1
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2024 update on diagnosis, risk stratification and management. Am J Hematol 2024; 99:1142-1165. [PMID: 38450850 PMCID: PMC11096042 DOI: 10.1002/ajh.27271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, characterized by prominent monocytosis and an inherent risk for leukemic transformation (~15%-20% over 3-5 years). DIAGNOSIS Newly revised diagnostic criteria include sustained (>3 months) peripheral blood (PB) monocytosis (≥0.5 × 109/L; monocytes ≥10% of leukocyte count), consistent bone marrow (BM) morphology, <20% BM or PB blasts (including promonocytes), and cytogenetic or molecular evidence of clonality. Cytogenetic abnormalities occur in ~30% of patients, while >95% harbor somatic mutations: TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%), RAS pathway (~30%), and others. The presence of ASXL1 and DNMT3A mutations and absence of TET2 mutations negatively impact overall survival (ASXL1WT/TET2MT genotype being favorable). RISK STRATIFICATION Several risk models serve similar purposes in identifying high-risk patients that are considered for allogeneic stem cell transplant (ASCT) earlier than later. Risk factors in the Mayo Molecular Model (MMM) include presence of truncating ASXL1 mutations, absolute monocyte count >10 × 109/L, hemoglobin <10 g/dL, platelet count <100 × 109/L, and the presence of circulating immature myeloid cells; the resulting 4-tiered risk categorization includes high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors); the corresponding median survivals were 16, 31, 59, and 97 months. CMML is also classified as being "myeloproliferative (MP-CMML)" or "myelodysplastic (MD-CMML)," based on the presence or absence of leukocyte count of ≥13 × 109/L. TREATMENT ASCT is the only treatment modality that secures cure or long-term survival and is appropriate for MMM high/intermediate-2 risk disease. Drug therapy is currently not disease-modifying and includes hydroxyurea and hypomethylating agents; a recent phase-3 study (DACOTA) comparing hydroxyurea and decitabine, in high-risk MP-CMML, showed similar overall survival at 23.1 versus 18.4 months, respectively, despite response rates being higher for decitabine (56% vs. 31%). UNIQUE DISEASE ASSOCIATIONS These include systemic inflammatory autoimmune diseases, leukemia cutis and lysozyme-induced nephropathy; the latter requires close monitoring of renal function during leukocytosis and is a potential indication for cytoreductive therapy.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Baumgartner F, Baer C, Bamopoulos S, Ayoub E, Truger M, Meggendorfer M, Lenk M, Hoermann G, Hutter S, Müller H, Walter W, Müller ML, Nadarajah N, Blombery P, Keller U, Kern W, Haferlach C, Haferlach T. Comparing malignant monocytosis across the updated WHO and ICC classifications of 2022. Blood 2024; 143:1139-1156. [PMID: 38064663 DOI: 10.1182/blood.2023021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/16/2023] [Indexed: 03/22/2024] Open
Abstract
ABSTRACT The World Health Organization (WHO) classification of hematolymphoid tumors and the International Consensus Classification (ICC) of 2022 introduced major changes to the definition of chronic myelomonocytic leukemia (CMML). To assess its qualitative and quantitative implications for patient care, we started with 3311 established CMML cases (according to WHO 2017 criteria) and included 2130 oligomonocytosis cases fulfilling the new CMML diagnostic criteria. Applying both 2022 classification systems, 356 and 241 of oligomonocytosis cases were newly classified as myelodysplastic (MD)-CMML (WHO and ICC 2022, respectively), most of which were diagnosed as myelodysplastic syndrome (MDS) according to the WHO 2017 classification. Importantly, 1.5 times more oligomonocytosis cases were classified as CMML according to WHO 2022 than based on ICC, because of different diagnostic criteria. Genetic analyses of the newly classified CMML cases showed a distinct mutational profile with strong enrichment of MDS-typical alterations, resulting in a transcriptional subgroup separated from established MD and myeloproliferative CMML. Despite a different cytogenetic, molecular, immunophenotypic, and transcriptional landscape, no differences in overall survival were found between newly classified and established MD-CMML cases. To the best of our knowledge, this study represents the most comprehensive analysis of routine CMML cases to date, both in terms of clinical characterization and transcriptomic analysis, placing newly classified CMML cases on a disease continuum between MDS and previously established CMML.
Collapse
Affiliation(s)
- Francis Baumgartner
- Munich Leukemia Laboratory, Munich, Germany
- Department of Hematology, Oncology, and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | | | - Stefanos Bamopoulos
- Department of Hematology, Oncology, and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Edward Ayoub
- Munich Leukemia Laboratory, Munich, Germany
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | - Piers Blombery
- Munich Leukemia Laboratory, Munich, Germany
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ulrich Keller
- Department of Hematology, Oncology, and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center, Berlin, Germany
| | | | | | | |
Collapse
|
3
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Zheng J, Chen C, Guo C, Caba C, Tong Y, Wang H. The Pleiotropic Ubiquitin-Specific Peptidase 16 and Its Many Substrates. Cells 2023; 12:886. [PMID: 36980227 PMCID: PMC10047310 DOI: 10.3390/cells12060886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Ubiquitin-specific peptidase 16 (USP16) is a deubiquitinase that plays a role in the regulation of gene expression, cell cycle progression, and various other functions. It was originally identified as the major deubiquitinase for histone H2A and has since been found to deubiquitinate a range of other substrates, including proteins from both the cytoplasm and nucleus. USP16 is phosphorylated when cells enter mitosis and dephosphorylated during the metaphase/anaphase transition. While much of USP16 is localized in the cytoplasm, separating the enzyme from its substrates is considered an important regulatory mechanism. Some of the functions that USP16 has been linked to include DNA damage repair, immune disease, tumorigenesis, protein synthesis, coronary artery health, and male infertility. The strong connection to immune response and the fact that multiple oncogene products are substrates of USP16 suggests that USP16 may be a potential therapeutic target for the treatment of certain human diseases.
Collapse
Affiliation(s)
- Jiahuan Zheng
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Chunxu Chen
- Department of Bioengineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hengbin Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2022 update on diagnosis, risk stratification, and management. Am J Hematol 2022; 97:352-372. [PMID: 34985762 DOI: 10.1002/ajh.26455] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (~15% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), usually with accompanying bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ~30% of patients, while >90% have somatic gene mutations. Mutations involving TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%), and the oncogenic RAS pathway (~30%) are frequent, while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact overall survival. RISK-STRATIFICATION Molecularly integrated prognostic models include the Groupe Français des Myélodysplasies, Mayo Molecular Model (MMM), and the CMML specific prognostic model. Risk factors incorporated into the MMM include presence of truncating ASXL1 mutations, absolute monocyte count >10 × 109 /L, hemoglobin <10 g/dL, platelet count <100 × 109 /L, and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into four groups: high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors), with median survivals of 16, 31, 59, and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ~40%-50% and complete remission rates of ~7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
6
|
Fontana D, Gambacorti-Passerini C, Piazza R. Molecular Pathogenesis of BCR-ABL-Negative Atypical Chronic Myeloid Leukemia. Front Oncol 2021; 11:756348. [PMID: 34858828 PMCID: PMC8631780 DOI: 10.3389/fonc.2021.756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Atypical chronic myeloid leukemia is a rare disease whose pathogenesis has long been debated. It currently belongs to the group of myelodysplastic/myeloproliferative disorders. In this review, an overview on the current knowledge about diagnosis, prognosis, and genetics is presented, with a major focus on the recent molecular findings. We describe here the molecular pathogenesis of the disease, focusing on the mechanisms of action of the main mutations as well as on gene expression profiling. We also present the treatment options focusing on emerging targeted therapies.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
7
|
Geissler K. Molecular Pathogenesis of Chronic Myelomonocytic Leukemia and Potential Molecular Targets for Treatment Approaches. Front Oncol 2021; 11:751668. [PMID: 34660314 PMCID: PMC8514979 DOI: 10.3389/fonc.2021.751668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Numerous examples in oncology have shown that better understanding the pathophysiology of a malignancy may be followed by the development of targeted treatment concepts with higher efficacy and lower toxicity as compared to unspecific treatment. The pathophysiology of chronic myelomonocytic leukemia (CMML) is heterogenous and complex but applying different research technologies have yielded a better and more comprehensive understanding of this disease. At the moment treatment for CMML is largely restricted to the unspecific use of cytotoxic drugs and hypomethylating agents (HMA). Numerous potential molecular targets have been recently detected by preclinical research which may ultimately lead to treatment concepts that will provide meaningful benefits for certain subgroups of patients.
Collapse
Affiliation(s)
- Klaus Geissler
- Medical School, Sigmund Freud University, Vienna, Austria.,Department of Internal Medicine V with Hematology, Oncology and Palliative Care, Hospital Hietzing, Vienna, Austria
| |
Collapse
|
8
|
Dillon M, Lopez A, Lin E, Sales D, Perets R, Jain P. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers. Cancers (Basel) 2021; 13:cancers13205059. [PMID: 34680208 PMCID: PMC8534156 DOI: 10.3390/cancers13205059] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The Ras-Raf-MEK-ERK signaling pathway is responsible for regulating cell proliferation, differentiation, and survival. Overexpression and overactivation of members within the signaling cascade have been observed in many solid and blood cancers. Research often focuses on targeting the pathway to disrupt cancer initiation and progression. We aimed to provide an overview of the pathway’s physiologic role and regulation, interactions with other pathways involved in cancer development, and mutations that lead to malignancy. Several blood and solid cancers are analyzed to illustrate the impact of the pathway’s dysregulation, stemming from mutation or viral induction. Finally, we summarized different approaches to targeting the pathway and the associated novel treatments being researched or having recently achieved approval. Abstract The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.
