1
|
Simsek E, Sunguroglu A, Kilic A, Özgültekin N, Ozensoy Guler O. Effects of thymoquinone and the curcumin analog EF-24 on the activity of the enzyme paraoxonase-1 in human glioblastoma cells U87MG. J Enzyme Inhib Med Chem 2024; 39:2339901. [PMID: 38864175 PMCID: PMC11172254 DOI: 10.1080/14756366.2024.2339901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/01/2024] [Indexed: 06/13/2024] Open
Abstract
The spices and aromatic herbs were used not only in cooking to add flavour and smell to dishes but also for medicinal use. Nigella sativa, also called black cumin, is one of the species that contains an important bioactive component, thymoquinone (TQ), which has antioxidant, anti-inflammatory, antimicrobial, and antidiabetic effects. Curcuma longa, which also includes curcumin, has numerous anti-cancer properties. However, the bioavailability of curcumin is lower than that of its analogs. An analog of curcumin (EF-24), which has better bioavailability than curcumin, is capable of exerting a high anti-cancer effect. In our study, we determined the effects of PON1 enzyme activity on the proliferation and aggressiveness of glioblastoma cancer treated with TQ and EF-24 from lysates of the glioblastoma cell line U87MG. The results were determined as increased PON1 activity after treatment with TQ and EF-24 in the U87MG cell line (p < 0.0001).
Collapse
Affiliation(s)
- Ender Simsek
- Department of Medical Biology, Ankara Yildirim Beyazit University, Ankara, Turkey
| | | | - Ahmet Kilic
- Department of Medical Biology, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Nurbanu Özgültekin
- Multiscale Thermofluids School of Engineering, The University of Edinburg Edinburg, UK
| | - O. Ozensoy Guler
- Department of Medical Biology, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
2
|
da Costa RSS, Souza NDA, Zukeram KDA, Freire C, Jácome GPO, Koifman RJ, Cardoso CC, Santos SDS. Pon1 and Sult1a1 Polymorphisms and Breast Cancer Among Young Women in Brazil. J Adolesc Young Adult Oncol 2024. [PMID: 39046919 DOI: 10.1089/jayao.2023.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Purpose: To investigate the association of genetic polymorphisms Gln192Arg and Leu55Met of Paraoxonase 1 (PON1) gene, and Arg213His of Sulfotransferase 1A1 (SUT1A1) gene with occurrence of breast cancer among young women living in Rio de Janeiro city. Methods: This is a hospital-based case-control study including 265 women aged 18-35 years, diagnosed with breast cancer at National Cancer Institute; and 277 controls in the same age group selected among women patients and companions of three general hospitals from Rio de Janeiro public health network. Polymorphisms genotyping was performed using the PCR-RFLP technique. Results: For PON1 gene, breast cancer women had a greater chance of being homozygote for Leu55Met polymorphism (ORadjusted = 1.42, 95% CI= 0.67-3.00, recessive model) and a lower chance of having at least one allele of Gln192Arg polymorphism (ORadjusted = 0.75, 95% CI = 0.50-1.13, dominant model), but without statistical significance. Accordingly, frequency of the haplotype Met55/Arg192 was lower among breast cancer women, but no statistically significant association was observed (ORadjusted = 0.85; 95% CI = 0.48-1.51). SULT1A1 His/His genotype was significantly associated with a protective effect for breast cancer (OR adjusted = 0.51, 95% CI = 0.28-0.91, recessive model). Conclusion: Arg213His polymorphism of SUT1A1 gene showed a protective effect against breast cancer among Brazilian young women. More studies with different designs are needed to understand the role of PON1 and SULT1A1 polymorphisms in breast cancer development in young Brazilian women.
Collapse
Affiliation(s)
- Rafaela Soares Senra da Costa
- Public Health and Environment Post-Graduation Program (PPGSPMA, Programa de Pós-Graduação em Saúde Pública e Meio Ambiente). National Public Health School (ENSP, Escola Nacional de Saúde Pública), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Nara de Almeida Souza
- Public Health and Environment Post-Graduation Program (PPGSPMA, Programa de Pós-Graduação em Saúde Pública e Meio Ambiente). National Public Health School (ENSP, Escola Nacional de Saúde Pública), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ketiuce de Azevedo Zukeram
- Department of Epidemiology and Quantitative Methods in Health (DEMQS, Departamento de Epidemiologia e Métodos Quantitativos em Saúde), National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carmen Freire
- Department of Legal Medicine and Toxicology, CIBER of Epidemiology and Public Health, University of Granada, Biosanitary Research Institute ibs.granada, Granada, Spain
| | | | - Rosalina Jorge Koifman
- Public Health and Environment Post-Graduation Program (PPGSPMA, Programa de Pós-Graduação em Saúde Pública e Meio Ambiente). National Public Health School (ENSP, Escola Nacional de Saúde Pública), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Department of Epidemiology and Quantitative Methods in Health (DEMQS, Departamento de Epidemiologia e Métodos Quantitativos em Saúde), National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cynthia Chester Cardoso
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Sabrina da Silva Santos
- Public Health and Environment Post-Graduation Program (PPGSPMA, Programa de Pós-Graduação em Saúde Pública e Meio Ambiente). National Public Health School (ENSP, Escola Nacional de Saúde Pública), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Department of Epidemiology and Quantitative Methods in Health (DEMQS, Departamento de Epidemiologia e Métodos Quantitativos em Saúde), National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Zeng Q, Yang T, Wei W, Zou D, Wei Y, Han F, He J, Huang J, Guo R. Association between GLO1 variants and gestational diabetes mellitus susceptibility in a Chinese population: a preliminary study. Front Endocrinol (Lausanne) 2023; 14:1235581. [PMID: 38027126 PMCID: PMC10656739 DOI: 10.3389/fendo.2023.1235581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Glyoxalase 1 (GLO1) plays a crucial role in defending against glycation. Single nucleotide polymorphism (SNP) variants in the GLO1 gene may affect gene expression and alter enzyme activity. However, there have been limited studies evaluating the association between GLO1 and diabetes, especially gestational diabetes mellitus (GDM). Therefore, this study is the first to explore the association of GLO1 SNPs and GDM risk. Methods The study included a total of 500 GDM patients and 502 control subjects. The SNPscan™ genotyping assay was used to genotype rs1781735, rs4746 and rs1130534. To assess the disparities in genotype, allele, and haplotype distributions and their correlation with GDM risk, the independent sample t-test, logistic regression, and chi-square test were employed during the data processing phase. Furthermore, one-way ANOVA was conducted to determine the differences in genotype and blood glucose and methylglyoxal(MG) levels. Results Significant differences were observed in prepregnancy body mass index (pre-BMI), age, systolic blood pressure (SBP), diastolic blood pressure (DBP), and parity between GDM and healthy subjects (P < 0.05). After adjusting for these factors, GLO1 rs1130534 TA remained associated with an increased risk of GDM (TA vs. TT + AA: OR = 1.320; 95% CI: 1.008-1.728; P = 0.044), especially in the pre-BMI ≥ 24 subgroup (TA vs. TT + AA: OR = 2.424; 95% CI: 1.048-5.607; P = 0.039), with fasting glucose levels being significantly elevated in the TA genotype compared to the TT genotype (P < 0.05). Conversely, the GLO1 rs4746 TG was associated with a decreased risk of GDM (TG vs. TT: OR = 0.740; 95% CI: 0.548-0.999; P = 0.049; TG vs. TT + GG: OR = 0.740; 95% CI: 0.548-0.998; P = 0.048). Additionally, the haplotype T-G-T of rs1781735, rs4746 and rs1130534 was associated with a decreased risk of GDM among individuals with a pre-BMI ≥ 24 (OR = 0.423; 95% CI: 0.188-0.955; P = 0.038). Furthermore, the rs1781735 GG genotype was found to be more closely related to maternal MG accumulation and neonatal weight gain (P < 0.05). Conclusion Our findings suggested that GLO1 rs1130534 was associated with an increased susceptibility to GDM and higher blood glucose levels, but GLO1 rs4746 was associated with a decreased risk of GDM. The rs1781735 has been associated with the accumulation of maternal MG and subsequent weight gain in neonates.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Maternal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Taili Yang
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
| | - Wenfeng Wei
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Dehua Zou
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macao, Macao SAR, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, Guangdong, China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fengqiong Han
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Jieyun He
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Jinzhi Huang
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Department of Gynecology, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Maternal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Rasheed MN, Hazim Hamoode R, Adnan Abdul-Jalil A. Association of glutathione S-transferase 1 (GSTP1) polymorphisms with Breast Cancer susceptibility. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hereditary and environmental variables have a role in the development of breast cancer. This study aimed to examine the links between genetic Variations in the GSTP1 gene and Predisposition to breast cancer in an Iraqi population. The research included 40 Iraqi female breast cancer patients and 20 healthy volunteers. GSTP1-1695 A/G gene polymorphisms were investigated using polymerase chain reaction in Real-time (RT-PCR). The results showed the GSTP1 frequency of the wild GG genotypes was showed significantly (P<0.01) higher in healthy women in comparison with Breast cancer women (GG, 80% vs. 32.5%, respectively; furthermore, heterozygous AG genotypes were significantly higher in Breast cancer women in comparison with healthy women 42.5% vs. 20%, respectively at (P<0.01). While the mutant AA genotype (25%) in patient women appeared significantly (P<0.01) higher compared to healthy women (0.0%). Finally, we discovered a connection between GSTP1 polymorphisms and a higher chance of developing breast cancer in an Iraqi female population sample.
Keywords: glutathione S-transferase1, breast cancer, polymorphism.
Collapse
Affiliation(s)
- Marrib N. Rasheed
- University Of Baghdad / Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, Iraq
| | | | | |
Collapse
|
5
|
Karimian M. A common genetic variation in paraoxonase 1 and risk of breast cancer: a literature review, meta-analysis, and in silico analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:1-16. [PMID: 35938743 DOI: 10.1080/15257770.2022.2107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Paraoxonase 1 (PON1), an enzyme with multifactorial antioxidant activity, has a protective role against oxidative stress, which is supposed to contribute to the development of cancers including breast cancer. The aim of this study was to examine the correlation of PON1-L55M common genetic polymorphism with the risk of breast cancer in a meta-analysis approach which was followed by an in silico analysis. The eligible studies were collected from valid electronic databases such as Google Scholar, PubMed, Embase, and Web of Science. Quantitative synthesis was performed to report the strength of PON1-L55M polymorphism with breast cancer. Some bioinformatics tools were used to analyze the effects of L55M variation on PON1 gene function. The meta-analysis revealed that there are significant associations between the mentioned polymorphism and breast cancer in M vs. L, MM vs. LL, LM vs. LL, MM + LM vs. LL, and MM vs. LL + LM genetic models. Besides, similar results were observed in the stratified analyses based on ethnicity, genotyping method, Hardy-Weinberg equilibrium in control groups, and sample size. Bioinformatics analysis revealed that the PON1 could be damaging to the protein function. Our findings propose that the PON1-L55M genetic polymorphism might be a genetic risk factor for the risk of breast cancer.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
6
|
Medina-Díaz IM, Ponce-Ruíz N, Rojas-García AE, Zambrano-Zargoza JF, Bernal-Hernández YY, González-Arias CA, Barrón-Vivanco BS, Herrera-Moreno JF. The Relationship between Cancer and Paraoxonase 1. Antioxidants (Basel) 2022; 11:antiox11040697. [PMID: 35453382 PMCID: PMC9028432 DOI: 10.3390/antiox11040697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Extensive research has been carried out to understand and elucidate the mechanisms of paraoxonase 1 (PON1) in the development of diseases including cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. This review focuses on the relationship between PON1 and cancer. The data suggest that PON1, oxidative stress, chronic inflammation, and cancer are closely linked. Certainly, the gene expression of PON1 will remain challenging to study. Therefore, targeting PON1, redox-sensitive pathways, and transcription factors promise prevention and therapy in the development of several diseases, including cancer.
