1
|
Abrahamsson A, Boroojeni FR, Naeimipour S, Reustle N, Selegård R, Aili D, Dabrosin C. Increased matrix stiffness enhances pro-tumorigenic traits in a physiologically relevant breast tissue- monocyte 3D model. Acta Biomater 2024; 178:160-169. [PMID: 38382828 DOI: 10.1016/j.actbio.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
High mammographic density, associated with increased tissue stiffness, is a strong risk factor for breast cancer per se. In postmenopausal women there is no differences in the occurrence of ductal carcinoma in situ (DCIS) depending on breast density. Preliminary data suggest that dense breast tissue is associated with a pro-inflammatory microenvironment including infiltrating monocytes. However, the underlying mechanism(s) remains largely unknown. A major roadblock to understanding this risk factor is the lack of relevant in vitro models. A biologically relevant 3D model with tunable stiffness was developed by cross-linking hyaluronic acid. Breast cancer cells were cultured with and without freshly isolated human monocytes. In a unique clinical setting, extracellular proteins were sampled using microdialysis in situ from women with various breast densities. We show that tissue stiffness resembling high mammographic density increases the attachment of monocytes to the cancer cells, increase the expression of adhesion molecules and epithelia-mesenchymal-transition proteins in estrogen receptor (ER) positive breast cancer. Increased tissue stiffness results in increased secretion of similar pro-tumorigenic proteins as those found in human dense breast tissue including inflammatory cytokines, proteases, and growth factors. ER negative breast cancer cells were mostly unaffected suggesting that diverse cancer cell phenotypes may respond differently to tissue stiffness. We introduce a biological relevant model with tunable stiffness that resembles the densities found in normal breast tissue in women. The model will be key for further mechanistic studies. Additionally, our data revealed several pro-tumorigenic pathways that may be exploited for prevention and therapy against breast cancer. STATEMENT OF SIGNIFICANCE: Women with mammographic high-density breasts have a 4-6-fold higher risk of breast cancer than low-density breasts. Biological mechanisms behind this increase are not fully understood and no preventive therapeutics are available. One major reason being a lack of suitable experimental models. Having such models available would greatly enhance the discovery of relevant targets for breast cancer prevention. We present a biologically relevant 3D-model for studies of human dense breasts, providing a platform for investigating both biophysical and biochemical properties that may affect cancer progression. This model will have a major scientific impact on studies for identification of novel targets for breast cancer prevention.
Collapse
Affiliation(s)
- Annelie Abrahamsson
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Fatemeh Rasti Boroojeni
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Sajjad Naeimipour
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Nina Reustle
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Lundberg P, Abrahamsson A, Kihlberg J, Tellman J, Tomkeviciene I, Karlsson A, Kristoffersen Wiberg M, Warntjes M, Dabrosin C. Low-dose acetylsalicylic acid reduces local inflammation and tissue perfusion in dense breast tissue in postmenopausal women. Breast Cancer Res 2024; 26:22. [PMID: 38317255 PMCID: PMC10845760 DOI: 10.1186/s13058-024-01780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
PURPOSE One major risk factor for breast cancer is high mammographic density. It has been estimated that dense breast tissue contributes to ~ 30% of all breast cancer. Prevention targeting dense breast tissue has the potential to improve breast cancer mortality and morbidity. Anti-estrogens, which may be associated with severe side-effects, can be used for prevention of breast cancer in women with high risk of the disease per se. However, no preventive therapy targeting dense breasts is currently available. Inflammation is a hallmark of cancer. Although the biological mechanisms involved in the increased risk of cancer in dense breasts is not yet fully understood, high mammographic density has been associated with increased inflammation. We investigated whether low-dose acetylsalicylic acid (ASA) affects local breast tissue inflammation and/or structural and dynamic changes in dense breasts. METHODS Postmenopausal women with mammographic dense breasts on their regular mammography screen were identified. A total of 53 women were randomized to receive ASA 160 mg/day or no treatment for 6 months. Magnetic resonance imaging (MRI) was performed before and after 6 months for a sophisticated and continuous measure breast density by calculating lean tissue fraction (LTF). Additionally, dynamic quantifications including tissue perfusion were performed. Microdialysis for sampling of proteins in vivo from breasts and abdominal subcutaneous fat, as a measure of systemic effects, before and after 6 months were performed. A panel of 92 inflammatory proteins were quantified in the microdialysates using proximity extension assay. RESULTS After correction for false discovery rate, 20 of the 92 inflammatory proteins were significantly decreased in breast tissue after ASA treatment, whereas no systemic effects were detected. In the no-treatment group, protein levels were unaffected. Breast density, measured by LTF on MRI, were unaffected in both groups. ASA significantly decreased the perfusion rate. The perfusion rate correlated positively with local breast tissue concentration of VEGF. CONCLUSIONS ASA may shape the local breast tissue microenvironment into an anti-tumorigenic state. Trials investigating the effects of low-dose ASA and risk of primary breast cancer among postmenopausal women with maintained high mammographic density are warranted. Trial registration EudraCT: 2017-000317-22.
Collapse
Affiliation(s)
- Peter Lundberg
- Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Annelie Abrahamsson
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, 581 85, Linköping, Sweden
| | - Johan Kihlberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology and Department Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jens Tellman
- Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Ieva Tomkeviciene
- Department of Radiology and Department Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Anette Karlsson
- Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria Kristoffersen Wiberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology and Department Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Marcel Warntjes
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, 581 85, Linköping, Sweden.
| |
Collapse
|
3
|
Ekstrand J, Abrahamsson A, Lundberg P, Dabrosin C. Breast density and estradiol are associated with distinct different expression patterns of metabolic proteins in normal human breast tissue in vivo. Front Oncol 2023; 13:1128318. [PMID: 37064098 PMCID: PMC10090464 DOI: 10.3389/fonc.2023.1128318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundBreast density and exposure to sex steroids are major risk factors for breast cancer. The local microenvironment plays an essential role in progression of breast cancer. Metabolic adaption is a major hallmark of cancer. Whether proteins from the extracellular space regulating metabolism are affected in breast cancer, dense breasts or by estrogen exposure are not yet fully elucidated.MethodsWomen with breast cancer, postmenopausal women with normal breast tissue with varying breast density or premenopausal women with breasts exposed to high levels of estradiol were included in the study. Microdialysis was used to collect proteins from the extracellular space in vivo in 73 women; 12 with breast cancer, 42 healthy postmenopausal women with different breast densities, and 19 healthy premenopausal women. Breast density was determined as lean tissue fraction (LTF) using magnetic resonance imaging. Data were evaluated in a murine breast cancer model. We quantified a panel of 92 key proteins regulating metabolism using proximity extension assay.ResultsWe report that 29 proteins were upregulated in human breast cancer. In dense breasts 37 proteins were upregulated and 17 of these were similarly regulated as in breast cancer. 32 proteins correlated with LTF. In premenopausal breasts 19 proteins were up-regulated and 9 down-regulated. Of these, 27 correlated to estradiol, a result that was confirmed for most proteins in experimental breast cancer. Only two proteins, pro-cathepsin H and galanin peptide, were similarly regulated in breast cancer, dense- and estrogen exposed breasts.ConclusionsMetabolic proteins may be targetable for breast cancer prevention. Depending on risk factor, this may, however, require different approaches as breast density and estradiol induce distinct different expression patterns in the breast. Additionally, metabolic proteins from the extracellular space may indeed be further explored as therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Jimmy Ekstrand
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Annelie Abrahamsson
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Charlotta Dabrosin,
| |
Collapse
|
4
|
Breast density is strongly associated with multiparametric magnetic resonance imaging biomarkers and pro-tumorigenic proteins in situ. Br J Cancer 2022; 127:2025-2033. [PMID: 36138072 PMCID: PMC9681775 DOI: 10.1038/s41416-022-01976-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND High mammographic density is an independent risk factor for breast cancer by poorly understood molecular mechanisms. Women with dense breasts often undergo conventional magnetic resonance imaging (MRI) despite its limited specificity, which may be increased by diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) and contrast. How these modalities are affected by breast density per se and their association with the local microenvironment are undetermined. METHODS Healthy postmenopausal women attending mammography screen with extremely dense or entirely fatty breasts underwent multiparametric MRI for analyses of lean tissue fraction (LTF), ADC and perfusion dynamics. Microdialysis was used for extracellular proteomics in situ. RESULTS Significantly increased LTF and ADC and delayed perfusion were detected in dense breasts. In total, 270 proteins were quantified, whereof 124 related to inflammation, angiogenesis, and cellular growth were significantly upregulated in dense breasts. Most of these correlated significantly with LTF, ADC and the perfusion data. CONCLUSIONS ADC and perfusion characteristics depend on breast density, which should be considered during the implementation of thresholds for malignant lesions. Dense and nondense breasts are two essentially different biological entities, with a pro-tumorigenic microenvironment in dense breasts. Our data reveal several novel pathways that may be explored for breast cancer prevention strategies.
