF-κB, thyroid stimulating hormone receptor (TSHR), Wnt-β-catenin and Notch signaling pathways. Each of the signaling pathways could exert its function singly or through network with other pathways. These pathways could cooperate, promote, antagonize, or interact with each other to form a complex network for the regulation. Dysfunction of this network could increase the development, progression, invasion, and metastasis of thyroid cancer. Inoperable thyroid cancer still has a poor prognosis. However, signaling pathway-related targeted therapies offer the hope of longer quality of meaningful life for this small group of patients. Signaling pathway-related targets provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. In the present work, the advances in these signaling pathways and targeted treatments of thyroid cancer were reviewed.
Collapse
Affiliation(s)
- Shan Jin
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Oyungerel Borkhuu
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Wuyuntu Bao
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Yun-Tian Yang
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
12
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2015; 66:1033-79. [PMID: 25244928 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
13
|
Lee J, Chang JY, Kang YE, Yi S, Lee MH, Joung KH, Kim KS, Shong M. Mitochondrial Energy Metabolism and Thyroid Cancers. Endocrinol Metab (Seoul) 2015; 30:117-23. [PMID: 26194071 PMCID: PMC4508255 DOI: 10.3803/enm.2015.30.2.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/13/2014] [Accepted: 12/21/2014] [Indexed: 11/27/2022] Open
Abstract
Primary thyroid cancers including papillary, follicular, poorly differentiated, and anaplastic carcinomas show substantial differences in biological and clinical behaviors. Even in the same pathological type, there is wide variability in the clinical course of disease progression. The molecular carcinogenesis of thyroid cancer has advanced tremendously in the last decade. However, specific inhibition of oncogenic pathways did not provide a significant survival benefit in advanced progressive thyroid cancer that is resistant to radioactive iodine therapy. Accumulating evidence clearly shows that cellular energy metabolism, which is controlled by oncogenes and other tumor-related factors, is a critical factor determining the clinical phenotypes of cancer. However, the role and nature of energy metabolism in thyroid cancer remain unclear. In this article, we discuss the role of cellular energy metabolism, particularly mitochondrial energy metabolism, in thyroid cancer. Determining the molecular nature of metabolic remodeling in thyroid cancer may provide new biomarkers and therapeutic targets that may be useful in the management of refractory thyroid cancers.
Collapse
Affiliation(s)
- Junguee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Shinae Yi
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyong Hye Joung
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kun Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
14
|
Bibi S, Arslanhan MD, Langenfeld F, Jeanningros S, Cerny-Reiterer S, Hadzijusufovic E, Tchertanov L, Moriggl R, Valent P, Arock M. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy. Haematologica 2015; 99:417-29. [PMID: 24598853 DOI: 10.3324/haematol.2013.098442] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic myeloid leukemia and systemic mastocytosis are myeloid neoplasms sharing a number of pathogenetic and clinical features. In both conditions, an aberrantly activated oncoprotein with tyrosine kinase activity, namely BCR-ABL1 in chronic myeloid leukemia, and mutant KIT, mostly KIT D816V, in systemic mastocytosis, is key to disease evolution. The appreciation of the role of such tyrosine kinases in these diseases has led to the development of improved therapies with tyrosine kinase-targeted inhibitors. However, most drugs, including new KIT D816V-blocking agents, have failed to achieve long-lasting remissions in advanced systemic mastocytosis, and there is a similar problem in chronic myeloid leukemia, where imatinib-resistant patients sometimes fail to achieve remission, even with second- or third-line BCR-ABL1 specific tyrosine kinase inhibitors. During disease progression, additional signaling pathways become activated in neoplastic cells, but most converge into major downstream networks. Among these, the AKT and STAT5 pathways appear most critical and may result in drug-resistant chronic myeloid leukemia and systemic mastocytosis. Inhibition of phosphorylation of these targets has proven their crucial role in disease-evolution in both malignancies. Together, these observations suggest that STAT5 and AKT are key drivers of oncogenesis in drug-resistant forms of the diseases, and that targeting STAT5 and AKT might be an interesting approach in these malignancies. The present article provides an overview of our current knowledge about the critical role of AKT and STAT5 in the pathophysiology of chronic myeloid leukemia and systemic mastocytosis and on their potential value as therapeutic targets in these neoplasms.