Collapse
Affiliation(s)
- Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
- Correspondence:
| | - Néstor Ponce-Ruíz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | | | - Yael Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Briscia S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| |
Collapse
|
7
|
Suh EH, Geraldes CFGC, Chirayil S, Faubert B, Ayala R, DeBerardinis RJ, Sherry AD. Detection of glucose-derived D- and L-lactate in cancer cells by the use of a chiral NMR shift reagent. Cancer Metab 2021; 9:38. [PMID: 34742347 PMCID: PMC8571830 DOI: 10.1186/s40170-021-00267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Excessive lactate production, a hallmark of cancer, is largely formed by the reduction of pyruvate via lactate dehydrogenase (LDH) to L-lactate. Although D-lactate can also be produced from glucose via the methylglyoxal pathway in small amounts, less is known about the amount of D-lactate produced in cancer cells. Since the stereoisomers of lactate cannot be distinguished by conventional 1H NMR spectroscopy, a chiral NMR shift reagent was used to fully resolve the 1H NMR resonances of D- and L-lactate. METHODS The production of L-lactate from glucose and D-lactate from methylglyoxal was first demonstrated in freshly isolated red blood cells using the chiral NMR shift reagent, YbDO3A-trisamide. Then, two different cell lines with high GLO1 expression (H1648 and H 1395) were selected from a panel of over 80 well-characterized human NSCLC cell lines, grown to confluence in standard tissue culture media, washed with phosphate-buffered saline, and exposed to glucose in a buffer for 4 h. After 4 h, a small volume of extracellular fluid was collected and mixed with YbDO3A-trisamide for analysis by 1H NMR spectroscopy. RESULTS A suspension of freshly isolated red blood cells exposed to 5mM glucose produced L-lactate as expected but very little D-lactate. To evaluate the utility of the chiral NMR shift reagent, methylglyoxal was then added to red cells along with glucose to stimulate the production of D-lactate via the glyoxalate pathway. In this case, both D-lactate and L-lactate were produced and their NMR chemical shifts assigned. NSCLC cell lines with different expression levels of GLO1 produced both L- and D-lactate after incubation with glucose and glutamine alone. A GLO1-deleted parental cell line (3553T3) showed no production of D-lactate from glucose while re-expression of GLO1 resulted in higher production of D-lactate. CONCLUSIONS The shift-reagent-aided NMR technique demonstrates that D-lactate is produced from glucose in NSCLC cells via the methylglyoxal pathway. The biological role of D-lactate is uncertain but a convenient method for monitoring D-lactate production could provide new insights into the biological roles of D- versus L-lactate in cancer metabolism.
Collapse
Affiliation(s)
- Eul Hyun Suh
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos F G C Geraldes
- Department of Life Sciences and Coimbra Chemistry Center, Faculty of Science and Technology, University of Coimbra, 3000-393, Coimbra, Portugal
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Sara Chirayil
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raul Ayala
- School of Health Professions at Yvonne A. Ewell Townview Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics and Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Meisinger C, Freuer D, Bub A, Linseisen J. Association between inflammatory markers and serum paraoxonase and arylesterase activities in the general population: a cross-sectional study. Lipids Health Dis 2021; 20:81. [PMID: 34332593 PMCID: PMC8325814 DOI: 10.1186/s12944-021-01508-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
Background Recent studies focused on modulating factors of paraoxonase-1 (PON1) activity. In some studies the association between pro-inflammatory markers and PON1 activity was examined, but so far no population-based investigations on this issue have been conducted. The present study investigated the relationships between the pro-inflammatory markers tumor necrosis factor (TNF)-α, leptin, interleukin (IL)-6, and high-sensitive C-reactive protein (hs-CRP) and paraoxonase and arylesterase, two hydrolytic activities of PON1, in the population-based Bavarian Food Consumption Survey II. Methods Based on 504 participants (217 men, 287 women), the relationship between the pro-inflammatory markers and the outcomes paraoxonase and arylesterase activities were investigated using multivariable linear models. Results Circulating plasma levels of leptin (P-value < 0.0001), hs-CRP (P-value = 0.031) and IL-6 (P-value = 0.045) were significantly non-linearly associated with arylesterase activity. Leptin levels were also significantly associated with paraoxonase activity (P-value = 0.024) independently from confounding factors, including high-density lipoprotein (HDL) cholesterol. With increasing levels of these inflammatory parameters, arylesterase and paraoxonase activities increased; however, at higher levels (> 75th percentile) the activities reached a plateau or even decreased somewhat. After Bonferroni-Holm correction, only leptin remained non-linearly but significantly associated with arylesterase activity (adjusted overall P-value < 0.0001). Neither age nor sex nor obesity modified the associations. No association was found between TNF-α and paraoxonase or arylesterase activity. Conclusions The present findings suggest that in persons with very high levels of inflammation, PON1 activity may be impaired, a fact that might subsequently be accompanied by a higher risk for cardiometabolic diseases. Whether or not the measurement of PON1 activity in combination with a lipid profile and certain inflammatory markers could improve the prediction of cardiometabolic diseases in middle-aged individuals from the general population should be evaluated in clinical studies.
Collapse
Affiliation(s)
- Christa Meisinger
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany. .,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany.
| | - Dennis Freuer
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max-Rubner-Institut, Federal Research Institute of Nutrition and Food, 76131, Karlsruhe, Germany
| | - Jakob Linseisen
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| |
Collapse
|
9
|
Park J, Choi JY, Choi J, Chung S, Song N, Park SK, Han W, Noh DY, Ahn SH, Lee JW, Kim MK, Jee SH, Wen W, Bolla MK, Wang Q, Dennis J, Michailidou K, Shah M, Conroy DM, Harrington PA, Mayes R, Czene K, Hall P, Teras LR, Patel AV, Couch FJ, Olson JE, Sawyer EJ, Roylance R, Bojesen SE, Flyger H, Lambrechts D, Baten A, Matsuo K, Ito H, Guénel P, Truong T, Keeman R, Schmidt MK, Wu AH, Tseng CC, Cox A, Cross SS, Andrulis IL, Hopper JL, Southey MC, Wu PE, Shen CY, Fasching PA, Ekici AB, Muir K, Lophatananon A, Brenner H, Arndt V, Jones ME, Swerdlow AJ, Hoppe R, Ko YD, Hartman M, Li J, Mannermaa A, Hartikainen JM, Benitez J, González-Neira A, Haiman CA, Dörk T, Bogdanova NV, Teo SH, Mohd Taib NA, Fletcher O, Johnson N, Grip M, Winqvist R, Blomqvist C, Nevanlinna H, Lindblom A, Wendt C, Kristensen VN, Tollenaar RAEM, Heemskerk-Gerritsen BAM, Radice P, Bonanni B, Hamann U, Manoochehri M, Lacey JV, Martinez ME, Dunning AM, Pharoah PDP, Easton DF, Yoo KY, Kang D. Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies? Cancers (Basel) 2021; 13:2370. [PMID: 34069208 PMCID: PMC8156547 DOI: 10.3390/cancers13102370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
In this study we aim to examine gene-environment interactions (GxEs) between genes involved with estrogen metabolism and environmental factors related to estrogen exposure. GxE analyses were conducted with 1970 Korean breast cancer cases and 2052 controls in the case-control study, the Seoul Breast Cancer Study (SEBCS). A total of 11,555 SNPs from the 137 candidate genes were included in the GxE analyses with eight established environmental factors. A replication test was conducted by using an independent population from the Breast Cancer Association Consortium (BCAC), with 62,485 Europeans and 9047 Asians. The GxE tests were performed by using two-step methods in GxEScan software. Two interactions were found in the SEBCS. The first interaction was shown between rs13035764 of NCOA1 and age at menarche in the GE|2df model (p-2df = 1.2 × 10-3). The age at menarche before 14 years old was associated with the high risk of breast cancer, and the risk was higher when subjects had homozygous minor allele G. The second GxE was shown between rs851998 near ESR1 and height in the GE|2df model (p-2df = 1.1 × 10-4). Height taller than 160 cm was associated with a high risk of breast cancer, and the risk increased when the minor allele was added. The findings were not replicated in the BCAC. These results would suggest specificity in Koreans for breast cancer risk.
Collapse
Affiliation(s)
- JooYong Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; (J.P.); (S.C.); (S.K.P.); (D.K.)
- BK21plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; (J.P.); (S.C.); (S.K.P.); (D.K.)
- BK21plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (W.H.); (D.-Y.N.)
| | - Jaesung Choi
- Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul 03080, Korea;
| | - Seokang Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; (J.P.); (S.C.); (S.K.P.); (D.K.)
| | - Nan Song
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Korea;
| | - Sue K. Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; (J.P.); (S.C.); (S.K.P.); (D.K.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (W.H.); (D.-Y.N.)
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (W.H.); (D.-Y.N.)
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (W.H.); (D.-Y.N.)
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sei-Hyun Ahn
- Department of Surgery, Medicine and ASAN Medical Center, University of Ulsan College, Seoul 05505, Korea; (S.-H.A.); (J.W.L.)
| | - Jong Won Lee
- Department of Surgery, Medicine and ASAN Medical Center, University of Ulsan College, Seoul 05505, Korea; (S.-H.A.); (J.W.L.)
| | - Mi Kyung Kim
- Division of Cancer Epidemiology and Management, National Cancer Center, Goyang-si 10408, Korea;
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Korea;
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 23462, Cyprus
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Don M. Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Patricia A. Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Rebecca Mayes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; (K.C.); (P.H.)
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; (K.C.); (P.H.)
- Department of Oncology, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA;
| | - Alpa V. Patel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.V.P.); (F.J.C.)
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.V.P.); (F.J.C.)
| | - Janet E. Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA;
| | - Elinor J. Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy’s Campus, King’s College London, London SE1 9RT, UK;
| | - Rebecca Roylance
- Department of Oncology, UCLH Foundation Trust, London NW1 2PG, UK;
| | - Stig E. Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark;
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark;
| | - Diether Lambrechts
- VIB Center for Cancer Biology, 3001 Leuve, Belgium;
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Adinda Baten
- Department of Radiotherapy Oncology, KU Leuven—University of Leuven, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan;
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Hidemi Ito
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, 94805 Villejuif, France; (P.G.); (T.T.)
| | - Thérèse Truong
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, 94805 Villejuif, France; (P.G.); (T.T.)
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (R.K.); (M.K.S.)
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (R.K.); (M.K.S.)
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.H.W.); (C.-C.T.); (C.A.H.)
| | - Chiu-Chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.H.W.); (C.-C.T.); (C.A.H.)
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2TN, UK;
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield S10 2TN, UK;
| | - kConFab Investigators
- Peter MacCallum Cancer Center, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Irene L. Andrulis
- Fred A, Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia;
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
| | - Pei-Ei Wu
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
- School of Public Health, China Medical University, Taichung 404, Taiwan
| | - Peter A. Fasching
- Department of Medicine Division of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (K.M.); (A.L.)
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (K.M.); (A.L.)
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (V.A.)
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (V.A.)
| | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK; (M.E.J.); (A.J.S.)
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK; (M.E.J.); (A.J.S.)
- Division of Breast Cancer Research, The Institute of Cancer Research, London SW7 3RP, UK
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
- University of Tübingen, 72074 Tübingen, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, 53177 Bonn, Germany;
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Department of Surgery, National University Health System, Singapore 119228, Singapore
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore 138672, Singapore;
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; (A.M.); (J.M.H.)
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Jaana M. Hartikainen
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; (A.M.); (J.M.H.)
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Javier Benitez
- Biomedical Network on Rare Diseases (CIBERER), 28029 Madrid, Spain;
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain;
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain;
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.H.W.); (C.-C.T.); (C.A.H.)
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany; (T.D.); (N.V.B.)
| | - Natalia V. Bogdanova
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany; (T.D.); (N.V.B.)
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
- NN Alexandrov Research Institute of Oncology and Medical Radiology, 223040 Minsk, Belarus
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya 47500, Malaysia;
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK; (O.F.); (N.J.)
| | - Nichola Johnson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK; (O.F.); (N.J.)
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland;
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, 90570 Oulu, Finland;
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu 90570, Finland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland;
- Department of Oncology, Örebro University Hospital, 70185 Örebro, Sweden
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland;
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden;
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83 Stockholm, Sweden;
| | - Vessela N. Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (V.N.K.); (NBCS Collaborators)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - NBCS Collaborators
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (V.N.K.); (NBCS Collaborators)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Research, Vestre Viken Hospital, 3004 Drammen, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, 0450 Oslo, Norway
- Section for Breast- and Endocrine Surgery, Department of Cancer, Division of Surgery, Cancer and Transplantation Medicine, Oslo University Hospital-Ullevål, 0450 Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0450 Oslo, Norway
- Department of Pathology at Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Oncology, Division of Surgery and Cancer and Transplantation Medicine, University Hospital-Radiumhospitalet, 0405 Oslo, Norway
- National Advisory Unit on Late Effects after Cancer Treatment, Department of Oncology, Oslo University Hospital, 0405 Oslo, Norway
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
- Oslo Breast Cancer Research Consortium, Oslo University Hospital, 0405 Oslo, Norway
| | - Rob A. E. M. Tollenaar
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy;
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (U.H.); (M.M.)
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (U.H.); (M.M.)
| | - James V. Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Maria Elena Martinez
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA;
- Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, CA 92161, USA
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Paul D. P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Keun-Young Yoo
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; (J.P.); (S.C.); (S.K.P.); (D.K.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (W.H.); (D.-Y.N.)
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
| |
Collapse
|
10
|
Morgenstern J, Katz S, Krebs-Haupenthal J, Chen J, Saadatmand A, Cortizo FG, Moraru A, Zemva J, Campos MC, Teleman A, Backs J, Nawroth P, Fleming T. Phosphorylation of T107 by CamKIIδ Regulates the Detoxification Efficiency and Proteomic Integrity of Glyoxalase 1. Cell Rep 2021; 32:108160. [PMID: 32966793 DOI: 10.1016/j.celrep.2020.108160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023] Open
Abstract
The glyoxalase system is a highly conserved and ubiquitously expressed enzyme system, which is responsible for the detoxification of methylglyoxal (MG), a spontaneous by-product of energy metabolism. This study is able to show that a phosphorylation of threonine-107 (T107) in the (rate-limiting) Glyoxalase 1 (Glo1) protein, mediated by Ca2+/calmodulin-dependent kinase II delta (CamKIIδ), is associated with elevated catalytic efficiency of Glo1 (lower KM; higher Vmax). Additionally, we observe proteasomal degradation of non-phosphorylated Glo1 via ubiquitination does occur more rapidly as compared with native Glo1. The absence of CamKIIδ is associated with poor detoxification capacity and decreased protein content of Glo1 in a murine CamKIIδ knockout model. Therefore, phosphorylation of T107 in the Glo1 protein by CamKIIδ is a quick and precise mechanism regulating Glo1 activity, which is experimentally linked to an altered Glo1 status in cancer, diabetes, and during aging.