Collapse
|
5
|
Ekstrand J, Zemmler M, Abrahamsson A, Lundberg P, Forsgren M, Dabrosin C. Breast Density and Estradiol Are Major Determinants for Soluble TNF-TNF-R Proteins in vivo in Human Breast Tissue. Front Immunol 2022; 13:850240. [PMID: 35432372 PMCID: PMC9005790 DOI: 10.3389/fimmu.2022.850240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 02/03/2023] Open
Abstract
High mammographic density and exposure to sex steroids are independent risk factors for breast cancer by yet unknown mechanisms. Inflammation is one hallmark of cancer and the tumor necrosis factor family of proteins (TNFSFs) and receptors (TNFRSFs) are key determinants of tissue inflammation. The relationship between TNFSFs/TNFRSFs and breast tissue density or local breast estradiol levels is unknown. We investigated whether TNFSFs and soluble TNFRSFs (sTNFRSFs) are dysregulated in vivo in human breast cancer and dense breast tissue of postmenopausal women. We explored TNFSF/TNFRSF correlations with breast density and estradiol, both locally in the breast and in abdominal subcutaneous (s.c.) fat as a measure of systemic effects. Microdialysis was used for local sampling of in vivo proteins and estradiol in a total of 73 women; 12 with breast cancer, 42 healthy postmenopausal women with different breast densities, and 19 healthy premenopausal women. Breast density was determined as lean tissue fraction (LTF) using magnetic resonance imaging. Microdialysis was also performed in estrogen receptor (ER) positive breast cancer in mice treated with the pure anti-estrogen fulvestrant and tumor tissue was subjected to immunohistochemistry. 23 members of the TNFSF/sTNFRSF families were quantified using proximity extension assay.Our data revealed upregulation of TNFSF10, 13 and 13B, TNFRSF6, 6B, 9, 11A, 11B, 13B, 14, and 19, and TNFR-1 and -2 in ER+ breast cancer in women. In dense breast tissue TNFSF10, 13, and 14, TNFRSF3, 6, 9, 10B, 13B, 14, 19, and TNFR-1 and -2 were upregulated. Certain TNFSFs/TNFRSFs were increased in premenopausal breasts relative to postmenopausal breasts. Furthermore, estradiol correlated with most of the TNFSF/sTNFRSF members, though LTF only correlated with some of the proteins. Several of these associations were breast tissue-specific, as very few correlated with estradiol in abdominal s.c. fat. Estrogen dependent regulations of TNFSF2 (TNF-α) and TNF-R2 were corroborated in ER+ breast cancer in mice. Taken together, our data indicate TNFSFs/sTNFRSFs may represent potential targetable pathways for treatment of breast cancer patients and in prevention of breast cancer development in women with dense breasts.
Collapse
Affiliation(s)
- Jimmy Ekstrand
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maja Zemmler
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Annelie Abrahamsson
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Radiology, Linköping University, Linköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Mikael Forsgren
- Department of Radiology, Linköping University, Linköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Mijic S, Dabrosin C. Platelet Activation In Situ in Breasts at High Risk of Cancer: Relationship with Mammographic Density and Estradiol. J Clin Endocrinol Metab 2021; 106:485-500. [PMID: 33180937 DOI: 10.1210/clinem/dgaa820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT High mammographic density in postmenopausal women is an independent risk factor for breast cancer by undetermined mechanisms. No preventive therapy for this risk group is available. Activated platelets release growth factors that modulate the microenvironment into a protumorigenic state. Estrogens may affect the risk of breast cancer and platelet function. Whether platelets are activated in situ in breast cancer or in normal breast tissue at high risk of breast cancer and the association to estradiol remains elusive. OBJECTIVE To investigate whether platelets are activated in situ in breast cancers and in dense breast tissue of postmenopausal women and explore correlations between estradiol, released platelet factors, and inflammatory proteins. SETTING AND DESIGN Sampling of in vivo proteins was performed using microdialysis in a total of 71 women: 10 with breast cancer, 42 healthy postmenopausal women with different breast densities, and 19 premenopausal women. RESULTS Our data demonstrate increased levels of coagulation factors in dense breast tissue similar to that found in breast cancers, indicating excessive platelet activation. Premenopausal breasts exhibited similar levels of coagulation factors as postmenopausal dense breasts. Out of 13 coagulations factors that were upregulated in dense breasts, 5 exhibited significant correlations with estradiol, both locally in the breast and systemically. In breast tissue, positive correlations between coagulation factors and key inflammatory proteins and matrix metalloproteinases were detected. CONCLUSIONS Breast density, not estradiol, is the major determinant of local platelet activation. Inactivation of platelets may be a therapeutic strategy for cancer prevention in postmenopausal women with dense breasts.
Collapse
Affiliation(s)
- Sofija Mijic
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Dabrosin N, Dabrosin C. Postmenopausal Dense Breasts Maintain Premenopausal Levels of GH and Insulin-like Growth Factor Binding Proteins in Vivo. J Clin Endocrinol Metab 2020; 105:5695904. [PMID: 31900484 DOI: 10.1210/clinem/dgz323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022]
Abstract
CONTEXT Dense breast tissue is associated with 4 to 6 times higher risk of breast cancer by poorly understood mechanisms. No preventive therapy for this high-risk group is available. After menopause, breast density decreases due to involution of the mammary gland. In dense breast tissue, this process is haltered by undetermined biological actions. Growth hormone (GH) and insulin-like binding proteins (IGFBPs) play major roles in normal mammary gland development, but their roles in maintaining breast density are unknown. OBJECTIVE To reveal in vivo levels of GH, IGFBPs, and other pro-tumorigenic proteins in the extracellular microenvironment in breast cancer, in normal breast tissue with various breast density in postmenopausal women, and premenopausal breasts. We also sought to determine possible correlations between these determinants. SETTING AND DESIGN Microdialysis was used to collect extracellular in vivo proteins intratumorally from breast cancers before surgery and from normal human breast tissue from premenopausal women and postmenopausal women with mammographic dense or nondense breasts. RESULTS Estrogen receptor positive breast cancers exhibited increased extracellular GH (P < .01). Dense breasts of postmenopausal women exhibited similar levels of GH as premenopausal breasts and significantly higher levels than in nondense breasts (P < .001). Similar results were found for IGFBP-1, -2, -3, and -7 (P < .01) and for IGFBP-6 (P <.05). Strong positive correlations were revealed between GH and IGFBPs and pro-tumorigenic matrix metalloproteinases, urokinase-type plasminogen activator, Interleukin 6, Interleukin 8, and vascular endothelial growth factor in normal breast tissue. CONCLUSIONS GH pathways may be targetable for cancer prevention therapeutics in postmenopausal women with dense breast tissue.