Collapse
|
9
|
Zhou Y, El-Bahrawy M. Gene fusions in tumourigenesis with particular reference to ovarian cancer. J Med Genet 2021; 58:789-795. [PMID: 34462289 DOI: 10.1136/jmedgenet-2021-108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022]
Abstract
Gene fusion, a genomic event that generates a novel gene from two independent genes, has long been known to be implicated in tumourigenesis and cancer progression. It has thus served as a diagnostic and prognostic biomarker in cancer, as well as an ideal therapeutic target in cancer therapy. Gene fusion can arise from chromosomal rearrangement and alternative splicing of transcripts, resulting in deregulation of proto-oncogenes or creation of an oncogenic novel gene. Largely facilitated by next generation sequencing technologies, a plethora of novel gene fusions have been identified in a variety of cancers, which leaves us the challenge of functionally characterising these candidate gene fusions. In this review, we summarise the molecular mechanisms, the oncogenic consequences and the therapeutic implications of verified gene fusions. We also discuss recent studies on gene fusions in both common and rare subtypes of ovarian tumours and how these findings can be translated to cancer therapies to benefit patients carrying these gene fusions.
Collapse
Affiliation(s)
- Yi Zhou
- Surgery and Cancer, Imperial College London, London, UK
| | - Mona El-Bahrawy
- Metabolism, Digestion and Reproduction, Imperial College London, London, UK .,Pathology, Alexandria University Faculty of Medicine, Alexandria, Egypt
| |
Collapse
|
10
|
Gažová I, Lefevre L, Bush SJ, Rojo R, Hume DA, Lengeling A, Summers KM. CRISPR-Cas9 Editing of Human Histone Deubiquitinase Gene USP16 in Human Monocytic Leukemia Cell Line THP-1. Front Cell Dev Biol 2021; 9:679544. [PMID: 34136489 PMCID: PMC8203323 DOI: 10.3389/fcell.2021.679544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
USP16 is a histone deubiquitinase which facilitates G2/M transition during the cell cycle, regulates DNA damage repair and contributes to inducible gene expression. We mutated the USP16 gene in a high differentiation clone of the acute monocytic leukemia cell line THP-1 using the CRISPR-Cas9 system and generated four homozygous knockout clones. All were able to proliferate and to differentiate in response to phorbol ester (PMA) treatment. One line was highly proliferative prior to PMA treatment and shut down proliferation upon differentiation, like wild type. Three clones showed sustained expression of the progenitor cell marker MYB, indicating that differentiation had not completely blocked proliferation in these clones. Network analysis of transcriptomic differences among wild type, heterozygotes and homozygotes showed clusters of genes that were up- or down-regulated after differentiation in all cell lines. Prior to PMA treatment, the homozygous clones had lower levels than wild type of genes relating to metabolism and mitochondria, including SRPRB, encoding an interaction partner of USP16. There was also apparent loss of interferon signaling. In contrast, a number of genes were up-regulated in the homozygous cells compared to wild type at baseline, including other deubiquitinases (USP12, BAP1, and MYSM1). However, three homozygotes failed to fully induce USP3 during differentiation. Other network clusters showed effects prior to or after differentiation in the homozygous clones. Thus the removal of USP16 affected the transcriptome of the cells, although all these lines were able to survive, which suggests that the functions attributed to USP16 may be redundant. Our analysis indicates that the leukemic line can adapt to the extreme selection pressure applied by the loss of USP16, and the harsh conditions of the gene editing and selection protocol, through different compensatory pathways. Similar selection pressures occur during the evolution of a cancer in vivo, and our results can be seen as a case study in leukemic cell adaptation. USP16 has been considered a target for cancer chemotherapy, but our results suggest that treatment would select for escape mutants that are resistant to USP16 inhibitors.
Collapse
Affiliation(s)
- Iveta Gažová
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Rocio Rojo
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - David A Hume
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Andreas Lengeling
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Kim M Summers
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom.,Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
11
|
Tremblay D, Rippel N, Feld J, El Jamal SM, Mascarenhas J. Contemporary Risk Stratification and Treatment of Chronic Myelomonocytic Leukemia. Oncologist 2021; 26:406-421. [PMID: 33792103 PMCID: PMC8100553 DOI: 10.1002/onco.13769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy characterized by absolute monocytosis, one or more lineage dysplasia, and proliferative features including myeloid hyperplasia, splenomegaly, and constitutional symptoms. Because of vast clinical heterogeneity in presentation and course, risk stratification is used for a risk-adapted treatment strategy. Numerous prognostic scoring systems exist, some of which incorporate mutational information. Treatment ranges from observation to allogeneic hematopoietic stem cell transplantation. Therapies include hydroxyurea for cytoreduction, hypomethylating agents, and the JAK1/2 inhibitor ruxolitinib to address splenomegaly and constitutional symptoms. Recently, oral decitabine with cedazuridine was approved and represents a convenient treatment option for CMML patients. Although novel therapeutics are in development for CMML, further work is needed to elucidate possible targets unique to the CMML clone. In this review, we will detail the pathophysiology, risk stratification, available treatment modalities, and novel therapies for CMML, and propose a modern treatment algorithm. IMPLICATIONS FOR PRACTICE: Chronic myelomonocytic leukemia (CMML) is a clinically heterogenous disease, which poses significant management challenges. The diagnosis of CMML requires bone marrow biopsy and aspirate with thorough evaluation. Risk stratification and symptom assessment are essential to designing an effective treatment plan, which may include hypomethylating agents (HMAs) in intermediate or high-risk patients. The recently approved oral decitabine/cedazuridine provides a convenient alternative to parenteral HMAs. Ruxolitinib may be effective in ameliorating proliferative symptoms and splenomegaly. Allogeneic stem cell transplantation remains the only treatment with curative potential; however, novel therapies are in clinical development which may significantly alter the therapeutic landscape of CMML.
Collapse
Affiliation(s)
- Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Noa Rippel
- Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jonathan Feld
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Siraj M. El Jamal
- Department of Pathology, Molecular and Cell‐Based Medicine, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
12
|
Lasho T, Patnaik MM. Novel therapeutic targets for chronic myelomonocytic leukemia. Best Pract Res Clin Haematol 2021; 34:101244. [PMID: 33762099 DOI: 10.1016/j.beha.2021.101244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare, age-related myeloid neoplasm with overlapping features of myelodysplastic syndromes/myeloproliferative neoplasms. Although gene mutations involving TET2, ASXL1 and SRSF2 are common, there are no specific molecular alterations that define the disease. Allogeneic stem cell transplant is the only curative option, with most patients not qualifying, due to advanced age at diagnosis and comorbidities. The only approved treatment options are hypomethylating agents; drugs that fail to alter the disease course or affect mutant allele burdens. Clinically CMML can be sub-classified into proliferative (pCMML) and dysplastic (dCMML) subtypes, with pCMML being associated with signaling mutations, myeloproliferative features, and a shorter overall survival. Given the paucity of effective treatment strategies there is a need for rationally informed and biomarker driven studies. This report will discuss current and prospective therapies for CMML and discuss the role for personalized therapeutics.
Collapse
Affiliation(s)
- Terra Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Geissler K, Jäger E, Barna A, Gurbisz M, Graf T, Graf E, Nösslinger T, Pfeilstöcker M, Tüchler H, Sliwa T, Keil F, Geissler C, Heibl S, Thaler J, Machherndl-Spandl S, Zach O, Weltermann A, Bettelheim P, Stauder R, Zebisch A, Sill H, Schwarzinger I, Schneeweiss B, Öhler L, Ulsperger E, Kusec R, Germing U, Sperr WR, Knöbl P, Jäger U, Hörmann G, Valent P. Correlation of RAS-Pathway Mutations and Spontaneous Myeloid Colony Growth with Progression and Transformation in Chronic Myelomonocytic Leukemia-A Retrospective Analysis in 337 Patients. Int J Mol Sci 2020; 21:ijms21083025. [PMID: 32344757 PMCID: PMC7215883 DOI: 10.3390/ijms21083025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
Although the RAS-pathway has been implicated as an important driver in the pathogenesis of chronic myelomonocytic leukemia (CMML) a comprehensive study including molecular and functional analyses in patients with progression and transformation has not been performed. A close correlation between RASopathy gene mutations and spontaneous in vitro myeloid colony (CFU-GM) growth in CMML has been described. Molecular and/or functional analyses were performed in three cohorts of 337 CMML patients: in patients without (A, n = 236) and with (B, n = 61) progression/transformation during follow-up, and in patients already transformed at the time of sampling (C, n = 40 + 26 who were before in B). The frequencies of RAS-pathway mutations (variant allele frequency ≥ 20%) in cohorts A, B, and C were 30%, 47%, and 71% (p < 0.0001), and of high colony growth (≥20/105 peripheral blood mononuclear cells) 31%, 44%, and 80% (p < 0.0001), respectively. Increases in allele burden of RAS-pathway mutations and in numbers of spontaneously formed CFU-GM before and after transformation could be shown in individual patients. Finally, the presence of mutations in RASopathy genes as well as the presence of high colony growth prior to transformation was significantly associated with an increased risk of acute myeloid leukemia (AML) development. Together, RAS-pathway mutations in CMML correlate with an augmented autonomous expansion of neoplastic precursor cells and indicate an increased risk of AML development which may be relevant for targeted treatment strategies.
Collapse
MESH Headings
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cytogenetic Analysis
- Disease Progression
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/mortality
- Leukemia, Myelomonocytic, Chronic/pathology
- Mutation
- Neoplasm Staging
- Neoplastic Stem Cells/metabolism
- Prognosis
- Retrospective Studies
- Signal Transduction
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Klaus Geissler
- Medical School, Sigmund Freud University, 1020 Vienna, Austria
- Department of Internal Medicine V with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, 1130 Vienna, Austria; (T.G.); (E.G.)
