1
|
Luo X, Zeng W, Tang J, Liu W, Yang J, Chen H, Jiang L, Zhou X, Huang J, Zhang S, Du L, Shen X, Chi H, Wang H. Multi-modal transcriptomic analysis reveals metabolic dysregulation and immune responses in chronic obstructive pulmonary disease. Sci Rep 2024; 14:22699. [PMID: 39349929 PMCID: PMC11442962 DOI: 10.1038/s41598-024-71773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a progressive inflammatory condition of the airways, emerges from the complex interplay between genetic predisposition and environmental factors. Notably, its incidence is on the rise, particularly among the elderly demographic. Current research increasingly highlights cellular senescence as a key driver in chronic lung pathologies. Despite this, the detailed mechanisms linking COPD with senescent genomic alterations remain elusive. To address this gap, there is a pressing need for comprehensive bioinformatics methodologies that can elucidate the molecular intricacies of this link. This approach is crucial for advancing our understanding of COPD and its association with cellular aging processes. Utilizing a spectrum of advanced bioinformatics techniques, this research delved into the potential mechanisms linking COPD with aging-related genes, identifying four key genes (EP300, MTOR, NFE2L1, TXN) through machine learning and weighted gene co-expression network analysis (WGCNA) analyses. Subsequently, a precise diagnostic model leveraging an artificial neural network was developed. The study further employed single-cell analysis and molecular docking to investigate senescence-related cell types in COPD tissues, particularly focusing on the interactions between COPD and NFE2L1, thereby enhancing the understanding of COPD's molecular underpinnings. Leveraging artificial neural networks, we developed a robust classification model centered on four genes-EP300, MTOR, NFE2L1, TXN-exhibiting significant predictive capability for COPD and offering novel avenues for its early diagnosis. Furthermore, employing various single-cell analysis techniques, the study intricately unraveled the characteristics of senescence-related cell types in COPD tissues, enriching our understanding of the disease's cellular landscape. This research anticipates offering novel biomarkers and therapeutic targets for early COPD intervention, potentially alleviating the disease's impact on individuals and healthcare systems, and contributing to a reduction in global COPD-related mortality. These findings carry significant clinical and public health ramifications, bolstering the foundation for future research and clinical strategies in managing and understanding COPD.
Collapse
Affiliation(s)
- Xiufang Luo
- Geriatric Department, Dazhou Central Hospital, Dazhou, 635000, China
| | - Wei Zeng
- Oncology Department, Second People's Hospital of Yaan City, Yaan, 625000, China
| | - Jingyi Tang
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Wang Liu
- Department of General Surgery, Cheng Fei Hospital, Chengdu, 610000, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Haiqing Chen
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lai Jiang
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Xuancheng Zhou
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Jinbang Huang
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Shengke Zhang
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Linjuan Du
- Oncology Department, Dazhou Central Hospital, Dazhou, 635000, China
| | - Xiang Shen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hao Chi
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China.
| | - Huachuan Wang
- Department of Thoracic Surgery, Dazhou Central Hospital, Dazhou, 635000, China.
| |
Collapse
|
2
|
Cardoso GC, Ganzella FADO, Miniskiskosky G, da Cunha RS, Ramos EADS. Digital methylation-specific PCR: New applications for liquid biopsy. Biomol Concepts 2024; 15:bmc-2022-0041. [PMID: 38345545 DOI: 10.1515/bmc-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Epigenetic analysis is a fundamental part of understanding pathophysiological processes with potential applications in diagnosis, prognosis, and assessment of disease susceptibility. Epigenetic changes have been widely studied in chronic obstructive pulmonary disease (COPD), but currently, there is no molecular marker used to improve the treatment of patients. Furthermore, this progressive disease is a risk factor for the development of more severe COVID-19. Methylation-specific polymerase chain reaction (MSP-PCR) plays an important role in the analysis of DNA methylation profiles, and it is one of the most widely used techniques. In this context, the combination of MSP-PCR with emerging PCR technologies, such as digital PCR (dPCR), results in more accurate analyses of the DNA methylation profile of the genes under study. In this study, we propose the application of the MSP-dPCR technique to evaluate the methylation profile of the ADAM33 gene from saliva samples and lung tissue biopsies of patients with COPD and COVID-19. MSP-dPCR generated a measurable prediction of gene methylation rate, with the potential application of this combined technology for diagnostic and prognostic purposes. It has also proven to be a powerful tool for liquid biopsy applications.
