1
|
Karetnikova ES, Livanova AA, Fedorova AA, Markov AG. Early Radiation-Induced Changes in Lung Tissue and Intercellular Junctions: Implications for Tissue Repair and Fibrosis. PATHOPHYSIOLOGY 2024; 31:531-544. [PMID: 39449521 PMCID: PMC11503413 DOI: 10.3390/pathophysiology31040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Early changes in lung tissue following ionizing radiation (IR) initiate processes that may lead to either regeneration or fibrosis. Intercellular junction proteins play a crucial role in the organization and function of epithelial tissues, both under normal conditions and after injuries. Alterations in the expression and localization of these proteins can influence the fate of epithelial cells. This study aims to investigate the effects of IR on lung tissue structure, as well as on the levels and distribution of intercellular junction proteins. Wistar rats were subjected to total X-ray irradiation at doses of 2 and 10 Gy. Lung tissue samples were collected for Western blot and histological analysis 72 h post-IR. IR at doses of 2 and 10 Gy led to structural changes in lung tissue and elevated levels of E-cadherin. The 10 Gy IR resulted in increased claudin-4 and occludin in lung parenchyma, decreased claudin-8 and claudin-12 in bronchial epithelium and endothelium, and suppression of apoptosis. Data evaluation indicated that alterations in the protein composition of intercellular junctions are essential processes in lung tissue at early stages after IR, and at least some of these alterations are associated with adaptation.
Collapse
Affiliation(s)
- Ekaterina S. Karetnikova
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Interoception Laboratory, Pavlov Institute of Physiology RAS, 199034 St. Petersburg, Russia
| | - Alexandra A. Livanova
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Arina A. Fedorova
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander G. Markov
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Interoception Laboratory, Pavlov Institute of Physiology RAS, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Wu H, Wu L, Yu W, Gu C, Li Y, Chen K, Zhang L, Qian F. Veronica linariifolia subsp. dilatata ameliorates LPS-induced acute lung injury by attenuating endothelial cell barrier dysfunction via EGFR/Akt/ZO-1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117545. [PMID: 38056533 DOI: 10.1016/j.jep.2023.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried aerial parts of Veronica linariifolia subsp. dilatata (Nakai & Kitag.) D.Y.Hong named Shui Man Jing (SMJ) is a traditional Chinese medicine with a long history of clinical use in the treatment of chronic bronchitis and coughing up blood, however, its role on acute lung injury (ALI) has not been revealed yet. AIM OF THE STUDY To assess the efficiency of SMJ on ALI and to investigate whether it inhibited endothelial barrier dysfunction by regulating the EGFR/Akt/ZO-1 pathway to alleviate ALI in vivo and in vitro based on the result of network pharmacology. MATERIALS AND METHODS An in vivo model of ALI was established using inhalation of atomized lipopolysaccharide (LPS), and the effects of SMJ on ALI were evaluated through histopathological examination and inflammatory cytokines, lung histology and edema, vascular and alveolar barrier disruption. Network pharmacology was applied to predict the mechanism of SMJ in the treatment of ALI. The crucial targets were validated by RT-PCR, Western Blotting, molecular docking, immunohistochemistry and immunofluorescence methods in vivo and in virto. RESULTS Administration of SMJ protected mice against LPS-induced ALI, including ameliorating the histological alterations in the lung tissues, and decreasing lung edema, protein content of bronchoalveolar lavage fluid, infiltration of inflammatory cell and secretion of cytokines. SMJ exerted protective effects in ALI by inhibiting endothelial barrier dysfunction in mice and bEnd.3 cell. SMJ relieved endothelial barrier dysfunction induced by LPS through upregulating the EGFR expression. SMJ also increased the phosphorylation of Akt, and ZO-1 expression both in vivo and in vitro. CONCLUSION SMJ attenuates vascular endothelial barrier dysfunction for LPS-induced ALI via EGFR/Akt/ZO-1 pathway, and is a promising novel therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Huayan Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Longlong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenchao Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liuqiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
3
|
Yeh CL, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Kuo TC, Yeh SL, Lin MT. Calcitriol attenuates poly(I:C)-induced lung injury in obese mice via modulating toll-like receptor 3- and renin-angiotensin system-associated signal pathways. Int Immunopharmacol 2024; 128:111522. [PMID: 38246004 DOI: 10.1016/j.intimp.2024.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
This study investigated the effects of calcitriol on polyinosinic-polycytidylic acid (poly(I:C))-induced acute lung injury (ALI) and its association with Toll-like receptor 3 (TLR3) and renin-angiotensin system (RAS) signal pathways in obese mice. Normal mice were fed a high-fat diet to induce obesity. Obese mice were divided into four groups: SS group, intratracheally instilled with saline and intravenous (IV) saline injection via tail vein; SD group, instilled with saline and IV calcitriol injection; PS group, instilled with poly(I:C) and IV saline injection; and PD group, instilled with poly(I:C) and IV calcitriol injection. All mice were sacrificed 12 or 24 h after poly(I:C) stimulation. The results showed that poly(I:C) instillation led to increased production of systemic inflammatory cytokines. In the lungs, the population of macrophages decreased, while more neutrophils were recruited. TLR3-associated genes including IRF3, nuclear factor-κB, interferon-β and phosphorylated IRF3 expression levels, were upregulated. The RAS-associated AT1R and ACE2 protein levels increased, whereas AT2R, Ang(1-7), and MasR levels decreased. Also, reduced tight junction (TJ) proteins and elevated lipid peroxide levels were observed 24 h after poly(I:C) stimulation. Compared to the PS group, the PD group exhibited reduced systemic and lung inflammatory cytokine levels, increased macrophage while decreased neutrophil percentages, downregulated TLR3-associated genes and phosphorylated IRF3, and polarized toward the RAS-AT2R/Ang(1-7)/MasR pathway in the lungs. Higher lung TJ levels and lower injury scores were also noted. These findings suggest that calcitriol treatment after poly(I:C) instillation alleviated ALI in obese mice possibly by downregulating TLR3 expression and tending toward the RAS-associated anti-inflammatory pathway.
Collapse
Affiliation(s)
- Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Brock S, Jackson DB, Soldatos TG, Hornischer K, Schäfer A, Diella F, Emmert MY, Hoerstrup SP. Whole patient knowledge modeling of COVID-19 symptomatology reveals common molecular mechanisms. FRONTIERS IN MOLECULAR MEDICINE 2023; 2:1035290. [PMID: 39086962 PMCID: PMC11285600 DOI: 10.3389/fmmed.2022.1035290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 08/02/2024]
Abstract
Infection with SARS-CoV-2 coronavirus causes systemic, multi-faceted COVID-19 disease. However, knowledge connecting its intricate clinical manifestations with molecular mechanisms remains fragmented. Deciphering the molecular basis of COVID-19 at the whole-patient level is paramount to the development of effective therapeutic approaches. With this goal in mind, we followed an iterative, expert-driven process to compile data published prior to and during the early stages of the pandemic into a comprehensive COVID-19 knowledge model. Recent updates to this model have also validated multiple earlier predictions, suggesting the importance of such knowledge frameworks in hypothesis generation and testing. Overall, our findings suggest that SARS-CoV-2 perturbs several specific mechanisms, unleashing a pathogenesis spectrum, ranging from "a perfect storm" triggered by acute hyper-inflammation, to accelerated aging in protracted "long COVID-19" syndromes. In this work, we shortly report on these findings that we share with the community via 1) a synopsis of key evidence associating COVID-19 symptoms and plausible mechanisms, with details presented within 2) the accompanying "COVID-19 Explorer" webserver, developed specifically for this purpose (found at https://covid19.molecularhealth.com). We anticipate that our model will continue to facilitate clinico-molecular insights across organ systems together with hypothesis generation for the testing of potential repurposing drug candidates, new pharmacological targets and clinically relevant biomarkers. Our work suggests that whole patient knowledge models of human disease can potentially expedite the development of new therapeutic strategies and support evidence-driven clinical hypothesis generation and decision making.