- Correspondence: ; Tel.: +43-01-80110-3122; Fax: +43-01-80110-2671
| | - Eva Jäger
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (E.J.); (M.G.); (I.S.)
| | - Agnes Barna
- Blood Transfusion Service, Blood Transfusion Service for Upper Austria, Austrian Red Cross, 4020 Linz, Austria;
| | - Michael Gurbisz
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (E.J.); (M.G.); (I.S.)
| | - Temeida Graf
- Department of Internal Medicine V with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, 1130 Vienna, Austria; (T.G.); (E.G.)
| | - Elmir Graf
- Department of Internal Medicine V with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, 1130 Vienna, Austria; (T.G.); (E.G.)
| | - Thomas Nösslinger
- Department of Internal Medicine III, Hanusch Hospital, 1140 Vienna, Austria; (T.N.); (M.P.); (H.T.); (T.S.); (F.K.)
| | - Michael Pfeilstöcker
- Department of Internal Medicine III, Hanusch Hospital, 1140 Vienna, Austria; (T.N.); (M.P.); (H.T.); (T.S.); (F.K.)
| | - Heinz Tüchler
- Department of Internal Medicine III, Hanusch Hospital, 1140 Vienna, Austria; (T.N.); (M.P.); (H.T.); (T.S.); (F.K.)
| | - Thamer Sliwa
- Department of Internal Medicine III, Hanusch Hospital, 1140 Vienna, Austria; (T.N.); (M.P.); (H.T.); (T.S.); (F.K.)
| | - Felix Keil
- Department of Internal Medicine III, Hanusch Hospital, 1140 Vienna, Austria; (T.N.); (M.P.); (H.T.); (T.S.); (F.K.)
| | - Christoph Geissler
- Department of Laboratory Medicine, Hospital Hietzing, 1130 Vienna, Austria;
| | - Sonja Heibl
- Department of Internal Medicine IV, Hospital Wels-Grieskirchen, 4600 Wels, Austria; (S.H.); (J.T.)
| | - Josef Thaler
- Department of Internal Medicine IV, Hospital Wels-Grieskirchen, 4600 Wels, Austria; (S.H.); (J.T.)
| | - Sigrid Machherndl-Spandl
- Department of Internal Medicine I with Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Barmherzige Schwestern - Elisabethinen, 4020 Linz, Austria; (S.M.-S.); (O.Z.); (A.W.); (P.B.)
| | - Otto Zach
- Department of Internal Medicine I with Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Barmherzige Schwestern - Elisabethinen, 4020 Linz, Austria; (S.M.-S.); (O.Z.); (A.W.); (P.B.)
| | - Ansgar Weltermann
- Department of Internal Medicine I with Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Barmherzige Schwestern - Elisabethinen, 4020 Linz, Austria; (S.M.-S.); (O.Z.); (A.W.); (P.B.)
| | - Peter Bettelheim
- Department of Internal Medicine I with Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Barmherzige Schwestern - Elisabethinen, 4020 Linz, Austria; (S.M.-S.); (O.Z.); (A.W.); (P.B.)
| | - Reinhard Stauder
- Internal Medicine V with Hematology and Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Armin Zebisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, 8036 Graz, Austria; (A.Z.); (H.S.)
- Otto-Loewi-Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8036 Graz, Austria
| | - Heinz Sill
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, 8036 Graz, Austria; (A.Z.); (H.S.)
| | - Ilse Schwarzinger
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (E.J.); (M.G.); (I.S.)
| | - Bruno Schneeweiss
- Department of Internal Medicine, Hospital Kirchdorf, 4560 Kirchdorf, Austria;
| | - Leopold Öhler
- Department of Internal Medicine/Oncology, St. Josef Hospital, 1130 Vienna, Austria;
| | - Ernst Ulsperger
- Department of Internal Medicine, Hospital Horn, 3580 Horn, Austria;
| | - Rajko Kusec
- School of Medicine, University of Zagreb, University Hospital Dubrava, 10000 Zagreb, Croatia;
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.K.); (U.J.); (P.V.)
| | - Paul Knöbl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.K.); (U.J.); (P.V.)
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.K.); (U.J.); (P.V.)
| | - Gregor Hörmann
- Central Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.K.); (U.J.); (P.V.)
- Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Sen Nkwe N, Daou S, Uriarte M, Gagnon J, Iannantuono NV, Barbour H, Yu H, Masclef L, Fernández E, Zamorano Cuervo N, Mashtalir N, Binan L, Sergeev M, Bélanger F, Drobetsky E, Milot E, Wurtele H, Costantino S, Affar EB. A potent nuclear export mechanism imposes USP16 cytoplasmic localization during interphase. J Cell Sci 2020; 133:jcs239236. [PMID: 32005696 DOI: 10.1242/jcs.239236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/13/2020] [Indexed: 01/09/2023] Open
Abstract
USP16 (also known as UBP-M) has emerged as a histone H2AK119 deubiquitylase (DUB) implicated in the regulation of chromatin-associated processes and cell cycle progression. Despite this, available evidence suggests that this DUB is also present in the cytoplasm. How the nucleo-cytoplasmic transport of USP16, and hence its function, is regulated has remained elusive. Here, we show that USP16 is predominantly cytoplasmic in all cell cycle phases. We identified the nuclear export signal (NES) responsible for maintaining USP16 in the cytoplasm. We found that USP16 is only transiently retained in the nucleus following mitosis and then rapidly exported from this compartment. We also defined a non-canonical nuclear localization signal (NLS) sequence that plays a minimal role in directing USP16 into the nucleus. We further established that this DUB does not accumulate in the nucleus following DNA damage. Instead, only enforced nuclear localization of USP16 abolishes DNA double-strand break (DSB) repair, possibly due to unrestrained DUB activity. Thus, in contrast to the prevailing view, our data indicate that USP16 is actively excluded from the nucleus and that this DUB might indirectly regulate DSB repair.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nadine Sen Nkwe
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
| | - Salima Daou
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Maxime Uriarte
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
| | - Jessica Gagnon
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3T 1J4, Canada
| | - Nicholas Victor Iannantuono
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3T 1J4, Canada
| | - Haithem Barbour
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
| | - Helen Yu
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Louis Masclef
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
| | - Erlinda Fernández
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
| | - Natalia Zamorano Cuervo
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- CRCHUM-Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, QC H2X 0A9, Canada
| | - Nazar Mashtalir
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Loïc Binan
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Department of Ophthalmology, University of Montréal, Montréal, Québec, Canada
| | - Mikhail Sergeev
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
| | - François Bélanger
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
| | - Elliot Drobetsky
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Department of Ophthalmology, University of Montréal, Montréal, Québec, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
- Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| |
Collapse
|
15
|
Patnaik MM, Tefferi A. Chronic Myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol 2020; 95:97-115. [PMID: 31736132 DOI: 10.1002/ajh.25684] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (~15% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), along with bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ~ 30% of patients, while >90% have gene mutations. Mutations involving TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%) and the oncogenic RAS pathway (~30%) are frequent; while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact over-all survival. RISK STRATIFICATION Molecularly integrated prognostic models include; the Groupe Français des Myélodysplasies (GFM), Mayo Molecular Model (MMM) and the CMML specific prognostic model (CPSS-Mol). Risk factors incorporated into the MMM include presence of nonsense or frameshift ASXL1 mutations, absolute monocyte count>10 × 109 /L, hemoglobin <10 g/dL, platelet count <100 × 109 /L and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into four groups; high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor) and low (no risk factors), with median survivals of 16, 31, 59 and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ~40%-50% and complete remission rates of ~7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option, but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of MedicineMayo Clinic Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of MedicineMayo Clinic Rochester Minnesota
| |
Collapse
|
16
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
17
|
Valent P, Orazi A, Savona MR, Patnaik MM, Onida F, van de Loosdrecht AA, Haase D, Haferlach T, Elena C, Pleyer L, Kern W, Pemovska T, Vladimer GI, Schanz J, Keller A, Lübbert M, Lion T, Sotlar K, Reiter A, De Witte T, Pfeilstöcker M, Geissler K, Padron E, Deininger M, Orfao A, Horny HP, Greenberg PL, Arber DA, Malcovati L, Bennett JM. Proposed diagnostic criteria for classical chronic myelomonocytic leukemia (CMML), CMML variants and pre-CMML conditions. Haematologica 2019; 104:1935-1949. [PMID: 31048353 PMCID: PMC6886439 DOI: 10.3324/haematol.2019.222059] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a myeloid neoplasm characterized by dysplasia, abnormal production and accumulation of monocytic cells and an elevated risk of transforming into acute leukemia. Over the past two decades, our knowledge about the pathogenesis and molecular mechanisms in CMML has increased substantially. In parallel, better diagnostic criteria and therapeutic strategies have been developed. However, many questions remain regarding prognostication and optimal therapy. In addition, there is a need to define potential pre-phases of CMML and special CMML variants, and to separate these entities from each other and from conditions mimicking CMML. To address these unmet needs, an international consensus group met in a Working Conference in August 2018 and discussed open questions and issues around CMML, its variants, and pre-CMML conditions. The outcomes of this meeting are summarized herein and include diag nostic criteria and a proposed classification of pre-CMML conditions as well as refined minimal diagnostic criteria for classical CMML and special CMML variants, including oligomonocytic CMML and CMML associated with systemic mastocytosis. Moreover, we propose diagnostic standards and tools to distinguish between 'normal', pre-CMML and CMML entities. These criteria and standards should facilitate diagnostic and prognostic evaluations in daily practice and clinical studies in applied hematology.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria .,Ludwig Boltzmann Institute for Hematology & Oncology, Vienna, Austria
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Francesco Onida
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, the Netherlands
| | - Detlef Haase
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Chiara Elena
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lisa Pleyer
- 3 Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Paracelsus Medical University, Salzburg, Austria
| | | | - Tea Pemovska
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gregory I Vladimer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Julie Schanz
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Keller
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Michael Lübbert
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lion
- Children's Cancer Research Institute and Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Theo De Witte
- Department of Tumor Immunology-Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Pfeilstöcker
- Ludwig Boltzmann Institute for Hematology & Oncology, Vienna, Austria.,3 Medical Department, Hanusch Hospital, Vienna, Vienna, Austria
| | | | - Eric Padron
- Malignant Hematology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael Deininger
- Huntsman Cancer Institute & Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Alberto Orfao
- Servicio Central de Citometría, Centro de Investigación del Cáncer (IBMCC, CSIC-USAL), CIBERONC and IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians University, Munich, Germany
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - John M Bennett
- Department of Pathology, Hematopathology Unit and James P Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
18
|
Clonal Hematopoiesis with Oncogenic Potential (CHOP): Separation from CHIP and Roads to AML. Int J Mol Sci 2019; 20:ijms20030789. [PMID: 30759825 PMCID: PMC6387423 DOI: 10.3390/ijms20030789] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
The development of leukemia is a step-wise process that is associated with molecular diversification and clonal selection of neoplastic stem cells. Depending on the number and combinations of lesions, one or more sub-clones expand/s after a variable latency period. Initial stages may develop early in life or later in adulthood and include premalignant (indolent) stages and the malignant phase, defined by an acute leukemia. We recently proposed a cancer model in which the earliest somatic lesions are often age-related early mutations detectable in apparently healthy individuals and where additional oncogenic mutations will lead to the development of an overt neoplasm that is usually a preleukemic condition such as a myelodysplastic syndrome. These neoplasms may or may not transform to overt acute leukemia over time. Thus, depending on the type and number of somatic mutations, clonal hematopoiesis (CH) can be divided into CH with indeterminate potential (CHIP) and CH with oncogenic potential (CHOP). Whereas CHIP mutations per se usually create the molecular background of a neoplastic process, CHOP mutations are disease-related or even disease-specific lesions that trigger differentiation and/or proliferation of neoplastic cells. Over time, the acquisition of additional oncogenic events converts preleukemic neoplasms into secondary acute myeloid leukemia (sAML). In the present article, recent developments in the field are discussed with a focus on CHOP mutations that lead to distinct myeloid neoplasms, their role in disease evolution, and the impact of additional lesions that can drive a preleukemic neoplasm into sAML.
