1
|
Riccò M, Zanella I, Satta E, Ranzieri S, Corrado S, Marchesi F, Peruzzi S. BoDV-1 Infection in Children and Adolescents: A Systematic Review and Meta-Analysis. Pediatr Rep 2023; 15:512-531. [PMID: 37755407 PMCID: PMC10534910 DOI: 10.3390/pediatric15030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Borna disease virus 1 (BoDV-1) can cause a severe human syndrome characterized by meningo-myeloencephalitis. The actual epidemiology of BoDV-1 remains disputed, and our study summarized prevalence data among children and adolescents (<18-year-old). Through systematic research on three databases (PubMed, EMBASE, MedRxiv), all studies, including seroprevalence rates for BoDV-1 antigens and specific antibodies, were retrieved, and their results were summarized. We identified a total of six studies for a total of 2692 subjects aged less than 18 years (351 subjects sampled for BoDV-1 antibodies and 2557 for antigens). A pooled seroprevalence of 6.09% (95% Confidence Interval [95% CI] 2.14 to 16.17) was eventually calculated for BoDV-1 targeting antibodies and 0.76% (95% CI 0.26 to 2.19) for BoDV-1 antigens. Both estimates were affected by substantial heterogeneity. Seroprevalence rates for BoDV-1 in children and adolescents suggested that a substantial circulation of the pathogen does occur, and as infants and adolescents have relatively scarce opportunities for being exposed to hosts and animal reservoirs, the potential role of unknown vectors cannot be ruled out.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL–IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Ilaria Zanella
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Corrado
- ASST Rhodense, Dipartimento Della Donna e Area Materno-Infantile, UOC Pediatria, 20024 Garbagnate Milanese, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL—IRCCS di Reggio Emilia, 42016 Guastalla, Italy;
| |
Collapse
|
2
|
Guo Y, He P, Sun L, Zhang X, Xu X, Tang T, Zhou W, Li Q, Zou D, Bode L, Xie P. Full-length genomic sequencing and characterization of Borna disease virus 1 isolates: Lessons in epidemiology. J Med Virol 2020; 92:3125-3137. [PMID: 32343416 DOI: 10.1002/jmv.25951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Borna disease virus 1 (BoDV-1) is a nonsegmented, negative-strand RNA virus that infects mammals including humans. BoDV-1 strains occur globally, dominate the species Mammalian 1 bornavirus, and display highly conserved genomes and persistent infection (brain, blood). Subclinical infections prevail but the rare fatal outcomes even in people need awareness and risk assessment. Although BoDV-1 strains were successfully isolated, only limited full genomic sequences are available. In this study, the entire genomes of two natural BoDV-1 isolates (Hu-H2, Equ-Cres) and one vaccine strain (DessVac) were sequenced. They were compared with 20 genomes and 20 single-gene sequences (N and P) of worldwide human strains from psychiatric and neurologic patients and animal strains from horses with Borna disease available at GenBank. Phylogenetic analyses confirmed a low divergence not exceeding 5.55%, 5.34%, and 4.94% at the genome, P-gene, and N-gene level, respectively, characteristic of BoDV-1. Human viruses tended to cluster at the country level but appeared to be independent of hosts' diseases and/or time of isolation. Notably, our data also indicated that human viruses provided individual genetic signatures but exhibited no distinct genotypes that separated them from animal strains. Sequence similarities thus occurred between different host species and distant geographic regions, supporting global BoDV-1 prevalence. Overall low genetic divergence among BoDV-1 viruses shown here also argued against zoonotic concepts, requiring further clarification beyond sequence similarities. Finally, unlike shared sequence conservation, phenotyping of natural and laboratory variants revealed that they manipulated host cells differently, underpinning the authenticity of the human BoDV-1 strains.