Collapse
|
15
|
Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem 2014; 289:22557-22566. [PMID: 24990944 PMCID: PMC4132763 DOI: 10.1074/jbc.r114.574152] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipase D (PLD) enzymes play a double vital role in cells: they maintain the integrity of cellular membranes and they participate in cell signaling including intracellular protein trafficking, cytoskeletal dynamics, cell migration, and cell proliferation. The particular involvement of PLD in cell migration is accomplished: (a) through the actions of its enzymatic product of reaction, phosphatidic acid, and its unique shape-binding role on membrane geometry; (b) through a particular guanine nucleotide exchange factor (GEF) activity (the first of its class assigned to a phospholipase) in the case of the mammalian isoform PLD2; and (c) through protein-protein interactions with a wide network of molecules: Wiskott-Aldrich syndrome protein (WASp), Grb2, ribosomal S6 kinase (S6K), and Rac2. Further, PLD interacts with a variety of kinases (PKC, FES, EGF receptor (EGFR), and JAK3) that are activated by it, or PLD becomes the target substrate. Out of these myriads of functions, PLD is becoming recognized as a major player in cell migration, cell invasion, and cancer metastasis. This is the story of the evolution of PLD from being involved in a large number of seemingly unrelated cellular functions to its most recent role in cancer signaling, a subfield that is expected to grow exponentially.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University School of Medicine, Dayton, Ohio 45435.
| |
Collapse
|
16
|
Qian Y, Chai S, Liang Z, Wang Y, Zhou Y, Xu X, Zhang C, Zhang M, Si J, Huang F, Huang Z, Hong W, Wang K. KIF5B-RET fusion kinase promotes cell growth by multilevel activation of STAT3 in lung cancer. Mol Cancer 2014; 13:176. [PMID: 25047660 PMCID: PMC4114102 DOI: 10.1186/1476-4598-13-176] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022] Open
Abstract
Background Lung cancer in nonsmokers tends to be driven by a single somatic mutation or a gene fusion. KIF5B-RET fusion is an oncogene identified in non-small cell lung cancers. In this study, we verified the oncogenic activity of KIF5B-RET fusion and investigated how KIF5B-RET activates the specific signaling pathways for cellular transformation. We aimed to provide a basis for the further development of the therapy for KIF5B-RET positive lung cancer patients. Methods RT-PCR was used to screen for KIF5B-RET fusions in Chinese lung cancer patients. To verify the oncogenic activity of KIF5B-RET kinase in lung cancer cells, we manipulated its expression genetically followed by colony formation and tumor formation assays. The mechanism by which KIF5B-RET kinase induces proliferation was investigated by western blot, coimmunoprecipitation, and administration of RET, MAPK and STAT3 inhibitors. Results Our study identified a KIF5B-RET fusion in Chinese NSCLC patients and demonstrated that KIF5B-RET transfected cells showed a significantly increased proliferation rate and colony-forming ability. Furthermore, we found that KIF5B-RET fusion kinase induced multilevel activation of STAT3 at both Tyr705 and Ser727, and KIF5B-RET-STAT3 signaling related inhibitors repressed the proliferation and tumorigenicity of lung cancer cells significantly. Conclusions Our data suggest that KIF5B-RET promotes the cell growth and tumorigenicity of non-small cell lung cancers through multilevel activation of STAT3 signaling, providing possible strategies for the treatment of KIF5B-RET positive lung cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Kai Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
17
|
Bai XH, Cho HR, Moodley S, Liu M. XB130-A Novel Adaptor Protein: Gene, Function, and Roles in Tumorigenesis. SCIENTIFICA 2014; 2014:903014. [PMID: 24995146 PMCID: PMC4068053 DOI: 10.1155/2014/903014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Several adaptor proteins have previously been shown to play an important role in the promotion of tumourigenesis. XB130 (AFAP1L2) is an adaptor protein involved in many cellular functions, such as cell survival, cell proliferation, migration, and gene and miRNA expression. XB130's functional domains and motifs enable its interaction with a multitude of proteins involved in several different signaling pathways. As a tyrosine kinase substrate, tyrosine phosphorylated XB130 associates with the p85 α regulatory subunit of phosphoinositol-3-kinase (PI3K) and subsequently affects Akt activity and its downstream signalling. Tumourigenesis studies show that downregulation of XB130 expression by RNAi inhibits tumor growth in mouse xenograft models. Furthermore, XB130 affects tumor oncogenicity by regulating the expression of specific tumour suppressing miRNAs. The expression level and pattern of XB130 has been studied in various human tumors, such as thyroid, esophageal, and gastric cancers, as well as, soft tissue tumors. Studies show the significant effects of XB130 in tumourigenesis and suggest its potential as a diagnostic biomarker and therapeutic target for cancer treatments.