Collapse
Affiliation(s)
- Nina Dabrosin
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Lindahl G, Rzepecka A, Dabrosin C. Increased Extracellular Osteopontin Levels in Normal Human Breast Tissue at High Risk of Developing Cancer and Its Association With Inflammatory Biomarkers in situ. Front Oncol 2019; 9:746. [PMID: 31475105 PMCID: PMC6707004 DOI: 10.3389/fonc.2019.00746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/25/2019] [Indexed: 01/13/2023] Open
Abstract
Mammographic breast density is a strong independent risk factor for breast cancer (BC), but the molecular mechanisms behind this risk is yet undetermined and prevention strategies for these women are lacking. The anti-estrogen tamoxifen may reduce the risk of BC but this treatment is associated with severe side effects. Thus, other means for BC prevention, such as diet interventions, need to be developed. Osteopontin (OPN) is a major mediator of inflammation which is key in carcinogenesis. OPN may be cleaved by proteases in the tissue and cleaved OPN may in turn induce an inflammatory cascade in the extracellular microenvironment. We aimed to determine if extracellular OPN was altered in BC and in normal breast tissue with different densities and if tamoxifen or a diet of flaxseed could modify OPN levels. The study comprised 103 women; 13 diagnosed with BC, 42 healthy post-menopausal women with different breast densities at their mammography screen, and 34 post-menopausal women who added 25 g of ground flaxseed/day or were treated with tamoxifen 20 mg/day and were investigated before and after 6 weeks of exposure. Additionally, 10 premenopausal women who added flaxseed for one menstrual cycle and four who were investigated in two unexposed consecutive luteal phases of the menstrual cycle. Microdialysis was used to sample extracellular proteins in vivo in breast tissue and proteins were quantified using a multiplex proximity extension assay. We found that, similar to BC, extracellular in vivo OPN levels were significantly increased in dense breast tissue. Additionally, significant correlations were found between OPN and chemokine (C-X-C motif) ligand (CXCL)-1, −8, −9, −10, and −11, interleukin-6, vascular endothelial growth factor, matrix metalloproteinase (MMP)-1, −2, −3, 7, and −12 and urokinase-type plasminogen activator whereas no correlations were found with MMP-9, chemokine (C-C motif) ligand (CCL)-2, and −5. Estradiol did not affect OPN levels in breast tissue. None of the interventions altered OPN levels. The pro-tumorigenic protein OPN may indeed be a molecular target for BC prevention in women with increased breast density but other means than tamoxifen or flaxseed i.e., more potent anti-inflammatory approaches, need to be evaluated for this purpose.
Collapse
Affiliation(s)
- Gabriel Lindahl
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna Rzepecka
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Radiology, Linköping University, Linköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Lindahl G, Abrahamsson A, Dabrosin C. Dietary flaxseed and tamoxifen affect the inflammatory microenvironment in vivo in normal human breast tissue of postmenopausal women. Eur J Clin Nutr 2019; 73:1250-1259. [DOI: 10.1038/s41430-019-0396-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 12/27/2022]
|
10
|
Vazquez Rodriguez G, Abrahamsson A, Jensen LDE, Dabrosin C. Adipocytes Promote Early Steps of Breast Cancer Cell Dissemination via Interleukin-8. Front Immunol 2018; 9:1767. [PMID: 30105032 PMCID: PMC6077262 DOI: 10.3389/fimmu.2018.01767] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Fat is a major tissue component in human breast cancer (BC). Whether breast adipocytes (BAd) affect early stages of BC metastasis is yet unknown. BC progression is dependent on angiogenesis and inflammation, and interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF) are key regulators of these events. Here, we show that BAd increased the dissemination of estrogen receptor positive BC cells (BCC) in vivo in the zebrafish model of metastasis, while dissemination of the more aggressive and metastatic BCC such as estrogen receptor negative was unaffected. While anti-VEGF and anti-IL-8 exhibited equal inhibition of angiogenesis at the primary tumor site, anti-IL-8 reduced BCC dissemination whereas anti-VEGF had minor effects on this early metastatic event. Mechanistically, overexpression of cell-adhesion molecules in BCC and neutrophils via IL-8 increased the dissemination of BCC. Importantly, the extracellular in vivo levels of IL-8 were 40-fold higher than those of VEGF in human BC. Our results suggest that IL-8 is a clinical relevant and promising therapeutic target for human BC.
Collapse
Affiliation(s)
- Gabriela Vazquez Rodriguez
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Annelie Abrahamsson
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lasse Dahl Ejby Jensen
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Abrahamsson A, Rzepecka A, Dabrosin C. Equal Pro-inflammatory Profiles of CCLs, CXCLs, and Matrix Metalloproteinases in the Extracellular Microenvironment In Vivo in Human Dense Breast Tissue and Breast Cancer. Front Immunol 2018; 8:1994. [PMID: 29387062 PMCID: PMC5776019 DOI: 10.3389/fimmu.2017.01994] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022] Open
Abstract
The inflammatory microenvironment affects breast cancer progression. Proteins that govern the inflammatory response are secreted into the extracellular space, but this compartment still needs to be characterized in human breast tissues in vivo. Dense breast tissue is a major risk factor for breast cancer by yet unknown mechanisms and no non-toxic prevention for these patients exists. Here, we used the minimal invasive technique of microdialysis for sampling of extracellular proteins in live tissues in situ in breast cancers of women before surgery and in healthy women having dense or non-dense breast tissue on mammography. Proteins were profiled using a proximity extension assay. Out of the 32 proteins assessed, 26 exhibited similar profiles in breast cancers and dense breast tissues; CCL-4, -7, -8, -11, -15, -16, -22, -23, and -25, CXCL-5, -8, -9, -16 as well as sIL-6R, IL-18, vascular endothelial growth factor, TGF-α, fibroblast growth factor 19, matrix metalloproteinase (MMP)-1, -2, -3, and urokinase-type plasminogen activator were all increased, whereas CCL-3, CX3CL1, hepatocyte growth factor, and MMP-9 were unaltered in the two tissues. CCL-19 and -24, CXCL-1 and -10, and IL-6 were increased in dense breast tissue only, whereas IL-18BP was increased in breast cancer only. Our results provide novel insights in the inflammatory microenvironment in human breast cancer in situ and define potential novel therapeutic targets. Additionally, we show previously unrecognized similarities of the pro-inflammatory microenvironment in dense breast tissue and breast cancer in vivo suggesting that anti-inflammatory breast cancer prevention trials for women with dense breast tissue may be feasible.
Collapse
Affiliation(s)
- Annelie Abrahamsson
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna Rzepecka
- Department of Radiology, Linköping University, Linköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Abrahamsson A, Capodanno A, Rzepecka A, Dabrosin C. Downregulation of tumor suppressive microRNAs in vivo in dense breast tissue of postmenopausal women. Oncotarget 2017; 8:92134-92142. [PMID: 29190903 PMCID: PMC5696169 DOI: 10.18632/oncotarget.20906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/19/2017] [Indexed: 12/19/2022] Open
Abstract
Women with dense breast tissue on mammography are at higher risk of developing breast cancer but the underlying mechanisms are not well understood. De-regulation of microRNAs (miRNAs) has been associated with the onset of breast cancer. miRNAs in the extracellular space participate in the regulation of the local tissue microenvironment. Here, we recruited 39 healthy postmenopausal women attending their mammography-screen that were assessed having extreme dense or entirely fatty breasts (nondense). Microdialysis was performed in breast tissue and a reference catheter was inserted in abdominal subcutaneous fat for local sampling of extracellular compounds. Three miRNAs, associated with tumor suppression, miR-193b, miR-365a, and miR-452 were significantly down-regulated in dense breast tissue compared with nondense breast tissue. In addition, miR-452 exhibited significant negative correlations with several pro-inflammatory cytokines in vivo, which was confirmed in vitro by overexpression of miR-452 in breast cancer cells. No differences were found of miR-21, -29a, -30c, 146a, -148a, -203, or -451 in breast tissue and no miRs were different in plasma. Extracellular miRNAs may be among factors that should be included in studies of novel prevention strategies for breast cancer.
Collapse
Affiliation(s)
- Annelie Abrahamsson
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alessandra Capodanno
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna Rzepecka
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Abrahamsson A, Rzepecka A, Dabrosin C. Increased nutrient availability in dense breast tissue of postmenopausal women in vivo. Sci Rep 2017; 7:42733. [PMID: 28198437 PMCID: PMC5309876 DOI: 10.1038/srep42733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. Nutrient availability in the tissue microenvironment determines cellular events and may play a role in breast carcinogenesis. High mammographic density is an independent risk factor for breast cancer. Whether nutrient availability differs in normal breast tissues with various densities is unknown. Therefore we investigated whether breast tissues with various densities exhibited differences in nutrient availability. Healthy postmenopausal women from the regular mammographic screening program who had either predominantly fatty breast tissue (nondense), n = 18, or extremely dense breast tissue (dense), n = 20, were included. Microdialysis was performed for the in vivo sampling of amino acids (AAs), analyzed by ultra-high performance liquid chromatography with tandem mass spectroscopy, glucose, lactate and vascular endothelial growth factor (VEGF) in breast tissues and, as a control, in abdominal subcutaneous (s.c.) fat. We found that dense breast tissue exhibited significantly increased levels of 20 proteinogenic AAs and that 18 of these AAs correlated significantly with VEGF. No differences were found in the s.c. fat, except for one AA, suggesting tissue-specific alterations in the breast. Glucose and lactate were unaltered. Our findings provide novel insights into the biology of dense breast tissue that may be explored for breast cancer prevention strategies.