Collapse
Affiliation(s)
- Gabriela Casani Cardoso
- Human Pathology Experimental Laboratory, Basic Pathology Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
- Post-Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | | | - Guilherme Miniskiskosky
- Human Pathology Experimental Laboratory, Basic Pathology Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - Regiane Stafim da Cunha
- Post-Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - Edneia Amancio de Souza Ramos
- Human Pathology Experimental Laboratory, Basic Pathology Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
- Post-Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| |
Collapse
|
3
|
Fachri M, Hatta M, Massi MN, Santoso A, Wikanningtyas TA, Dwiyanti R, Junita AR, Primaguna MR, Sabir M. The strong correlation between ADAM33 expression and airway inflammation in chronic obstructive pulmonary disease and candidate for biomarker and treatment of COPD. Sci Rep 2021; 11:23162. [PMID: 34848800 PMCID: PMC8632976 DOI: 10.1038/s41598-021-02615-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Airway inflammation in patients with chronic obstructive pulmonary disease (COPD) is an amplified response of the normal immune system that occurs as a result of chronic irritation by toxic substances, such as cigarette smoke. This leads to the characteristic pathological changes in the inflammatory cells of COPD patients. ADAM33 has been reported to be involved in the pathogenesis of COPD in East Asia by affecting airway inflammation and other immune responses. The aim of this study was to determine the potential role of ADAM33 (mRNA and soluble levels) as a biomarker of inflammation in COPD patients. This is a case control study using consecutive sampling. The COPD case and control (non-COPD) groups comprised 37 and 29 patients, respectively. We used univariate analysis to assess differences in the parameters between the groups and bivariate analysis to non-parametrically compare these parameters between the two groups. We observed significantly higher mRNA levels of ADAM33 in the COPD patients (10.39 ± 1.76) as compared to that in the non-COPD individuals (6.93 ± 0.39; P < 0.001). The levels of soluble ADAM33 were also significantly higher in the COPD patients (2.188 ± 1.142 ng/ml) compared to the non-COPD individuals (0.487 ± 0.105 ng/ml; P < 0.001). The mRNA and soluble ADAM33 levels were significantly higher in COPD patients compared to those in the parameter-matched non-COPD individuals. Thus, ADAM33 is a potential biomarker and treatment for inflammation in COPD patients.
Collapse
Affiliation(s)
- Muhammad Fachri
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine and Health, Universitas Muhammadiyah, Jakarta, Indonesia
| | - Mochammad Hatta
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Muhammad Nasrum Massi
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Arif Santoso
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Tri Ariguntar Wikanningtyas
- Department of Clinical Pathology, Faculty of Medicine and Health, Universitas Muhammadiyah, Jakarta, Indonesia
| | - Ressy Dwiyanti
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.,Department of Medical Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| | - Ade Rifka Junita
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Reza Primaguna
- Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Sabir
- Department of Medical Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| |
Collapse
|
4
|
Brigham E, Allbright K, Harris D. Health Disparities in Environmental and Occupational Lung Disease. Clin Chest Med 2021; 41:623-639. [PMID: 33153683 DOI: 10.1016/j.ccm.2020.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pulmonary health disparities disproportionately impact disadvantaged and vulnerable populations. This article focuses on disparities in disease prevalence, morbidity, and mortality for asthma, chronic obstructive pulmonary disease, pneumoconiosis, and lung cancer. Disparities are categorized by race, age, sex, socioeconomic status, and geographic region. Each category highlights differences in risk factors for the development and severity of lung disease. Risk factors include social, behavioral, economic, and biologic determinants of health (occupational/environmental exposures, psychosocial stressors, smoking, health literacy, health care provider bias, and health care access). Many of these risk factors are complex and inter-related; strategies proposed to decrease disparities require multilevel approaches.