Collapse
|
19
|
Kiran S, Dar A, Singh SK, Lee KY, Dutta A. The Deubiquitinase USP46 Is Essential for Proliferation and Tumor Growth of HPV-Transformed Cancers. Mol Cell 2018; 72:823-835.e5. [PMID: 30415951 DOI: 10.1016/j.molcel.2018.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 02/05/2023]
Abstract
High-risk human papilloma viruses (HPVs) cause cervical, anal, and oropharyngeal cancers, unlike the low-risk HPVs, which cause benign lesions. E6 oncoproteins from the high-risk strains are essential for cell proliferation and transformation in HPV-induced cancers. We report that a cellular deubiquitinase, USP46, is selectively recruited by the E6 of high-risk, but not low-risk, HPV to deubiqutinate and stabilize Cdt2/DTL. Stabilization of Cdt2, a component of the CRL4Cdt2 E3 ubiquitin ligase, limits the level of Set8, an epigenetic writer, and promotes cell proliferation. USP46 is essential for the proliferation of HPV-transformed cells, but not of cells without HPV. Cdt2 is elevated in human cervical cancers and knockdown of USP46 inhibits HPV-transformed tumor growth in xenografts. Recruitment of a cellular deubiquitinase to stabilize key cellular proteins is an important activity of oncogenic E6, and the importance of E6-USP46-Cdt2-Set8 pathway in HPV-induced cancers makes USP46 a target for the therapy of such cancers.
Collapse
Affiliation(s)
- Shashi Kiran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ashraf Dar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Samarendra K Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyung Yong Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
20
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. Am J Hematol 2018; 93:824-840. [PMID: 29878489 DOI: 10.1002/ajh.25104] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (∼15%-20% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), along with bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ∼ 30% of patients, while >90% have gene mutations. Mutations involving TET2 (∼60%), SRSF2 (∼50%), ASXL1 (∼40%) and the oncogenic RAS pathway (∼30%) are frequent; while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact over-all survival. RISK STRATIFICATION Molecularly integrated prognostic models include; the Groupe Français des Myélodysplasies (GFM), Mayo Molecular Model (MMM), and the CMML specific prognostic model (CPSS-Mol). Risk factors incorporated into the MMM include presence of nonsense or frameshift ASXL1 mutations, absolute monocyte count > 10 × 109 /L, hemoglobin <10 gm/dL, platelet count <100 × 109 /L and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into 4 groups; high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors), with median survivals of 16, 31, 59, and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ∼30%-40% and complete remission rates of ∼7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option, but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of MedicineMayo ClinicRochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of MedicineMayo ClinicRochester Minnesota
| |
Collapse
|
21
|
5-Hydroxymethylcytosine correlates with epigenetic regulatory mutations, but may not have prognostic value in predicting survival in normal karyotype acute myeloid leukemia. Oncotarget 2018; 8:8305-8314. [PMID: 28039446 PMCID: PMC5352402 DOI: 10.18632/oncotarget.14171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022] Open
Abstract
Stem cells display remarkably high levels of 5-hydroxymethylcytosine (5hmC). Both TET2 and IDH1/2 mutations can impair the production of 5hmC, thus decreasing 5hmC levels. TET2 or IDH1/2 mutations are commonly observed in acute myeloid leukemia (AML). However, the implications of 5hmC on survival in normal karyotype AML patients have not been fully evaluated. The 5hmC levels were analyzed in 375 patients using ELISA. The levels of 5hmC in DNA samples were converted to a log scale for the analysis and correlations with TET2 and/or IDH1/2 mutations were evaluated. The median 5hmC level was 0.065% (range 0.001–0.999). Mutation rates were 13.1% for TET2mut, 6.7% for IDH1mut, and 13.9% for IDH2mut. The prevalence of TET2 and/or IDH1/2 was 33.1% (124/375). TET2 and IDH1/2 mutated patients had significantly lower levels of log(5hmC) compared with patients without TET2 or IDH1/2 mutations (p<0.001). With a median follow-up of 55.5 months (range, 0.7–179.8), there was no significant difference in overall survival, event-free survival, and relapse risk according to TET2mut or IDH1/2mut (all, p>0.05). To identify its prognostic value, we sub-classified the levels of 5hmC into tertiles for 5hmC values. However, there was no significant association between the categories of 5hmC levels and survival or relapse risk (all p>0.05). Patients with TET2 or IDH1/2 mutations had lower levels of 5hmC. The 5hmC levels may not be predictive of survival in patients with normal karyotype AML.
Collapse
|
22
|
Bellissimo DC, Speck NA. RUNX1 Mutations in Inherited and Sporadic Leukemia. Front Cell Dev Biol 2017; 5:111. [PMID: 29326930 PMCID: PMC5742424 DOI: 10.3389/fcell.2017.00111] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
RUNX1 is a recurrently mutated gene in sporadic myelodysplastic syndrome and leukemia. Inherited mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). In sporadic AML, mutations in RUNX1 are usually secondary events, whereas in FPD/AML they are initiating events. Here we will describe mutations in RUNX1 in sporadic AML and in FPD/AML, discuss the mechanisms by which inherited mutations in RUNX1 could elevate the risk of AML in FPD/AML individuals, and speculate on why mutations in RUNX1 are rarely, if ever, the first event in sporadic AML.
Collapse
Affiliation(s)
- Dana C Bellissimo
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Thota S, Gerds AT. Myelodysplastic and myeloproliferative neoplasms: updates on the overlap syndromes. Leuk Lymphoma 2017; 59:803-812. [PMID: 28771058 DOI: 10.1080/10428194.2017.1357179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myelodysplastic and myeloproliferative neoplasms (MDS/MPN) is a rare and distinct group of myeloid neoplasms with overlapping MDS and MPN features. Next generation sequencing studies have led to an improved understanding of MDS/MPN disease biology by identifying recurrent somatic mutations. Combining the molecular findings to patho-morphologic features has improved the precision of diagnosis and prognostic models in MDS/MPN. We discuss and highlight these updates in MDS/MPN nomenclature and diagnostic criteria per revised 2016 WHO classification of myeloid neoplasms in this article. There is an ongoing effort for data integration allowing for comprehensive genomic characterization, development of improved prognostic tools, and investigation for novel therapies using an international front specific for MDS/MPN. In this article, we discuss updates in prognostic models and current state of treatment for MDS/MPN.
Collapse
Affiliation(s)
- Swapna Thota
- a Leukemia and Myeloid Disorders Program , Taussig Cancer Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| | - Aaron T Gerds
- a Leukemia and Myeloid Disorders Program , Taussig Cancer Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| |
Collapse
|
24
|
Stengel A, Kern W, Meggendorfer M, Nadarajah N, Perglerovà K, Haferlach T, Haferlach C. Number of RUNX1 mutations, wild-type allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML. Leukemia 2017; 32:295-302. [DOI: 10.1038/leu.2017.239] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
|
25
|
Dupain C, Harttrampf AC, Urbinati G, Geoerger B, Massaad-Massade L. Relevance of Fusion Genes in Pediatric Cancers: Toward Precision Medicine. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 6:315-326. [PMID: 28325298 PMCID: PMC5363511 DOI: 10.1016/j.omtn.2017.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/19/2022]
Abstract
Pediatric cancers differ from adult tumors, especially by their very low mutational rate. Therefore, their etiology could be explained in part by other oncogenic mechanisms such as chromosomal rearrangements, supporting the possible implication of fusion genes in the development of pediatric cancers. Fusion genes result from chromosomal rearrangements leading to the juxtaposition of two genes. Consequently, an abnormal activation of one or both genes is observed. The detection of fusion genes has generated great interest in basic cancer research and in the clinical setting, since these genes can lead to better comprehension of the biological mechanisms of tumorigenesis and they can also be used as therapeutic targets and diagnostic or prognostic biomarkers. In this review, we discuss the molecular mechanisms of fusion genes and their particularities in pediatric cancers, as well as their relevance in murine models and in the clinical setting. We also point out the difficulties encountered in the discovery of fusion genes. Finally, we discuss future perspectives and priorities for finding new innovative therapies in childhood cancer.