Collapse
Affiliation(s)
| | | | - Theodoros G. Soldatos
- Molecular Health GmbH, Heidelberg, Germany
- SRH Hochschule, University of Applied Science, Heidelberg, Germany
| | | | | | | | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
6
|
Liu M, Zhang Y, Yan J, Wang Y. Aerobic exercise alleviates ventilator-induced lung injury by inhibiting NLRP3 inflammasome activation. BMC Anesthesiol 2022; 22:369. [PMID: 36456896 PMCID: PMC9714243 DOI: 10.1186/s12871-022-01874-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is caused by stretch stimulation and other factors related to mechanical ventilation (MV). NOD-like receptor protein 3 (NLRP3), an important innate immune component, is strongly associated with VILI. This study aimed to investigate the effect and mechanisms of aerobic exercise (EX) on VILI. METHODS To test the effects of the PKC inhibitor bisindolylmaleimide I on PKC and NLRP3, male C57BL/6 mice (7 weeks old, 19 ~ 23 g) were randomly divided into four groups: control group(C), bisindolylmaleimide I-pretreated group(B), MV group, and bisindolylmaleimide I-pretreated + MV (B + MV) group. The mice were pretreated with bisindolylmaleimide I through intraperitoneal injection (0.02 mg/kg) 1 h before MV. MV was performed at a high tidal volume (30 ml/kg). To explore the ameliorative effect of EX on VILI, the mice were randomly divided into C group, MV group, EX group and EX + MV group and subjected to either MV or 5 weeks of EX training. After ventilation, haematoxylin-eosin (HE) staining and wet/dry weight ratio was used to assess lung pathophysiological changes. PKCɑ, P-PKCɑ, ASC, procaspase-1, caspase-1, pro-IL-1β, IL-1β, NLRP3 and occludin (tight junction protein) expression in lung tissues was determined by Western blotting. The level of IL-6 in alveolar lavage fluid was determined by ELISA. RESULTS NLRP3, P-PKCɑ, and PKCɑ levels were inceased in MV group, but bisindolylmaleimide I treatment reversed these changes. Inhibition of PKC production prevented NLRP3 activation. Moreover, MV increased ASC, procaspase-1, caspase-1, pro-IL-1β, and IL1β levels and decreased occludin levels, but EX alleviated these changes. HE staining and lung injury scoring confirmed an absence of obvious lung injury in C group and EX group. Lung injury was most severe in MV group but was improved in EX + MV group. Overall, these findings suggest that MV activates the NLRP3 inflammasome by activating PKCɑ and inducing occludin degradation, while Exercise attenuates NLRP3 inflammasome and PKCɑ activation. Besides, exercise improves cyclic stretch-induced degradation of occludin. CONCLUSION PKC activation can increase the level of NLRP3, which can lead to lung injury. Exercise can reduce lung injury by inhibiting PKCɑ and NLRP3 activation. Exercise maybe a potential measure for clinical prevention of VILI.
Collapse
Affiliation(s)
- Mengjie Liu
- grid.27255.370000 0004 1761 1174Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012 Jinan, Shandong China ,grid.452422.70000 0004 0604 7301Department of Anesthesiology and Perioperative Medicine, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014 Jinan, Shandong China
| | - Yaqiang Zhang
- grid.411614.70000 0001 2223 5394Beijing Sport University, Xinxi Road, Haidian District, 100084 Beijing, China
| | - Jie Yan
- grid.452422.70000 0004 0604 7301Department of Anesthesiology and Perioperative Medicine, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014 Jinan, Shandong China
| | - Yuelan Wang
- grid.27255.370000 0004 1761 1174Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012 Jinan, Shandong China ,grid.452422.70000 0004 0604 7301Department of Anesthesiology and Perioperative Medicine, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014 Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, 250014 Jinan, China
| |
Collapse
|
7
|
Huan Z, Tang Y, Xu C, Cai J, Yao H, Wang Y, Bu F, Ge X. PTPRO knockdown protects against inflammation in hemorrhage shock-induced lung injury involving the NF-κB signaling pathway. Respir Res 2022; 23:195. [PMID: 35906634 PMCID: PMC9335982 DOI: 10.1186/s12931-022-02118-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hemorrhage shock (HS) is characterized by decreased tissue oxygenation and organ damage due to severe blood loss. Protein tyrosine phosphatase receptor type O (PTPRO) is abnormally up-regulated in the rat lungs after trauma/HS. Methods To elucidate the regulatory mechanism of PTPRO in lung inflammation following HS, we established a rat model of HS via withdrawing blood by a catheter inserted into the femoral artery followed by resuscitation. The rats were infected with lentivirus harboring short hairpin RNA (shRNA) targeting PTPRO by intratracheal instillation. Results PTPRO was significantly up-regulated in rat lungs after HS. PTPRO knockdown enhanced epithelial integrity and reduced capillary leakage by up-regulating tight junction proteins zonula occludens-1 (ZO-1) and occludin (OCC) in the lungs. Besides, HS-induced myeloperoxidase activity and inflammatory cell infiltration was mitigated by PTPRO knockdown. The expression of inflammatory cytokines/chemokines (TNF-α, IL-6, MIP-2, MCP-1, and KC) in the lungs and bronchoalveolar lavage fluid was regressed after PTPRO knockdown. The nuclear factor kappa B (NF-κB) pathway was involved in HS-induced lung inflammation. PTPRO down-regulation inhibited the NF-κB pathway activation by suppressing the phosphorylation of NF-κB and its translocation from the cytoplasm into the nucleus in HS. Conclusion Taken together, we demonstrated that PTPRO knockdown may contribute to attenuating inflammation in HS-induced lung injury via inhibiting NF-κB pathway activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02118-2.
Collapse
Affiliation(s)
- Zhirong Huan
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Ying Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Ce Xu
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Jimin Cai
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Hao Yao
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Yan Wang
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Fanyu Bu
- Department of Reconstruction Surgery, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China.
| | - Xin Ge
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China. .,Orthopedic Institution of Wuxi City, Wuxi, 214000, Jiangsu, China. .,Department of ICU, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
8
|
Nguee SYT, Júnior JWBD, Epiphanio S, Rénia L, Claser C. Experimental Models to Study the Pathogenesis of Malaria-Associated Acute Respiratory Distress Syndrome. Front Cell Infect Microbiol 2022; 12:899581. [PMID: 35677654 PMCID: PMC9168995 DOI: 10.3389/fcimb.2022.899581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria-associated acute respiratory distress syndrome (MA-ARDS) is increasingly gaining recognition as a severe malaria complication because of poor prognostic outcomes, high lethality rate, and limited therapeutic interventions. Unfortunately, invasive clinical studies are challenging to conduct and yields insufficient mechanistic insights. These limitations have led to the development of suitable MA-ARDS experimental mouse models. In patients and mice, MA-ARDS is characterized by edematous lung, along with marked infiltration of inflammatory cells and damage of the alveolar-capillary barriers. Although, the pathogenic pathways have yet to be fully understood, the use of different experimental mouse models is fundamental in the identification of mediators of pulmonary vascular damage. In this review, we discuss the current knowledge on endothelial activation, leukocyte recruitment, leukocyte induced-endothelial dysfunction, and other important findings, to better understand the pathogenesis pathways leading to endothelial pulmonary barrier lesions and increased vascular permeability. We also discuss how the advances in imaging techniques can contribute to a better understanding of the lung lesions induced during MA-ARDS, and how it could aid to monitor MA-ARDS severity.