Collapse
Affiliation(s)
- Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany.
| | - Sylvia Katz
- Department Molecular Cardiology and Epigenetics, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Jutta Krebs-Haupenthal
- Department Molecular Cardiology and Epigenetics, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Jessy Chen
- Department Molecular Cardiology and Epigenetics, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Alireza Saadatmand
- Department Molecular Cardiology and Epigenetics, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | | | - Alexandra Moraru
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Johanna Zemva
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Marta Campos Campos
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Aurelio Teleman
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Johannes Backs
- Department Molecular Cardiology and Epigenetics, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| |
Collapse
|
11
|
Association of GSTP1 p.Ile105Val (rs1695, c.313A > G) Variant with the Risk of Breast Carcinoma among Egyptian Women. Biochem Genet 2021; 59:1487-1505. [PMID: 33939082 DOI: 10.1007/s10528-021-10070-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Several reports examined the association of the GSTP1 p.Ile105Val (rs1695, c.313A > G) variant with the elevated risk of multiple cancerous diseases involving breast carcinoma, but with inconclusive findings. The primary purpose of this study is to test the association of this essential variant with the risk of breast carcinoma among Egyptian females. This case-control study was conducted based on 200 participants involving 100 women diagnosed with breast carcinoma and 100 unrelated cancer-free controls from the same district. The genomic DNA for all participants was genotyped utilizing T-ARMS-PCR procedure. The frequencies of the GSTP1 p.Ile105Val (rs1695, c.313A > G) variant indicated a statistically significant with the elevated risk of breast carcinoma under various genetic models, including allelic (OR = 2.48, P-value < 0.001) and dominant (OR = 2.36, P-value = 0.003) models. In conclusion, the GSTP1 p.Ile105Val (rs1695, c.313A > G) variant was considered as an independent risk factor for breast carcinoma among Egyptian women.
Collapse
|
12
|
Farhud DD, Zokaei S, Keykhaei M, Hedayati M, Zarif Yeganeh M. In-Vitro Fertilization Impact on the Risk of Breast Cancer: A Review Article. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:438-447. [PMID: 34178791 PMCID: PMC8214614 DOI: 10.18502/ijph.v50i3.5583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Due to the increasing prevalence of infertility, the number of referrals to infertility treatment centers has also increased. Nowadays, assisted reproductive technology (ART), including in vitro fertilization (IVF), is a treatment for infertility or genetic problems. Considering the possible consequences of this method among women undergoing in vitro fertilization (IVF) and kids conceived by IVF, extensive research has been conducted in this regard. Methods Overall, 100 articles were entered into the study, and relevant articles were searched and extracted from PubMed, Springer, and Google Scholar databases. In IVF procedure, medications such as Clomiphene citrate and gonadotropins are used to stimulate and mature follicles and thus increase ovulation. Results There are conflicting opinions on this issue. Some findings report a slight increase in cancer risk for hormone-sensitive cancers including breast cancer. The long-term use of IVF medications can increase estrogen hormones and cause excessive expression of genes, resulting in an increased risk of breast cancer, which is one of the most frequent cancers among women. Conclusion There are some risks to be aware of, which followed the hypothesis that long IVF treatment process may lead to breast cancer among IVF candidates. Furthermore, the risk of breast cancer may be increased in those women with a positive family history and related inherited genes. Therefore, women candidates for IVF should be informed of the probable implications of the reproductive therapy techniques.
Collapse
Affiliation(s)
- Dariush D Farhud
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran
| | - Shaghayegh Zokaei
- School of Advanced Medical Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Keykhaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Zarif Yeganeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Revilla G, Cedó L, Tondo M, Moral A, Pérez JI, Corcoy R, Lerma E, Fuste V, Reddy ST, Blanco-Vaca F, Mato E, Escolà-Gil JC. LDL, HDL and endocrine-related cancer: From pathogenic mechanisms to therapies. Semin Cancer Biol 2020; 73:134-157. [PMID: 33249202 DOI: 10.1016/j.semcancer.2020.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol is essential for a variety of functions in endocrine-related cells, including hormone and steroid production. We have reviewed the progress to date in research on the role of the main cholesterol-containing lipoproteins; low-density lipoprotein (LDL) and high-density lipoprotein (HDL), and their impact on intracellular cholesterol homeostasis and carcinogenic pathways in endocrine-related cancers. Neither LDL-cholesterol (LDL-C) nor HDL-cholesterol (HDL-C) was consistently associated with endocrine-related cancer risk. However, preclinical studies showed that LDL receptor plays a critical role in endocrine-related tumor cells, mainly by enhancing circulating LDL-C uptake and modulating tumorigenic signaling pathways. Although scavenger receptor type BI-mediated uptake of HDL could enhance cell proliferation in breast, prostate, and ovarian cancer, these effects may be counteracted by the antioxidant and anti-inflammatory properties of HDL. Moreover, 27-hydroxycholesterol a metabolite of cholesterol promotes tumorigenic processes in breast and epithelial thyroid cancer. Furthermore, statins have been reported to reduce the incidence of breast, prostate, pancreatic, and ovarian cancer in large clinical trials, in part because of their ability to lower cholesterol synthesis. Overall, cholesterol homeostasis deregulation in endocrine-related cancers offers new therapeutic opportunities, but more mechanistic studies are needed to translate the preclinical findings into clinical therapies.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain
| | - Lídia Cedó
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Mireia Tondo
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Antonio Moral
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain
| | - José Ignacio Pérez
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Rosa Corcoy
- Departament de Medicina, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Enrique Lerma
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Victoria Fuste
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Srivinasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Francisco Blanco-Vaca
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain.
| | - Eugènia Mato
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain.
| |
Collapse
|
14
|
Chen Z, Wang Y, Wang J, Kang M, Tang W, Chen S. Assessment of PPARGC1A, PPARGC1B, and PON1 Genetic Polymorphisms in Esophageal Squamous Cell Carcinoma Susceptibility in the Eastern Chinese Han Population: A Case-Control Study Involving 2351 Subjects. DNA Cell Biol 2020; 39:1521-1531. [PMID: 32721231 DOI: 10.1089/dna.2020.5416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previous studies suggested that alterations in the energy metabolism might be underlying cancer initiation and progression. Polymorphisms of genes involved in energy metabolism regulation, such as peroxisome proliferator-activated receptor gamma coactivator 1α (PPARGC1A), -β (PPARGC1B), and paraoxonase 1 (PON1), might confer susceptibility to esophageal squamous cell carcinoma (ESCC) and partially explain its pathogenesis. We investigated the effects of several single nucleotide polymorphisms (SNPs) in three metabolic-related genes (e.g., PPARGC1A, PPARGC1B, and PON1) on ESCC susceptibility. In total, 829 patients with sporadic ESCC and 1522 nontumor controls were enrolled in the study. SNPs were genotyped using PCR-ligase detection reaction. Our study revealed that the PPARGC1A rs3736265 G/A SNP significantly increased the risk for ESCC (GA vs. GG: adjusted odds ratio [OR] = 1.25, 95% confidence interval [95% CI] = 1.02-1.54, p = 0.034; GA+AA vs. GG: adjusted OR = 1.25, 95% CI = 1.03-1.52, p = 0.027]. In addition, a stratified analysis revealed that the PPARGC1A rs3736265 SNP was correlated with the development of ESCC in male and nondrinking subgroups. We also confirmed that the PPARGC1B rs17572019 G/A SNP promoted the risk of ESCC in subgroup with high alcohol intake. The PPARGC1A rs8192678 C/T polymorphism decreased the susceptibility of ESCC in men. These findings highlight that polymorphisms in PPARGC1A and PPARGC1B may contribute to ESCC susceptibility. In the future, further well-designed epidemiological studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yafeng Wang
- Department of Cardiology, The People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, China
| | - Jusi Wang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Weifeng Tang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
15
|
Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants (Basel) 2020; 9:antiox9020124. [PMID: 32024152 PMCID: PMC7071005 DOI: 10.3390/antiox9020124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress is a dysfunctional state consisting in the abnormal accumulation of reactive α-oxaldehydes leading to increased protein modification. In cells, post-translational changes can also occur through S-glutathionylation, a highly conserved oxidative post-translational modification consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue. This review recapitulates the main findings supporting a role for dicarbonyl stress and S-glutathionylation in the pathogenesis of cerebrovascular diseases, with specific emphasis on cerebral cavernous malformations (CCM), a vascular disease of proven genetic origin that may give rise to various clinical signs and symptoms at any age, including recurrent headaches, seizures, focal neurological deficits, and intracerebral hemorrhage. A possible interplay between dicarbonyl stress and S-glutathionylation in CCM is also discussed.
Collapse
|
16
|
Micarelli A, Cormano A, Caccamo D, Alessandrini M. Olfactory-Related Quality of Life in Multiple Chemical Sensitivity: A Genetic-Acquired Factors Model. Int J Mol Sci 2019; 21:ijms21010156. [PMID: 31881664 PMCID: PMC6981591 DOI: 10.3390/ijms21010156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Genetic polymorphisms as well as environmental exposures to chemical compounds, iatrogenic, psychological, and physical trauma may play a pathophysiological role in multiple chemical sensitivity (MCS) olfactory complaints, given that xenobiotic metabolism is influenced by sequence variations in genes of metabolizing enzymes. Thus, the aim of the present study was to depict-by means of multiple regression analysis-how different genetic conditions, grouped according to their function as well as clinical background and environmental exposure may interfere with those olfactory complaints referred by MCS patients. Therefore, MCS patients after gene polymorphism sequencing, the olfactory-related quality of life score-calculated by means of the Questionnaire of Olfactory Disorder in forty-six MCS patients-have been found to significantly rely on the phase I and II enzymes score and exposure to previous compounds and surgical treatments. The present work-implementing for the first time a genetic-acquired factors model on a regression analysis-further reinforces those theories, positing MCS as a complex, multifactorial, disease in which the genetic risk related to phase I and II enzymes involved in xenobiotic detoxification, olfactory, and neurodegenerative diseases play a necessary, but probably not sufficient role, along the pathophysiological route of the disease.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Institute of Mountain Emergency Medicine, EURAC Research, I-39100 Bolzano, Italy
- ITER Center for Balance and Rehabilitation Research (ICBRR), 02032 Rome, Italy
- Correspondence:
| | | | - Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, 98124 Messina, Italy;
| | - Marco Alessandrini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
17
|
Tian X, Wang Y, Ding X, Cheng W. High expression of GLO1 indicates unfavorable clinical outcomes in glioma patients. J Neurosurg Sci 2019; 66:228-233. [PMID: 31738028 DOI: 10.23736/s0390-5616.19.04805-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUNDS Glyoxalase I (GLO1), a ubiquitous enzyme involved in the process of detoxification of methylglyoxal in the cellular glycolysis pathway, was reported to be highly expressed in human tumor. It has also been found that GLO1 is associated with tumor cell survival and proliferation in some types of cancer, such as pancreatic cancer, hepatocellular carcinoma and gastric cancer. However, the role of GLO1 in glioma has not been clarified. The purpose of present study is to explore the expression pattern of GLO1 and whether the expression level of GLO1 is associated with the unfavorable clinical outcomes of patients with glioma. METHODS Quantitative RT-PCR and immunohistochemistry staining were used to investigate the mRNA and protein level of GLO1 in glioma tissues together with normal brain tissues. The prognostic role of GLO1 in glioma patients was assessed using univariate and multivariate analyses. Clinical outcomes were estimated by using the Kaplan-Meier analysis and the log-rank test. The function of GLO1 in glioma cell lines were investigated by in vitro experiments. RESULTS Expression level of GLO1 was higher in glioma tissues than that in normal brain tissues. High GLO1 expression was significantly correlated with WHO grade and the poor overall survival time in glioma patients. Moreover, GLO1 was also defined as an unfavorable prognosis factor. Overexpression of GLO1 in the glioma cell line U87 can enhance the tumor cell proliferation, migration and invasion. Whereas, knockdown of GLO1 can suppress those abilities. CONCLUSIONS Our studies demonstrated that GLO1 was highly expressed in glioma tissues and significantly correlated with the poor prognosis of glioma patients. It indicated that GLO1 might serve as a new prognostic predictor and therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Xiaomin Tian
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Yu Wang
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Xue Ding
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Wei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China -
| |
Collapse
|
18
|
Kaune T, Hollenbach M, Keil B, Chen JM, Masson E, Becker C, Damm M, Ruffert C, Grützmann R, Hoffmeister A, te Morsche RHM, Cavestro GM, Zuppardo RA, Saftoiu A, Malecka-Panas E, Głuszek S, Bugert P, Lerch MM, Weiss FU, Zou WB, Liao Z, Hegyi P, Drenth JPH, Riedel J, Férec C, Scholz M, Kirsten H, Tóth A, Ewers M, Witt H, Griesmann H, Michl P, Rosendahl J. Common variants in glyoxalase I do not increase chronic pancreatitis risk. PLoS One 2019; 14:e0222927. [PMID: 31661534 PMCID: PMC6818803 DOI: 10.1371/journal.pone.0222927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction Chronic pancreatitis (CP) may be caused by oxidative stress. An important source of reactive oxygen species (ROS) is the methylglyoxal-derived formation of advanced glycation endproducts (AGE). Methylglyoxal is detoxified by Glyoxalase I (GLO1). A reduction in GLO1 activity results in increased ROS. Single nucleotide polymorphisms (SNPs) of GLO1 have been linked to various inflammatory diseases. Here, we analyzed whether common GLO1 variants are associated with alcoholic (ACP) and non-alcoholic CP (NACP). Methods Using melting curve analysis, we genotyped a screening cohort of 223 ACP, 218 NACP patients, and 328 controls for 11 tagging SNPs defined by the SNPinfo LD TAG SNP Selection tool and the functionally relevant variant rs4746. For selected variants the cohorts were extended to up to 1,441 patient samples. Results In the ACP cohort, comparison of genotypes for rs1937780 between patients and controls displayed an ambiguous result in the screening cohort (p = 0.08). However, in the extended cohort of 1,441 patients no statistically significant association was found for the comparison of genotypes (p = 0.11), nor in logistic regression analysis (p = 0.214, OR 1.072, 95% CI 0.961–1.196). In the NACP screening cohort SNPs rs937662, rs1699012, and rs4746 displayed an ambiguous result when patients were compared to controls in the recessive or dominant model (p = 0.08, 0.08, and 0.07, respectively). Again, these associations were not confirmed in the extended cohorts (rs937662, dominant model: p = 0.07, logistic regression: p = 0.07, OR 1.207, 95% CI 0.985–1.480) or in the replication cohorts for rs4746 (Germany, p = 0.42, OR 1.080, 95% CI 0.673–1.124; France, p = 0.19, OR 0.90, 95% CI 0.76–1.06; China, p = 0.24, OR 1.18, 95% CI 0.90–1.54) and rs1699012 (Germany, Munich; p = 0.279, OR 0.903, 95% CI 0.750–1.087). Conclusions Common GLO1 variants do not increase chronic pancreatitis risk.