Collapse
Affiliation(s)
- Annelie Abrahamsson
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna Rzepecka
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Vazquez Rodriguez G, Abrahamsson A, Jensen LDE, Dabrosin C. Estradiol Promotes Breast Cancer Cell Migration via Recruitment and Activation of Neutrophils. Cancer Immunol Res 2017; 5:234-247. [DOI: 10.1158/2326-6066.cir-16-0150] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 11/16/2022]
|
15
|
Aka JA, Calvo EL, Lin SX. Estradiol-independent modulation of breast cancer transcript profile by 17beta-hydroxysteroid dehydrogenase type 1. Mol Cell Endocrinol 2017; 439:175-186. [PMID: 27544780 DOI: 10.1016/j.mce.2016.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/29/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a steroidal enzyme which, in breast cancer cells, mainly synthesizes 17-beta-estradiol (E2), an estrogenic hormone that stimulates breast cancer cell growth. We previously showed that the enzyme increased breast cancer cell proliferation via a dual effect on E2 and 5α-dihydrotestosterone (DHT) levels and impacted gene expression and protein profile of breast cancer cells cultured in E2-contained medium. Here, we used RNA interference technique combined with microarray analyses to investigate the effect of 17β-HSD1 expression on breast cancer cell transcript profile in steroid-deprived condition. Our data revealed that knockdown of 17β-HSD1 gene, HSD17B1, modulates the transcript profile of the hormone-dependent breast cancer cell line T47D, with 105 genes regulated 1.5 fold or higher (p < 0.05) in estradiol-independent manner. Using Ingenuity Pathway Analysis (IPA), we additionally assessed functional enrichment analyses, including biological functions and canonical pathways, and found that, in concordance with the role of 17β-HSD1 in cancer cell growth, most regulated genes are cancer-related genes. Genes that primarily involved in the cell cycle progression, such as the cyclin A2 gene, CCNA2, are generally down-regulated whereas genes involved in apoptosis and cell death, including the pro-apoptotic gene XAF1, IFIH1 and FGF12, are on the contrary up-regulated by 17β-HSD1 knockdown, and 21% of the modulated genes belong to this latter functional category. This indicates that 17β-HSD1 may be involved in oncogenesis by favoring anti-apoptosis pathway in breast cancer cells and correborates with its previously shown role in increasing breast cancer cell proliferation. The gene regulation occurring in steroid-deprived conditions showed that 17β-HSD1 can modulate endogenous gene expression in steroid-independent manners. Besides, we tested the ability of estrogen to induce or repress endogenous genes of T47D by microarray analysis. Expression of a total of 130 genes were found to increase or decrease 1.5-fold or higher (p < 0.05) in response to E2 treatment (1 nM for 48 h), revealing a list of potential new estrogen-responsive genes and providing useful information for further studies of estrogen-dependent breast cancer mechanisms. In conclusion, in breast cancer cells, in addition to its implication in the E2-dependent gene transcription, the present study demonstrates that 17β-HSD1 also modulates gene expression via mechanisms independent of steroid actions. Those mechanisms that may include the ligand-independent gene transcription of estrogen receptor alpha (ERα), whose expression is positively correlated with that of the enzyme, and that may implicate 17β-HSD1 in anti-apoptosis pathways, have been discussed.
Collapse
Affiliation(s)
- Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Ezequiel-Luis Calvo
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada.
| |
Collapse
|
16
|
Ławicki S, Zajkowska M, Głażewska EK, Będkowska GE, Szmitkowski M. Plasma levels and diagnostic utility of VEGF, MMP-2 and TIMP-2 in the diagnostics of breast cancer patients. Biomarkers 2016; 22:157-164. [PMID: 27775427 DOI: 10.1080/1354750x.2016.1252955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE We investigated plasma levels and diagnostic utility of vascular endothelial growth factor VEGF, matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinase-2 (TIMP-2) in comparison to cancer antigen 15-3 (CA 15-3). METHODS Plasma levels of tested parameters were determined using enzyme-linked immunosorbent assay (ELISA) while CA 15-3 with chemiluminescent microparticle immunoassay (CMIA). RESULTS The plasma levels of VEGF, TIMP-2 showed significantly higher than CA 15-3 values of the diagnostic sensitivity, the predictive values of positive and negative test results (PPV, NPV) and the area under the receiver-operating characteristics (ROC) curve (AUC) in early stages of breast cancer (BC). The combined use of the tested parameters with CA 15-3 resulted in the increase in sensitivity, NPV and AUC, especially in the combination with VEGF (83%; 72%; 0.888) and TIMP-2 (83%; 72%; 0.894). The highest values were obtained for combination of all three parameters (93%; 85%; 0.923). CONCLUSIONS These findings suggest the usefulness of the tested parameters in the diagnosis of BC, especially VEGF and TIMP-2 with CA 15-3 in early stages of BC, which could be a new diagnostic panel.
Collapse
Affiliation(s)
- Sławomir Ławicki
- a Department of Biochemical Diagnostics , Medical University , Bialystok , Poland
| | - Monika Zajkowska
- a Department of Biochemical Diagnostics , Medical University , Bialystok , Poland
| | | | | | - Maciej Szmitkowski
- a Department of Biochemical Diagnostics , Medical University , Bialystok , Poland
| |
Collapse
|
17
|
Microdialysis of Large Molecules. J Pharm Sci 2016; 105:3233-3242. [DOI: 10.1016/j.xphs.2016.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
|
18
|
Abrahamsson A, Rzepecka A, Romu T, Borga M, Leinhard OD, Lundberg P, Kihlberg J, Dabrosin C. Dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment in vivo. Oncoimmunology 2016; 5:e1229723. [PMID: 27853653 PMCID: PMC5087296 DOI: 10.1080/2162402x.2016.1229723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/26/2022] Open
Abstract
Inflammation is one of the hallmarks of carcinogenesis. High mammographic density has been associated with increased risk of breast cancer but the mechanisms behind are poorly understood. We evaluated whether breasts with different mammographic densities exhibited differences in the inflammatory microenvironment. Postmenopausal women attending the mammography-screening program were assessed having extreme dense, n = 20, or entirely fatty breasts (nondense), n = 19, on their regular mammograms. Thereafter, the women were invited for magnetic resonance imaging (MRI), microdialysis for the collection of extracellular molecules in situ and a core tissue biopsy for research purposes. On the MRI, lean tissue fraction (LTF) was calculated for a continuous measurement of breast density. LTF confirmed the selection from the mammograms and gave a continuous measurement of breast density. Microdialysis revealed significantly increased extracellular in vivo levels of IL-6, IL-8, vascular endothelial growth factor, and CCL5 in dense breast tissue as compared with nondense breasts. Moreover, the ratio IL-1Ra/IL-1β was decreased in dense breasts. No differences were found in levels of IL-1β, IL-1Ra, CCL2, leptin, adiponectin, or leptin:adiponectin ratio between the two breast tissue types. Significant positive correlations between LTF and the pro-inflammatory cytokines as well as between the cytokines were detected. Stainings of the core biopsies exhibited increased levels of immune cells in dense breast tissue. Our data show that dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment and, if confirmed in a larger cohort, suggests novel targets for prevention therapies for women with dense breast tissue.
Collapse
Affiliation(s)
- Annelie Abrahamsson
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna Rzepecka
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Thobias Romu
- Department of Biomedical Engineering and Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Magnus Borga
- Department of Biomedical Engineering and Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Department of Medical and Health Sciences, and Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Medical and Health Sciences, and Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Johan Kihlberg
- Department of Radiology and Department of Medical and Health Sciences and Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Abrahamsson A, Dabrosin C. Tissue specific expression of extracellular microRNA in human breast cancers and normal human breast tissue in vivo. Oncotarget 2016; 6:22959-69. [PMID: 26008976 PMCID: PMC4673212 DOI: 10.18632/oncotarget.4038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/20/2015] [Indexed: 01/04/2023] Open
Abstract
Extracellular circulating microRNAs (miRNAs) have been suggested to be biomarkers for disease monitoring but data are inconsistent, one reason being that blood miRNA is of heterogeneous origin. Here, we sampled extracellular microRNAs locally in situ using microdialysis. Three different cohorts of women were included; postmenopausal women with ongoing breast cancer investigated within the cancer and in normal adjacent breast tissue, postmenopausal women investigated in their normal healthy breast and subcutaneous fat before and after six weeks of tamoxifen therapy, premenopausal women during the menstrual cycle. Samples were initially screened using TaqMan array cards with subsequently absolute quantification. 124 miRNA were expressed in microdialysates. After absolute quantifications extracellular miRNA-21 was found to be significantly increased in breast cancer. In addition, the levels were significantly higher in pre-menopausal breast tissue compared with postmenopausal. In breast tissue of pre-menopausal women miRNA-21 exhibited a cyclic variation during the menstrual cycle and in postmenopausal women six weeks of tamoxifen treatment decreased miRNA-21 suggesting that this miRNA may be important for breast carcinogenesis. None of these changes were found in plasma or microdialysates from subcutaneous fat. Our data revealed tissue specific changes of extracellular circulating miRNAs that would be otherwise unraveled using blood samples.