Collapse
Affiliation(s)
- Samantha Yee Teng Nguee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carla Claser,
| |
Collapse
|
9
|
Liu J, Dean DA. Gene Therapy for Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:786255. [PMID: 35111077 PMCID: PMC8801611 DOI: 10.3389/fphys.2021.786255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - David A. Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
10
|
Lai Y, Huang Y. Mechanisms of Mechanical Force Induced Pulmonary Vascular Endothelial Hyperpermeability. Front Physiol 2021; 12:714064. [PMID: 34671268 PMCID: PMC8521004 DOI: 10.3389/fphys.2021.714064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Mechanical ventilation is a supportive therapy for patients with acute respiratory distress syndrome (ARDS). However, it also inevitably produces or aggravates the original lung injury with pathophysiological changes of pulmonary edema caused by increased permeability of alveolar capillaries which composed of microvascular endothelium, alveolar epithelium, and basement membrane. Vascular endothelium forms a semi-selective barrier to regulate body fluid balance. Mechanical ventilation in critically ill patients produces a mechanical force on lung vascular endothelium when the endothelial barrier was destructed. This review aims to provide a comprehensive overview of molecular and signaling mechanisms underlying the endothelial barrier permeability in ventilator-induced lung jury (VILI).
Collapse
Affiliation(s)
- Yan Lai
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, Katkar GD, Claire A, Castillo V, Hernandez M, Russo H, Duran J, Crotty Alexander LE, Tipps A, Lin G, Thistlethwaite PA, Chattopadhyay R, Rogers TF, Sahoo D, Ghosh P, Das S. Adult stem cell-derived complete lung organoid models emulate lung disease in COVID-19. eLife 2021; 10:e66417. [PMID: 34463615 PMCID: PMC8463074 DOI: 10.7554/elife.66417] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. Methods We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Results Infected ALO monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Conclusions Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines. Funding This work was supported by the National Institutes for Health (NIH) grants 1R01DK107585-01A1, 3R01DK107585-05S1 (to SD); R01-AI141630, CA100768 and CA160911 (to PG) and R01-AI 155696 (to PG, DS and SD); R00-CA151673 and R01-GM138385 (to DS), R01- HL32225 (to PT), UCOP-R00RG2642 (to SD and PG), UCOP-R01RG3780 (to P.G. and D.S) and a pilot award from the Sanford Stem Cell Clinical Center at UC San Diego Health (P.G, S.D, D.S). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. L.C.A's salary was supported in part by the VA San Diego Healthcare System. This manuscript includes data generated at the UC San Diego Institute of Genomic Medicine (IGC) using an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).
Collapse
Affiliation(s)
- Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
| | - MacKenzie Fuller
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
| | - Ayden Fonseca
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, San Diego, United States
| | - Stella-Rita Ibeawuchi
- Department of Pathology, University of California San Diego, San Diego, United States
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, United States
| | - Gajanan Dattatray Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
| | - Amanraj Claire
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
| | - Moises Hernandez
- Division of Cardiothoracic Surgery, University of California San Diego, San Diego, United States
| | - Hana Russo
- Department of Pathology, University of California San Diego, San Diego, United States
| | - Jason Duran
- Division of Cardiology, Department of Internal Medicine, UC San Diego Medical Center, San Diego, United States
| | - Laura E Crotty Alexander
- Pulmonary Critical Care Section, Veterans Affairs (VA) San Diego Healthcare System, La Jolla, United States
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ann Tipps
- Department of Pathology, University of California San Diego, San Diego, United States
| | - Grace Lin
- Department of Pathology, University of California San Diego, San Diego, United States
| | | | - Ranajoy Chattopadhyay
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
- Cell Applications Inc., La Jolla, CA, United States
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, United States
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, United States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, San Diego, United States
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Soumita Das
- HUMANOID CoRE, University of California San Diego, San Diego, United States
- Department of Pathology, University of California San Diego, San Diego, United States
| |
Collapse
|
12
|
Wang M, Zhong H, Zhang X, Huang X, Wang J, Li Z, Chen M, Xiao Z. EGCG promotes PRKCA expression to alleviate LPS-induced acute lung injury and inflammatory response. Sci Rep 2021; 11:11014. [PMID: 34040072 PMCID: PMC8154949 DOI: 10.1038/s41598-021-90398-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI), which could be induced by multiple factors such as lipopolysaccharide (LPS), refer to clinical symptoms of acute respiratory failure, commonly with high morbidity and mortality. Reportedly, active ingredients from green tea have anti-inflammatory and anticancer properties, including epigallocatechin-3-gallate (EGCG). In the present study, protein kinase C alpha (PRKCA) is involved in EGCG protection against LPS-induced inflammation and ALI. EGCG treatment attenuated LPS-stimulated ALI in mice as manifested as improved lung injury scores, decreased total cell amounts, neutrophil amounts and macrophage amounts, inhibited the activity of MPO, decreased wet-to-dry weight ratio of lung tissues, and inhibited release of inflammatory cytokines TNF-α, IL-1β, and IL-6. PRKCA mRNA and protein expression showed to be dramatically decreased by LPS treatment while reversed by EGCG treatment. Within LPS-stimulated ALI mice, PRKCA silencing further aggravated, while PRKCA overexpression attenuated LPS-stimulated inflammation and ALI through MAPK signaling pathway. PRKCA silencing attenuated EGCG protection. Within LPS-induced RAW 264.7 macrophages, EGCG could induce PRKCA expression. Single EGCG treatment or Lv-PRKCA infection attenuated LPS-induced increases in inflammatory factors; PRKCA silencing could reverse the suppressive effects of EGCG upon LPS-stimulated inflammatory factor release. In conclusion, EGCG pretreatment inhibits LPS-induced ALI in mice. The protective mechanism might be associated with the inhibitory effects of PRKCA on proinflammatory cytokine release via macrophages and MAPK signaling pathway.
Collapse
Affiliation(s)
- Mian Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
- Department of Epidemiology and Health Statistics, School of Public Health, University of South China, Hengyang, 421001, China
| | - Hua Zhong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xian Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
| | - Xin Huang
- Department of Epidemiology and Health Statistics, Hunan Normal University, Changsha, 410006, China
| | - Jing Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
| | - Zihao Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
| | - Mengshi Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, 410078, China.
| | - Zhenghui Xiao
- Hunan Provincial Key Laboratory of Pediatric Emergency, Hunan Children's Hospital, Changsha, 410006, China
| |
Collapse
|
13
|
Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, Katkar G, Claire A, Castillo V, Hernandez M, Russo H, Duran J, Crotty Alexander LE, Tipps A, Lin G, Thistlethwaite PA, Chattopadhyay R, Rogers TF, Sahoo D, Ghosh P, Das S. Adult Stem Cell-derived Complete Lung Organoid Models Emulate Lung Disease in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.10.17.344002. [PMID: 33106807 PMCID: PMC7587781 DOI: 10.1101/2020.10.17.344002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type-II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Infected ALO-monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Findings validate a human lung model of COVID-19 which can be immediately utilized to investigate COVID-19 pathogenesis, and vet new therapies and vaccines.