Collapse
Affiliation(s)
- Tom Kaune
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Marcus Hollenbach
- Medical Department II–Gastroenterology, Hepatology, Infectious Diseases, Pulmonology, University of Leipzig Medical Center, Leipzig, Germany
| | - Bettina Keil
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Etablissement Français du Sang (EFS)–Bretagne, Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Emmanuelle Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Etablissement Français du Sang (EFS)–Bretagne, Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Carla Becker
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Marko Damm
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Claudia Ruffert
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Robert Grützmann
- Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Chirurgische Klinik, Erlangen, Germany
| | - Albrecht Hoffmeister
- Medical Department II–Gastroenterology, Hepatology, Infectious Diseases, Pulmonology, University of Leipzig Medical Center, Leipzig, Germany
| | - Rene H. M. te Morsche
- Department of Gastroenterology and Hepatology, Radboud umc, Nijmegen, The Netherlands
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Alessia Zuppardo
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Adrian Saftoiu
- Department of Internal Medicine and Gastroenterology, University of Medicine and Pharmacy, Craiova, Romania
| | - Ewa Malecka-Panas
- Department of Digestive Tract Diseases, Medical University of Łódź, Łódź, Poland
| | - Stanislaw Głuszek
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg, Mannheim, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Peter Hegyi
- Institute for Translational Medicine and First Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary
- HAS-SZTE, Momentum Gastroenterology Multidisciplinary Research Group, Szeged, Hungary
| | - Joost PH Drenth
- Department of Gastroenterology and Hepatology, Radboud umc, Nijmegen, The Netherlands
| | - Jan Riedel
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Etablissement Français du Sang (EFS)–Bretagne, Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Andrea Tóth
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Maren Ewers
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Heiko Witt
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Heidi Griesmann
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
- * E-mail:
| |
Collapse
|
19
|
The Association between PON1 (Q192R and L55M) Gene Polymorphisms and Risk of Cancer: A Meta-Analysis Based on 43 Studies. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5897505. [PMID: 31467900 PMCID: PMC6699405 DOI: 10.1155/2019/5897505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/16/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023]
Abstract
Q192R and L55M polymorphism were considered to be associated with the development of multiple cancers. Nevertheless, the results of these researches were inconclusive and controversial. Therefore, we conducted a meta-analysis of all eligible case-control studies to assess the association between PON1 (Q192R and L55M) gene polymorphisms and risk of cancer. With the STATA 14.0 software, we evaluated the strength of the association by using the odds ratios (ORs) and 95% confidence intervals (CIs). A total of 43 case-control publications 19887 cases and 23842 controls were employed in our study. In all genetic models, a significant association between PON1-L55M polymorphisms and overall cancer risk was observed. Moreover, in the stratified analyses by cancer type, polymorphism of PON1-L55M played a risk factor in the occurrence of breast cancer, hematologic cancer, and prostate cancer. Similarly, an increased risk was observed in the Caucasian and Asian population as well as hospital-based group and population-based group. For PON1-Q192R polymorphisms, in the stratified analyses by cancer type, PON1-Q192R allele was associated with reduced cancer risks in breast cancer. Furthermore, for racial stratification, there was a reduced risk of cancer in recession model in Caucasian population. Similarly, in the stratification analysis of control source, the overall risk of cancer was reduced in the heterozygote comparison and dominant model in the population-based group. In conclusion, PON1-Q192R allele decreased the cancer risk especially breast cancer; there was an association between PON1-L55M allele and increased overall cancer risk. However, we need a larger sample size, well-designed in future and at protein levels to confirm these findings.
Collapse
|
20
|
Ose J, Botma A, Balavarca Y, Buck K, Scherer D, Habermann N, Beyerle J, Pfütze K, Seibold P, Kap EJ, Benner A, Jansen L, Butterbach K, Hoffmeister M, Brenner H, Ulrich A, Schneider M, Chang‐Claude J, Burwinkel B, Ulrich CM. Pathway analysis of genetic variants in folate-mediated one-carbon metabolism-related genes and survival in a prospectively followed cohort of colorectal cancer patients. Cancer Med 2018; 7:2797-2807. [PMID: 29845757 PMCID: PMC6051204 DOI: 10.1002/cam4.1407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/13/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023] Open
Abstract
Folate-mediated one-carbon metabolism (FOCM) is a key pathway essential for nucleotide synthesis, DNA methylation, and repair. This pathway is a critical target for 5-fluorouracil (5-FU), which is predominantly used for colorectal cancer (CRC) treatment. A comprehensive assessment of polymorphisms in FOCM-related genes and their association with prognosis has not yet been performed. Within 1,739 CRC cases aged ≥30 years diagnosed from 2003 to 2007 (DACHS study), we investigated 397 single nucleotide polymorphisms (SNPs) and 50 candidates in 48 FOCM-related genes for associations with overall- (OS) and disease-free survival (DFS) using multiple Cox regression (adjusted for age, sex, stage, grade, BMI, and alcohol). We investigated effect modification by 5-FU-based chemotherapy and assessed pathway-specific effects. Correction for multiple testing was performed using false discovery rates (FDR). After a median follow-up time of 5.0 years, 585 patients were deceased. For one candidate SNP in MTHFR and two in TYMS, we observed significant inverse associations with OS (MTHFR: rs1801133, C677T: HRhet = 0.81, 95% CI: 0.67-0.97; TYMS: rs1001761: HRhet = 0.82, 95% CI: 0.68-0.99 and rs2847149: HRhet = 0.82, 95% CI: 0.68-0.99). After FDR correction, one polymorphism in paraoxonase 1 (PON1; rs3917538) was significantly associated with OS (HRhet = 1.28, 95% CI: 1.07-1.53; HRhzv = 2.02, 95% CI:1.46-2.80; HRlogAdd = 1.31, pFDR = 0.01). Adjusted pathway analyses showed significant associations for pyrimidine biosynthesis (P = 0.04) and fluorouracil drug metabolism (P < 0.01) with significant gene-chemotherapy interactions, including PON1 rs3917538. This study supports the concept that FOCM-related genes could be associated with CRC survival and may modify effects of 5-FU-based chemotherapy in genes in pyrimidine and fluorouracil metabolism, which are relevant targets for therapeutic response and prognosis in CRC. These results require confirmation in additional clinical studies.
Collapse
Affiliation(s)
- Jennifer Ose
- Department of Population Health SciencesHuntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| | - Akke Botma
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Yesilda Balavarca
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Katharina Buck
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Dominique Scherer
- Institute of Medical Biometry and InformaticsUniversity of HeidelbergHeidelbergGermany
| | - Nina Habermann
- Genome Biology, European Molecular Biology LaboratoryGerman Cancer Research Center and National Center for Tumor DiseasesHeidelbergGermany
- Division of Molecular EpidemiologyGerman Cancer Research CenterHeidelbergGermany
| | - Jolantha Beyerle
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Katrin Pfütze
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
- Division Molecular Biology of Breast CancerDepartment of Gynecology and ObstetricsUniversity of HeidelbergHeidelbergGermany
| | - Petra Seibold
- Division of Cancer Epidemiology German Cancer Research CenterHeidelbergGermany
| | - Elisabeth J. Kap
- Division of Cancer Epidemiology German Cancer Research CenterHeidelbergGermany
| | - Axel Benner
- Division of BiostatisticsGerman Cancer Research CenterHeidelbergGermany
| | - Lina Jansen
- Division of Cancer Epidemiology German Cancer Research CenterHeidelbergGermany
| | - Katja Butterbach
- Division of Cancer Epidemiology German Cancer Research CenterHeidelbergGermany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research CenterHeidelbergGermany
| | - Hermann Brenner
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research CenterHeidelbergGermany
| | - Alexis Ulrich
- Clinic for General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | - Martin Schneider
- Clinic for General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | - Jenny Chang‐Claude
- Division Molecular Biology of Breast CancerDepartment of Gynecology and ObstetricsUniversity of HeidelbergHeidelbergGermany
| | - Barbara Burwinkel
- Division of Molecular EpidemiologyGerman Cancer Research CenterHeidelbergGermany
- Division Molecular Biology of Breast CancerDepartment of Gynecology and ObstetricsUniversity of HeidelbergHeidelbergGermany
| | - Cornelia M. Ulrich
- Department of Population Health SciencesHuntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| |
Collapse
|
21
|
Paraoxonase-1 activity in patients with cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2018; 127:6-14. [PMID: 29891113 DOI: 10.1016/j.critrevonc.2018.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Paraoxonase-1 (PON1) is a lipolactonase implicated in the elimination of carcinogenic free radicals and in the scavenging mechanisms to maintain oxidative balance. The objective of the present systematic review and meta-analysis was to evaluate possible alterations in serum PON1 activity in patients with cancer. METHODS A systematic search of the observational studies in humans published in the last 15 years was performed through Medline databases following the PRISMA and STARLITE statements. Further, a keyword-based computerized search with restrictions on publication date, and a meta-analysis of case-control studies was performed. RESULTS In total, 23 studies were included most of which reported decreased PON1 activity in patients with cancer. This could indicate impaired defense ability against oxidative stress with potential implications in cell proliferation, promotion of genetic instability, and alterations in cellular sensitivity to chemotherapy. CONCLUSION This systematic review and meta-analysis confirms a consistent association between cancer and decreased serum PON1 activities. These findings may open fruitful lines of research with clinical relevance, and an understanding of molecular alterations underlying carcinogenesis.
Collapse
|
22
|
Marinucci L, Balloni S, Fettucciari K, Bodo M, Talesa VN, Antognelli C. Nicotine induces apoptosis in human osteoblasts via a novel mechanism driven by H 2O 2 and entailing Glyoxalase 1-dependent MG-H1 accumulation leading to TG2-mediated NF-kB desensitization: Implication for smokers-related osteoporosis. Free Radic Biol Med 2018; 117:6-17. [PMID: 29355739 DOI: 10.1016/j.freeradbiomed.2018.01.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Nicotine contained in cigarette smoke contributes to the onset of several diseases, including osteoporosis, whose emerging pathogenic mechanism is associated with osteoblasts apoptosis. Scanty information is available on the molecular mechanisms of nicotine on osteoblasts apoptosis and, consequently, on an important aspect of the pathogenesis of smokers-related osteoporosis. Glyoxalase 1 (Glo1) is the detoxification enzyme of methylglyoxal (MG), a major precursor of advanced glycation end products (AGEs), potent pro-apoptotic agents. Hydroimidazolone (MG-H1) is the major AGE derived from the spontaneous MG adduction of arginine residues. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 was involved in the apoptosis induced by 0.1 and 1µM nicotine in human primary osteoblasts chronically exposed for 11 and 21 days. By using gene overexpression/silencing and scavenging/inhibitory agents, we demonstrated that nicotine induces a significant intracellular accumulation of hydrogen peroxide (H2O2) that, by inhibiting Glo1, drives MG-H1 accumulation/release. MG-H1, in turn, triggers H2O2 overproduction via receptor for AGEs (RAGE) and, in parallel, an apoptotic mitochondrial pathway by inducing Transglutaminase 2 (TG2) downregulation-dependent NF-kB desensitization. Measurements of H2O2, Glo1 and MG-H1 circulating levels in smokers compared with non-smokers or in smokers with osteoporosis compared with those without this bone-related disease supported the results obtained in vitro. Our findings newly pose the antiglycation enzymatic defense Glo1 and MG-H1 among the molecular events involved in nicotine-induced reactive oxygen species-mediated osteoblasts apoptosis, a crucial event in smoker-related osteoporosis, and suggest novel exposure markers in health surveillance programmes related to smokers-associated osteoporosis.