Collapse
Affiliation(s)
- Célia Dupain
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Anne Catherine Harttrampf
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Giorgia Urbinati
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Birgit Geoerger
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Liliane Massaad-Massade
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
26
|
Nazha A, Prebet T, Gore S, Zeidan AM. Chronic myelomoncytic leukemia: Are we finally solving the identity crisis? Blood Rev 2016; 30:381-8. [DOI: 10.1016/j.blre.2016.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
|
27
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2016 update on diagnosis, risk stratification, and management. Am J Hematol 2016; 91:631-42. [PMID: 27185207 DOI: 10.1002/ajh.24396] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder characterized by overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms. Diagnosis is based on the presence of persistent (>3 months) peripheral blood monocytosis (>1 × 10(9) /L), along with bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ∼20-30% of patients, while >90% have gene mutations. Mutations involving TET2 (∼60%), SRSF2 (∼50%), ASXL1 (∼40%), and RAS (∼30%) are frequent; with only ASXL1 mutations negatively impacting overall survival. Two molecularly integrated, CMML-specific prognostic models include; the Groupe Français des Myélodysplasies (GFM) and the Molecular Mayo Model (MMM). The GFM model segregates patients into 3 groups based on: age >65 years, WBC >15 × 10(9) /L, anemia, platelets <100 × 10(9) /L, and ASXL1 mutation status, with respective median survivals of 56 (low), 27.4 (intermediate), and 9.2 (high) months. The MMM is based on ASXL1 mutational status, absolute monocyte count >10 × 10(9) /L, hemoglobin <10 g/dL, platelets <100 × 109/L and circulating immature myeloid cells. This model stratifies patients into four groups; high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor) and low (no risk factors), with median survivals of 16, 31, 59, and 97 months, respectively. Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ∼30-40% and complete remission rates of ∼7-17%. Allogeneic stem cell transplant is the only potentially curative option, but is associated with significant morbidity and mortality. Individualized therapy, including epigenetic modifiers and small molecule inhibitors, are exciting prospects. Am. J. Hematol. 91:632-642, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of Medicine; Mayo Clinic; Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
28
|
Gaidzik VI, Teleanu V, Papaemmanuil E, Weber D, Paschka P, Hahn J, Wallrabenstein T, Kolbinger B, Köhne CH, Horst HA, Brossart P, Held G, Kündgen A, Ringhoffer M, Götze K, Rummel M, Gerstung M, Campbell P, Kraus JM, Kestler HA, Thol F, Heuser M, Schlegelberger B, Ganser A, Bullinger L, Schlenk RF, Döhner K, Döhner H. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 2016; 30:2160-2168. [DOI: 10.1038/leu.2016.126] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/16/2022]
|
29
|
Abstract
Deubiquitinases are deubiquitinating enzymes (DUBs), which remove ubiquitin from proteins, thus regulating their proteasomal degradation, localization and activity. Here, we discuss DUBs as anti-cancer drug targets.
Collapse
|
30
|
Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun 2016; 7:10767. [PMID: 26908133 PMCID: PMC4770084 DOI: 10.1038/ncomms10767] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.
Collapse
|
31
|
Palomo L, Xicoy B, Garcia O, Mallo M, Ademà V, Cabezón M, Arnan M, Pomares H, José Larrayoz M, José Calasanz M, Maciejewski JP, Huang D, Shih LY, Ogawa S, Cervera J, Such E, Coll R, Grau J, Solé F, Zamora L. Impact of SNP array karyotyping on the diagnosis and the outcome of chronic myelomonocytic leukemia with low risk cytogenetic features or no metaphases. Am J Hematol 2016; 91:185-92. [PMID: 26509444 DOI: 10.1002/ajh.24227] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic disorder with heterogeneous clinical, morphological and genetic characteristics. Clonal cytogenetic abnormalities are found in 20-30% of patients with CMML. Patients with low risk cytogenetic features (normal karyotype and isolated loss of Y chromosome) account for ∼80% of CMML patients and often fall into the low risk categories of CMML prognostic scores. We hypothesized that single nucleotide polymorphism arrays (SNP-A) karyotyping could detect cryptic chromosomal alterations with prognostic impact in these subgroup of patients. SNP-A were performed at diagnosis in 128 CMML patients with low risk karyotypes or uninformative results for conventional G-banding cytogenetics (CC). Copy number alterations (CNAs) and regions of copy number neutral loss of heterozygosity (CNN-LOH) were detected in 67% of patients. Recurrent CNAs included gains in regions 8p12 and 21q22 as well as losses in 10q21.1 and 12p13.2. Interstitial CNN-LOHs were recurrently detected in the following regions: 4q24-4q35, 7q32.1-7q36.3, and 11q13.3-11q25. Statistical analysis showed that some of the alterations detected by SNP-A associated with the patients' outcome. A shortened overall survival (OS) and progression free survival (PFS) was observed in cases where the affected size of the genome (considering CNAs and CNN-LOHs) was >11 Mb. In addition, presence of interstitial CNN-LOH was predictive of poor OS. Presence of CNAs (≥1) associated with poorer OS and PFS in the patients with myeloproliferative CMML. Overall, SNP-A analysis increased the diagnostic yield in patients with low risk cytogenetic features or uninformative CC and added prognostic value to this subset of patients.
Collapse
Affiliation(s)
- Laura Palomo
- MDS Research Group, Institut De Recerca Contra La Leucèmia Josep Carreras; ICO-Hospital Germans Trias I Pujol, Universitat Autònoma De Barcelona; Badalona Spain
- Departament De Bioquímica I Biologia Molecular, Universitat Autònoma De Barcelona; Spain
| | - Blanca Xicoy
- Hematology Service, ICO-Hospital Germans Trias I Pujol, Institut De Recerca Contra La Leucèmia Josep Carreras; Universitat Autònoma De Barcelona; Badalona Spain
| | - Olga Garcia
- Hematology Service, ICO-Hospital Germans Trias I Pujol, Institut De Recerca Contra La Leucèmia Josep Carreras; Universitat Autònoma De Barcelona; Badalona Spain
| | - Mar Mallo
- MDS Research Group, Institut De Recerca Contra La Leucèmia Josep Carreras; ICO-Hospital Germans Trias I Pujol, Universitat Autònoma De Barcelona; Badalona Spain
| | - Vera Ademà
- MDS Research Group, Institut De Recerca Contra La Leucèmia Josep Carreras; ICO-Hospital Germans Trias I Pujol, Universitat Autònoma De Barcelona; Badalona Spain
| | - Marta Cabezón
- Hematology Service, ICO-Hospital Germans Trias I Pujol, Institut De Recerca Contra La Leucèmia Josep Carreras; Universitat Autònoma De Barcelona; Badalona Spain
| | - Montse Arnan
- Hematology Service, ICO-Hospital Duran I Reynals; Barcelona Spain
| | - Helena Pomares
- Hematology Service, ICO-Hospital Duran I Reynals; Barcelona Spain
| | - María José Larrayoz
- CIMA LAB Diagnostics, Department of Biochemistry and Genetics; University of Navarra, Instituto De Investigación Sanitaria De Navarra; Pamplona Spain
| | - María José Calasanz
- CIMA LAB Diagnostics, Department of Biochemistry and Genetics; University of Navarra, Instituto De Investigación Sanitaria De Navarra; Pamplona Spain
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research; Taussing Cancer Institute, Cleveland Clinic; Cleveland Ohio
| | - Dayong Huang
- Department of Translational Hematology and Oncology Research; Taussing Cancer Institute, Cleveland Clinic; Cleveland Ohio
| | - Lee-Yung Shih
- Division of Hematology; Chang Gung Memorial Hospital-Linkou, Chang Gung University; Taiwan City Taiwan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Jose Cervera
- Hematology Department; Hospital Universitario La Fe; Valencia Spain
| | - Esperanza Such
- Hematology Department; Hospital Universitario La Fe; Valencia Spain
| | - Rosa Coll
- Hematology Service, ICO Girona Hospital Josep Trueta; Girona Spain
| | - Javier Grau
- Hematology Service, ICO-Hospital Germans Trias I Pujol, Institut De Recerca Contra La Leucèmia Josep Carreras; Universitat Autònoma De Barcelona; Badalona Spain
| | - Francesc Solé
- MDS Research Group, Institut De Recerca Contra La Leucèmia Josep Carreras; ICO-Hospital Germans Trias I Pujol, Universitat Autònoma De Barcelona; Badalona Spain
| | - Lurdes Zamora
- Hematology Service, ICO-Hospital Germans Trias I Pujol, Institut De Recerca Contra La Leucèmia Josep Carreras; Universitat Autònoma De Barcelona; Badalona Spain
| |
Collapse
|
32
|
Ahn JS, Kim HJ, Kim YK, Lee SS, Jung SH, Yang DH, Lee JJ, Kim NY, Choi SH, Jung CW, Jang JH, Kim HJ, Moon JH, Sohn SK, Won JH, Kim SH, Kim DDH. DNMT3A R882 Mutation with FLT3-ITD Positivity Is an Extremely Poor Prognostic Factor in Patients with Normal-Karyotype Acute Myeloid Leukemia after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:61-70. [DOI: 10.1016/j.bbmt.2015.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/28/2015] [Indexed: 12/17/2022]
|
33
|
Ahn JS, Kim JY, Kim HJ, Kim YK, Lee SS, Jung SH, Yang DH, Lee JJ, Kim NY, Choi SH, Minden MD, Jung CW, Jang JH, Kim HJ, Moon JH, Sohn SK, Won JH, Kim SH, Kim DDH. Normal karyotype acute myeloid leukemia patients with CEBPA double mutation have a favorable prognosis but no survival benefit from allogeneic stem cell transplant. Ann Hematol 2015; 95:301-10. [DOI: 10.1007/s00277-015-2540-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/24/2015] [Indexed: 12/19/2022]
|
34
|
Benton CB, Nazha A, Pemmaraju N, Garcia-Manero G. Chronic myelomonocytic leukemia: Forefront of the field in 2015. Crit Rev Oncol Hematol 2015; 95:222-42. [PMID: 25869097 PMCID: PMC4859155 DOI: 10.1016/j.critrevonc.2015.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 01/27/2015] [Accepted: 03/05/2015] [Indexed: 12/22/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) includes components of both myelodysplastic syndrome and myeloproliferative neoplasms and is associated with a characteristic peripheral monocytosis. CMML is caused by the proliferation of an abnormal hematopoietic stem cell clone and may be influenced by microenvironmental changes. The disease is rare and has undergone revisions in its classification. We review the recent classification strategies as well as diagnostic criteria, focusing on CMML's genetic alterations and unique pathophysiology. We also discuss the latest molecular characterization of the disease, including how molecular factors affect current prognostic models. Finally, we focus on available treatment strategies, with a special emphasis on experimental and forthcoming therapies.