Collapse
|
14
|
Zhou J, Zhou XD, Xu R, Du XZ, Li Q, Li B, Zhang GY, Chen LX, Perelman JM, Kolosov VP. The Degradation of Airway Epithelial Tight Junctions in Asthma Under High Airway Pressure Is Probably Mediated by Piezo-1. Front Physiol 2021; 12:637790. [PMID: 33868003 PMCID: PMC8047413 DOI: 10.3389/fphys.2021.637790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/11/2021] [Indexed: 12/02/2022] Open
Abstract
Full functioning of the airway physical barrier depends on cellular integrity, which is coordinated by a series of tight junction (TJ) proteins. Due to airway spasm, edema, and mucus obstruction, positive end-expiratory alveolar pressure (also termed auto-PEEP) is a common pathophysiological phenomenon, especially in acute asthma attack. However, the influence of auto-PEEP on small airway epithelial TJs is currently unclear. We performed studies to investigate the effect of extra pressure on small airway epithelial TJs and its mechanism. The results first confirmed that a novel mechanosensitive receptor, piezo-1, was highly expressed in the airway epithelium of asthmatic mice. Extra pressure induced the degradation of occludin, ZO-1 and claudin-18 in primary human small airway epithelial cells (HSAECs), resulting in a decrease in transepithelial electrical resistance (TER) and an increase in cell layer permeability. Through in vitro investigations, we observed that exogenous pressure stimulation could elevate the intracellular calcium concentration ([Ca2+]i) in HSAECs. Downregulation of piezo-1 with siRNA and pretreatment with BAPTA-AM or ALLN reduced the degradation of TJs and attenuated the impairment of TJ function induced by exogenous pressure. These findings indicate the critical role of piezo-1/[Ca2+]i/calpain signaling in the regulation of small airway TJs under extra pressure stimulation.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang-Dong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Rui Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xian-Zhi Du
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bin Li
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fengjie, Chongqing, China
| | - Guo-Yue Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Xiu Chen
- Department of Respiratory Medicine, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Juliy M Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Medical Sciences, Blagoveshchensk, Russia
| | - Victor P Kolosov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Medical Sciences, Blagoveshchensk, Russia
| |
Collapse
|
15
|
Weber B, Lackner I, Braun CK, Kalbitz M, Huber-Lang M, Pressmar J. Laboratory Markers in the Management of Pediatric Polytrauma: Current Role and Areas of Future Research. Front Pediatr 2021; 9:622753. [PMID: 33816396 PMCID: PMC8010656 DOI: 10.3389/fped.2021.622753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Severe trauma is the most common cause of mortality in children and is associated with a high socioeconomic burden. The most frequently injured organs in children are the head and thorax, followed by the extremities and by abdominal injuries. The efficient and early assessment and management of these injuries is essential to improve patients' outcome. Physical examination as well as imaging techniques like ultrasound, X-ray and computer tomography are crucial for a valid early diagnosis. Furthermore, laboratory analyses constitute additional helpful tools for the detection and monitoring of pediatric injuries. Specific inflammatory markers correlate with post-traumatic complications, including the development of multiple organ failure. Other laboratory parameters, including lactate concentration, coagulation parameters and markers of organ injury, represent further clinical tools to identify trauma-induced disorders. In this review, we outline and evaluate specific biomarkers for inflammation, acid-base balance, blood coagulation and organ damage following pediatric polytrauma. The early use of relevant laboratory markers may assist decision making on imaging tools, thus contributing to minimize radiation-induced long-term consequences, while improving the outcome of children with multiple trauma.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Jochen Pressmar
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| |
Collapse
|
16
|
Acupoint Catgut Embedding Improves the Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2394734. [PMID: 32566670 PMCID: PMC7285251 DOI: 10.1155/2020/2394734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Background This study investigated the potential therapeutic effects of acupoint catgut embedding (ACE) at ST36 and BL13 on lipopolysaccharide- (LPS-) induced acute respiratory distress syndrome (ARDS) in rats. Materials and Methods Male Sprague-Dawley rats were randomized into the normal saline (NS group with a sham procedure), lipopolysaccharide (LPS group with a sham procedure), and LPS plus ACE (LPS+ACE with ACE at bilateral BL13 and ST36 acupoints one day before LPS injection) groups. After intratracheal instillation of normal saline or LPS (0.5 mg/kg), all rats were subjected to mechanical ventilation for 4 h. Their blood gas was analyzed before and after lung injury, and their lung pressure-volumes were measured longitudinally. The levels of TNF-α, IL-6, IL-10, and phosphatidylcholine (PC) and total proteins (TP) in bronchial alveolar lavage fluid (BALF) were assessed. Their wet to dry lung weight ratios, histology, myeloperoxidase (MPO), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) levels were measured. Their lung aquaporin 1 (AQP1) and Occludin protein levels were analyzed. Results LPS administration significantly decreased the ratios of PaO2/FiO2 and pressure-volumes and induced lung inflammation and injury by increased concentrations of TNF-α, IL-6, IL-10, and TP in BALF and MPO and MDA in the lung but decreased PC in BALF and SOD activity in the lungs. LPS also reduced AQP1 and Occludin protein levels in the lung of rats. In contrast, ACE significantly mitigated the LPS-induced lung injury, inflammation, and oxidative stress and preserved the AQP1 and Occludin contents in the lung of rats. Conclusions ACE significantly improved respiratory function by mitigating inflammation and oxidative stress and preserving AQP1 and Occludin expression in the lung in a rat model of LPS-induced ARDS.
Collapse
|
17
|
Peng LY, Yuan M, Shi HT, Li JH, Song K, Huang JN, Yi PF, Fu BD, Shen HQ. Protective Effect of Piceatannol Against Acute Lung Injury Through Protecting the Integrity of Air-Blood Barrier and Modulating the TLR4/NF-κB Signaling Pathway Activation. Front Pharmacol 2020; 10:1613. [PMID: 32038265 PMCID: PMC6988518 DOI: 10.3389/fphar.2019.01613] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Acute lung injury (ALI) is a common and complex inflammatory lung syndrome with higher morbidity and mortality rate. Piceatannol (PIC) has anti-inflammation and anti-oxidant properties. The study was designed to explore the effect and the action mechanisms of PIC on lipopolysaccharide (LPS)-induced ALI. Twenty-four hours after LPS challenge, mice from different treatment groups were euthanized, and the bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected. Then the degree of pulmonary edema, lung pathological changes, myeloperoxidase (MPO) activity, and the production of pro-inflammatory cytokines were detected. Additionally, the messenger RNA (mRNA) expressions associated with cell adhesion molecules and tight junction were analyzed through quantitative real-time (qRT)-PCR, and the TLR4/NF-κB activation was examined by western blot. The results showed that PIC significantly inhibited LPS-induced lung edema, histopathological damage, MPO activity, cell infiltration, and pro-inflammatory cytokines production. Moreover, PIC notably suppressed mRNA expressions associated with inflammation and cell adhesion molecules. Furthermore, PIC also alleviated LPS-induced damage of air-blood barrier through reducing the levels of total proteins in BALF and recovering the expression of occludin and ZO-1 in the lung tissues. We also found that PIC remarkably restrained the LPS-induced TLR4/NF-κB pathway activation in lung tissues. In conclusion, PIC may be potential to treat LPS-induced acute lung injury (ALI) via regulating air-blood barrier and TLR4/NF-κB signaling pathway activation.
Collapse
Affiliation(s)
- Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Yuan
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hai-Tao Shi
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing-He Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ke Song
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiang-Ni Huang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
18
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
19
|
Weber B, Mendler MR, Lackner I, von Zelewski A, Höfler S, Baur M, Braun CK, Hummler H, Schwarz S, Pressmar J, Kalbitz M. Lung injury after asphyxia and hemorrhagic shock in newborn piglets: Analysis of structural and inflammatory changes. PLoS One 2019; 14:e0219211. [PMID: 31276543 PMCID: PMC6611609 DOI: 10.1371/journal.pone.0219211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Asphyxia of newborns is a severe and frequent challenge of the peri- and postnatal period. The purpose of this study was to study early morphological, immunological and structural alterations in lung tissue after asphyxia and hemorrhage (AH). METHODS 44 neonatal piglets (age 32 hrs) underwent asphyxia and hemorrhage (AH) and were treated according to the international liaison committee of resuscitation (ILCOR) guidelines. For this study, 15 piglets (blood transfusion (RBC) n = 9; NaCl n = 6, mean age 31 hrs) were randomly picked. 4 hours after ROSC (return of spontaneous circulation), lung tissue and blood samples were collected. RESULTS An elevation of myeloperoxidase (MPO) activity was observed 4 hrs after AH accompanied by an increase of surfactant D after RBC treatment. After AH tight junction proteins Claudin 18 and junctional adhesion molecule 1 (JAM1) were down-regulated, whereas Occludin was increased. Furthermore, after AH and RBC treatment dephosphorylated active form of Connexin 43 was increased. CONCLUSIONS AH in neonatal pigs is associated with early lung injury, inflammation and alterations of tight junctions (Claudin, Occludin, JAM-1) and gap junctions (Connexin 43) in lung tissue, which contributes to the development of lung edema and impaired function.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Marc Robin Mendler
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Alexander von Zelewski
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Severin Höfler
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Meike Baur
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Baden-Württemberg, Germany
| | - Helmut Hummler
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Baden-Württemberg, Germany
- Division of Neonatology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Stephan Schwarz
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Jochen Pressmar
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
20
|
Neutrophil extracellular traps induced by VP1 contribute to pulmonary edema during EV71 infection. Cell Death Discov 2019; 5:111. [PMID: 31285854 PMCID: PMC6609695 DOI: 10.1038/s41420-019-0193-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Pulmonary edema is a fatal complication of EV71-associated hand, foot, and mouth disease (HFMD). The pathogenesis of EV71-induced pulmonary edema remains largely unclear. In this study, we aimed to explore the roles of the capsid protein VP1 in the occurrence of EV71-induced pulmonary edema. The intranasal inoculation of recombinant VP1 protein caused lung inflammation with an elevation of inflammatory cytokines and neutrophils infiltration. Moreover, neutrophil extracellular traps (NETs) were observed in the lung parenchyma of the mice treated with VP1. VP1 directly induced the formation of NETs, which depended on PAD4. VP1 also damaged the lung barrier via the reduction of the tight junction protein occludin. Moreover, the EV71 attachment receptor vimentin was increased upon VP1 administration. In contrast, NETs decreased vimentin levels, suggesting a novel role for NETs in viral immune defense. These results evidenced a direct role of VP1 in EV71-induced pulmonary edema and demonstrated that NETs may be both harmful and beneficial in EV71 infection.