Collapse
Affiliation(s)
| | - Stefania Balloni
- Department of Experimental Medicine, University of Perugia, Italy
| | | | - Maria Bodo
- Department of Experimental Medicine, University of Perugia, Italy
| | | | | |
Collapse
|
23
|
Abdul-Maksoud RS, Elsayed WS, Elsayed RS. The influence of glyoxalase 1 gene polymorphism on its expression at different stages of breast cancer in Egyptian women. Genes Cancer 2017; 8:799-807. [PMID: 29321821 PMCID: PMC5755725 DOI: 10.18632/genesandcancer.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim To assess the association of GLO1 C332C gene polymorphism with breast cancer risk at different stages of the disease and to investigate the effect of this gene polymorphism on its mRNA expression and enzyme activity. Methods GLO1 C332C gene polymorphism was analyzed by PCR-RFLP in 100 healthy controls and 200 patients with breast cancer (100 patients with stage I & II and 100 patients with stage III & IV). GLO1 mRNA expression was measured by real time PCR. Serum GLO1 enzyme activity was measured colorimetrically. Results GLO1 A allele was associated with increased risk of breast cancer [OR (95%CI)= 2.8(1.9-4.1), P < 0.001]. Its frequency was significantly higher among advanced stages of breast cancer compared with localized tumors (OR (95%CI)= 1.9(1.3-2.9), p < 0.001). GLO1 mRNA expression and enzyme activity were significantly higher in breast cancer patients compared to controls and they were much higher in the advanced stages of the disease (P < 0.001). Carriers of AA genotype showed higher GLO1 expression and enzyme activity compared with carriers of CC genotype. Conclusion GLO1 C332C SNP was associated with overexpression of GLO1 mRNA and higher enzyme activity in breast cancer patients suggesting its role in the development of breast cancer and its progression from localized to advanced.
Collapse
Affiliation(s)
| | - Walid Sh Elsayed
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Rasha S Elsayed
- General Surgery Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
24
|
Sun J, Zhang H, Gao M, Tang Z, Guo D, Zhang X, Wang Z, Li R, Liu Y, Sun W, Sun X. Association between CYP17 T-34C rs743572 and breast cancer risk. Oncotarget 2017; 9:4200-4213. [PMID: 29423115 PMCID: PMC5790532 DOI: 10.18632/oncotarget.23688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022] Open
Abstract
Association between CYP17 T-34C (rs743572) polymorphism and breast cancer (BC) risk was controversial. In order to derive a more definitive conclusion, we performed this meta-analysis. We searched in the databases of PubMed, EMBASE and Cochrane for eligible publications. Pooled odds ratios (ORs) with 95% confidence intervals (95% CIs) were used to assess the strength of association between CYP17 T-34C polymorphism and breast cancer risk. Forty-nine studies involving 2,7104 cases and 3,4218 control subjects were included in this meta-analysis. In overall, no significant association between CYP17 T-34C polymorphism and breast cancer susceptibility was found among general populations. In the stratified analysis by ethnicity and source, significant associations were still not detected in all genetic models; besides, limiting the analysis to studies with controls in agreement with HWE, we also observed no association between CYP17 T-34C polymorphism and breast cancer risk. For premenopausal women, we didn't detect an association between rs743572 and breast cancer risk; however, among postmenopausal women, we observed that the association was statistically significant under the allele contrast genetic model (OR = 1.10, 95% CI = 1.03-1.17, P = 0.003), but not in other four models. In conclusion, rs743572 may increase breast cancer risk in postmenopausal individuals, but not in premenopausal folks and general populations.
Collapse
Affiliation(s)
- Jing Sun
- Department of Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Hong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meiyan Gao
- Clinical Laboratory, Shaanxi Provincial Hospital of traditional Chinese medicine, Xi'an, Shaanxi, China
| | - Zhishu Tang
- Department of Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Dongyan Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xiaofei Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Zhu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruiping Li
- Department of Integrated Traditional Chinese and Western Medicine, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Liu
- Department of Integrated Traditional Chinese and Western Medicine, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wansen Sun
- Department of Integrated Traditional Chinese and Western Medicine, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xi Sun
- Department of General Medicine, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Arenas M, García-Heredia A, Cabré N, Luciano-Mateo F, Hernández-Aguilera A, Sabater S, Bonet M, Gascón M, Fernández-Arroyo S, Fort-Gallifa I, Camps J, Joven J. Effect of radiotherapy on activity and concentration of serum paraoxonase-1 in breast cancer patients. PLoS One 2017; 12:e0188633. [PMID: 29176871 PMCID: PMC5703554 DOI: 10.1371/journal.pone.0188633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/11/2017] [Indexed: 12/30/2022] Open
Abstract
Paraoxonase-1 (PON1) is an intra-cellular antioxidant enzyme found also in the circulation associated with high-density lipoproteins. The activity of this enzyme has been shown to be decreased in breast cancer (BC) patients. The aims of our study were to investigate the changes produced by radiotherapy (RT) on activity and concentration of serum PON1 in BC patients, and to evaluate the observed variations in relation to clinical and pathological characteristics of patients and tumors, and the response to treatment. We studied 200 women with BC who were scheduled to receive RT following excision of the tumor. Blood for analyses was obtained before and after the irradiation procedure. The control group was composed of 200 healthy women. Relative to control, BC patients had significantly lower serum PON1 activities pre-RT, while PON1 concentrations were at similar levels. RT was associated with a significant increase in serum PON1 activities and concentrations. We observed significant differences in serum PON1 concentrations post-RT between patients with luminal A or luminal B tumors. Serum PON1 concentration post-RT was markedly lower in BC patients with metastases. We conclude that benefit from RT accrues to the BC patients not only through its direct effect on cancer cells but also indirectly by improving the organism’s anti-oxidant defense mechanisms. In addition, our preliminary evidence suggests that the measurement of serum PON1 concentration post-RT could be an efficient prognostic biomarker, and may be used as an index of the efficacy of the RT.
Collapse
Affiliation(s)
- Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Anabel García-Heredia
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Noemí Cabré
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Fedra Luciano-Mateo
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Sebastià Sabater
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Marta Bonet
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Marina Gascón
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Isabel Fort-Gallifa
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
- * E-mail:
| | - Jorge Joven
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
26
|
Peng HT, Chen J, Liu TY, Wu YQ, Lin XH, Lai YH, Huang YF. Up-regulation of the tumor promoter Glyoxalase-1 indicates poor prognosis in breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10852-10862. [PMID: 31966428 PMCID: PMC6965864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/28/2017] [Indexed: 06/10/2023]
Abstract
Glyoxalase 1 (Glo1) is an enzyme that plays a role to metabolize and inactivate methylglyoxal. Previous studies also have confirmed that Glo1 is closely related with tumorigenesis, metastasis, and drug-resistant, but its prognostic value in breast cancer has never been explored. In this study, we investigated the expression of Glo1 in breast cancer cell lines and tissues using real-time PCR, western blot and immunohistochemical analysis. We found Glo1 was frequently up-regulated in human breast cancer cells and tissues, and high expression of Glo1 was associated with positive lymph node, lymphovascular invasion, and TNM stage (all P<0.05). The Kaplan-Meier survival curve demonstrated that patients with high Glo1 expression had a shorter overall survival (OS) and recurrence-free survival (RFS) (Both P<0.001) than those with low Glo1 expression. Moreover, the univariate and further multivariate analysis revealed that Glo1 expression was an independent prognostic factor for both OS and RFS of breast cancer patients. Next, with CCK-8 assay, cell apoptosis analysis, colony formation assay, transwell invasion/migration assay, and wound-healing assay, we validated knock-down of Glo1 suppressed invasion and migration and promoted apoptosis of breast cancer cells. Taken together, we demonstrated the tumor-promoter Glo1 may serve as a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Hai-Tao Peng
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical UniversityGuangzhou 510180, Guangdong, China
- Department of General Surgery, Guangzhou Twelfth People’s Hospital, Guangzhou Medical UniversityGuangzhou 510620, Guangdong, China
| | - Jian Chen
- Department of Thyroid and Breast Surgery, The Eastern Hospital of The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510700, Guangdong, China
| | - Tian-Yu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong, China
| | - Yan-Qing Wu
- Department of Thyroid and Breast Surgery, The Eastern Hospital of The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510700, Guangdong, China
| | - Xiao-Hong Lin
- Department of Thyroid and Breast Surgery, The Eastern Hospital of The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510700, Guangdong, China
| | - Yuan-Hui Lai
- Department of Thyroid and Breast Surgery, The Eastern Hospital of The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510700, Guangdong, China
| | - Ying-Feng Huang
- Department of General Surgery, Guangzhou Twelfth People’s Hospital, Guangzhou Medical UniversityGuangzhou 510620, Guangdong, China
| |
Collapse
|
27
|
Tesarova P, Zima T, Kubena AA, Kalousova M. Polymorphisms of the receptor for advanced glycation end products and glyoxalase I and long-term outcome in patients with breast cancer. Tumour Biol 2017; 39:1010428317702902. [PMID: 28695773 DOI: 10.1177/1010428317702902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Receptor for advanced glycation end products and glyoxalase I metabolizing advanced glycation end product precursors may play important role in the pathogenesis and progression of cancer. Potential relation between soluble forms of receptor for advanced glycation end products (sRAGE), receptor for advanced glycation end products, glyoxalase I polymorphisms, and long-term outcome (median follow-up of 10.3 years) was studied in 116 patients with breast cancer. Gly82Ser and 2184 A/G RAGE polymorphisms were related to the mortality due to the breast cancer and -419 A/C glyoxalase I polymorphism was related to the overall mortality of the patients suggesting their role not only in the risk of breast cancer but also in the outcome of patients with breast cancer.
Collapse
Affiliation(s)
- Petra Tesarova
- 1 Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Zima
- 2 Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ales A Kubena
- 2 Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marta Kalousova
- 2 Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
28
|
Ludovini V, Antognelli C, Rulli A, Foglietta J, Pistola L, Eliana R, Floriani I, Nocentini G, Tofanetti FR, Piattoni S, Minenza E, Talesa VN, Sidoni A, Tonato M, Crinò L, Gori S. Influence of chemotherapeutic drug-related gene polymorphisms on toxicity and survival of early breast cancer patients receiving adjuvant chemotherapy. BMC Cancer 2017; 17:502. [PMID: 28747156 PMCID: PMC5530465 DOI: 10.1186/s12885-017-3483-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We investigated whether GSTT1 ("null" allele), GSTM1 ("null"allele), GSTP1 (A313G), RFC1 (G80A), MTHFR (C677T), TS (2R/3R) polymorphisms were associated with toxicity and survival in patients with early breast cancer (EBC) treated with adjuvant chemotherapy (CT). METHODS This prospective trial included patients with stage I-III BC subjected to CT with CMF or FEC regimens. PCR-RFLP was performed for MTHFR, RFC1 and GSTP1, while PCR for TS, GSTT1 and GSTM1 genes. RESULTS Among the 244 patients consecutively enrolled, 48.7% were treated with FEC and 51.3% with CMF. Patients with TS2R/3R genotype showed less frequently severe neutropenia (G3/G4) than those with TS2R/2R and 3R/3R genotype (p = 0.038). Patients with MTHFRCT genotype had a higher probability of developing severe neutropenia than those with MTHFR CC genotype (p = 0.043). Patients with RFC1GG or GSTT1-null genotype or their combination (GSTT1-null/RFC1GG) were significantly associated with a shorter disease free survival (DFS) (p = 0.009, p = 0.053, p = 0.003, respectively) and overall survival (OS) (p = 0.036, p = 0.015, p = 0.005, respectively). Multivariate analysis confirmed the association of RFC1GG genotype with a shorter DFS (p = 0.018) and of GSTT1-null genotype of a worse OS (p = 0.003), as well as for the combined genotypes GSTT1-null/RFC1GG, (DFS: p = 0.004 and OS: p = 0.003). CONCLUSIONS Our data suggest that TS2R/2R and 3R/3R or MTHFR CT genotypes have a potential role in identifying patients with greater risk of toxicity to CMF/FEC and that RFC1 GG and GSTT1-null genotypes alone or in combination could be important markers in predicting clinical outcome in EBC patients.