Collapse
Affiliation(s)
- Christopher B Benton
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aziz Nazha
- Leukemia Program, Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
35
|
Abstract
Structural chromosome rearrangements may result in the exchange of coding or regulatory DNA sequences between genes. Many such gene fusions are strong driver mutations in neoplasia and have provided fundamental insights into the disease mechanisms that are involved in tumorigenesis. The close association between the type of gene fusion and the tumour phenotype makes gene fusions ideal for diagnostic purposes, enabling the subclassification of otherwise seemingly identical disease entities. In addition, many gene fusions add important information for risk stratification, and increasing numbers of chimeric proteins encoded by the gene fusions serve as specific targets for treatment, resulting in dramatically improved patient outcomes. In this Timeline article, we describe the spectrum of gene fusions in cancer and how the methods to identify them have evolved, and also discuss conceptual implications of current, sequencing-based approaches for detection.
Collapse
Affiliation(s)
- Fredrik Mertens
- Department of Clinical Genetics, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Bertil Johansson
- Department of Clinical Genetics, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Felix Mitelman
- Department of Clinical Genetics, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| |
Collapse
|
36
|
The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet 2015; 47:672-6. [PMID: 25961940 DOI: 10.1038/ng.3301] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
High hyperdiploid (51-67 chromosomes) acute lymphoblastic leukemia (ALL) is one of the most common childhood malignancies, comprising 30% of all pediatric B cell-precursor ALL. Its characteristic genetic feature is the nonrandom gain of chromosomes X, 4, 6, 10, 14, 17, 18 and 21, with individual trisomies or tetrasomies being seen in over 75% of cases, but the pathogenesis remains poorly understood. We performed whole-genome sequencing (WGS) (n = 16) and/or whole-exome sequencing (WES) (n = 39) of diagnostic and remission samples from 51 cases of high hyperdiploid ALL to further define the genomic landscape of this malignancy. The majority of cases showed involvement of the RTK-RAS pathway and of histone modifiers. No recurrent fusion gene-forming rearrangement was found, and an analysis of mutations on trisomic chromosomes indicated that the chromosomal gains were early events, strengthening the notion that the high hyperdiploid pattern is the main driver event in this common pediatric malignancy.
Collapse
|
37
|
Yao H, Pan J, Wu C, Shen H, Xie J, Wang Q, Wen L, Wang Q, Ma L, Wu L, Ping N, Zhao Y, Sun A, Chen S. Transcriptome sequencing reveals CHD1 as a novel fusion partner of RUNX1 in acute myeloid leukemia with t(5;21)(q21;q22). Mol Cancer 2015; 14:81. [PMID: 25879624 PMCID: PMC4486139 DOI: 10.1186/s12943-015-0353-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 03/25/2015] [Indexed: 11/12/2022] Open
Abstract
Background RUNX1/AML1, which is a Runt family transcription factor critical for normal hematopoiesis, is frequently mutated or translocated in a broad spectrum of hematopoietic malignancies. Findings We describe here the case of a 54-year-old female developed acute myeloid leukemia with a t(5;21)(q21;q22). Transcriptome sequencing identified the chromodomain-helicase-DNA-binding protein 1 gene, CHD1, as a novel partner gene of RUNX1. Furthermore, the patient was found to harbor FLT3-ITD mutation, which might collaborated with CHD1-RUNX1 in the development of acute myeloid leukemia. Conclusions We have identified CHD1 as the RUNX1 fusion partner in acute myeloid leukemia with t(5;21)(q21;q22). Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0353-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Yao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Jinlan Pan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Chunxiao Wu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Hongjie Shen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Jundan Xie
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Qinrong Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Lijun Wen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Qian Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Liang Ma
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Lili Wu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Nana Ping
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Yun Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, P.R. China.
| | - Aining Sun
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.
| | - Suning Chen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China. .,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China.
| |
Collapse
|
38
|
Schmit JM, Turner DJ, Hromas RA, Wingard JR, Brown RA, Li Y, Li MM, Slayton WB, Cogle CR. Two novel RUNX1 mutations in a patient with congenital thrombocytopenia that evolved into a high grade myelodysplastic syndrome. Leuk Res Rep 2015; 4:24-7. [PMID: 25893166 PMCID: PMC4398854 DOI: 10.1016/j.lrr.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/26/2022] Open
Abstract
Here we report two new RUNX1 mutations in one patient with congenital thrombocytopenia that transformed into a high grade myelodysplastic syndrome with myelomonocytic features. The first mutation was a nucleotide base substitution from guanine to adenine within exon 8, resulting in a nonsense mutation in the DNA-binding inhibitory domain of the Runx1 protein. This nonsense mutation is suspected a de novo germline mutation since both parents are negative for the mutation. The second mutation identified was an in-frame six nucleotide base pair insertion in exon 5 of the RUNX1 gene, which is predicted to result in an insertion in the DNA-binding runt homology domain (RHD). This mutation is believed to be a somatic mutation as it was mosaic before allogeneic hematopoietic cell transplantation and disappeared after transplant. As no other genetic mutation was found using genetic screening, it is speculated that the combined effect of these two RUNX1 mutations may have exerted a stronger dominant negative effect than either RUNX1 mutation alone, thus leading to a myeloid malignancy. We report two new RUNX1 mutations in a patient with thrombocytopenia and MDS. We demonstrate that a second hit to RUNX1 results in transformed MDS. Allogeneic transplant was successfully used to treat double RUNX1 mutant MDS.
Collapse
Affiliation(s)
- Jessica M Schmit
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Daniel J Turner
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Robert A Hromas
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - John R Wingard
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Randy A Brown
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ying Li
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marilyn M Li
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William B Slayton
- Division of Hematology and Oncology, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Li B, Gale RP, Xiao Z. Molecular genetics of chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia. J Hematol Oncol 2014; 7:93. [PMID: 25498990 PMCID: PMC4266232 DOI: 10.1186/s13045-014-0093-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
According to the 2008 World Health Organization classification, chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia are rare diseases. The remarkable progress in our understanding of the molecular genetics of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms has made it clear that there are some specific genetic abnormalities in these 3 rare diseases. At the same time, there is considerable overlap among these disorders at the molecular level. The various combinations of genetic abnormalities indicate a multi-step pathogenesis, which likely contributes to the marked clinical heterogeneity of these disorders. This review focuses on the current knowledge and challenges related to the molecular pathogenesis of chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia and relationships between molecular findings, clinical features and prognosis.
Collapse
Affiliation(s)
| | | | - Zhijian Xiao
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Myelodysplastic/myeloproliferative neoplasms (MDS/MPNs), including chronic myelomonocytic leukemia, atypical chronic myeloid leukemia, MDS/MPN-Unclassifiable, ring sideroblasts associated with marked thrombocytosis, and juvenile myelomonocytic leukemia, are clonal hematologic diseases characterized by myeloid dysplasia, proliferation, and absence of the molecular lesions BCR/ABL, PDGFRA, PDGFRB, and FGFR1. There are currently no US Food and Drug Administration approved therapies for all MDS/MPN subtypes. Advances in the understanding of the biologic and molecular drivers of these diseases will help in diagnosis, prognosis, and therapeutics. This review article summarizes the molecular aspects of MDS/MPNs and provides an overview of classic and emerging therapies. RECENT FINDINGS Next generation sequencing has provided new insights into the genetic nature of MDS/MPNs. Molecular mutations such as TET2, CBL, SETBP1, CSF3R, and SF3B1 are relevant as diagnostic and prognostic biomarkers. Hematopoietic cell transplantation, although potentially curative, is applicable to only a small proportion of patients. Attempts to standardize response and outcomes criteria specific to MDS/MPN and clinical trials using novel agents focused on MDS/MPN patients are underway. SUMMARY MDS/MPNs have clinicopathologic features of both MDS and MPN diseases. Emerging molecular data support the distinctive disease biology of each of these morphologic entities, and will serve as the foundation to develop effective therapeutics that can ameliorate disease-related complications and lead to better outcomes.