Collapse
Affiliation(s)
- Annelie Abrahamsson
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Sánchez Ramírez J, Morera Díaz Y, Musacchio Lasa A, Bequet-Romero M, Muñoz Pozo Y, Pérez Sánchez L, Hernández-Bernal F, Mendoza Fuentes O, Selman-Housein KH, Gavilondo Cowley JV, Ayala Avila M. Indirect and competitive enzyme-linked immunosorbent assays for monitoring the humoral response against human VEGF. J Immunoassay Immunochem 2016; 37:636-58. [PMID: 27143151 DOI: 10.1080/15321819.2016.1184164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CIGB-247, a VEGF-based vaccine, was studied in a clinical trial. This advance demands the refinement of the methodologies for assessment of vaccine immune responses. This study aimed to improve the performance of ELISAs for detecting IgG antibodies against human VEGF and the blocking activity of the serum to inhibit the VEGF/VEGFR2 interaction. The best experimental conditions were established through the evaluation of several blocking buffers, immobilization surfaces, and plate suppliers using human sera as test samples. As a result, two controlled ELISAs were used in testing of elicited immune response against VEGF in patients immunized with CIGB-247.
Collapse
Affiliation(s)
- Javier Sánchez Ramírez
- a Department of Pharmaceuticals , Center for Genetic Engineering and Biotechnology (CIGB) , Playa Cubanacán, Havana , Cuba
| | - Yanelys Morera Díaz
- a Department of Pharmaceuticals , Center for Genetic Engineering and Biotechnology (CIGB) , Playa Cubanacán, Havana , Cuba
| | - Alexis Musacchio Lasa
- b Department of Bioinformatics , Center for Genetic Engineering and Biotechnology (CIGB) , Playa Cubanacán, Havana , Cuba
| | - Mónica Bequet-Romero
- a Department of Pharmaceuticals , Center for Genetic Engineering and Biotechnology (CIGB) , Playa Cubanacán, Havana , Cuba
| | - Yasmiana Muñoz Pozo
- a Department of Pharmaceuticals , Center for Genetic Engineering and Biotechnology (CIGB) , Playa Cubanacán, Havana , Cuba
| | - Lincidio Pérez Sánchez
- a Department of Pharmaceuticals , Center for Genetic Engineering and Biotechnology (CIGB) , Playa Cubanacán, Havana , Cuba
| | - Francisco Hernández-Bernal
- c Department of Clinical Research , Center for Genetic Engineering and Biotechnology (CIGB) , Playa Cubanacán, Havana , Cuba
| | - Osmany Mendoza Fuentes
- d Animal Facility , Center for Genetic Engineering and Biotechnology (CIGB) , Playa Cubanacán, Havana , Cuba
| | | | - Jorge Víctor Gavilondo Cowley
- a Department of Pharmaceuticals , Center for Genetic Engineering and Biotechnology (CIGB) , Playa Cubanacán, Havana , Cuba
| | - Marta Ayala Avila
- a Department of Pharmaceuticals , Center for Genetic Engineering and Biotechnology (CIGB) , Playa Cubanacán, Havana , Cuba
| |
Collapse
|
21
|
Ławicki S, Zajkowska M, Głażewska EK, Będkowska GE, Szmitkowski M. Plasma levels and diagnostic utility of VEGF, MMP-9, and TIMP-1 in the diagnosis of patients with breast cancer. Onco Targets Ther 2016; 9:911-9. [PMID: 26966379 PMCID: PMC4771393 DOI: 10.2147/ott.s99959] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vascular endothelial growth factor (VEGF), matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 may play a role in the pathogenesis of cancer disease. We investigated their levels and utility in comparison to cancer antigen (CA) 15-3 in patients with breast cancer (BC) and in relation to the control groups. The study included 100 women with BC, 50 patients with benign breast tumor, and 50 healthy women. The plasma levels of the tested parameters were determined using enzyme-linked immunosorbent assay, while CA 15-3 with chemiluminescent microparticle immunoassay. The results demonstrated significant differences in the concentration of the tested parameters and CA 15-3 between groups of patients with BC and healthy patients or patients with benign breast tumor. The plasma levels of VEGF and tissue inhibitor of metalloproteinase-1 were significantly higher in advanced tumor stages. The tested parameters were comparable to CA 15-3 values of the diagnostic sensitivity, specificity, the predictive values of positive and negative test results, and the area under the receiver-operating characteristic curve. The combined use of the tested parameters with CA 15-3 resulted in the increase in sensitivity, negative predictive value, and area under the receiver-operating characteristic curve, especially in the combination of VEGF with tumor marker (84%, 73%, 0.888, respectively). These findings suggest the usefulness of the tested parameters in the diagnosis of BC. VEGF, especially in combination with CA 15-3, showed the highest usefulness in the diagnosis of early BC.
Collapse
Affiliation(s)
- Sławomir Ławicki
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Monika Zajkowska
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | | | - Grażyna Ewa Będkowska
- Department of Hematological Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Maciej Szmitkowski
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
22
|
Human Adipose-Derived Mesenchymal Stromal Cells May Promote Breast Cancer Progression and Metastatic Spread. Plast Reconstr Surg 2015; 136:76-84. [PMID: 26111315 DOI: 10.1097/prs.0000000000001321] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Stem cell-enriched fat grafting has been proposed as a potential therapy for reconstructive, restorative, or enhancement-related procedures of the breast. Its role in postoncologic breast reconstruction is still emerging, with concerns about safety. The authors investigated the dose-dependent interaction between human adipose-derived mesenchymal stromal cells (AD-MSCs) and human breast cancer cell (BCC) lines [MDA-MB-231 (MDA) and MCF-7 (MCF)] focusing on tumor microenvironment, tumor growth, and metastatic spread. METHODS Adipose-derived mesenchymal stromal cell influence on viability and factor expression [regulated on activation, normal T cell expressed and secreted (RANTES), tumor necrosis factor-α, and eotaxin) of breast cancer cells was studied in vitro using direct and indirect co-culture systems. Groups were formed according to adipose-derived mesenchymal stromal cell-to-cancer cell number ratio [MDA/MCF only, AD-MSC/(MDA/MCF), and AD-MSC/(MDA/MCF)]. A humanized orthotopic murine cancer model was used to evaluate breast cancer progression and metastasis (n = 10/group). Cells were injected into the mammary pad in different ratios and animals were monitored over 42 days. Microdialysis was performed to analyze RANTES levels in the tumor microenvironment (days 21 and 42). Primary and metastatic tumors were weighed and analyzed for oncogene, growth factor, and metastatic marker expression. RESULTS MDA cell viability increased from 45.5 percent to 95.5 percent in presence of adipose-derived mesenchymal stromal cells in vitro. In vivo, animals with AD-MSC showed increased mean tumor weight (MDA, p < 0.01; MCF versus controls, p < 0.05) and metastatic occurrence (40 percent in MDA; 30 percent in MCF versus 0 percent in controls). Cytokine analysis revealed switching of MCF tumor phenotype to a more malignant type in the presence of adipose-derived mesenchymal stromal cells. CONCLUSION Human adipose-derived mesenchymal stromal cells may promote progression and metastatic spread in breast cancer through a switch to a more malignant phenotype with worse prognosis.