Collapse
Affiliation(s)
- Vienna Ludovini
- Medical Oncology Division, S. Maria della Misericordia Hospital, Azienda Ospedaliera of Perugia, Perugia, Italy
| | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazzale Menghini 8/9, 06156 Perugia, Italy
| | - Antonio Rulli
- Breast Unit, Department of Surgical, University of Perugia, Perugia, Italy
| | - Jennifer Foglietta
- Medical Oncology Division, S. Maria della Misericordia Hospital, Azienda Ospedaliera of Perugia, Perugia, Italy
| | - Lorenza Pistola
- Medical Oncology Division, S. Maria della Misericordia Hospital, Azienda Ospedaliera of Perugia, Perugia, Italy
| | - Rulli Eliana
- Oncology Department, IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Irene Floriani
- Oncology Department, IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesca Romana Tofanetti
- Medical Oncology Division, S. Maria della Misericordia Hospital, Azienda Ospedaliera of Perugia, Perugia, Italy
| | | | - Elisa Minenza
- Medical Oncology Division, “S. Maria” Hospital, Terni, Italy
| | - Vincenzo Nicola Talesa
- Department of Experimental Medicine, University of Perugia, Piazzale Menghini 8/9, 06156 Perugia, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine, Section of Anatomic and Histology, Medical School, University of Perugia, Perugia, Italy
| | | | - Lucio Crinò
- Medical Oncology, Istituto Scientifico Romagnolo per lo studio e la cura dei tumori (IRST), IRCCS, Meldola, Italy
| | - Stefania Gori
- Medical Oncology, SacroCuore-Don Calabria Hospital, Negrar, Verona Italy
| |
Collapse
|
29
|
Bhat A, Masood A, Wani KA, Bhat YA, Nissar B, Khan NS, Ganai BA. Promoter methylation and gene polymorphism are two independent events in regulation of GSTP1 gene expression. Tumour Biol 2017; 39:1010428317697563. [DOI: 10.1177/1010428317697563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Breast carcinogenesis is a multistep process, involving both genetic and epigenetic modification process of genes, involved in diverse pathways ranging from DNA repair to metabolic processes. This study was undertaken to assess the role of promoter methylation of GSTP1 gene, a member of glutathione-S-transferase family of enzymes, in relation to its expression, polymorphism, and clinicopathological parameters. Tissue samples were taken from breast cancer patients and paired with their normal adjacent tissues. A total of 51 subjects were studied, in which the frequency of promoter methylation in cancerous tissue was 37.25% as against 11% in the normal tissues ( p ≤ 0.001). The hypermethylated status of the gene was significantly associated with the loss of the protein expression ( r = −0.449, p = 0.001, odds ratio = 7.42, 95% confidence interval = 2.05–26.92). Furthermore, when compared with the clinical parameters, the significant association was found between the promoter hypermethylation and lymph node metastasis ( p ≤ 0.001), tumor stage ( p = 0.039), tumor grade ( p = 0.028), estrogen receptor status ( p = 0.018), and progesterone receptor status ( p = 0.046). Our study is the first of its kind in Kashmiri population, which indicates that GSTP1 shows aberrant methylation pattern in the breast cancer with the consequent loss in the protein expression. Furthermore, it also shows that the gene polymorphism (Ile105Val) at codon 105 is not related to the promoter methylation and two are the independent events in breast cancer development.
Collapse
Affiliation(s)
- Aaliya Bhat
- Department of Biochemistry, University of Kashmir, India
| | - A Masood
- Department of Biochemistry, University of Kashmir, India
| | - KA Wani
- Department of Biochemistry, University of Kashmir, India
| | | | - Bushra Nissar
- Department of Biochemistry, University of Kashmir, India
| | | | - BA Ganai
- Department of Biochemistry, University of Kashmir, India
| |
Collapse
|
30
|
Wu J, Fang M, Zhou X, Zhu B, Yang Z. Paraoxonase 1 gene polymorphisms are associated with an increased risk of breast cancer in a population of Chinese women. Oncotarget 2017; 8:25362-25371. [PMID: 28445984 PMCID: PMC5421936 DOI: 10.18632/oncotarget.15911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022] Open
Abstract
In this study, we explored associations between paraoxonase 1 (PON1) L55M and Q192R gene polymorphisms and the risk of breast cancer in 365 female breast cancer patients and 378 healthy controls from the Guangxi region of southern China. The LM heterozygous and MM homozygous genotypes, as well as M carrier status and M alleles, were associated with an increased risk of breast cancer. In addition, the M allele was associated with postmenopausal status and increased nodal involvement. In contrast, none of the Q192R genotypes or alleles were associated with a change in breast cancer risk, or with any of the clinicopathological parameters. These results indicate that PON1 L55M genetic polymorphisms may be associated with the risk of breast cancer and could potentially serve as useful genetic markers for tumor prognosis in some populations of Chinese women.
Collapse
Affiliation(s)
- Junrong Wu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Fang
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoping Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530022, Guangxi, China
| | - Bo Zhu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhi Yang
- Department of Nuclear Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| |
Collapse
|
31
|
EBRAHIMI E, SABOKBAR T, ESKANDARIEH S, PEYGHAMBARI V, SHIRKOOHI R. CYP17 MspA1 Gene Polymorphism and Breast Cancer Patients According to Age of Onset in Cancer Institute of Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:537-544. [PMID: 28540271 PMCID: PMC5439044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Exposure to endogenous hormones such as estrogen is known as a lifetime Breast Cancer (BC) risk factor. Polymorphisms in genes that are involved in the steroidogenic process, such as Cytochrome P450c17alpha (CYP17), affect individuals' susceptibility to BC. In Iran, the highest incident of BC is among young women. This study aimed to find prevalence of Single Nucleotide Polymorphisms (SNPs) in genes such as CYP17 and significant correlation with age-oriented group of breast cancer. METHODS In 2016, a case series study was conducted on a total population of 205 patients suffering from breast cancer referred to Cancer Institute, Imam Khomeini Hospital Complex, Tehran, Iran. This population consisted of 104 cases less than 40 yr old and 101 cases over 40. The genotype variants of CYP17 MspA1 were determined using PCR, followed by RFLP. The association of CYP17 MspA1 polymorphisms with the risk of BC in two different age groups was evaluated by calculating odds ratio and 95% confidence intervals using unconditional logistic regression. RESULTS Carriers of at least one A2 allele may have higher risk of developing breast cancer at younger age compared to patients with A1/A1 genotype (Odds Ratio: 1.99, 95% Confidence Interval: 1.11-3.57, P=0.02). CONCLUSION CYP17gene polymorphisms may have influence on the early onset of breast cancer.
Collapse
Affiliation(s)
- Elmira EBRAHIMI
- Group of Genetics, Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh SABOKBAR
- Group of Genetics, Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran, Neurology & Neurosciences Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Sharareh ESKANDARIEH
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran, MS Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh PEYGHAMBARI
- Group of Genetics, Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza SHIRKOOHI
- Group of Genetics, Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author:
| |
Collapse
|
32
|
Abstract
In first part of this study, a systematic review was designed to explore the involvement of CYP1A1 and GSTP1 genes in breast cancerogenesis. Based on systematic review, we designed a study to screen CYP1A1 and GSTP1 genes for mutation and their possible association with breast carcinogenesis. A total of 400 individuals were collected and analyzed by PCR-SSCP. After sequence analysis of coding region of CYP1A1 we identified eleven mutations in different exons of respective gene. Among these eleven mutations, ~3 folds increased breast cancer risk was found associated with Asp82Glu mutation (OR 2.99; 95% CI 1.26-7.09), with Ser83Thr mutation (OR 2.99; 95% CI 1.26-7.09) and with Glu86Ala mutation (OR 3.18; 95% CI 1.27-7.93) in cancer patients compared to controls. Furthermore, ~4 folds increase in breast cancer risk was found associated with Asp347Glu, Phe398Tyr and 5178delT mutations (OR 3.92; 95% CI 1.35-11.3) in patients compared to controls. The sequence analysis of GSTP1 resulted in identification of total five mutations. Among these five mutations, ~3 folds increase in breast cancer risk was observed associated with 1860G>A mutation, with 1861-1876delCAGCCCTCTGGAGTGG mutation (OR 2.70; 95% CI 1.10-6.62) and with 1861C>A mutation (OR 2.97; 95% CI 1.01-8.45) in cancer patients compared to controls. Furthermore, ~5 folds increase in breast cancer risk was associated with 1883G>T mutation (OR 4.75; 95% CI 1.46-15.3) and ~6 folds increase in breast cancer risk was found associated with Iso105Val mutation (OR 6.43; 95% CI 1.41-29.3) in cancer patients compared to controls. Our finding, based on systematic review and experimental data suggest that the polymorphic CYP1A1 and GSTP1 genes may contribute to risk of developing breast cancer.
Collapse
|
33
|
Tesarova P, Kalousova M, Zima T, Tesar V. HMGB1, S100 proteins and other RAGE ligands in cancer - markers, mediators and putative therapeutic targets. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:1-10. [DOI: 10.5507/bp.2016.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/22/2016] [Indexed: 12/30/2022] Open
|
34
|
Chen L, Lu W, Fang L, Xiong H, Wu X, Zhang M, Wu S, Yu D. Association between L55M polymorphism in Paraoxonase 1 and cancer risk: a meta-analysis based on 21 studies. Onco Targets Ther 2016; 9:1151-8. [PMID: 27019599 PMCID: PMC4786067 DOI: 10.2147/ott.s96990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
L55M polymorphism in Paraoxonase 1 (PON1) has been regarded as a risk factor for many cancer types. Nevertheless, the results remain controversial and inconclusive. We therefore performed a meta-analysis of all eligible case–control studies to evaluate the association between L55M polymorphism and cancer risk. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the associations. Finally, a total of 5,627 cases and 6,390 controls, arising from 21 case–control studies, were enrolled in our study. Significant associations between PON1-L55M polymorphism and overall cancer risk were identified in all genetic models. In the stratified analyses by cancer type, PON1-L55M polymorphism was a risk factor for breast cancer in all genetic models, prostate cancer in the heterozygote model (ML vs LL: OR =1.304, 95% CI =1.049–1.620, Pheterogeneity=0.067), and ovarian cancer in the recessive model (MM vs ML/LL: OR =1.526, 95% CI =1.110–2.097, Pheterogeneity=0.464). Similarly, an increased risk was also identified for the Caucasian population in the heterozygote comparison and homozygote models, and hospital-based controls in all genetic models. To sum up, our study suggests that the PON1-L55M allele increased the risk of cancer. Future well-designed studies with larger sample sizes are warranted to further verify these findings.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei Lu
- Department of Urology, Anhui Medical University Graduate School, Hefei, Anhui, People's Republic of China
| | - Lu Fang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hu Xiong
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Xun Wu
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Meng Zhang
- Department of Urology, Anhui Medical University Graduate School, Hefei, Anhui, People's Republic of China
| | - Song Wu
- Department of Urology, Anhui Medical University Graduate School, Hefei, Anhui, People's Republic of China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
35
|
Türkeş C, Söyüt H, Beydemir Ş. In vitro inhibitory effects of palonosetron hydrochloride, bevacizumab and cyclophosphamide on purified paraoxonase-I (hPON1) from human serum. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:252-257. [PMID: 26915059 DOI: 10.1016/j.etap.2015.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/20/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
In this study, we investigated the effects of the drugs, palonosetron hydrochloride, bevacizumab and cyclophosphamide, on human serum paraoxonase-I (hPON1) enzyme activity in in vitro conditions. The enzyme was purified ∼231-fold with 34.2% yield by using ammonium sulphate precipitation, DEAE-Sephadex A-50 ion-exchange chromatography and Sephadex G-200 gel-filtration chromatography from human serum. hPON1 exhibited a single protein band on the SDS polyacrylamide gel electrophoresis. The inhibition studies were performed on paraoxonase activity of palonosetron hydrochloride, bevacizumab and cyclophosphamide. Ki constants were found as 0.033±0.001, 0.054±0.003 mM and 3.419±0.518 mM, respectively. Compared to the inhibition rates of the drugs, palonosetron hydrochloride has the maximum inhibition rate. However, inhibition mechanisms of the drugs were determined as noncompetitive by Lineweaver-Burk curves.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Hakan Söyüt
- Department of Primary Education, Faculty of Education, Bayburt University, 69000, Bayburt, Turkey
| | - Şükrü Beydemir
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
36
|
Zhang M, Xiong H, Fang L, Lu W, Wu X, Huang ZS, Wang YQ, Cai ZM, Wu S. Paraoxonase 1 (PON1) Q192R Gene Polymorphism and Cancer Risk: A Meta-Analysis Based on 30 Publications. Asian Pac J Cancer Prev 2016; 16:4457-63. [PMID: 26028114 DOI: 10.7314/apjcp.2015.16.10.4457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Common genetic variation Q192R in the paraoxonase 1 (PON1) gene has been considered to be implicated in the development of many cancers. Nevertheless, results from the related studies were inconsistent. To elucidate the association, we performed a meta-analysis for 8,112 cases and 10,037 controls from 32 published case-control studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the association by STATA 12.0 software. Overall, we revealed that the PON1-192R allele was associated with a reduced risk of the overall cancers. Moreover, in the stratified analysis by cancer types (breast cancer, prostate cancer, brain cancer etc.), the results showed that PON1-192R allele was associated with a decreased risk in breast cancer (R vs Q: OR=0.605, 95% CI=0.378-0.967, Pheterogeneity=0.000; RR vs QQ: OR=0.494, 95% CI=0.275-0.888, Pheterogeneity=0.002; RQ vs QQ: OR=0.465, 95% CI=0.259-0.835, Pheterogeneity=0.000; and RR+RQ vs QQ: OR=0.485, 95% CI=0.274-0.857, Pheterogeneity=0.000), and associated with prostate cancer in homozygote (RR vs QQ: OR=0.475, 95% CI=0.251- 0.897, Pheterogeneity=0.001) and recessive models (RR vs RQ+QQ: OR=0.379, 95% CI=0.169-0.853, Pheterogeneity=0.000), while an increased risk was identified in lymphoma (R vs Q: OR=1.537, 95% CI=1.246-1.896, Pheterogeneity=0.944; RR vs QQ: OR=2.987, 95% CI=1.861-4.795, Pheterogeneity=0.350; RR+RQ vs QQ: OR=1.354, 95% CI=1.021-1.796, Pheterogeneity=0.824; and RR vs RQ+QQ: OR=2.934, 95% CI=1.869-4.605, Pheterogeneity=0.433), and an increased risk in prostate cancer under heterozygote comparison (RQ vs QQ: OR=1.782, 95% CI=1.077-2.950, Pheterogeneity=0.000) and dominant models (RR+RQ vs QQ: OR=1.281, 95% CI=1.044-1.573, Pheterogeneity=0.056). When subgroup analysis that performed by the control source (hospital based or population based), a decreased risk of the overall cancers was revealed by homozygote (RR vs QQ: OR=0.601, 95% CI=0.366-0.987, Pheterogeneity=0.000) and dominant models (RR vs RQ+QQ: OR=0.611, 95% CI=0.384-0.973, Pheterogeneity=0.000) in hospital based group. Stratifying by ethnicity, a significantly reduced risk of the overall cancers under allele contrast model (R vs Q: OR=0.788, 95% CI=0.626-0.993, Pheterogeneity=0.000) was uncovered in Caucasian. In summary, these findings suggested that PON1 Q192R polymorphism was associated with a reduced risk of the overall cancers, nevertheless, it might increase cancer susceptibility of prostate and lymphoma risk. Large well-designed epidemiological studies will be continued on this issue of interest.