Collapse
|
21
|
Cai W, Liu Z, Li G, Xiao P, Lv Q, Gong Y, Fan H, Hou S, Ding H. The effects of a graded increase in chronic hypoxia exposure duration on healthy rats at high-altitude. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1975-1991. [PMID: 31934020 PMCID: PMC6949644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/27/2019] [Indexed: 06/10/2023]
Abstract
To investigate the effects of chronic hypoxia exposure at high altitude on the formation of pulmonary edema in rats, we randomized rats into normoxic control groups and hypoxic 24, 48, and 72-hour exposure groups. In the hypoxic exposure group, the arterial blood gas, wet-dry weight ratio (W/D), lung tissue permeability index (LPI), bronchoalveolar lavage fluid (BALF) and plasma levels of the inflammatory factors were measured after continuous, chronic hypoxic exposure for a corresponding time, and the pathological changes in the lung tissue and the expression of tight junction-associated protein occludin were observed. We found that the contents of arterial blood gas, W/D, LPI, BALF and plasma IL-6, TNF-α, and IL-10 in the hypoxic exposure group were significantly different from the contents of arterial blood gas in the normoxic control group. H&E staining showed tissue effusion, a marked thickening of the pulmonary septum, interstitial inflammatory cells, and erythrocytic infiltration. Compared with the normoxic control group, the pulmonary edema score was significantly increased in the hypoxic 48-hour group. Toluidine blue staining showed that the mast cell count and degranulation rate were significantly increased in the hypoxic 48-hour and 72-hour groups, but massone staining showed no significant pulmonary interstitial fibrosis in the 4 groups. Occludin expression was significantly higher in the normoxic control group than it was in the hypoxic exposure group. These results indicated that different chronic hypoxic exposure durations at the plateau all caused high-altitude pulmonary edema in rats, but there was no significant difference in some indicators among the groups.
Collapse
Affiliation(s)
- Wei Cai
- Logistics University of Chinese People’s Armed Police ForcesTianjin, China
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
- Chinese People’s Armed Police Force (PAP) Medical CenterTianjin, China
| | - Ziquan Liu
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| | - Guangzong Li
- Chinese People’s Armed Police Force (PAP) Medical CenterTianjin, China
| | - Peixin Xiao
- Hubei Provincial Corps Hospital, Chinese People’s Armed Police ForcesWuhan, China
| | - Qi Lv
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| | - Yanhua Gong
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| | - Haojun Fan
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| | - Shike Hou
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| | - Hui Ding
- School of Disaster Medical Research, Tianjin UniversityTianjin, China
| |
Collapse
|
22
|
Liu JJ, Zhang T, Mi YM. [Effects of respiratory syncytial virus infection on epidermal growth factor receptor, tight junction association proteins and mucin in airway epithelial cells]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:294-299. [PMID: 30907357 PMCID: PMC7389363 DOI: 10.7499/j.issn.1008-8830.2019.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the effects of respiratory syncytial virus (RSV) infection on epidermal growth factor receptor (EGFR), tight junction association proteins and mucin in the human airway epithelial cells. METHODS Human airway epithelial cells NCI-H292 were randomly treated by ultraviolet light-inactivated RSV (control group) or thawed RSV (RSV infection group). After 48 hours of treatment, the protein levels of occludin, E-cadherin, phosphorylated EGFR and EGFR in NCI-H292 cells were measured by Western blot. The distribution and expression levels of occludin and E-cadherin in NCI-H292 cells were examined by immunofluorescence technique. The expression levels of MUC5AC mRNA in NCI-H292 cells were assessed by RT-PCR. RESULTS The protein levels of occludin and E-cadherin were significantly reduced in the RSV infection group compared with the control group (P<0.05). The protein levels of phosphorylated EGFR and EGFR increased significantly in the RSV infection group compared with the control group (P<0.05). The MUC5AC mRNA levels also increased significantly in the RSV infection group compared with the control group (P<0.05). CONCLUSIONS RSV may down-regulate the tight junction association proteins and up-regulate the expression of MUC5AC in airway epithelial cells, which contributes to epithelial barrier dysfunction. EGFR phosphorylation may play an important role in regulation of airway barrier.
Collapse
Affiliation(s)
- Juan-Juan Liu
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | | | | |
Collapse
|
23
|
Sapoznikov A, Gal Y, Falach R, Sagi I, Ehrlich S, Lerer E, Makovitzki A, Aloshin A, Kronman C, Sabo T. Early disruption of the alveolar-capillary barrier in a ricin-induced ARDS mouse model: neutrophil-dependent and -independent impairment of junction proteins. Am J Physiol Lung Cell Mol Physiol 2019; 316:L255-L268. [DOI: 10.1152/ajplung.00300.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Irrespective of its diverse etiologies, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) leads to increased permeability of the alveolar-capillary barrier, which in turn promotes edema formation and respiratory failure. We investigated the mechanism of ALI/ARDS lung hyperpermeability triggered by pulmonary exposure of mice to the highly toxic plant-derived toxin ricin. One prominent hallmark of ricin-mediated pulmonary intoxication is the rapid and massive influx of neutrophils to the lungs, where they contribute to the developing inflammation yet may also cause tissue damage, thereby promoting ricin-mediated morbidity. Here we show that pulmonary exposure of mice to ricin results in the rapid diminution of the junction proteins VE-cadherin, claudin 5, and connexin 43, belonging, respectively, to the adherens, tight, and gap junction protein families. Depletion of neutrophils in ricin-intoxicated mice attenuated the damage caused to these junction proteins, alleviated pulmonary edema, and significantly postponed the time to death of the intoxicated mice. Inhibition of matrix metalloproteinase (MMP) activity recapitulated the response to neutrophil depletion observed in ricin-intoxicated mice and was associated with decreased insult to the junction proteins and alveolar-capillary barrier. However, neutrophil-mediated MMP activity was not the sole mechanism responsible for pulmonary hyperpermeability, as exemplified by the ricin-mediated disruption of claudin 18, via a neutrophil-independent mechanism involving tyrosine phosphorylation. This in-depth study of the early stage mechanisms governing pulmonary tissue integrity during ALI/ARDS is expected to facilitate the tailoring of novel therapeutic approaches for the treatment of these diseases.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Ehrlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Elad Lerer
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anna Aloshin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
24
|
Li Y, Han J, Zhang Y, Chen Y, Zhang Y. Prophylactic effect and mechanism of p-coumaric acid against hypoxic cerebral edema in mice. Respir Physiol Neurobiol 2018; 260:95-104. [PMID: 30447305 DOI: 10.1016/j.resp.2018.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023]
Abstract
Our previous study found that the anti-hypoxia effect of Tibetan turnip (Brassica rapa ssp. rapa) is directly related to its p-Coumaric acid (CA) and glucoside (pCoumaric acid-beta-d-glucopyranoside, CAG) contents. The present study aimed to investigate the role and mechanism of CA against hypoxic cerebral edema. Male mice were randomly divided into one normoxia group and three hypoxia groups, which were gavaged with sterilized water, CA, or dexamethasone, respectively, once daily for 4 days. The mice were then exposed to normoxia or hypoxia (9.5% O2) for 24 h. The results showed that the brain water content (BWC) and blood-brain-barrier permeability were significantly lower in the CA treatment group than in the hypoxia vehicle group. Mice in the CA treatment group showed good blood-brain-barrier integrity; increased Na+-K+-ATPase activity and mitochondrial membrane potential; decreased oxidative stress and inflammation; and increased occludin protein levels. Prophylactic administration of CA and dexamethasone exerted similar effects against hypoxic cerebral edema. The mechanism involved improving the integrity of the blood-brain-barrier, and inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yunhong Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jianxin Han
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yujing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yufeng Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ying Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
25
|