Collapse
Affiliation(s)
- Emily Brigham
- Division of Pulmonary and Critical Care, Johns Hopkins University, 1830 East Monument Street 5th Floor, Baltimore, MD 21287, USA. https://twitter.com/emily_brigham
| | - Kassandra Allbright
- Department of Medicine, Johns Hopkins University, 1830 East Monument Street 5th Floor, Baltimore, MD 21287, USA
| | - Drew Harris
- Division of Pulmonary and Critical Care and Public Health Sciences, University of Virginia, Pulmonary Clinic 2nd Floor, 1221 Lee Street, Charlottesville, VA 22903, USA.
| |
Collapse
|
5
|
Cui L, Li H, Xie M, Xu X, Zhang Y, Wang W, Dou S, Xiao W. Relationship Between Proteinase with a Disintegrin and a Metalloproteinase Domain-9 (ADAM9), Inflammation, Airway Remodeling, and Emphysema in COPD Patients. Int J Chron Obstruct Pulmon Dis 2020; 15:3335-3346. [PMID: 33363366 PMCID: PMC7753901 DOI: 10.2147/copd.s276171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
Background and Objective The link between ADAM9 and airway remodeling and emphysema severity in COPD patients has not been elucidated. Here, we investigated the relationship between ADAM9 levels in sputum and airway epithelium and the clinical characteristics of COPD patients. Methods A sputum cohort and a lung tissue cohort were included in the study. Pulmonary function and computed tomography data were analyzed in COPD patients, non-COPD smokers, and non-smokers. Soluble ADAM9 and interleukin 8 (IL-8) levels in sputum supernatants as well as surface ADAM9 expression in airway epithelium were detected. Emphysema scores were calculated by the percentage of low attenuation area (%LAA-950), and airway remodeling was measured via airway thickening and loss of airway counts. Results Both soluble ADAM9 levels in sputum and relative surface ADAM9 expression in airway epithelium were increased in COPD patients. Sputum ADAM9 levels were negatively correlated with forced expiratory volume in 1 s of predicted (FEV1% of predicted) and positively correlated with sputum IL-8 levels, but not with CT measured emphysema nor airway remodeling. The ADAM9 expression in airway epithelia was positively correlated with %LAA-950 and airway wall thickening parameters (wall area percentage, WA%; the square root of the wall area in a standard airway with a 10 mm internal perimeter, Pi-10), while negatively correlated with airway counts derived from the 4th to 9th bronchial generations. Conclusion Airway ADAM9 levels in sputum and airway epithelium were both elevated in COPD patients compared to non-COPD controls. Sputum ADAM9 seemed to be associated with inflammatory responses in COPD, while epithelial ADAM9 was more correlated with emphysema and airway remodeling.