Collapse
|
23
|
CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer. Clin Cancer Res 2015; 21:3794-805. [DOI: 10.1158/1078-0432.ccr-15-0204] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022]
|
24
|
Haslene-Hox H, Madani A, Berg KCG, Woie K, Salvesen HB, Wiig H, Tenstad O. Quantification of the concentration gradient of biomarkers between ovarian carcinoma interstitial fluid and blood. BBA CLINICAL 2014; 2:18-23. [PMID: 26673827 PMCID: PMC4633919 DOI: 10.1016/j.bbacli.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/25/2022]
Abstract
Background Tumor interstitial fluid (TIF) rather than plasma should be used in cancer biomarker discovery because of the anticipated higher concentration of locally produced proteins in the tumor microenvironment. Nevertheless, the actual TIF-to-plasma gradient of tumor specific proteins has not been quantified. We present the proof-of-concept for the quantification of the postulated gradient between TIF and plasma. Methods TIF was collected by centrifugation from serous (n = 19), endometrioid (n = 9) and clear cell (n = 3) ovarian carcinomas with early (n = 15) and late stage (n = 16) disease in grades 1 (n = 2), 2 (n = 8) and 3 (n = 17), and ELISA was used for the determination of CA-125, osteopontin and VEGF-A. Results All three markers were significantly up-regulated in TIF compared with plasma (p < 0.0001). The TIF-to-plasma ratio of the ovarian cancer biomarker CA-125 ranged from 1.4 to 24,300 (median = 194) and was inversely correlated to stage (p = 0.0006). The cancer related osteopontin and VEGF-A had TIF-to-plasma ratios ranging from 1 to 62 (median = 15) and 2 to 1040 (median = 59), respectively. The ratios were not affected by tumor stage, indicative of more widespread protein expression. Conclusion We present absolute quantitative data on the TIF-to-plasma gradient of selected proteins in the tumor microenvironment, and demonstrate a substantial and stage dependent gradient for CA-125 between TIF and plasma, suggesting a relation between total tumor burden and tissue-to-plasma gradient. General significance We present novel quantitative data on biomarker concentration in the tumor microenvironment, and a new strategy for biomarker selection, applicable in future biomarker studies. Quantification of CA-125, VEGF and osteopontin in tumor interstitial fluid (TIF) A large TIF-to-plasma gradient was observed for CA-125, the highest in early stage. Lower VEGF and osteopontin gradient indicate more widespread protein expression.
Collapse
Affiliation(s)
- Hanne Haslene-Hox
- Department of Biomedicine, University of Bergen, Norway ; Department of Bioprocess Technology, SINTEF Materials and Chemistry, Trondheim, Norway
| | - Amina Madani
- Department of Biomedicine, University of Bergen, Norway
| | - Kaja C G Berg
- Department of Biomedicine, University of Bergen, Norway
| | - Kathrine Woie
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Helga B Salvesen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway ; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
25
|
Bajpai G, Simmen RCM, Stenken JA. In vivo microdialysis sampling of adipokines CCL2, IL-6, and leptin in the mammary fat pad of adult female rats. MOLECULAR BIOSYSTEMS 2014; 10:806-12. [PMID: 24457312 DOI: 10.1039/c3mb70308h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Adipocytes from white adipose tissue secrete cytokines and other bioactive proteins which are collectively termed adipokines. Adiposity has been linked with increased breast cancer risk as adipokines secreted by adipocytes significantly affect epithelial cells from which breast cancer arises. Measurement of extracellular adipokine concentrations that would be involved in signaling through mammary tissue is therefore of importance. In this work, microdialysis sampling was used to collect adipokines from the interstitial space of the mammary fat pad of female rats under isoflurane anesthesia. The adipokines CCL2 (MCP-1), leptin and IL-6 were quantified from dialysate samples and compared to total tissue concentrations surrounding the implanted probes. After three hours of microdialysis sampling at 1 μL min(-1), the respective median values for these adipokines in dialysate samples were approximately 175 pg mL(-1) (CCL2), 150 pg mL(-1) (IL-6) and 750 pg mL(-1) (leptin). Adipokine protein levels from dialysates were an order of magnitude lower than levels obtained directly from mammary tissue. However, the adipokine concentrations between excised tissue surrounding the microdialysis sampling probes and control tissue without implants did not differ. This work demonstrates the utility of microdialysis sampling to quantify mammary gland adipokine levels, with relevance to understanding mammary physiology.
Collapse
Affiliation(s)
- Geetika Bajpai
- Department of Chemistry and Biochemistry and Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | |
Collapse
|
26
|
Polio SR, Parameswaran H, Canović EP, Gaut CM, Aksyonova D, Stamenović D, Smith ML. Topographical control of multiple cell adhesion molecules for traction force microscopy. Integr Biol (Camb) 2014; 6:357-65. [PMID: 24441735 DOI: 10.1039/c3ib40127h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cellular traction forces are important quantitative measures in cell biology as they have provided much insight into cell behavior in contexts such as cellular migration, differentiation, and disease progression. However, the complex environment in vivo permits application of cell traction forces through multiple types of cell adhesion molecules. Currently available approaches to differentiate traction forces among multiple cell adhesion molecules are limited to specialized approaches to decouple cell-cell from cell-extracellular matrix (ECM) tractions. Here, we present a technique which uses indirect micropatterning onto a polyacrylamide gel to pattern multiple, spatially distinct fluorescently labeled ECM proteins, specifically gelatin and fibronectin (Fn), and confine the area to which cells can adhere. We found that cells interacting with both gelatin and Fn altered their traction forces significantly in comparison to cells on Fn-only substrates. This crosstalk interaction resulted in a decrease in overall traction forces on dual-patterned substrates as compared to cells on Fn-only substrates. This illustrates the unique need to study such interactions and demonstrates great potential in future studies in multi-ligand environments. Current micropatterning techniques on glass can easily be adapted to present other protein classes, such as cadherins, while maintaining control of adhesion spacing, cell spread area, and stiffness, each of which are important regulators of cell mechanobiology.
Collapse
Affiliation(s)
- Samuel R Polio
- Department of Biomedical Engineering, Boston University, Engineering Research Building Rm 502, 44 Cummington Mall, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Fischer LM, Vásquez JL, Gehl J, Hermann GG, Larsen NB. Exploration of two methods for quantitative Mitomycin C measurement in tumor tissue in vitro and in vivo. Biol Proced Online 2013; 15:12. [PMID: 24206643 PMCID: PMC3831870 DOI: 10.1186/1480-9222-15-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/26/2013] [Indexed: 11/25/2022] Open
Abstract
Two methods of quantifying Mitomycin C in tumor tissue are explored. A method of ultraviolet-visible absorption microscopy is developed and applied to measure the concentration of Mitomycin C in preserved mouse tumor tissue, as well as in gelatin samples. Concentrations as low as 60 μM can be resolved using this technique in samples that do not strongly scatter light. A novel method for monitoring the Mitomycin C concentrations inside a tumor is developed, based on microdialysis and ultraviolet-visible spectroscopy. A pump is used to perfuse a microdialysis probe with Ringer’s solution, which is fed to a flow cell to determine intratumor concentrations in real time to within a few μM. The success and limitations of these techniques are identified, and suggestions are made as to further development. To the authors’ knowledge these are the first attempts made to quantify Mitomycin C concentrations in tumor tissue.
Collapse
Affiliation(s)
- Lee Mackenzie Fischer
- Technical University of Denmark, DTU Nanotech - Department of Micro- and Nanotechnology, Ørsteds Plads 345Ø, 2800 Kongens Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
28
|
Ławicki S, Będkowska GE, Szmitkowski M. VEGF, M-CSF and CA 15-3 as a new tumor marker panel in breast malignancies: a multivariate analysis with ROC curve. Growth Factors 2013; 31:98-105. [PMID: 23688065 DOI: 10.3109/08977194.2013.797900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The plasma levels of Vascular endothelial growth factor, macrophage-colony stimulating factor (M-CSF) and CA15-3 in breast cancer patients (BC) were investigated and compared with control groups: benign breast tumor patients and the healthy subjects. Cytokine levels were determined by the use of enzyme-linked immunosorbent assay, CA 15-3 - by chemiluminescent microparticle immunoassay method. Our results have demonstrated significant differences in the concentration of cytokines and CA 15-3 between the groups of BC patients and two control groups. Cytokines have demonstrated equal to CA 15-3 or even higher values of the diagnostic sensitivity (SE), the predictive values of positive and negative test results (PV-PR, PV-NR), and the area under the ROC curve (AUC) in the studied groups. The combined use of tested parameters resulted in the increase of the SE, PV-PR and AUC. These findings suggest the usefulness of both cytokines in the diagnosis of BC, but only M-CSF in discrimination between cancer and non-carcinoma lesions, especially in combination with CA 15-3.