Herrero R, Prados L, Ferruelo A, Puig F, Pandolfi R, Guillamat-Prats R, Moreno L, Matute-Bello G, Artigas A, Esteban A, Lorente JÁ. Fas activation alters tight junction proteins in acute lung injury. Thorax 2018; 74:69-82. [PMID: 30385692 DOI: 10.1136/thoraxjnl-2018-211535] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023]
Abstract
Background:The acute respiratory distress syndrome (ARDS) is characterized by protein-rich oedema in the alveolar spaces, a feature in which Fas-mediated apoptosis of the alveolar epithelium has been involved. Objective:To determine whether Fas activation increases protein permeability by mechanisms involving disruption of the paracellular tight junction (TJ) proteins in the pulmonary alveoli. Methods: Protein permeability and the expression of TJ proteins were assessed in vivo in wild-type and Fas-deficient lpr mice 16 hours after the intratracheal instillation of recombinant human soluble Fas ligand (rh-sFasL), and at different time points in vitro in human pulmonary alveolar epithelial cells (HPAEpiC) exposed to rh-sFasL Results:Activation of the Fas pathway increased protein permeability in mouse lungs and altered the expression of the TJ proteins occludin and zonula occludens-1 in the alveolar-capillary membrane in vivo and in human alveolar epithelial cell monolayers in vitro. Blockade of caspase-3, but not inhibition of tyrosine kinase dependent pathways, prevented the alterations in TJ protein expression and permeability induced by the Fas/FasL system in human alveolar cell monolayers in vitro. We also observed that both the Fas-induced increase of protein permeability and disruption of TJ proteins occurred before cell death could be detected in the cell monolayers in vitro. Conclusion:Targeting caspase pathways could prevent the disruption of TJs and reduce the formation of lung oedema in the early stages of ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain
| | - Lucia Prados
- Laboratory of Biochemistry, Hospital Universitario de Getafe, Madrid, Spain
| | - Antonio Ferruelo
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain
| | - Ferranda Puig
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Critical Care Center, Corporació Sanitària i Universitària Parc Taul, Institut d' Investigació i Innovació Parc Taulí, Barcelona, Spain
| | - Rachele Pandolfi
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Guillamat-Prats
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Critical Care Center, Corporació Sanitària i Universitària Parc Taul, Institut d' Investigació i Innovació Parc Taulí, Barcelona, Spain
| | - Laura Moreno
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Gustavo Matute-Bello
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, and the Medical Research Service of the VA Puget Sound Healthcare System., University of Washington, Seattle, Washington, USA
| | - Antonio Artigas
- Critical Care Center, Corporació Sanitària i Universitària Parc Taul, Institut d' Investigació i Innovació Parc Taulí, Barcelona, Spain
| | - Andres Esteban
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Universidad Europea, Madrid, Spain
| | - José Ángel Lorente
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea, Madrid, Spain
| |
Collapse
|
26
|
Li Y, Han J, Chen Y, Chen C, Chu B, Zhang Y. p-Coumaric acid as a prophylactic measure against normobaric hypoxia induced pulmonary edema in mice. Life Sci 2018; 211:215-223. [PMID: 30248349 DOI: 10.1016/j.lfs.2018.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 01/07/2023]
Abstract
AIMS Previous studies indicate that the anti-hypoxia effects of Tibetan Turnip (Brassica rapa ssp. rapa) were closely related to its characteristic components being p-coumaric acid (CA) and p-coumaric acid‑β‑d‑glucopyranoside (CAG). Since CAG would be converted to CA in vivo, this study aims to further examine the efficacy and mechanism of CA against pulmonary edema induced by normobaric hypoxia. MAIN METHODS Male ICR mice were assigned to the normoxia group and several hypoxia groups, given sterile water, CA or dexamethasone orally, once daily for four consecutive days. One hour after the final gavage, mice in the above hypoxia groups were put into the normobaric hypoxia chamber (9.5% O2) for 24 h while mice in normoxia group remained outside the chamber. After hypoxia exposure, lung water content (LWC), pulmonary vascular permeability, the protein content of bronchoalveolar lavage fluid (BALF), plasma total nitrate/nitrite (NOx) and endothelin-1 (ET-1) content, histological and ultra-microstructure analyses were performed. Expression of occludin was assayed by immunohistochemistry. KEY FINDINGS In a hypoxic environment of 9.5% O2, mice treated with 100 mg/kg body wt CA had significantly lower LWC and BALF protein content than mice in the hypoxia vehicle group. Meanwhile, mice in CA group showed intact lung blood-gas-barrier, increased levels of plasma total NO, decreased levels of plasma ET-1 and upregulation of occludin expression. SIGNIFICANCE CA exerts preventive effects against normobaric hypoxic pulmonary edema in mice, its mechanisms involved improving the integrity of the lung barrier, inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yunhong Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jianxin Han
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yufeng Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chun Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bingquan Chu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China; School of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science & Technology, Hangzhou 310023, Zhejiang, China
| | - Ying Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
27
|
Qiu JL, Song BL, Wang YJ, Zhang FT, Wang YL. Role of glutamine in the mediation of E-cadherin, p120-catenin and inflammation in ventilator-induced lung injury. Chin Med J (Engl) 2018; 131:804-812. [PMID: 29578124 PMCID: PMC5887739 DOI: 10.4103/0366-6999.228230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Ventilator-induced lung injury (VILI) is commonly associated with barrier dysfunction and inflammation reaction. Glutamine could ameliorate VILI, but its role has not been fully elucidated. This study examined the relationship between inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and IL-10) and adherens junctions (E-cadherin, p120-catenin), which were ameliorated by glutamine in VILI, both in vitro and in vivo. Methods: For the in vivo study, 30 healthy C57BL/6 mice weighing 25–30 g were randomly divided into five groups with random number table (n = 6 in each group): control (Group C); low tidal volume (Group L); low tidal volume + glutamine (Group L + G); high tidal volume (Group H); and high tidal volume + glutamine (Group H + G). Mice in all groups, except Group C, underwent mechanical ventilation for 4 h. For the in vitro study, mouse lung epithelial 12 (MLE-12) cells pretreated with glutamine underwent cyclic stretching at 20% for 4 h. Cell lysate and lung tissue were obtained to detect the junction proteins, inflammatory cytokines, and lung pathological changes by the Western blotting, cytokine assay, hematoxylin and eosin staining, and immunofluorescence. Results: In vivo, compared with Group C, total cell counts (t = −28.182, P < 0.01), the percentage of neutrophils (t = −28.095, P < 0.01), IL-6 (t = −28.296, P < 0.01), and TNF-α (t = −19.812, P < 0.01) in bronchoalveolar lavage (BAL) fluid, lung injury scores (t = −6.708, P < 0.01), and the wet-to-dry ratio (t = −15.595, P < 0.01) were increased in Group H; IL-10 in BAL fluid (t = 9.093, P < 0.01) and the expression of E-cadherin (t = 10.044, P < 0.01) and p120-catenin (t = 13.218, P < 0.01) were decreased in Group H. Compared with Group H, total cell counts (t = 14.844, P < 0.01), the percentage of neutrophils (t = 18.077, P < 0.01), IL-6 (t = 18.007, P < 0.01), and TNF-α (t = 10.171, P < 0.01) in BAL fluid were decreased in Group H + G; IL-10 in BAL fluid (t = −7.531, P < 0.01) and the expression of E-cadherin (t = −14.814, P < 0.01) and p120-catenin (t = −9.114, P < 0.01) were increased in Group H + G. In vitro, compared with the nonstretching group, the levels of IL-6 (t = −21.111, P < 0.01) and TNF-α (t = −15.270, P < 0.01) were increased in the 20% cyclic stretching group; the levels of IL-10 (t = 5.450, P < 0.01) and the expression of E-cadherin (t = 17.736, P < 0.01) and p120-catenin (t = 16.136, P < 0.01) were decreased in the 20% cyclic stretching group. Compared with the stretching group, the levels of IL-6 (t = 11.818, P < 0.01) and TNF-α (t = 8.631, P < 0.01) decreased in the glutamine group; the levels of IL-10 (t = −3.203, P < 0.05) and the expression of E-cadherin (t = −13.567, P < 0.01) and p120-catenin (t = −10.013, P < 0.01) were increased in the glutamine group. Conclusions: High tidal volume mechanical ventilation and 20% cyclic stretching could cause VILI. Glutamine regulates VILI by improving cytokines and increasing the adherens junctions, protein E-cadherin and p120-catenin, to enhance the epithelial barrier function.