Collapse
Affiliation(s)
- Xiao-Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Serisha Moodley
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 ; Department of Surgery, Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON, Canada M5T 1P5
| |
Collapse
|
18
|
Gomez-Cambronero J. Phosphatidic acid, phospholipase D and tumorigenesis. Adv Biol Regul 2013; 54:197-206. [PMID: 24103483 PMCID: PMC3946563 DOI: 10.1016/j.jbior.2013.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 11/15/2022]
Abstract
Phospholipase D (PLD) is a membrane protein with a double role: maintenance of the structural integrity of cellular or intracellular membranes and involvement in cell signaling through the product of the catalytic reaction, PA, and through protein-protein interaction with a variety of partners. Cross-talk during PLD signaling occurs with other cancer regulators (Ras, PDGF, TGF and kinases). Elevation of either PLD1 or PLD2 (the two mammalian isoforms of PLD) is able to transform fibroblasts and contribute to cancer progression. Elevated total PLD activity, as well as overexpression, is present in a wide variety of cancers such as gastric, colorectal, renal, stomach, esophagus, lung and breast. PLD provides survival signals and is involved in migration, adhesion and invasion of cancer cells, and all are increased during PLD upregulation or, conversely, they are decreased during PLD loss of function. Eventhough the end results of PLD action as relates to downstream signaling mechanisms are still currently being elucidated, invasion, a pre-requisite for metastasis, is directly affected by PLD. This review will introduce the classical mammalian PLD's, PLD1 and PLD2, followed by the mechanisms of intracellular regulation and a status of current investigation in the crucial involvement of PLD in cancer, mostly through its role in cell migration, invasion and metastasis, that has grown exponentially in the last few years.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University School Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| |
Collapse
|
19
|
Tseng LM, Huang PI, Chen YR, Chen YC, Chou YC, Chen YW, Chang YL, Hsu HS, Lan YT, Chen KH, Chi CW, Chiou SH, Yang DM, Lee CH. Targeting Signal Transducer and Activator of Transcription 3 Pathway by Cucurbitacin I Diminishes Self-Renewing and Radiochemoresistant Abilities in Thyroid Cancer-Derived CD133+ Cells. J Pharmacol Exp Ther 2012; 341:410-23. [DOI: 10.1124/jpet.111.188730] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
20
|
Gomez-Cambronero J. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 2011; 23:1885-95. [PMID: 21740967 PMCID: PMC3204931 DOI: 10.1016/j.cellsig.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
Abstract
Phospholipase D (PLD) catalyzes the conversion of the membrane phospholipid phosphatidylcholine to choline and phosphatidic acid (PA). PLD's mission in the cell is two-fold: phospholipid turnover with maintenance of the structural integrity of cellular/intracellular membranes and cell signaling through PA and its metabolites. Precisely, through its product of the reaction, PA, PLD has been implicated in a variety of physiological cellular functions, such as intracellular protein trafficking, cytoskeletal dynamics, chemotaxis of leukocytes and cell proliferation. The catalytic (HKD) and regulatory (PH and PX) domains were studied in detail in the PLD1 isoform, but PLD2 was traditionally studied in lesser detail and much less was known about its regulation. Our laboratory has been focusing on the study of PLD2 regulation in mammalian cells. Over the past few years, we have reported, in regards to the catalytic action of PLD, that PA is a chemoattractant agent that binds to and signals inside the cell through the ribosomal S6 kinases (S6K). Regarding the regulatory domains of PLD2, we have reported the discovery of the PLD2 interaction with Grb2 via Y169 in the PX domain, and further association to Sos, which results in an increase of de novo DNA synthesis and an interaction (also with Grb2) via the adjacent residue Y179, leading to the regulation of cell ruffling, chemotaxis and phagocytosis of leukocytes. We also present the complex regulation by tyrosine phosphorylation by epidermal growth factor receptor (EGF-R), Janus Kinase 3 (JAK3) and Src and the role of phosphatases. Recently, there is evidence supporting a new level of regulation of PLD2 at the PH domain, by the discovery of CRIB domains and a Rac2-PLD2 interaction that leads to a dual (positive and negative) effect on its enzymatic activity. Lastly, we review the surprising finding of PLD2 acting as a GEF. A phospholipase such as PLD that exists already in the cell membrane that acts directly on Rac allows a quick response of the cell without intermediary signaling molecules. This provides only the latest level of PLD2 regulation in a field that promises newer and exciting advances in the next few years.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA.