Collapse
Affiliation(s)
- Liwei Cui
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Haijun Li
- Department of Cadre Health Care, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Mengshuang Xie
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Xia Xu
- Department of Cadre Health Care, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Yingmei Zhang
- Department of Pulmonary Medicine, Linyi People's Hospital, Linyi, People's Republic of China
| | - Wei Wang
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Shuang Dou
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Wei Xiao
- Department of Pulmonary Medicine, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
6
|
Jin S, Zeng X, Fang J, Lin J, Chan SY, Erzurum SC, Cheng F. A network-based approach to uncover microRNA-mediated disease comorbidities and potential pathobiological implications. NPJ Syst Biol Appl 2019; 5:41. [PMID: 31754458 PMCID: PMC6853960 DOI: 10.1038/s41540-019-0115-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022] Open
Abstract
Disease-disease relationships (e.g., disease comorbidities) play crucial roles in pathobiological manifestations of diseases and personalized approaches to managing those conditions. In this study, we develop a network-based methodology, termed meta-path-based Disease Network (mpDisNet) capturing algorithm, to infer disease-disease relationships by assembling four biological networks: disease-miRNA, miRNA-gene, disease-gene, and the human protein-protein interactome. mpDisNet is a meta-path-based random walk to reconstruct the heterogeneous neighbors of a given node. mpDisNet uses a heterogeneous skip-gram model to solve the network representation of the nodes. We find that mpDisNet reveals high performance in inferring clinically reported disease-disease relationships, outperforming that of traditional gene/miRNA-overlap approaches. In addition, mpDisNet identifies network-based comorbidities for pulmonary diseases driven by underlying miRNA-mediated pathobiological pathways (i.e., hsa-let-7a- or hsa-let-7b-mediated airway epithelial apoptosis and pro-inflammatory cytokine pathways) as derived from the human interactome network analysis. The mpDisNet offers a powerful tool for network-based identification of disease-disease relationships with miRNA-mediated pathobiological pathways.
Collapse
Affiliation(s)
- Shuting Jin
- Department of Computer Science, Xiamen University, Xiamen, 361005 China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, Changsha, 410082 China
| | - Jiansong Fang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Jiawei Lin
- Department of Computer Science, Xiamen University, Xiamen, 361005 China
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Serpil C. Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195 USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| |
Collapse
|
7
|
Parris BA, O'Farrell HE, Fong KM, Yang IA. Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis. J Thorac Dis 2019; 11:S2155-S2172. [PMID: 31737343 DOI: 10.21037/jtd.2019.10.54] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer comprise the leading causes of lung disease-related mortality worldwide. Exposure to tobacco smoke is a mutual aetiology underlying the two diseases, accounting for almost 90% of cases. There is accumulating evidence supporting the role of immune dysfunction, the lung microbiome, extracellular vesicles and underlying genetic susceptibility in the development of COPD and lung cancer. Further, epigenetic factors, involving DNA methylation and microRNA expression, have been implicated in both diseases. Chronic inflammation is a key feature of COPD and could be a potential driver of lung cancer development. Using next generation technologies, further studies investigating the genomics, epigenetics and gene-environment interaction in key molecular pathways will continue to elucidate the pathogenic mechanisms underlying the development of COPD and lung cancer, and contribute to the development of novel diagnostic and prognostic tools for early intervention and personalised therapeutic strategies.
Collapse
Affiliation(s)
- Brielle A Parris
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Hannah E O'Farrell
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Kwun M Fong
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
8
|
Huang X, Mu X, Deng L, Fu A, Pu E, Tang T, Kong X. The etiologic origins for chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:1139-1158. [PMID: 31213794 PMCID: PMC6549659 DOI: 10.2147/copd.s203215] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
COPD, characterized by long-term poorly irreversible airway limitation and persistent respiratory symptoms, has resulted in enormous challenges to human health worldwide, with increasing rates of prevalence, death, and disability. Although its origin was thought to be in the interactions of genetic with environmental factors, the effects of environmental factors on the disease during different life stages remain little known. Without clear mechanisms and radical cure for it, early screening and prevention of COPD seem to be important. In this review, we will discuss the etiologic origins for poor lung function and COPD caused by specific adverse effects during corresponding life stages, as well as try to find new insights and potential prevention strategies for this disease.