Collapse
|
41
|
Zoi K, Cross NCP. Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int J Hematol 2014; 101:229-42. [PMID: 25212680 DOI: 10.1007/s12185-014-1670-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022]
Abstract
According to the 2008 WHO classification, the category of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) includes atypical chronic myeloid leukaemia (aCML), chronic myelomonocytic leukaemia (CMML), MDS/MPN-unclassifiable (MDS/MPN-U), juvenile myelomonocytic leukaemia (JMML) and a "provisional" entity, refractory anaemia with ring sideroblasts and thrombocytosis (RARS-T). The remarkable progress in our understanding of the somatic pathogenesis of MDS/MPN has made it clear that there is considerable overlap among these diseases at the molecular level, as well as layers of unexpected complexity. Deregulation of signalling plays an important role in many cases, and is clearly linked to more highly proliferative disease. Other mutations affect a range of other essential, interrelated cellular mechanisms, including epigenetic regulation, RNA splicing, transcription, and DNA damage response. The various combinations of mutations indicate a multi-step pathogenesis, which likely contributes to the marked clinical heterogeneity of these disorders. The delineation of complex clonal architectures may serve as the cornerstone for the identification of novel therapeutic targets and lead to better patient outcomes. This review summarizes some of the current knowledge of molecular pathogenetic lesions in the MDS/MPN subtypes that are seen in adults: atypical CML, CMML and MDS/MPN-U.
Collapse
Affiliation(s)
- Katerina Zoi
- Haematology Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | |
Collapse
|
42
|
Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res 2014; 74:4955-66. [PMID: 25172841 DOI: 10.1158/0008-5472.can-14-1211] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ubiquitin-proteasome system (UPS) has emerged as a therapeutic focus and target for the treatment of cancer. The most clinically successful UPS-active agents (bortezomib and lenalidomide) are limited in application to hematologic malignancies, with only marginal efficacy in solid tumors. Inhibition of specific ubiquitin E3 ligases has also emerged as a valid therapeutic strategy, and many targets are currently being investigated. Another emerging and promising approach in regulation of the UPS involves targeting deubiquitinases (DUB). The DUBs comprise a relatively small group of proteins, most with cysteine protease activity that target several key proteins involved in regulation of tumorigenesis, apoptosis, senescence, and autophagy. Through their multiple contacts with ubiquitinated protein substrates involved in these pathways, DUBs provide an untapped means of modulating many important regulatory proteins that support oncogenic transformation and progression. Ubiquitin-specific proteases (USP) are one class of DUBs that have drawn special attention as cancer targets, as many are differentially expressed or activated in tumors or their microenvironment, making them ideal candidates for drug development. This review attempts to summarize the USPs implicated in different cancers, the current status of USP inhibitor-mediated pharmacologic intervention, and future prospects for USP inhibitors to treat diverse cancers.
Collapse
Affiliation(s)
- Anupama Pal
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Matthew A Young
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Nicholas J Donato
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
43
|
Onida F, Barosi G, Leone G, Malcovati L, Morra E, Santini V, Specchia G, Tura S. Management recommendations for chronic myelomonocytic leukemia: consensus statements from the SIE, SIES, GITMO groups. Haematologica 2014; 98:1344-52. [PMID: 24006407 DOI: 10.3324/haematol.2013.084020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
With the aim of reviewing critical concepts and producing recommendations for the management of chronic myelomonocytic leukemia, key questions were selected according to the criterion of clinical relevance. Recommendations were produced using a Delphi process and four consensus conferences involving a panel of experts appointed by the Italian Society of Hematology and affiliated societies. This report presents the final statements and recommendations, covering patient evaluation at diagnosis, diagnostic criteria, risk classification, first-line therapy, monitoring, second-line therapy and allogeneic stem cell transplantation. For the first-line therapy, the panel recommended that patients with myelodysplastic-type chronic myelomonocytic leukemia and less than 10% blasts in bone marrow should be managed with supportive therapy aimed at correcting cytopenias. In patients with myelodysplastic-type chronic myelomonocytic leukemia with a high number of blasts in bone marrow (≥ 10%), supportive therapy should be integrated with the use of 5-azacytidine. Patients with myeloproliferative-type chronic myelomonocytic leukemia with a low number of blasts (<10%) should be treated with cytoreductive therapy. Hydroxyurea is the drug of choice to control cell proliferation and to reduce organomegaly. Patients with myeloproliferative-type chronic myelomonocytic leukemia, and a high number of blasts should receive polychemotherapy. Both in myelodysplastic-type and myeloproliferative-type chronic myelomonocytic leukemia, allogeneic stem cell transplantation should be offered within clinical trials in selected patients.
Collapse
Affiliation(s)
- Francesco Onida
- Hematology - Bone Marrow Transplantation Center, Fondazione IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cervera N, Itzykson R, Coppin E, Prebet T, Murati A, Legall S, Vey N, Solary E, Birnbaum D, Gelsi-Boyer V. Gene mutations differently impact the prognosis of the myelodysplastic and myeloproliferative classes of chronic myelomonocytic leukemia. Am J Hematol 2014; 89:604-9. [PMID: 24595958 DOI: 10.1002/ajh.23702] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/28/2014] [Indexed: 01/20/2023]
Abstract
Initially classified in the myelodysplastic syndromes (MDSs), chronic myelomonocytic leukemia (CMML) is currently considered as a MDS/myeloproliferative neoplasm. Two classes-myelodysplastic and myeloproliferative-have been distinguished upon the level of the white blood cell count (threshold 13 G/L). We analyzed mutations in 19 genes reported in CMML to determine if and how these mutations impacted the respective prognosis of the two classes. We defined four major mutated pathways (DNA methylation, ASXL1, splicing, and signaling) and determined their prognostic impact. The number of mutated pathways impacted overall survival in the myelodysplastic class but not in the myeloproliferative class. The myeloproliferative class had a worse prognosis than the myelodysplastic class and was impacted by RUNX1 mutations only. Our results argue for a reclassification of CMML based on the myelodysplastic/myeloproliferative status.
Collapse
Affiliation(s)
- Nathalie Cervera
- Centre de Recherche en Cancérologie de Marseille; Aix-Marseille University; Marseille France
- Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm, CNRS UMR7258, Aix-Marseille University; Marseille France
- Institut Paoli-Calmettes; Aix-Marseille University; Marseille France
| | - Raphael Itzykson
- Inserm UMR1009; Institut Gustave Roussy; Villejuif France
- Faculty of Medicine; University Paris-Sud; Le Kremlin-Bicêtre France
| | - Emilie Coppin
- Centre de Recherche en Cancérologie de Marseille; Aix-Marseille University; Marseille France
- Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm, CNRS UMR7258, Aix-Marseille University; Marseille France
- Institut Paoli-Calmettes; Aix-Marseille University; Marseille France
| | - Thomas Prebet
- Centre de Recherche en Cancérologie de Marseille; Aix-Marseille University; Marseille France
- Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm, CNRS UMR7258, Aix-Marseille University; Marseille France
- Institut Paoli-Calmettes; Aix-Marseille University; Marseille France
- Department of Hematology; Institut Paoli-Calmettes; France
| | - Anne Murati
- Centre de Recherche en Cancérologie de Marseille; Aix-Marseille University; Marseille France
- Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm, CNRS UMR7258, Aix-Marseille University; Marseille France
- Institut Paoli-Calmettes; Aix-Marseille University; Marseille France
- Département de BioPathologie; Institut Paoli-Calmettes; Marseille France
| | - Stevan Legall
- Department of Hematology; Centre Hospitalier de Gap; France
| | - Norbert Vey
- Centre de Recherche en Cancérologie de Marseille; Aix-Marseille University; Marseille France
- Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm, CNRS UMR7258, Aix-Marseille University; Marseille France
- Institut Paoli-Calmettes; Aix-Marseille University; Marseille France
- Department of Hematology; Institut Paoli-Calmettes; France
| | - Eric Solary
- Inserm UMR1009; Institut Gustave Roussy; Villejuif France
- Faculty of Medicine; University Paris-Sud; Le Kremlin-Bicêtre France
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille; Aix-Marseille University; Marseille France
- Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm, CNRS UMR7258, Aix-Marseille University; Marseille France
- Institut Paoli-Calmettes; Aix-Marseille University; Marseille France
| | - Véronique Gelsi-Boyer
- Centre de Recherche en Cancérologie de Marseille; Aix-Marseille University; Marseille France
- Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm, CNRS UMR7258, Aix-Marseille University; Marseille France
- Institut Paoli-Calmettes; Aix-Marseille University; Marseille France
- Department of Hematology; Institut Paoli-Calmettes; France
| |
Collapse
|
45
|
Reuter CWM, Krauter J, Onono FO, Bunke T, Damm F, Thol F, Wagner K, Göhring G, Schlegelberger B, Heuser M, Ganser A, Morgan MA. Lack of noncanonical RAS mutations in cytogenetically normal acute myeloid leukemia. Ann Hematol 2014; 93:977-82. [DOI: 10.1007/s00277-014-2061-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 11/30/2022]
|
46
|
Parikh SA, Tefferi A. Chronic myelomonocytic leukemia: 2013 update on diagnosis, risk stratification, and management. Am J Hematol 2013; 88:967-74. [PMID: 23963888 DOI: 10.1002/ajh.23574] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 01/20/2023]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder that is classified as a myelodysplastic/myeloproliferative neoplasm by the 2008 World Health Organization classification of hematopoietic tumors. It is characterized by absolute monocytosis (>1 × 10⁹/L) in the peripheral blood that persists for at least 3 months. DIAGNOSIS The diagnosis of CMML rests on a combination of morphologic, histopathologic and chromosomal abnormalities in the bone marrow. It is important to exclude other myeloproliferative neoplasms and infectious/autoimmune conditions that can cause monocytosis. RISK STRATIFICATION Several CMML-specific prognostic models incorporating novel mutations have been recently reported. The Mayo prognostic model classified CMML patients into three risk groups based on: increased absolute monocyte count, presence of circulating blasts, hemoglobin <10 gm/dL and platelets <100 × 10⁹/L. The median survival was 32 months, 18.5 months and 10 months in the low, intermediate, and high-risk groups, respectively. The Groupe Francophone des (GFM) score segregated CMML patients into three risk groups based on: age >65 years, WBC >15 × 10⁹/L, anemia, platelets <100 × 10⁹/L, and ASXL1 mutation status. After a median follow-up of 2.5 years, survival ranged from not reached in the low-risk group to 14.4 months in the high-risk group. RISK-ADAPTED THERAPY The Food and Drug Administration has approved azacitidine and decitabine for the treatment of patients with CMML. An allogeneic stem cell transplant can potentially offer a curative option to a subset of CMML patients. It is hoped that with the discovery of several novel mutations, targeted therapies will become available in the near future.