Collapse
Affiliation(s)
- Yujie Guo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Laboratory medicine, Chongqing Medical University, Chongqing, China
| | - Peng He
- Department of Clinical Laboratory, The First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Sun
- Department of Pain, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Tang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dezhi Zou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liv Bode
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Freelance Bornavirus Workgroup, Joint Senior Scientists, Berlin, Germany
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Bode L, Xie P, Dietrich DE, Zaliunaite V, Ludwig H. Are human Borna disease virus 1 infections zoonotic and fatal? THE LANCET INFECTIOUS DISEASES 2020; 20:650-651. [DOI: 10.1016/s1473-3099(20)30380-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
4
|
Gosztonyi G, Ludwig H, Bode L, Kao M, Sell M, Petrusz P, Halász B. Obesity induced by Borna disease virus in rats: key roles of hypothalamic fast-acting neurotransmitters and inflammatory infiltrates. Brain Struct Funct 2020; 225:1459-1482. [PMID: 32394093 DOI: 10.1007/s00429-020-02063-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 12/30/2022]
Abstract
Human obesity epidemic is increasing worldwide with major adverse consequences on health. Among other possible causes, the hypothesis of an infectious contribution is worth it to be considered. Here, we report on an animal model of virus-induced obesity which might help to better understand underlying processes in human obesity. Eighty Wistar rats, between 30 and 60 days of age, were intracerebrally inoculated with Borna disease virus (BDV-1), a neurotropic negative-strand RNA virus infecting an unusually broad host spectrum including humans. Half of the rats developed fatal encephalitis, while the other half, after 3-4 months, continuously gained weight. At tripled weights, rats were sacrificed by trans-cardial fixative perfusion. Neuropathology revealed prevailing inflammatory infiltrates in the median eminence (ME), progressive degeneration of neurons of the paraventricular nucleus, the entorhinal cortex and the amygdala, and a strikingly high-grade involution of the hippocampus with hydrocephalus. Immune histology revealed that major BDV-1 antigens were preferentially present at glutamatergic receptor sites, while GABAergic areas remained free from BDV-1. Virus-induced suppression of the glutamatergic system caused GABAergic predominance. In the hypothalamus, this shifted the energy balance to the anabolic appetite-stimulating side governed by GABA, allowing for excessive fat accumulation in obese rats. Furthermore, inflammatory infiltrates in the ME and ventro-medial arcuate nucleus hindered free access of appetite-suppressing hormones leptin and insulin. The hormone transport system in hypothalamic areas outside the ME became blocked by excessively produced leptin, leading to leptin resistance. The resulting hyperleptinemic milieu combined with suppressed glutamatergic mechanisms was a characteristic feature of the found metabolic pathology. In conclusion, the study provided clear evidence that BDV-1 induced obesity in the rat model is the result of interdependent structural and functional metabolic changes. They can be explained by an immunologically induced hypothalamic microcirculation-defect, combined with a disturbance of neurotransmitter regulatory systems. The proposed mechanism may also have implications for human health. BDV-1 infection has been frequently found in depressive patients. Independently, comorbidity between depression and obesity has been reported, either. Future studies should address the exciting question of whether BDV-1 infection could be a link, whatsoever, between these two conditions.
Collapse
Affiliation(s)
- Georg Gosztonyi
- Institute of Neuropathology, Charité, University Medicine Berlin, 10117, Berlin, Germany.
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Liv Bode
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Moujahed Kao
- Landesbetrieb Hessisches Landeslabor, 35392, Giessen, Germany
| | - Manfred Sell
- Division of Pathology, Martin Luther Hospital, 12351, Berlin, Germany
| | - Peter Petrusz
- Department of Cell and Developmental Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Béla Halász
- Neuromorphological and Neuroendocrine Research Laboratory, Semmelweis University, 1094, Budapest, Hungary
| |
Collapse
|
5
|
Dietrich DE, Bode L, Spannhuth CW, Hecker H, Ludwig H, Emrich HM. Antiviral treatment perspective against Borna disease virus 1 infection in major depression: a double-blind placebo-controlled randomized clinical trial. BMC Pharmacol Toxicol 2020; 21:12. [PMID: 32066504 PMCID: PMC7027224 DOI: 10.1186/s40360-020-0391-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background Whether Borna disease virus (BDV-1) is a human pathogen remained controversial until recent encephalitis cases showed BDV-1 infection could even be deadly. This called to mind previous evidence for an infectious contribution of BDV-1 to mental disorders. Pilot open trials suggested that BDV-1 infected depressed patients benefitted from antiviral therapy with a licensed drug (amantadine) which also tested sensitive in