Collapse
Affiliation(s)
- Meng Zhang
- Shenzhen Second People's Hospital, clinical medicine college of Anhui Medical University, Shenzhen Guangdong, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wen Y, Huang Z, Zhang X, Gao B, He Y. Correlation between PON1 gene polymorphisms and breast cancer risk: a Meta-analysis. Int J Clin Exp Med 2015; 8:20343-20348. [PMID: 26884950 PMCID: PMC4723795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE A number of studies have investigated the relationship between the PON1 gene polymorphisms and breast cancer risk, but the conclusions are not consistent. In this paper, a meta-analysis was conducted to explore the possible reasons for these inconsistencies, expecting to further clarify the correlation between PON1 gene polymorphisms and breast cancer risk. METHODS After searches in the database such as MEDLINE, EBSCO, ProQuest, Google Scholar, High-Wire, SID (Scientific Information Database) and PubMed, 7 literatures were collected. RevMan 5.2 software was used to perform the meta-analysis. Random-effects or fixed-effects model was used to analyze the odds ratio (OR) and 95% confidence intervals. RESULTS The analysis of L55M single nucleotide polymorphisms (SNPs) showed that M allele frequency was positively correlated with the incidence risk of breast cancer (OR=1.34, 95% CI: 1.03-1.74). While we did not found Q192R polymorphism associated with the risk of breast cancer (OR=1.0, 95% CI: 0.71-1.42). CONCLUSION For PON1 gene, the frequencies of M allele were associated with the incidence risk of breast cancer.
Collapse
Affiliation(s)
- Yayuan Wen
- Department of General Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical UniversityChongqing 400042, P. R. China
| | - Zemin Huang
- Chinese Astronaut Research and Training CenterBeijing 100094, P. R. China
| | - Xiaohua Zhang
- Department of General Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical UniversityChongqing 400042, P. R. China
| | - Bo Gao
- Department of General Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical UniversityChongqing 400042, P. R. China
| | - Yujun He
- Department of General Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical UniversityChongqing 400042, P. R. China
| |
Collapse
|
38
|
Tsai MM, Wang CS, Tsai CY, Chi HC, Tseng YH, Lin KH. Potential prognostic, diagnostic and therapeutic markers for human gastric cancer. World J Gastroenterol 2014; 20:13791-13803. [PMID: 25320517 PMCID: PMC4194563 DOI: 10.3748/wjg.v20.i38.13791] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/18/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
The high incidence of gastric cancer (GC) and its consequent mortality rate severely threaten human health. GC is frequently not diagnosed until a relatively advanced stage. Surgery is the only potentially curative treatment. Thus, early screening and diagnosis are critical for improving prognoses in patients with GC. Gastroscopy with biopsy is an appropriate method capable of aiding the diagnosis of specific early GC tumor types; however, the stress caused by this method together with it being excessively expensive makes it difficult to use it as a routine method for screening for GC on a population basis. The currently used tumor marker assays for detecting GC are simple and rapid, but their use is limited by their low sensitivity and specificity. In recent years, several markers have been identified and tested for their clinical relevance in the management of GC. Here, we review the serum-based tumor markers for GC and their clinical significance, focusing on discoveries from microarray/proteomics research. We also review tissue-based GC tumor markers and their clinical application, focusing on discoveries from immunohistochemical research. This review provides a brief description of various tumor markers for the purposes of diagnosis, prognosis and therapeutics, and we include markers already in clinical practice and various forthcoming biomarkers.
Collapse
|
39
|
Baunacke M, Horn LC, Trettner S, Engel KMY, Hemdan NYA, Wiechmann V, Stolzenburg JU, Bigl M, Birkenmeier G. Exploring glyoxalase 1 expression in prostate cancer tissues: targeting the enzyme by ethyl pyruvate defangs some malignancy-associated properties. Prostate 2014; 74:48-60. [PMID: 24105621 DOI: 10.1002/pros.22728] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 08/19/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND The glyoxalase (GLO)1 is part of a ubiquitous detoxification system in the glycolytic pathway of normal and tumor cells. It protects against cellular damage caused by cytotoxic metabolites. METHODS Aiming at exploring the role of GLO1 in prostate cancer, we evaluated and targeted the expression of GLO1 in prostate cancer tissues and cell lines and analyzed its correlation with grading systems and tumor growth indices. RESULTS Immunohistochemical studies on 37 prostate cancer specimens revealed a positive correlation between Helpap-grading and the cytoplasmic (P = 0.002)/nuclear (P = 0.006) GLO1 level. A positive correlation between Ki-67 proliferation marker and the cytoplasmic GLO1 (P = 0.006) was evident. Furthermore, the highest GLO1 level was detected in the androgen-sensitive LNCaP compared to the androgen-independent Du-145 and PC-3 prostate cell lines and the breast cancer cell MCF-7, both at protein and mRNA level. Treating cancer cells with ethyl pyruvate was found to defang some malignancy-associated properties of cancer cells including proliferation, invasion and anchorage-independent growth. In vitro results revealed that the potency of ethyl pyruvate is increased when cells are metabolically activated by growth stimulators, for example, by fetal calf serum, dihydrotestosterone, tumor growth factor-β1 and leptin. CONCLUSIONS The positive correlation of GLO1 expression level in prostate cancer tissues with the pathological grade and proliferation rate may assign GLO1 as a risk factor for prostate cancer development and progression. Furthermore, our data indicate that inhibitors of GLO1 might be useful to decelerate the cancer cell growth by a novel therapeutic approach that we may call "induced metabolic catastrophe."
Collapse
Affiliation(s)
- Martin Baunacke
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Antognelli C, Mezzasoma L, Mearini E, Talesa VN. Glyoxalase 1-419C>A variant is associated with oxidative stress: implications in prostate cancer progression. PLoS One 2013; 8:e74014. [PMID: 24040147 PMCID: PMC3769356 DOI: 10.1371/journal.pone.0074014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
Glyoxalase 1 is a scavenging enzyme of potent precursors in reactive oxygen species formation and is involved in the occurrence and progression of human malignancies. Glyoxalase I A111E polymorphism has been suggested to influence its enzymatic activity. The present study was aimed at investigating the association of this polymorphism with oxidative stress and its implications in prostate cancer progression or survival. The polymorphism was genotyped in human differently aggressive and invasive prostate cancer cell lines, in 571 prostate cancer or 588 benign prostatic hyperplasia patients, and 580 healthy subjects by Polymerase Chain Reaction/Restriction Fragment Length Polymorphism. Glyoxalase 1 activity, the pro-oxidant Glyoxalase 1-related Argpyrimidine and oxidative stress biomarkers were evaluated by biochemical analyses. Glyoxalase 1 polymorphism was associated with an increase in Glyoxalase 1-related pro-oxidant Argpyrimidine and oxidative stress levels and cancer progression. The mutant A allele conferred a modest risk of prostate cancer, a marked risk of prostate cancer progression and a lower survival time, compared to the wild C allele. The results of our exploratory study point out a significant role for Glyoxalase 1 in prostate cancer progression, providing an additional candidate for risk assessment in prostate cancer patients and an independent prognostic factor for survival. Finally, we provided evidence of the biological plausibility of Glyoxalase 1 polymorphism, either alone or in combination with other ones, all related to oxidative stress control that represents a key event in PCa development and progression.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Letizia Mezzasoma
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Ettore Mearini
- Department of Medical-Surgical Specialties and Public Health, University of Perugia, Perugia, Italy
| | - Vincenzo Nicola Talesa
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
41
|
A meta-analysis of the association of glutathione S-transferase P1 gene polymorphism with the susceptibility of breast cancer. Mol Biol Rep 2013; 40:3203-12. [PMID: 23334471 DOI: 10.1007/s11033-012-2396-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/17/2012] [Indexed: 12/28/2022]
Abstract
Glutathione S-transferase P1 (GSTP1) is one of the important mutant sites for the cancer risk at present. The conclusions of the published reports on the relationship between GSTP1 A/G gene polymorphism and the risk of breast cancer are still debated. This meta-analysis was performed to evaluate the association between GSTP1 and the risk of breast cancer. The association reports were identified from PubMed and Cochrane Library, and eligible studies were included and synthesized using meta-analysis method. 35 investigations were included into this meta-analysis for the association of GSTP1 A/G gene polymorphism and breast cancer susceptibility, consisting of 40,347 subjects (18,665 patients with breast cancer and 21,682 controls). The association between GSTP1 A/G gene polymorphism and breast cancer risk was not found for overall population, Caucasians and Africans. Interestingly, the GSTP1 A/G gene polymorphism was associated with the susceptibility of breast cancer in Asians (G allele: OR = 1.10, 95 % CI: 1.04-1.17, P = 0.001; GG genotype: OR = 1.36, 95 % CI: 1.14-1.62, P = 0.0008; AA genotype: OR = 0.92, 95 % CI: 0.85-0.98, P = 0.02). Furthermore, the GSTP1 A/G gene polymorphism was associated with the susceptibility of breast cancer for the analysis of the controls from hospital. In conclusion, GSTP1 A/G gene polymorphism is associated with the breast cancer susceptibility in Asians. However, more studies on the relationship between GSTP1 A/G gene polymorphism and the risk of breast cancer should be performed in further.