Collapse
Affiliation(s)
- Xinwei Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China.,Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Xi Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Li Deng
- The Pathology Department, First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, People's Republic of China
| | - Aili Fu
- Department of Oncology, Yunfeng Hospital, Xuanwei City, Yunnan Province, People's Republic of China
| | - Endong Pu
- Department of Thoracic Surgery, Yunfeng Hospital, Xuanwei City, Yunnan Province, People's Republic of China
| | - Tao Tang
- Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Xiangyang Kong
- Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| |
Collapse
|
9
|
T1 polymorphism in a disintegrin and metalloproteinase 33 (ADAM33) gene may contribute to the risk of childhood asthma in Asians. Inflamm Res 2017; 66:413-424. [PMID: 28285393 DOI: 10.1007/s00011-017-1024-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Polymorphisms in ADAM33 gene have been implicated in susceptibility to the risk of childhood asthma. However, the results remain controversial. We performed meta-analyses to clarify the relationship between them. METHODS Relevant articles were searched in PubMed, Embase, Wanfang, and China National Knowledge Infrastructure. The Odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of the associations. RESULTS Fourteen studies with five ADAM33 polymorphisms (F + 1, T1, T2, S2, and V4) were identified, involving 2687 cases and 2996 controls. ADAM33 F + 1, T2, and T1 polymorphisms showed significant associations with asthma risks in the overall and Caucasian children, Asian children, and Caucasian and Chinese children, respectively; however, these significant results were unstable in sensitivity analysis. T1 revealed significant and stable associations with asthma risks among Asian children in the dominant (OR = 2.00, 95% CI = 1.40-2.87, P = 0.0002) and codominant (OR = 3.06, 95% CI = 1.71-5.50, P = 0.0002) models; in cumulative meta-analyses, these significant results were robust. Concerning S2 or V4 polymorphism, no significant associations were observed. CONCLUSION These findings demonstrate that ADAM33 T1 polymorphism might be a potential susceptible predictor of asthma for Asian children. Further functional studies between this polymorphism and asthma risks are warranted.
Collapse
|
10
|
Saad-Hussein A, Thabet EH, Taha MM, Shahy EM, Mahdy-Abdallah H. Association of ADAM33 gene polymorphism and arginase activity with susceptibility to ventilatory impairment in wood dust-exposed workers. Hum Exp Toxicol 2016; 35:966-73. [DOI: 10.1177/0960327115611971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ADAM33 represents an important gene of susceptibility for lung function impairment. This work aimed to evaluate the association between genetic polymorphism of ADAM33 at four single nucleotide polymorphisms (T1, T2, S1, and Q1) and arginase activity with respiratory functions impairment in wood workers. The study was done to compare ventilatory functions and arginase activity of 82 wood workers and 81 controls. Genotyping was determined by using the polymerase chain restriction fragment length polymorphism method. Forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), and peak expiratory flow rate (PEF) of the workers were significantly reduced compared with the controls. T1 single nucleotide polymorphism (SNP) was associated with obvious decline in the FEV1, FVC, and PEF in wood workers, while T2 SNP was associated with decline in FEV1 and PEF. A significant increase in arginase activity was found in T2 and S1 SNPs of the exposed workers. Increase in duration of exposure was correlated with the decline in ventilatory functions. This inverse correlation was significant for pulmonary function indices in AA and GG genotypes of T1 and T2, respectively. Moreover, significance was detected for FVC and FEV1 in AA and GA genotypes of S1 and Q1. A positive correlation between arginase activity and duration of exposure was found to be significant in GG genotype of S1 SNP. An association between ADAM33 gene polymorphism and impaired lung functions was detected in wood dust-exposed workers. Arginase activity may play an associated important role in increasing this impairment in wood workers.
Collapse
Affiliation(s)
- A Saad-Hussein
- Environmental Research Division, Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Giza, Egypt
| | - EH Thabet
- Clinical Pathology, National Research Centre, Dokki, Giza, Egypt
| | - MM Taha
- Clinical Pathology, National Research Centre, Dokki, Giza, Egypt
| | - EM Shahy
- Environmental Research Division, Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Giza, Egypt
| | - H Mahdy-Abdallah
- Environmental Research Division, Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|