| |
Collapse
|
21
|
Zhang J, Gill A, Atmore B, Johns A, Delbridge L, Lai R, McMullen T. Upregulation of the signal transducers and activators of transcription 3 (STAT3) pathway in lymphatic metastases of papillary thyroid cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2011; 4:356-362. [PMID: 21577321 PMCID: PMC3093060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/22/2011] [Indexed: 05/30/2023]
Abstract
Papillary thyroid cancer (PTC) has an impressive propensity for lymphatic spread. Signal transducers and activators of transcription 3 (STAT3), constitutively activated in many different cancers, may play a role in PTC lymphatic metastases. We examined 49 patients with PTC, 22 with and 27 without lymphatic metastases. All patients had a total thyroidectomy with lymph node dissection to document true node negative cases. The level of STAT3 expression in benign, non-neoplastic thyroid tissue is barely detectable by immunohistochemistry. Only 11 of the 35 (31%) specimens exhibited weak immunostainingfor STAT3 and pSTAT3 was found weakly positive in 3 of 35 (9%) benign specimens. Expression of STAT3 in all PTC primary tumors was 98% (40/41) and thus significantly higher than corresponding benign thyroid tissue (p=0.0001). pSTAT3 was found in 37% of primary tumors (15/41) and this was significantly higher than pSTAT3 expression in benign tissue (p=0.006). Comparing node-positive and node-negative primary tumors, there was no difference in staining intensity for STAT3 where strong (2+) staining was seen 12/19 node-positive tumors and 13/22 node-negative tumors (p=1). Regarding pSTAT3 expression in primary PTC tumors, node negative cases (n=22) exhibited significantly less staining compared to node positive cases (n=19). Only 4 of 22 (18%) cases in the node-negative group were weakly (1+) positive for pSTAT3 while 12 of 19 (58%) cases in the node-positive group were positive (p=0.011) with 45% of these specimens exhibiting strong (2+) staining. Lymphatic metastases were highly positive (>93%) for both STAT3 and pSTAT3. The STAT3 pathway is ubiquitous in PTC and activated pSTAT3 is significantly upregulated in PTC tumors with metastatic disease. This study is the first to suggest a potential role for activated pSTAT3 in lymphatic metastases in thyroid cancer.