Collapse
Affiliation(s)
- Jian-Lei Qiu
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014; 2Department of Anesthesiology, Dezhou People's Hospital, Dezhou, Shandong 253014, China
| | - Bai-Ling Song
- Department of Surgery, Rizhao People's Hospital, Rizhao, Shandong 276826, China
| | - Yu-Juan Wang
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, Shandong 276826, China
| | - Fu-Tao Zhang
- Department of Emergency, Dezhou People's Hospital, Dezhou, Shandong 253014, China
| | - Yue-Lan Wang
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| |
Collapse
|
28
|
Sim TY, Harith HH, Tham CL, Md Hashim NF, Shaari K, Sulaiman MR, Israf DA. The Protective Effects of a Synthetic Geranyl Acetophenone in a Cellular Model of TNF-α-Induced Pulmonary Epithelial Barrier Dysfunction. Molecules 2018; 23:molecules23061355. [PMID: 29874809 PMCID: PMC6100020 DOI: 10.3390/molecules23061355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 01/19/2023] Open
Abstract
Alveolar epithelial barrier dysfunction contributes to lung edema and can lead to acute lung injury (ALI). The features include increased epithelial permeability, upregulation of inflammatory mediators and downregulation of junctional complex molecules; these changes are often induced by inflammation. tHGA is an acetophenone analogue with therapeutic potential in asthma. Its therapeutic potential in ALI is presently unknown. Herein, the effects of tHGA on epithelial barrier dysfunction were determined in TNF-α-induced human alveolar epithelial cells. The anti-inflammatory properties of tHGA were assessed by monocyte adhesion assay and analysis of MCP-1 and ICAM-1 expression. The epithelial barrier function was assessed by paracellular permeability and transepithelial electrical resistance (TEER) assays, and analysis of junctional complex molecules expression. To elucidate the mechanism of action, the effects of tHGA on the NF-κB and MAPK pathways were determined. Gene and protein expression were analyzed by RT-PCR and Western blotting or ELISA, respectively. tHGA suppressed leukocyte adhesion to TNF-α-induced epithelium and reduced MCP-1 and ICAM-1 gene expression and secretion. tHGA also increased TEER readings, reduced epithelial permeability and enhanced expression of junctional complex molecules (zona occludens-1, occludin and E-cadherin) in TNF-α-induced cells. Correspondingly, the NF-κB, ERK and p38 MAPK pathways were also inhibited by tHGA. These findings suggest that tHGA is able to preserve alveolar epithelial barrier function in response to acute inflammation, via its anti-inflammatory activity and stabilization of epithelial barrier integrity, mediated by NF-κB, ERK and p38 MAPK signaling.
Collapse
Affiliation(s)
- Tee Yee Sim
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Khozirah Shaari
- Natural Products Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
29
|
Herrero R, Sanchez G, Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:32. [PMID: 29430449 DOI: 10.21037/atm.2017.12.18] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Appearance of alveolar protein-rich edema is an early event in the development of acute respiratory distress syndrome (ARDS). Alveolar edema in ARDS results from a significant increase in the permeability of the alveolar epithelial barrier, and represents one of the main factors that contribute to the hypoxemia in these patients. Damage of the alveolar epithelium is considered a major mechanism responsible for the increased pulmonary permeability, which results in edema fluid containing high concentrations of extravasated macromolecules in the alveoli. The breakdown of the alveolar-epithelial barrier is a consequence of multiple factors that include dysregulated inflammation, intense leukocyte infiltration, activation of pro-coagulant processes, cell death and mechanical stretch. The disruption of tight junction (TJ) complexes at the lateral contact of epithelial cells, the loss of contact between epithelial cells and extracellular matrix (ECM), and relevant changes in the communication between epithelial and immune cells, are deleterious alterations that mediate the disruption of the alveolar epithelial barrier and thereby the formation of lung edema in ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain
| | - Gema Sanchez
- Department of Clinical Analysis, Hospital Universitario de Getafe, Madrid, Spain
| | - Jose Angel Lorente
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Suryadevara V, Fu P, Ebenezer DL, Berdyshev E, Bronova IA, Huang LS, Harijith A, Natarajan V. Sphingolipids in Ventilator Induced Lung Injury: Role of Sphingosine-1-Phosphate Lyase. Int J Mol Sci 2018; 19:E114. [PMID: 29301259 PMCID: PMC5796063 DOI: 10.3390/ijms19010114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
Mechanical ventilation (MV) performed in respiratory failure patients to maintain lung function leads to ventilator-induced lung injury (VILI). This study investigates the role of sphingolipids and sphingolipid metabolizing enzymes in VILI using a rodent model of VILI and alveolar epithelial cells subjected to cyclic stretch (CS). MV (0 PEEP (Positive End Expiratory Pressure), 30 mL/kg, 4 h) in mice enhanced sphingosine-1-phosphate lyase (S1PL) expression, and ceramide levels, and decreased S1P levels in lung tissue, thereby leading to lung inflammation, injury and apoptosis. Accumulation of S1P in cells is a balance between its synthesis catalyzed by sphingosine kinase (SphK) 1 and 2 and catabolism mediated by S1P phosphatases and S1PL. Thus, the role of S1PL and SphK1 in VILI was investigated using Sgpl1+/- and Sphk1-/- mice. Partial genetic deletion of Sgpl1 protected mice against VILI, whereas deletion of SphK1 accentuated VILI in mice. Alveolar epithelial MLE-12 cells subjected to pathophysiological 18% cyclic stretch (CS) exhibited increased S1PL protein expression and dysregulation of sphingoid bases levels as compared to physiological 5% CS. Pre-treatment of MLE-12 cells with S1PL inhibitor, 4-deoxypyridoxine, attenuated 18% CS-induced barrier dysfunction, minimized cell apoptosis and cytokine secretion. These results suggest that inhibition of S1PL that increases S1P levels may offer protection against VILI.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Bioengineering, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA.