vitro. Here, we designed a double-blind placebo-controlled randomized clinical trial (RCT) which cross-linked depression and BDV-1 infection, addressing both the antidepressant and antiviral efficacy of amantadine. Methods The interventional phase II RCT (two 7-weeks-treatment periods and a 12-months follow-up) at the Hannover Medical School (MHH), Germany, assigned currently depressed BDV-1 infected patients with either major depression (MD; N = 23) or bipolar disorder (BD; N = 13) to amantadine sulphate (PK-Merz®; twice 100 mg orally daily) or placebo treatment, and contrariwise, respectively. Clinical changes were assessed every 2–3 weeks by the 21-item Hamilton rating scale for depression (HAMD) (total, single, and combined scores). BDV-1 activity was determined accordingly in blood plasma by enzyme immune assays for antigens (PAG), antibodies (AB) and circulating immune complexes (CIC). Results Primary outcomes (≥25% HAMD reduction, week 7) were 81.3% amantadine vs. 35.3% placebo responder (p = 0.003), a large clinical effect size (ES; Cohen’s d) of 1.046, and excellent drug tolerance. Amantadine was safe reducing suicidal behaviour in the first 2 weeks. Pre-treatment maximum infection levels were predictive of clinical improvement (AB, p = 0.001; PAG, p = 0.026; HAMD week 7). Respective PAG and CIC levels correlated with AB reduction (p = 0,001 and p = 0.034, respectively). Follow-up benefits (12 months) correlated with dropped cumulative infection measures over time (p < 0.001). In vitro, amantadine concentrations as low as 2.4–10 ng/mL (50% infection-inhibitory dose) prevented infection with human BDV Hu-H1, while closely related memantine failed up to 100,000-fold higher concentration (200 μg/mL). Conclusions Our findings indicate profound antidepressant efficacy of safe oral amantadine treatment, paralleling antiviral effects at various infection levels. This not only supports the paradigm of a link of BDV-1 infection and depression. It provides a novel possibly practice-changing low cost mental health care perspective for depressed BDV-1-infected patients addressing global needs. Trial registration The trial was retrospectively registered in the German Clinical Trials Registry on 04th of March 2015. The trial ID is DRKS00007649; https://www.drks.de/drks_web/setLocale_EN.do
Collapse
Affiliation(s)
- Detlef E Dietrich
- Department of Psychiatry, Burghof-Clinic, Ritterstr. 19, 31737, Rinteln, Germany. .,Center for Systems Neuroscience, Bünteweg 2, 30559, Hanover, Germany. .,Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany.
| | - Liv Bode
- Joint Senior Scientists, Freelance Bornavirus Workgroup, Beerenstr. 41, 14163, Berlin, Germany.
| | - Carsten W Spannhuth
- Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Hartmut Hecker
- Department of Biometrics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Hanns Ludwig
- Joint Senior Scientists, Freelance Bornavirus Workgroup, Beerenstr. 41, 14163, Berlin, Germany
| | - Hinderk M Emrich
- Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| |
Collapse
|
6
|
Zaliunaite V, Steibliene V, Bode L, Podlipskyte A, Bunevicius R, Ludwig H. Primary psychosis and Borna disease virus infection in Lithuania: a case control study. BMC Psychiatry 2016; 16:369. [PMID: 27809822 PMCID: PMC5093928 DOI: 10.1186/s12888-016-1087-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/21/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The hypothesis that microbial infections may be linked to mental disorders has long been addressed for Borna disease virus (BDV), but clinical and epidemiological evidence remained inconsistent due to non-conformities in detection methods. BDV circulating immune complexes (CIC) were shown to exceed the prevalence of serum antibodies alone and to comparably screen for infection in Europe (DE, CZ, IT), the Middle East (IR) and Asia (CN), still seeking general acceptance. METHODS We used CIC and antigen (Ag) tests to investigate BDV infection in Lithuania through a case-control study design comparing in-patients suffering of primary psychosis with blood donors. One hundred and six acutely psychotic in-patients with no physical illness, consecutively admitted to the regional mental hospital, and 98 blood donors from the Blood Donation Centre, Lithuania, were enrolled in the study. The severity of psychosis was assessed twice, prior and after acute antipsychotic therapy, by the Brief Psychiatric Rating Scale (BPRS). BDV-CIC and Ag markers were tested once after therapy was terminated. RESULTS What we found was a significantly higher prevalence of CIC, indicating a chronic BDV infection, in patients with treated primary psychosis than in blood donor controls (39.6 % vs. 22.4 %, respectively). Free BDV Ag, indicating currently active infection, did not show significant differences among study groups. Higher severity of psychosis prior to treatment was inversely correlated to the presence of BDV Ag (42.6 vs. 34.1 BPRS, respectively; p = 0.022). CONCLUSIONS The study concluded significantly higher BDV infection rates in psychotic than in healthy Lithuanians, thus supporting similar global trends for other mental disorders. The study raised awareness to consider the integration of BDV infection surveillance in psychiatry research in the future.