Collapse
Affiliation(s)
- Jingdong Zhang
- Department of Surgical Oncology, Cross Cancer Institute, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Kang DW, Lee SH, Yoon JW, Park WS, Choi KY, Min DS. Phospholipase D1 drives a positive feedback loop to reinforce the Wnt/beta-catenin/TCF signaling axis. Cancer Res 2010; 70:4233-42. [PMID: 20442281 DOI: 10.1158/0008-5472.can-09-3470] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the Wnt signaling pathway occurs frequently in human cancers, but an understanding of the targets and regulation of this important pathway remains incomplete. In this study, we report that phospholipase D (PLD), a cell survival mediator that is upregulated in cancer, is an important target of the Wnt signaling pathway that functions in a positive feedback loop to reinforce pathway output. PLD1 expression and activity was enhanced by treatment with Wnt3a and glycogen synthase kinase-3 inhibitors, and the Wnt pathway-regulated transcription factors beta-catenin and TCF-4 were required for this effect. Three functional TCF-4-binding sites were identified within the PLD1 promoter. Interestingly, suppressing PLD1 blocked the ability of beta-catenin to transcriptionally activate PLD1 and other Wnt target genes by preventing beta-catenin/TCF-4 complex formation. Conversely, tactics to elevate intracellular levels of phosphatidic acid, the product of PLD1 enzyme activity, enhanced beta-catenin/TCF-4 complex formation as well as beta-catenin-dependent TCF transcriptional activity. In cell-based assays, PLD1 was necessary for the anchorage-independent growth driven by Wnt/beta-catenin signaling, whereas beta-catenin/TCF-4 was necessary for the anchorage-independent growth driven by PLD1 activation. Taken together, our findings define a function for PLD1 in a positive feedback loop of Wnt/beta-catenin/TCF-4 signaling that provides new mechanistic insights into cancer, with implications of novel strategies to disrupt Wnt signaling in cancer.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Kang DW, Park MH, Lee YJ, Kim HS, Lindsley CW, Alex Brown H, Min DS. Autoregulation of phospholipase D activity is coupled to selective induction of phospholipase D1 expression to promote invasion of breast cancer cells. Int J Cancer 2010; 128:805-16. [PMID: 20473892 DOI: 10.1002/ijc.25402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Kang DW, Min DS. Platelet derived growth factor increases phospholipase D1 but not phospholipase D2 expression via NFkappaB signaling pathway and enhances invasion of breast cancer cells. Cancer Lett 2010; 294:125-33. [PMID: 20188462 DOI: 10.1016/j.canlet.2010.01.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/22/2010] [Accepted: 01/24/2010] [Indexed: 11/28/2022]
Abstract
Phospholipase D (PLD) has emerged as a critical element in the cell growth signaling. Despite extensive information regarding the regulation of PLD activity in cell survival, the signaling mechanisms that regulate PLD expression in cancer remains poorly understood. Here we investigate that platelet derived growth factor (PDGF) increases PLD1 but not PLD2 expression via Ras-ERK/PI3K-NFkappaB signaling cascade in SK-BR3 breast cancer cells. The two NFkappaB-binding sites are functionally critical for transcriptional activation of PLD1 induced by PDGF. Furthermore, depletion of PLD1 using siRNA significantly abolished PDGF-induced upregulation of matrix metalloproteinase-2 or -9 and invasion of breast cancer cells. Thus, we propose that PDGF-induced PLD1 expression via NFkappaB signaling pathway might contribute to carcinogenesis.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Busan, Republic of Korea
| | | |
Collapse
|
25
|
A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation. Mol Cell Biol 2010; 30:2251-63. [PMID: 20176813 DOI: 10.1128/mcb.01239-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report here that the enzymatic activity of phospholipase D2 (PLD2) is regulated by phosphorylation-dephosphorylation. Phosphatase treatment of PLD2-overexpressing cells showed a biphasic nature of changes in activity that indicated the existence of "activator" and "inhibitory" sites. We identified three kinases capable of phosphorylating PLD2 in vitro-epidermal growth factor receptor (EGFR), JAK3, and Src (with JAK3 reported for the first time in this study)-that phosphorylate an inhibitory, an activator, and an ambivalent (one that can yield either effect) site, respectively. Mass spectrometry analyses indicated the target of each of these kinases as Y(296) for EGFR, Y(415) for JAK3, and Y(511) for Src. The extent to which each site is activated or inhibited depends on the cell type considered. In COS-7, cells that show the highest level of PLD2 activity, the Y(415) is a prominent site, and JAK3 compensates the negative modulation by EGFR on Y(296). In MCF-7, cells that show the lowest level of PLD2 activity, the converse is the case, with Y(296) unable to compensate the positive modulation by Y(415). MTLn3, with medium to low levels of lipase activity, show an intermediate pattern of regulation but closer to MCF-7 than to COS-7 cells. The negative effect of EGFR on the two cancer cell lines MTLn3 and MCF-7 is further proven by RNA silencing experiments that yield COS-7 showing lower PLD2 activity, and MTLn3 and MCF-7 cells showing an elevated activity. MCF-7 is a cancer cell line derived from a low-aggressive/invasive form of breast cancer that has relatively low levels of PLD activity. We propose that PLD2 activity is low in the breast cancer cell line MCF-7 because it is kept downregulated by tyrosyl phosphorylation of Y(296) by EGFR kinase. Thus, phosphorylation of PLD2-Y(296) could be the signal for lowering the level of PLD2 activity in transformed cells with low invasive capabilities.