Collapse
Affiliation(s)
- Sławomir Ławicki
- Department of Biochemical Diagnostics, Medical University, Białystok, Poland.
| | | | | |
Collapse
|
29
|
Finley SD, Popel AS. Effect of tumor microenvironment on tumor VEGF during anti-VEGF treatment: systems biology predictions. J Natl Cancer Inst 2013; 105:802-11. [PMID: 23670728 DOI: 10.1093/jnci/djt093] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is known to be a potent promoter of angiogenesis under both physiological and pathological conditions. Given its role in regulating tumor vascularization, VEGF has been targeted in various cancer treatments, and anti-VEGF therapy has been used clinically for treatment of several types of cancer. Systems biology approaches, particularly computational models, provide insight into the complexity of tumor angiogenesis. These models complement experimental studies and aid in the development of effective therapies targeting angiogenesis. METHODS We developed an experiment-based, molecular-detailed compartment model of VEGF kinetics and transport to investigate the distribution of two major VEGF isoforms (VEGF121 and VEGF165) in the body. The model is applied to predict the dynamics of tumor VEGF and, importantly, to gain insight into how tumor VEGF responds to an intravenous injection of an anti-VEGF agent. RESULTS The model predicts that free VEGF in the tumor interstitium is seven to 13 times higher than plasma VEGF and is predominantly in the form of VEGF121 (>70%), predictions that are validated by experimental data. The model also predicts that tumor VEGF can increase or decrease with anti-VEGF treatment depending on tumor microenvironment, pointing to the importance of personalized medicine. CONCLUSIONS This computational study suggests that the rate of VEGF secretion by tumor cells may serve as a biomarker to predict the patient population that is likely to respond to anti-VEGF treatment. Thus, the model predictions have important clinical relevance and may aid clinicians and clinical researchers seeking interpretation of pharmacokinetic and pharmacodynamic observations and optimization of anti-VEGF therapies.
Collapse
Affiliation(s)
- Stacey D Finley
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
30
|
Abrahamsson A, Morad V, Saarinen NM, Dabrosin C. Estradiol, tamoxifen, and flaxseed alter IL-1β and IL-1Ra levels in normal human breast tissue in vivo. J Clin Endocrinol Metab 2012; 97:E2044-54. [PMID: 22930784 DOI: 10.1210/jc.2012-2288] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Sex steroid exposure increases the risk of breast cancer by unclear mechanisms. Diet modifications may be one breast cancer prevention strategy. The proinflammatory cytokine family of IL-1 is implicated in cancer progression. IL-1Ra is an endogenous inhibitor of the proinflammatory IL-1α and IL-1β. OBJECTIVE The objective of this study was to elucidate whether estrogen, tamoxifen, and/or diet modification altered IL-1 levels in normal human breast tissue. DESIGN AND METHODS Microdialysis was performed in healthy women under various hormone exposures, tamoxifen therapy, and diet modifications and in breast cancers of women before surgery. Breast tissue biopsies from reduction mammoplasties were cultured. RESULTS We show a significant positive correlation between estradiol and in vivo levels of IL-1β in breast tissue and abdominal sc fat, whereas IL-1Ra exhibited a significant negative correlation with estradiol in breast tissue. Tamoxifen or a dietary addition of 25 g flaxseed per day resulted in significantly increased levels of IL-1Ra in the breast. These results were confirmed in ex vivo culture of breast biopsies. Immunohistochemistry of the biopsies did not reveal any changes in cellular content of the IL-1s, suggesting that mainly the secreted levels were affected. In breast cancer patients, intratumoral levels of IL-1β were significantly higher compared with normal adjacent breast tissue. CONCLUSION IL-1 may be under the control of estrogen in vivo and may be attenuated by antiestrogen therapy and diet modifications. The increased IL-1β in breast cancers of women strongly suggests IL-1 as a potential therapeutic target in breast cancer treatment and prevention.
Collapse
|
31
|
Differential effect of age on survival in advanced NSCLC in women versus men: analysis of recent Eastern Cooperative Oncology Group (ECOG) studies, with and without bevacizumab. Lung Cancer 2012; 76:410-5. [PMID: 22266041 DOI: 10.1016/j.lungcan.2011.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/15/2011] [Accepted: 12/18/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND The impact of age on prognosis in advanced stage non-small cell lung cancer (NSCLC) may differ by sex. PATIENTS AND METHODS Eligible patients (N=1590) from E1594, a 4-arm platinum-based chemotherapy trial, and E4599 (carboplatin/paclitaxel ± bevacizumab) chemotherapy arm were divided into male and female cohorts and separated into age groups of <60 or ≥60 years old. Eligible E4599 patients (N=850) were similarly separated by age and sex and by treatment (± bevacizumab). Survival was calculated separately for each cohort. RESULTS The median survival time (MST) for women ≥60 years old treated with chemotherapy alone on E1594 and E4599 was 11.6 months versus 9.0 months for women <60 (p=0.03). MST was 7.4 and 8.3 months for men ≥60 and <60 years old respectively (NS). In E4599 the age <60 by bevacizumab treatment interaction was statistically significant (p=0.03) for women (younger had greater benefit), with no age effect in men. CONCLUSIONS In this unplanned, exploratory subgroup analysis of advanced stage NSCLC ECOG trials, women ≥60 years old treated with chemotherapy live longer than men and younger women. In contrast, bevacizumab survival benefit was more pronounced in men of any age and in younger women on E4599.
Collapse
|
32
|
Ellberg C, Jernström H, Olsson H. Breast cancer and spider telangiectasias at diagnosis and its relation to histopathology and prognosis: a population-based study. Breast Cancer Res Treat 2011; 131:177-86. [PMID: 21830013 DOI: 10.1007/s10549-011-1707-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
Angiogenesis is one of the hallmarks of breast cancer. The status of angiogenesis is important in therapy choice. Spider telangiectasias (telangiectasias) may reflect an increased ability to form vessels. Our first aim was to identify patient and tumor characteristics associated with the occurrence of telangiectasias at the time of breast cancer diagnosis. The second aim was to study the overall survival in relation to the occurrence of telangiectasias at the time of breast cancer diagnosis. A standardized questionnaire was used to interview 1682 consecutive breast cancer patients about risk factors between 1980 and 2009. Occurrence of telangiectasias at the time of breast cancer diagnosis on the upper thorax, head, and/or neck was recorded by one physician. In the cohort, 93 women (5.5%) had telangiectasias. Occurrence of telangiectasias was positively associated with weight, odds ratio (OR) 1.02 (95% confidence interval (CI) 1.00-1.05) per kg, ever-use of oral contraceptives OR 2.67(CI 1.55-4.63) and hormone replacement therapy OR 2.68(CI 1.63-4.39), and negatively associated with parity OR 0.45(CI 0.25-0.79). Telangiectasias were not present in patients with comedo breast cancer. Patients with occurrences of telangiectasias diagnosed before the age of 50 had a statistically non-significant worse overall survival, whereas the patients with occurrences of telangiectasias diagnosed at age 50 or after had a statistically significant better overall survival (P interaction = 0.016). The relationship between the occurrence of telangiectasias and the overall survival in the older patient-group was independent of ever-use of HRT. Hormonal risk factors for breast cancer were associated with the occurrence of spider telangiectasias. The occurrence of telangiectasias may reflect the angiogenic status of the tumor. We hypothesize that telangiectasias could be used as selection criteria for anti-angiogenic therapy in younger breast cancer patients. Therefore, patients with comedo breast cancers maybe a group that may benefit less from anti-angiogenic therapy.
Collapse
Affiliation(s)
- Carolina Ellberg
- Department of Oncology, Clinical Sciences, Lund University, Skåne University Hospital, Barngatan 2b, 221 85 Lund, Sweden.
| | | | | |
Collapse
|
33
|
Estrogens in the breast tissue: a systematic review. Cancer Causes Control 2011; 22:529-40. [PMID: 21286801 DOI: 10.1007/s10552-011-9729-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 01/17/2011] [Indexed: 01/24/2023]
Abstract
The role of estrogens in breast carcinogenesis has been investigated at the level of whole body (plasma) and cell (molecular, receptors, etc.). Growing attention focused on the breast tissue being an intracrine organ, with potentially important local estrogen production in the breast. However, very little is known about the local breast tissue estrogen levels. Understanding the role of the tissue estrogens in breast carcinogenesis might open new avenues in breast cancer prevention. This systematic review summarizes published studies that measured local estrogen levels in the breast and offers suggestions for strategies to fill gaps in our existing scientific knowledge.