Collapse
Affiliation(s)
- Violeta Zaliunaite
- Behavioral Medicine Institute, Lithuanian University of Health Sciences, Vyduno str. 4, Palanga, LT-00135, Lithuania.
| | - Vesta Steibliene
- Psychiatry Clinic, Lithuanian University of Health Sciences, Mickeviciaus str. 9, Kaunas, LT-44307 Lithuania
| | - Liv Bode
- Freelance Bornavirus Workgroup, Joint Senior Scientists, Beerenstr. 41, Berlin, D-14163 Germany
| | - Aurelija Podlipskyte
- Behavioral Medicine Institute, Lithuanian University of Health Sciences, Vyduno str. 4, Palanga, LT-00135 Lithuania
| | - Robertas Bunevicius
- Behavioral Medicine Institute, Lithuanian University of Health Sciences, Vyduno str. 4, Palanga, LT-00135 Lithuania
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, Joint Senior Scientists, Beerenstr. 41, Berlin, D-14163 Germany
| |
Collapse
|
7
|
Liu X, Bode L, Zhang L, Wang X, Liu S, Zhang L, Huang R, Wang M, Yang L, Chen S, Li Q, Zhu D, Ludwig H, Xie P. Health care professionals at risk of infection with Borna disease virus - evidence from a large hospital in China (Chongqing). Virol J 2015; 12:39. [PMID: 25888756 PMCID: PMC4357222 DOI: 10.1186/s12985-015-0239-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Human Borna disease virus (BDV) infections have recently been reported in China. BDV causes cognitive and behavioural disturbances in animals. The impact on human mental disorders is subject to debate, but previous studies worldwide have found neuropsychiatric patients more frequently infected than healthy controls. A few isolates were recovered from severely depressed patients, but contagiousness of BDV strain remains unknown. Method We addressed the risk of infection in health care settings at the first affiliated hospital of Chongqing Medical University (CQMU), located in downtown Chongqing, a megacity in Southwest China. Between February 2012 and March 2013, we enrolled 1529 participants, of whom 534 were outpatients with major depressive disorder (MDD), 615 were hospital personnel, and 380 were healthy controls who underwent a health check. Infection was determined through BDV-specific circulating immune complexes (CIC), RNA, and selective antibodies (blood). Results One-fifth of the hospital staff (21.8%) were found to be infected (CIC positive), with the highest prevalence among psychiatry and oncology personnel, which is twice as many as were detected in the healthy control group (11.1%), and exceeds the prevalence detected in MDD patients (18.2%). Conclusion BDV circulates unnoticed in hospital settings in China, putting medical staff at risk and warranting clarification of infection modes and introduction of prevention measures.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, P.R. China, Shanghai, 200063, China.