Collapse
|
42
|
Hashemi M, Eskandari-Nasab E, Fazaeli A, Taheri M, Rezaei H, Mashhadi M, Arbabi F, Kaykhaei MA, Jahantigh M, Bahari G. Association between polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1 and GSTT1) and breast cancer risk in a sample Iranian population. Biomark Med 2012; 6:797-803. [DOI: 10.2217/bmm.12.61] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Genetic and environmental factors are risk factors for breast cancer. Our aim was to investigate the associations between genetic polymorphism of GST genes (GSTM1, GSTT1 and GSTP1) and susceptibility to breast cancer in an Iranian population. Materials & methods: This case–control study was carried out on 134 patients with breast cancer and 152 healthy, cancer-free women. GSTP1 polymorphism was determined using tetra-primer amplification refractory mutation system PCR assay and GSTM1 and GSTT1 were genotyped by a multiplex PCR. Results: We found that the GSTM1 null genotype is a risk factor for predisposition to breast cancer (odds ratio [OR] = 2.01; 95% CI = 1.78–3.45; p = 0.010). No significant difference was found between the groups regarding GSTT1 null genotype (p > 0.05). The GSTP1 Ile/Val and Val/Val genotypes were associated with breast cancer risk (OR = 3.29; 95% CI = 1.84–5.91; p < 0.0001 and OR = 20.68; 95% CI = 5.66–75.60; p < 0.0001, respectively). Conclusion: In summary, GSTM1 and GSTP1, but not GSTT1 genetic polymorphisms are associated with increased risk of breast cancer in our population.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular & Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ebrahim Eskandari-Nasab
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Genetic of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamzeh Rezaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammadali Mashhadi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farshid Arbabi
- Brain & Spinal Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud-Ali Kaykhaei
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Jahantigh
- Department of Pathology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
43
|
Ruiz JR, Fiuza-Luces C, Buxens A, Cano-Nieto A, Gómez-Gallego F, Santiago C, Rodríguez-Romo G, Garatachea N, Lao JI, Morán M, Lucia A. Are centenarians genetically predisposed to lower disease risk? AGE (DORDRECHT, NETHERLANDS) 2012; 34:1269-1283. [PMID: 21894447 PMCID: PMC3448993 DOI: 10.1007/s11357-011-9296-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
Our study purpose was to compare a disease-related polygenic profile that combined a total of 62 genetic variants among (i) people reaching exceptional longevity, i.e., centenarians (n = 54, 100-108 years, 48 women) and (ii) ethnically matched healthy controls (n = 87, 19-43 years, 47 women). We computed a 'global' genotype score (GS) for 62 genetic variants (mutations/polymorphisms) related to cardiometabolic diseases, cancer or exceptional longevity, and also specific GS for main disease categories (cardiometabolic risk and cancer risk, including 36 and 24 genetic variations, respectively) and for exceptional longevity (7 genetic variants). The 'global' GS was similar among groups (centenarians: 31.0 ± 0.6; controls 32.0 ± 0.5, P = 0.263). We observed that the GS for hypertension, cancer (global risk), and other types of cancer was lower in the centenarians group compared with the control group (all P < 0.05), yet the difference became non significant after adjusting for sex. We observed significant between-group differences in the frequency of GSTT1 and GSTM1 (presence/absence) genotypes after adjusting for multiple comparisons. The likelihood of having the GSTT1 low-risk (functional) allele was higher in centenarians (odds ratio [OR] 5.005; 95% confidence interval [CI], 1.810-13.839), whereas the likelihood of having the GSTMI low-risk (functional) allele was similar in both groups (OR 1.295; 95% CI, 0.868 -1.931). In conclusion, we found preliminary evidence that Spanish centenarians have a lower genetic predisposition for cancer risk. The wild-type (i.e., functional) genotype of GSTT1, which is associated with lower cancer risk, might be associated with exceptional longevity, yet further studies with larger sample sizes must confirm these findings.
Collapse
Affiliation(s)
- Jonatan R Ruiz
- Department of Physical Education and Sport, School of Physical Activity and Sport Sciences, University of Granada, Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Saxena A, Dhillon VS, Shahid M, Khalil HS, Rani M, Prasad DAS T, Hedau S, Hussain A, Naqvi RA, Deo SVS, Shukla NK, DAS BC, Husain SA. GSTP1 methylation and polymorphism increase the risk of breast cancer and the effects of diet and lifestyle in breast cancer patients. Exp Ther Med 2012; 4:1097-1103. [PMID: 23226781 PMCID: PMC3494109 DOI: 10.3892/etm.2012.710] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/28/2012] [Indexed: 12/23/2022] Open
Abstract
Glutathione S-transferases (GSTs) are an important group of isoenzymes that play an essential role in the detoxification of carcinogens. Polymorphism at exon 5 of the GST π family decreases the catalytic activity and affects the detoxification ability of the enzyme, GSTP1. GSTP1 promoter hypermethylation and loss of expression are frequently observed in various types of carcinoma. We hypothesized that somatic epigenetic modification in homozygous mutants increases the degree to which breast cancer risk is affected by lifestyle factors and dietary habits. The present study used tumor biopsies and blood samples from 215 breast cancer patients and 215 blood samples from healthy donors. GSTP1 polymorphism was studied using PCR-restriction fragment length polymorphism, methylation using methylation-specific PCR and loss of expression using immunohistochemistry and western blotting. No significant increase was observed in the breast cancer risk of individuals with the mutant (Val) allele [odds ratio (OR), 1.48; 95% confidence interval (CI), 0.97–2.26 for heterozygotes; OR, 1.42; 95% CI, 0.86–2.42 homozygous mutants]. GSTP1 promoter hypermethylation was detected in one-third of tumor biopsies (74/215) and was found to be associated with a loss of expression. Genotype and tumor methylation associations were not observed. Estrogen (ER) and progesterone (PR) receptor-positive tumors had a higher methylation frequency. GSTP1 polymorphism was not associated with increased promoter hypermethylation. The results suggest that GSTP1 methylation is a major event in breast carcinogenesis and may act as a tumor-specific biomarker.
Collapse
Affiliation(s)
- Anubha Saxena
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India ; ; Unit of Experimental Medicine, Christian de Duve Institute of Cellular Pathology, Université Catholique de Louvain, Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Glyoxalase-I is a novel prognosis factor associated with gastric cancer progression. PLoS One 2012; 7:e34352. [PMID: 22479608 PMCID: PMC3315534 DOI: 10.1371/journal.pone.0034352] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/27/2012] [Indexed: 12/29/2022] Open
Abstract
Glyoxalase I (GLO1), a methylglyoxal detoxification enzyme, is implicated in the progression of human malignancies. The role of GLO1 in gastric cancer development or progression is currently unclear. The expression of GLO1 was determined in primary gastric cancer specimens using quantitative polymerase chain reaction, immunohistochemistry (IHC), and western blotting analyses. GLO1 expression was higher in gastric cancer tissues, compared with that in adjacent noncancerous tissues. Elevated expression of GLO1 was significantly associated with gastric wall invasion, lymph node metastasis, and pathological stage, suggesting a novel role of GLO1 in gastric cancer development and progression. The 5-year survival rate of the lower GLO1 expression groups was significantly greater than that of the higher expression groups (log rank P = 0.0373) in IHC experiments. Over-expression of GLO1 in gastric cancer cell lines increases cell proliferation, migration and invasiveness. Conversely, down-regulation of GLO1 with shRNA led to a marked reduction in the migration and invasion abilities. Our data strongly suggest that high expression of GLO1 in gastric cancer enhances the metastasis ability of tumor cells in vitro and in vivo, and support its efficacy as a potential marker for the detection and prognosis of gastric cancer.
Collapse
|
46
|
Differential effects of paraoxonase 1 (PON1) polymorphisms on cancer risk: evidence from 25 published studies. Mol Biol Rep 2012; 39:6801-9. [DOI: 10.1007/s11033-012-1505-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/24/2012] [Indexed: 12/11/2022]
|
47
|
Yuzhalin AE, Kutikhin AG. Common genetic variants in the myeloperoxidase and paraoxonase genes and the related cancer risk: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:287-322. [PMID: 23167629 DOI: 10.1080/10590501.2012.731957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Modern approaches in health care are moving toward the model of "personalized medicine." Today, current research in molecular biology and medicine is focused on developing genomic markers with predictive, therapeutic, and prognostic significance. One of the most widespread and significant genomic markers is the single nucleotide polymorphism (SNP), which represents a variation in DNA sequence when a single nucleotide differs between members of a biological species or paired chromosomes in an individual. Antioxidant defense enzymes break down dangerous reactive compounds, called reactive oxygen species, and prevent DNA strand from carcinogen-specific mutations. It is well known that inherited variations in genes that encode antioxidant defense enzymes may modulate individual susceptibility to cancer. In our previous study we have determined the predictive significance of several SNPs of superoxide dismutase (SOD) and glutathione peroxidase gene families in the context of cancer risk. The present review includes a summary and discussion of the current findings evaluating the role of SNPs of the myeloperoxidase (MPO) and paraoxanase (PON) genes in cancer occurrence and development. We suggest that rs2333227 (MPO_ -463G/A) and rs854560 polymorphisms have a great predictive significance; they could probably be utilized as cancer predictors in the future. Also, we recommend further in-depth research for rs11079344 (MPO), rs8178406 (MPO), rs2243828 (MPO), rs662 (PON1), rs705379 (PON1), and PON1_304A/G polymorphisms. These SNPs may become significant cancer-associated biomarkers.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Institute for Complex Issues of Cardiovascular Diseases, Siberian Branch of the Russian Academy of Medical Sciences, Kemerovo, Russian Federation.
| | | |
Collapse
|
48
|
Saadat M. Paraoxonase 1 genetic polymorphisms and susceptibility to breast cancer: a meta-analysis. Cancer Epidemiol 2011; 36:e101-3. [PMID: 22133529 DOI: 10.1016/j.canep.2011.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 10/14/2022]
Abstract
AIM The paraoxonase 1 gene (PON1, MIN: 168820) is a member of the multifactorial antioxidant enzyme paraoxonase family (EC 3.1.1.2). Two common functional single-nucleotide polymorphisms L55M (dbSNP: rs854560) and Q192R (dbSNP: rs662) have been identified in the coding region of PON1. Several studies have investigated the associations between polymorphisms of PON1 and susceptibility to breast cancer, but have yielded apparently conflicting results. We therefore carried out a meta-analysis of published studies to clarify this inconsistency and to establish a comprehensive picture of the relationship between PON1 gene variants and breast cancer risk. METHOD Overall six eligible studies were identified. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were obtained using fixed and random-effect models. RESULTS In our meta-analysis, the presence of the R allele was associated with decreased risk of breast cancer (QR+RR compared to QQ genotype, summary OR=0.57, 95% CI: 0.49-0.67, P<0.001). Both heterozygosity (OR=1.32, 95% CI: 1.10-1.58, P=0.002) and homozygosity (OR=2.16, 95% CI: 1.75-2.68, P<0.001) for the 55M allele were associated with increased risk of breast cancer. Also there was a significant linear trend in risk associated with zero, one, and two 55M alleles (χ(2)=54.2, P<0.001). CONCLUSION The present study showed that PON1 M and Q alleles are associated with a higher risk of breast cancer. Individuals having MM and QQ genotypes have a lower level and lower detoxification activity of the PON1 enzyme, which may increase the vulnerability of the breast to genetic damage by reducing the ability to detoxify inflammatory oxidants, as well as dietary carcinogens.
Collapse
Affiliation(s)
- Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Iran.
| |
Collapse
|
49
|
Polymorphisms in three obesity-related genes (LEP, LEPR, and PON1) and breast cancer risk: a meta-analysis. Tumour Biol 2011; 32:1233-40. [PMID: 21887553 DOI: 10.1007/s13277-011-0227-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022] Open
Abstract
Common genetic variations in the leptin (LEP), leptin receptor (LEPR), and paraoxonase 1 (PON1) genes have been considered to be implicated in the development of breast cancer. However, the results were inconsistent. In this study, a meta-analysis was performed to assess the associations of five polymorphisms, including LEP G2548A, LEPR Q223R, LEPR Lys109Arg, PON1 L55M, and PON1 Q192R polymorphisms, with breast cancer risk. Published literature from PubMed, ISI Web of Science, Embase databases, CNKI, and Wanfang Data were retrieved. All studies evaluating the association between LEP G2548A, LEPR Q223R, LEPR Lys109Arg, PON1 L55M, or PON1 Q192R polymorphism and breast cancer risk were included. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects model. Three studies (2,003 cases and 1,967 controls) for LEP G2548A polymorphism, nine studies (4,627 cases and 5,476 controls) for LEPR Q223R polymorphism, five studies (2,759 cases and 2,573 controls) for LEPR Lys109Arg polymorphism, four studies (1,517 cases and 1,379 controls) for PON1 L55M polymorphism, and five studies (1,575 cases and 2,283 controls) for PON1 Q192R polymorphism were included in the meta-analysis. Overall, the results showed null significant association between LEP G2548A, LEPR Q223R, LEPR Lys109Arg, or PON1 Q192R polymorphism and breast cancer risk; however, PON1 L55M was significantly associated with breast cancer risk overall (MM vs. LL: OR = 2.16; 95% CI, 1.76-2.66). For LEPR Q223R polymorphism, further subgroup analysis suggested that the association was only statistically significant in East Asians (OR = 0.50; 95% CI, 0.36-0.70) but not in Caucasians (OR = 1.06; 95% CI, 0.77-1.45) or Africans (OR = 1.30; 95% CI, 0.83-2.03). The present meta-analysis suggested that LEPR Q223R polymorphism might be implicated in the development of breast cancer in East Asians; PON1 L55M might increase breast cancer risk. However, given the limited sample size, the findings warrant further investigation.
Collapse
|
50
|
Fujihara J, Yasuda T, Kawai Y, Morikawa N, Arakawa K, Koda Y, Soejima M, Kimura-Kataoka K, Takeshita H. First survey of the three gene polymorphisms (PON1 Q192R, eNOS E298D and eNOS C-786T) potentially associated with coronary artery spasm in African populations and comparison with worldwide data. Cell Biochem Funct 2011; 29:156-63. [DOI: 10.1002/cbf.1721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/09/2010] [Accepted: 12/13/2010] [Indexed: 01/08/2023]
|