Collapse
|
26
|
Kang DW, Lee JY, Oh DH, Park SY, Woo TM, Kim MK, Park MH, Jang YH, Min DS. Triptolide-induced suppression of phospholipase D expression inhibits proliferation of MDA-MB-231 breast cancer cells. Exp Mol Med 2010; 41:678-85. [PMID: 19478552 DOI: 10.3858/emm.2009.41.9.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In spite of the importance of phospholipase D (PLD) in cell proliferation and tumorigenesis, little is known about the molecules regulating PLD expression. Thus, identification of small molecules inhibiting PLD expression would be an important advance for PLD- mediated physiology. We examined one such here, denoted Triptolide, which was identified in a chemical screen for inhibitors of PLD expression using cell assay system based on measurement of PLD promoter activity. Triptolide significantly suppressed the expression of both PLD1 and PLD2 with sub-mM potency in MDA-MB-231 breast cancer cells as analyzed by promoter assay and RT-PCR. Moreover, triptolide abolished the protein level of PLD in a time and dose-dependent manner. Triptolide-induced PLD1 downregulation was also observed in all the cancer cells examined, suggesting a general phenomenon detected in various cancer cells. Decrease of PLD expression by triptolide suppressed both basal and PMA-induced PLD activity. In addition, triptolide inhibited activation of NFkB which increased PLD1 expression. Ultimately, downregulation of PLD by triptolide inhibited proliferation of breast cancer cells. Taken together, we demonstrate that triptolide suppresses the expression of PLD via inhibition of NFkappaB activation and then decreases cell proliferation.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin. Biochem Pharmacol 2009; 79:1242-50. [PMID: 20026083 DOI: 10.1016/j.bcp.2009.12.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/05/2009] [Accepted: 12/10/2009] [Indexed: 11/21/2022]
Abstract
Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess potent anti-inflammatory and anticancer properties. In this study, we sought to examine the effect of Andro on signal transducer and activator of transcription 3 (STAT3) pathway and evaluate whether suppression of STAT3 activity by Andro could sensitize cancer cells to a chemotherapeutic drug doxorubicin. First, we demonstrated that Andro is able to significantly suppress both constitutively activated and IL-6-induced STAT3 phosphorylation and subsequent nuclear translocation in cancer cells. Such inhibition is found to be achieved through suppression of Janus-activated kinase (JAK)1/2 and interaction between STAT3 and gp130. For understanding the biological significance of the inhibitory effect of Andro on STAT3, we next investigated the effect of Andro on doxorubicin-induced apoptosis in human cancer cells. In our study the constitutive activation level of STAT3 was found to be correlated to the resistance of cancer cells to doxorubicin-induced apoptosis. Both the short-term MTT assay and the long-term colony formation assay showed that Andro dramatically promoted doxorubicin-induced cell death in cancer cells, indicating that Andro enhances the sensitivity of cancer cells to doxorubicin mainly via STAT3 suppression. These observations thus reveal a novel anticancer function of Andro and suggest a potential therapeutic strategy of using Andro in combination with chemotherapeutic agents for treatment of cancer.
Collapse
|
28
|
Liu XH, Chen GG, Vlantis AC, van Hasselt CA. Iodine mediated mechanisms and thyroid carcinoma. Crit Rev Clin Lab Sci 2009; 46:302-18. [DOI: 10.3109/10408360903306384] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|