Collapse
|
34
|
Yang XP, Li Y, Wang Y, Wang Y, Wang P. beta-Tryptase up-regulates vascular endothelial growth factor expression via proteinase-activated receptor-2 and mitogen-activated protein kinase pathways in bone marrow stromal cells in acute myeloid leukemia. Leuk Lymphoma 2010; 51:1550-8. [PMID: 20578818 DOI: 10.3109/10428194.2010.496013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tryptases are predominantly mast cell-specific serine proteases with pleiotropic biological activities. Recently, significant amounts of tryptases have been shown to be produced by myeloblasts in certain patients with acute myeloid leukemia (AML), but the function of secreted tryptases in pathological circumstances remains unknown. In this study, we investigated whether beta-tryptase affects the expression of vascular endothelial growth factor (VEGF) in bone marrow stromal cells (BMSCs) in AML. We detected the expression of proteinase-activated receptor-2 (PAR-2) on AML BMSCs and found that beta-tryptase significantly up-regulated VEGF mRNA and protein expression in a dose-dependent manner by real-time PCR, Western blot, and ELISA. Furthermore, beta-tryptase increased ERK1/2 and p38MAPK phosphorylation, and pretreatment with FLLSY-NH(2), PD98059, and SB230580 (PAR-2, ERK1/2, and p38MAPK inhibitors, respectively) inhibited the beta-tryptase-induced production of VEGF. These results suggest that beta-tryptase up-regulates VEGF production in AML BMSCs via the PAR-2, ERK1/2, and p38MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiu-Peng Yang
- Department of Hematology, First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
35
|
Saarinen NM, Abrahamsson A, Dabrosin C. Estrogen-induced angiogenic factors derived from stromal and cancer cells are differently regulated by enterolactone and genistein in human breast cancer in vivo. Int J Cancer 2010; 127:737-45. [PMID: 19924815 DOI: 10.1002/ijc.25052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Angiogenesis is a key in cancer progression and its regulators are released both by the tumor cells and the stroma. Dietary phytoestrogens, such as the lignan enterolactone (ENL) and the isoflavone genistein (GEN), may differently affect breast cancer growth. In this study, human breast cancer cells (MCF-7) were established in mice creating a tumor with species-specific cancer and stroma cells. Ovariectomized athymic mice supplemented with estradiol (E2) were fed basal AIN-93G diet (BD) or BD supplemented with 100 mg/kg ENL, 100 mg/kg GEN or their combination (ENL+GEN). We show that ENL and ENL+GEN inhibited E2-induced cancer growth and angiogenesis, whereas GEN alone did not. Microdialysis was used to sample extracellular proteins in tumors in vivo. ENL and ENL+GEN decreased both stroma- and cancer cell-derived VEGF, whereas cancer cell-derived PlGF increased. In subcutaneous Matrigel plugs in mice, ENL and ENL+GEN decreased E2-induced endothelial cell infiltration, whereas GEN alone did not. In endothelial cells, ENL inhibited E2-induced VEGFR-2 expression, whereas GEN did not. These results suggest that ENL has potent effects on breast cancer growth, even in combination with GEN, by downregulating E2-stimulated angiogenic factors derived both from the stroma and the cancer cells, whereas dietary GEN does not possess any antiestrogenic effects.
Collapse
Affiliation(s)
- Niina M Saarinen
- Division of Oncology, Department of Clinical and Experimental Medicine, Linköping University, University Hospital, Linköping, Sweden
| | | | | |
Collapse
|
36
|
Nilsson UW, Abrahamsson A, Dabrosin C. Angiogenin regulation by estradiol in breast tissue: tamoxifen inhibits angiogenin nuclear translocation and antiangiogenin therapy reduces breast cancer growth in vivo. Clin Cancer Res 2010; 16:3659-69. [PMID: 20501617 DOI: 10.1158/1078-0432.ccr-10-0501] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Angiogenin, a 14.2-kDa polypeptide member of the RNase A superfamily, has potent angiogenic effects. Nuclear accumulation of angiogenin is essential for its angiogenic activity. Increased angiogenin expression has been associated with the transition of normal breast tissue into invasive breast carcinoma. In this article, we investigated whether estradiol (E(2)) affected angiogenin in breast tissue. EXPERIMENTAL DESIGN We used microdialysis for sampling of extracellular angiogenin in vivo. In vitro cultures of whole normal breast tissue, breast cancer cells, and endothelial cells were used. RESULTS We show that extracellular angiogenin correlated significantly with E(2) in normal human breast tissue in vivo and that exposure of normal breast tissue biopsies to E(2) stimulated angiogenin secretion. In breast cancer patients, the in vivo angiogenin levels were significantly higher in tumors compared with the adjacent normal breast tissue. In estrogen receptor-positive breast cancer cells, E(2) increased and tamoxifen decreased angiogenin secretion. Moreover, E(2)-induced angiogenin derived from cancer cells significantly increased endothelial cell proliferation. Tamoxifen reversed this increase as well as inhibited nuclear translocation of angiogenin. In vivo, in experimental breast cancer, tamoxifen decreased angiogenin levels and decreased angiogenesis. Additionally, treating tumor-bearing mice with an antiangiogenin antibody resulted in tumor stasis, suggesting a role for angiogenin in estrogen-dependent breast cancer growth. CONCLUSION Our results suggest previously unknown mechanisms by which estrogen and antiestrogen regulate angiogenesis in normal human breast tissue and breast cancer. This may be important for estrogen-driven breast cancer progression and a molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Ulrika W Nilsson
- Division of Oncology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
37
|
Guerriero G. Vertebrate sex steroid receptors: evolution, ligands, and neurodistribution. Ann N Y Acad Sci 2009; 1163:154-68. [PMID: 19456336 DOI: 10.1111/j.1749-6632.2009.04460.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review focuses on our current understanding of vertebrate sex steroid receptors, with an emphasis on their evolutionary relationships. These relationships are discussed based on nucleotide and amino acid sequence data, which provide clues to the process by which structure-function relations have originated, evolved, and been maintained over time. The importance of the distribution of sex steroid receptors in the vertebrate brain is discussed using the example of androgen receptor sites and their relatively conserved localizations in the vertebrate brain.
Collapse
Affiliation(s)
- Giulia Guerriero
- Department of Biological Sciences, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
38
|
da Silva BB, dos Santos AR, Pires CG, Lopes-Costa PV. Effect of raloxifene on vascular endothelial growth factor expression in breast carcinomas of postmenopausal women. Cell Prolif 2009; 42:506-10. [PMID: 19489979 DOI: 10.1111/j.1365-2184.2009.00615.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the effect of raloxifene on vascular endothelial growth factor (VEGF) expression in breast carcinomas of postmenopausal women. MATERIALS AND METHODS Sixteen postmenopausal patients with operable stage II, oestrogen receptor-positive, infiltrating ductal breast carcinoma were treated with raloxifene at a dose of 60 mg/day, for a period of 28 days prior to definitive surgery. Tumour size varied from 3 to 5 cm (mean 3.7 cm) and mean age of patients was 61.8 years (range 49-72 years). Tumour samples were obtained by incisional biopsy at the time of diagnosis and again at the time of surgery. Immunohistochemical evaluation of VEGF expression was assessed semiquantitatively based on fraction of stained tumour cells and on intensity of staining. McNemar's test of symmetry was used to evaluate agreement between positive or negative classification of VEGF expression prior to and following raloxifene treatment (P < 0.05). RESULTS Fourteen of the 16 patients (88%) were classified as positive for VEGF expression prior to raloxifene treatment, while only 5 (31%) were classified as positive following treatment (P < 0.007). CONCLUSION Raloxifene significantly reduced VEGF expression in these oestrogen receptor-positive breast carcinomas of postmenopausal women.
Collapse
Affiliation(s)
- B B da Silva
- Department of Gynecology, Mastology Division, Hospital Getúlio Vargas, Federal University of Piauí, Piauí, Brazil.
| | | | | | | |
Collapse
|
39
|
Hanrahan EO, Ryan AJ, Mann H, Kennedy SJ, Langmuir P, Natale RB, Herbst RS, Johnson BE, Heymach JV. Baseline Vascular Endothelial Growth Factor Concentration as a Potential Predictive Marker of Benefit from Vandetanib in Non–Small Cell Lung Cancer. Clin Cancer Res 2009; 15:3600-9. [DOI: 10.1158/1078-0432.ccr-08-2568] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|