Collapse
Affiliation(s)
- Sameer A. Parikh
- Division of Hematology, Department of Medicine; Mayo Clinic; Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
47
|
Abstract
Breast cancer is the most frequent and the most deadly cancer in women in Western countries. Different classifications of disease (anatomoclinical, pathological, prognostic, genetic) are used for guiding the management of patients. Unfortunately, they fail to reflect the whole clinical heterogeneity of the disease. Consequently, molecularly distinct diseases are grouped in similar clinical classes, likely explaining the different clinical outcome between patients in a given class, and the fact that selection of the most appropriate diagnostic or therapeutic strategy for each patient is not done accurately. Today, treatment is efficient in only 70.0–75.0% of cases overall. Our repertoire of efficient drugs is limited but is being expanded with the discovery of new molecular targets for new drugs, based on the identification of candidate oncogenes and tumor suppressor genes (TSG) functionally relevant in disease. Development of new drugs makes therapeutical decisions even more demanding of reliable classifiers and prognostic/predictive tests. Breast cancer is a complex, heterogeneous disease at the molecular level. The combinatorial molecular origin and the heterogeneity of malignant cells, and the variability of the host background, create distinct subgroups of tumors endowed with different phenotypic features such as response to therapy and clinical outcome. Cellular and molecular analyses can identify new classes biologically and clinically relevant, as well as provide new clinically relevant markers and targets. The various stages of mammary tumorigenesis are not clearly defined and the genetic and epigenetic events critical to the development and aggressiveness of breast cancer are not precisely known. Because the phenotype of tumors is dependent on many genes, a large-scale and integrated molecular characterization of the genetic and epigenetic alterations and gene expression deregulation should allow the identification of new molecular classes clinically relevant, as well as among the altered genes and/or pathways, the identification of more accurate molecular diagnostic, prognostic/predictive factors, and for some of them, after functional validation, the identification of new therapeutic targets.
Collapse
|
48
|
Koh CP, Wang CQ, Ng CEL, Ito Y, Araki M, Tergaonkar V, Huang G, Osato M. RUNX1 meets MLL: epigenetic regulation of hematopoiesis by two leukemia genes. Leukemia 2013; 27:1793-802. [PMID: 23817177 DOI: 10.1038/leu.2013.200] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 01/05/2023]
Abstract
A broad range of human leukemias carries RUNX1 and MLL genetic alterations. Despite such widespread involvements, the relationship between RUNX1 and MLL has never been appreciated. Recently, we showed that RUNX1 physically and functionally interacts with MLL, thereby regulating the epigenetic status of critical cis-regulatory elements for hematopoietic genes. This newly unveiled interaction between the two most prevalent leukemia genes has solved a long-standing conundrum: leukemia-associated RUNX1 N-terminal point mutants that exhibit no obvious functional abnormalities in classical assays for the assessment of transcriptional activities. These mutants turned out to be defective in MLL interaction and subsequent epigenetic modifications that can be examined by the histone-modification status of cis-regulatory elements in the target genes. RUNX1/MLL binding confirms the importance of RUNX1 function as an epigenetic regulator. Recent studies employing next-generation sequencing on human hematological malignancies identified a plethora of mutations in epigenetic regulator genes. These new findings would enhance our understanding on the mechanistic basis for leukemia development and may provide a novel direction for therapeutic applications. This review summarizes the current knowledge about the epigenetic regulation of normal and malignant hematopoiesis by RUNX1 and MLL.
Collapse
Affiliation(s)
- C P Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, Berthon C, Adès L, Fenaux P, Beyne-Rauzy O, Vey N, Braun T, Haferlach T, Dreyfus F, Cross NC, Preudhomme C, Bernard OA, Fontenay M, Vainchenker W, Schnittger S, Birnbaum D, Droin N, Solary E. Prognostic Score Including Gene Mutations in Chronic Myelomonocytic Leukemia. J Clin Oncol 2013; 31:2428-36. [DOI: 10.1200/jco.2012.47.3314] [Citation(s) in RCA: 406] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Several prognostic scoring systems have been proposed for chronic myelomonocytic leukemia (CMML), a disease in which some gene mutations—including ASXL1—have been associated with poor prognosis in univariable analyses. We developed and validated a prognostic score for overall survival (OS) based on mutational status and standard clinical variables. Patients and Methods We genotyped ASXL1 and up to 18 other genes including epigenetic (TET2, EZH2, IDH1, IDH2, DNMT3A), splicing (SF3B1, SRSF2, ZRSF2, U2AF1), transcription (RUNX1, NPM1, TP53), and signaling (NRAS, KRAS, CBL, JAK2, FLT3) regulators in 312 patients with CMML. Genotypes and clinical variables were included in a multivariable Cox model of OS validated by bootstrapping. A scoring system was developed using regression coefficients from this model. Results ASXL1 mutations (P < .0001) and, to a lesser extent, SRSF2 (P = .03), CBL (P = .003), and IDH2 (P = .03) mutations predicted inferior OS in univariable analysis. The retained independent prognostic factors included ASXL1 mutations, age older than 65 years, WBC count greater than 15 ×109/L, platelet count less than 100 ×109/L, and anemia (hemoglobin < 10 g/dL in female patients, < 11g/dL in male patients). The resulting five-parameter prognostic score delineated three groups of patients with median OS not reached, 38.5 months, and 14.4 months, respectively (P < .0001), and was validated in an independent cohort of 165 patients (P < .0001). Conclusion A new prognostic score including ASXL1 status, age, hemoglobin, WBC, and platelet counts defines three groups of CMML patients with distinct outcomes. Based on concordance analysis, this score appears more discriminative than those based solely on clinical parameters.
Collapse
Affiliation(s)
- Raphaël Itzykson
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Olivier Kosmider
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Aline Renneville
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Véronique Gelsi-Boyer
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Manja Meggendorfer
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Margot Morabito
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Céline Berthon
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Lionel Adès
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Pierre Fenaux
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Odile Beyne-Rauzy
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Norbert Vey
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Thorsten Braun
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Torsten Haferlach
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - François Dreyfus
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Nicholas C.P. Cross
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Claude Preudhomme
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Olivier A. Bernard
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Michaela Fontenay
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - William Vainchenker
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Susanne Schnittger
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Daniel Birnbaum
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Nathalie Droin
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| | - Eric Solary
- Raphaël Itzykson, Margot Morabito, Olivier A. Bernard, William Vainchenker, Nathalie Droin, Eric Solary, Institut Gustave Roussy, Villejuif; Raphaël Itzykson, Margot Morabito, William Vainchenker, Nathalie Droin, Eric Solary, Université Paris-Sud, Le Kremlin-Bicêtre, Orsay; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Assistance Publique–Hôpitaux de Paris, Hôpital Cochin; Olivier Kosmider, François Dreyfus, Michaela Fontenay, Université Paris Descartes; Olivier Kosmider, Michaela Fontenay,
| |
Collapse
|
50
|
Culver S, Ito D, Borst L, Bell JS, Modiano JF, Breen M. Molecular characterization of canine BCR-ABL-positive chronic myelomonocytic leukemia before and after chemotherapy. Vet Clin Pathol 2013; 42:314-22. [PMID: 23800034 DOI: 10.1111/vcp.12055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genetic aberrations linked to tumorigenesis have been identified in both canine and human hematopoietic malignancies. While the response of human patients to cancer treatments is often evaluated using cytogenetic techniques, this approach has not been used for dogs with comparable neoplasias. The aim of this study was to demonstrate the applicability of cytogenetic techniques to evaluate the cytogenetic response of canine leukemia to chemotherapy. Cytology and flow cytometric techniques were used to diagnose chronic myelomonocytic leukemia in a dog. High-resolution oligonucleotide array comparative genomic hybridization (oaCGH) and multicolor fluorescence in situ hybridization (FISH) were performed to identify and characterize DNA copy number aberrations (CNAs) and targeted structural chromosome aberrations in peripheral blood WBC at the time of diagnosis and following one week of chemotherapy. At the time of diagnosis, oaCGH indicated the presence of 22 distinct CNAs, of which trisomy of dog chromosome 7 (CFA 7) was the most evident. FISH analysis revealed that this CNA was present in 42% of leukemic cells; in addition, a breakpoint cluster region-Abelson murine leukemia viral oncogene homolog (BCR-ABL) translocation was evident in 17.3% of cells. After one week of treatment, the percentage of cells affected by trisomy of CFA7 and BCR-ABL translocation was reduced to 2% and 3.3%, respectively. Chromosome aberrations in canine leukemic cells may be monitored by molecular cytogenetic techniques to demonstrate cytogenetic remission following treatment. Further understanding of the genetic aberrations involved in canine leukemia may be crucial to improve treatment protocols.
Collapse
Affiliation(s)
- Sarah Culver
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | |
Collapse
|