| | - Liv Bode
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Xiao Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Siwen Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Lujun Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Rongzhong Huang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Mingju Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Liu Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Shigang Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Hanns Ludwig
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| |
Collapse
|
8
|
Zhang L, Wang X, Zhan Q, Wang Z, Xu M, Zhu D, He F, Liu X, Huang R, Li D, Lei Y, Xie P. Evidence for natural Borna disease virus infection in healthy domestic animals in three areas of western China. Arch Virol 2014; 159:1941-9. [PMID: 24573218 DOI: 10.1007/s00705-013-1971-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/28/2013] [Indexed: 11/29/2022]
Abstract
Borna disease virus (BDV) is a non-cytolytic, neurotropic RNA virus that can infect many vertebrate species, including humans. To date, BDV infection has been reported in a range of animal species across a broad global geographic distribution. However, a systematic epidemiological survey of BDV infection in domesticated animals in China has yet to be performed. In current study, BDV RNA and antibodies in 2353 blood samples from apparently healthy animals of eight species (horse, donkey, dog, pig, rabbit, cattle, goat, sheep) from three areas in western China (Xinjiang province, Chongqing municipality, and Ningxia province) were assayed using reverse transcription qPCR (RT-qPCR) and ELISA assay. Brain tissue samples from a portion of the BDV RNA- and/or antibody-positive animals were subjected to RT-qPCR and western blotting. As a result, varying prevalence of BDV antibodies and/or RNA was demonstrated in various animal species from three areas, ranging from 4.4 % to 20.0 %. Detection of BDV RNA and/or antibodies in Chongqing pigs (9.2 %) provided the first known evidence of BDV infection in this species. Not all brain tissue samples from animals whose blood was BDV RNA and/or antibody positive contained BDV RNA and protein. This study provides evidence that BDV infection among healthy domestic animal species is more widespread in western China than previously believed.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hornig M, Briese T, Licinio J, Khabbaz RF, Altshuler LL, Potkin SG, Schwemmle M, Siemetzki U, Mintz J, Honkavuori K, Kraemer HC, Egan MF, Whybrow PC, Bunney WE, Lipkin WI. Absence of evidence for bornavirus infection in schizophrenia, bipolar disorder and major depressive disorder. Mol Psychiatry 2012; 17:486-93. [PMID: 22290118 PMCID: PMC3622588 DOI: 10.1038/mp.2011.179] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In 1983, reports of antibodies in subjects with major depressive disorder (MDD) to an as-yet uncharacterized infectious agent associated with meningoencephalitis in horses and sheep led to molecular cloning of the genome of a novel, negative-stranded neurotropic virus, Borna disease virus (BDV). This advance has enabled the development of new diagnostic assays, including in situ hybridization, PCR and serology based on recombinant proteins. Since these assays were first implemented in 1990, more than 80 studies have reported an association between BDV and a wide range of human illnesses that include MDD, bipolar disorder (BD), schizophrenia (SZ), anxiety disorder, chronic fatigue syndrome, multiple sclerosis, amyotrophic lateral sclerosis, dementia and glioblastoma multiforme. However, to date there has been no blinded case-control study of the epidemiology of BDV infection. Here, in a United States-based, multi-center, yoked case-control study with standardized methods for clinical assessment and blinded serological and molecular analysis, we report the absence of association of psychiatric illness with antibodies to BDV or with BDV nucleic acids in serially collected serum and white blood cell samples from 396 subjects, a study population comprised of 198 matched pairs of patients and healthy controls (52 SZ/control pairs, 66 BD/control pairs and 80 MDD/control pairs). Our results argue strongly against a role for BDV in the pathogenesis of these psychiatric disorders.
Collapse
Affiliation(s)
- Mady Hornig
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Thomas Briese
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Julio Licinio
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Rima F. Khabbaz
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lori L. Altshuler
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Ulrike Siemetzki
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jim Mintz
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Kirsi Honkavuori
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Helena C. Kraemer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Michael F. Egan
- Clinical Neuroscience, Merck & Company, North Wales, PA, USA
| | - Peter C. Whybrow
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | | | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
10
|
Lipkin WI, Briese T, Hornig M. Borna disease virus - fact and fantasy. Virus Res 2011; 162:162-72. [PMID: 21968299 DOI: 10.1016/j.virusres.2011.09.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/25/2011] [Indexed: 11/26/2022]
Abstract
The occasion of Brian Mahy's retirement as editor of Virus Research provides an opportunity to reflect on the work that led one of the authors (Lipkin) to meet him shortly after the molecular discovery and characterization of Borna disease virus in the late 1980s, and work with authors Briese and Hornig to investigate mechanisms of pathogenesis and its potential role in human disease. This article reviews the history, molecular biology, epidemiology, and pathobiology of bornaviruses.
Collapse
Affiliation(s)
- W Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th St., 17th Floor, New York, NY 10032, United States.
| | | | | |
Collapse
|