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - David Lenin Ebenezer
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - Evgeny Berdyshev
- Department of Pharmacology, Department of Medicine, National Jewish Health Center, Denver, CO 80206, USA.
| | - Irina A Bronova
- Department of Pharmacology, Department of Medicine, National Jewish Health Center, Denver, CO 80206, USA.
| | - Long Shuang Huang
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
- Department of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| |
Collapse
|
31
|
Zhao T, Zhao H, Li G, Zheng S, Liu M, Gu C, Wang Y. Role of the PKCα-c-Src tyrosine kinase pathway in the mediation of p120-catenin degradation in ventilator-induced lung injury. Respirology 2016; 21:1404-1410. [PMID: 27459952 DOI: 10.1111/resp.12858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/08/2016] [Accepted: 04/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Ventilator-induced lung injury (VILI) is commonly associated with respiratory barrier dysfunction; however, the mechanisms have not been fully elucidated. This study aimed to determine the order and components of the signalling pathway that mediates the degradation of adherin junction of p120-catenin in VILI. METHODS For the in vivo study, C57BL/6 mice were pre-treated with inhibitors for 60 min prior to 4 h of mechanical ventilation. For the in vitro study, mouse lung epithelial 12 (MLE-12) cells were pre-treated with inhibitors for 60 min or small interfering RNA (siRNA) for 48 h prior to cyclic stretch at 20% for 4 h. The protein levels of protein kinase Cα (PKCα), activated c-Src and p120-catenin were determined via western blot analysis. Lung injury was determined via HE staining, immunofluorescence, wet/dry ratio and lung injury scores. RESULTS High tidal volume mechanical ventilation and 20% cyclic stretch resulted in the degradation of p120-catenin. Inhibitors of PKCα blocked c-Src kinase activation and p120-catenin degradation in VILI. Inhibitors of c-Src kinase or PP2 or siRNA blocked p120-catenin degradation but not PKCα activation. CONCLUSION The current findings demonstrates that PKCα and c-Src kinase participate in VILI. PKCα activation phosphorylates c-Src kinase and further decreases p120-catenin in VILI.
Collapse
Affiliation(s)
- Tao Zhao
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, China.,Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Hongwei Zhao
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, China
| | - Gang Li
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, China
| | - Shengfa Zheng
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, China
| | - Mengjie Liu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Changping Gu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yuelan Wang
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, China.
| |
Collapse
|
32
|
Gu C, Liu M, Zhao T, Wang D, Wang Y. Protective role of p120-catenin in maintaining the integrity of adherens and tight junctions in ventilator-induced lung injury. Respir Res 2015; 16:58. [PMID: 25986488 PMCID: PMC4489357 DOI: 10.1186/s12931-015-0217-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is one of the most common complications for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Although p120 is an important protein in the regulation of cell junctions, further mechanisms should be explored for prevention and treatment of VILI. METHODS Mouse lung epithelial cells (MLE-12), which were transfected with p120 small interfering (si)RNA, p120 cDNA, wild-type E-cadherin juxtamembrane domain or a K83R mutant juxtamembrane domain (K83R-JMD), were subjected to 20% cyclic stretches for 2 or 4 h. Furthermore, MLE-12 cells and mice, which were pretreated with the c-Src inhibitor PP2 or RhoA inhibitor Y27632, underwent 20% cyclic stretches or mechanical stretching, respectively. Moreover, wild-type C57BL/6 mice were transfected with p120 siRNA-liposome complexes before mechanical ventilation. Cell lysates and lung tissues were then analyzed to detect lung injury. RESULTS cyclic stretches of 20% actived c-Src, which induced degradation of E-cadherin, p120 and occludin. However, loss of p120 increased the degradation and endocytosis of E-cadherin. Immunoprecipitation and Immunofluorescence results showed a decrease in the association between p120 and E-cadherin, while gap formation increased in p120 siRNA and K83R-JMD groups after 20% cyclic stretches. Loss of p120 also reduced the occludin level and decreased the association of occludin and ZO-1 by enhancing RhoA activity. However, the altered levels of occludin and E-cadherin were reversed by PP2 or Y27632 treatments compared with the cyclic stretch group. Consistently, the expression, redistribution and disassociation of junction proteins were all restored in the p120 overexpression group after 20% cyclic stretches. Moreover, the role of p120 in VILI was confirmed by increased wet/dry weigh ratio and enhanced production of cytokines (tumor necrosis factor-α and interleukin-six) in p120-depleted mice under mechanical ventilation. CONCLUSIONS p120 protected against VILI by regulating both adherens and tight junctions. p120 inhibited E-cadherin endocytosis by increasing the association between p120 and juxtamembrane domain of E-cadherin. Furthermore, p120 reduced the degradation of occludin by inhibiting RhoA activity. These findings illustrated further mechanisms of p120 in the prevention of VILI, especially for patients with ALI or ARDS.
Collapse
Affiliation(s)
- Changping Gu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Mengjie Liu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Tao Zhao
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Dong Wang
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Yuelan Wang
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| |
Collapse
|
33
|
Schlingmann B, Molina SA, Koval M. Claudins: Gatekeepers of lung epithelial function. Semin Cell Dev Biol 2015; 42:47-57. [PMID: 25951797 DOI: 10.1016/j.semcdb.2015.04.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
The lung must maintain a proper barrier between airspaces and fluid filled tissues in order to maintain lung fluid balance. Central to maintaining lung fluid balance are epithelial cells which create a barrier to water and solutes. The barrier function of these cells is mainly provided by tight junction proteins known as claudins. Epithelial barrier function varies depending on the different needs within the segments of the respiratory tree. In the lower airways, fluid is required to maintain mucociliary clearance, whereas in the terminal alveolar airspaces a thin layer of surfactant enriched fluid lowers surface tension to prevent airspace collapse and is critical for gas exchange. As the epithelial cells within the segments of the respiratory tree differ, the composition of claudins found in these epithelial cells is also different. Among these differences is claudin-18 which is uniquely expressed by the alveolar epithelial cells. Other claudins, notably claudin-4 and claudin-7, are more ubiquitously expressed throughout the respiratory epithelium. Claudin-5 is expressed by both pulmonary epithelial and endothelial cells. Based on in vitro and in vivo model systems and histologic analysis of lungs from human patients, roles for specific claudins in maintaining barrier function and protecting the lung from the effects of acute injury and disease are being identified. One surprising finding is that claudin-18 and claudin-4 control lung cell phenotype and inflammation beyond simply maintaining a selective paracellular permeability barrier. This suggests claudins have more nuanced roles for the control of airway and alveolar physiology in the healthy and diseased lung.
Collapse
Affiliation(s)
- Barbara Schlingmann
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Samuel A Molina
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
34
|
Qiu J, Shi P, Mao W, Zhao Y, Liu W, Wang Y. Effect of apoptosis in neural stem cells treated with sevoflurane. BMC Anesthesiol 2015; 15:25. [PMID: 25774088 PMCID: PMC4359390 DOI: 10.1186/s12871-015-0018-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/24/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND At present, sevoflurane inhalation anesthesia used on infants is well-known. But long-time exposure to inhalation anesthetic could cause neurologic disorder, especially nerve degeneration in infant and developing brain. The central nervous system degeneration of infants could affect the memory and cognitive function. γ-Aminobutyric acid (GABA) is a known inhibitory neurotransmitter in central nervous system. Inhalation anesthetic sevoflurane may activate GABAA receptor to inhibit central nervous system, leading to apoptosis of neural degeneration, cognitive dysfunction in the critical period of brain development. METHODS Neural stem cells were derived from Wistar embryos, cultured in vitro. Third generation of neural stem cells were randomly divided into four groups according to cultured suspension: Sevoflurane group (Group S), GABAA receptor antagonists, Bicuculline group (Group B), Sevoflurane + GABAA receptor antagonists, Bicuculline group (Group S + B), dimethyl sulphoxide (DMSO) group (Group D). Group B and Group D did not receive sevoflurane preconditioning. Group S and Group S + B were pretreated with 1 minimum alveolar concentration (MAC) sevoflurane for 0 h, 3 h, 6 h, and 12 h. Group S + B and Group B were pretreated with bicuculline (10 uM). Group D was treated with DMSO (10 uL/mL). After treatments above, all groups were cultured for 48 h. Then we measured the cells viability by Cell Counting Kit (CCK-8) assay, cytotoxicity by Lactate Dehydrogenase (LDH) assay, apoptosis ratio with Annexin V/propidium iodide (PI) staining by flow cytometry, and the expression of GABAAR, anti-apoptotic protein Bcl-2, pro-apoptotic protein Bax and Caspase-3 by western blotting. RESULTS After exposing to sevoflurane for 0 h, 3 h, 6 h, and 12 h with 1MAC, we found that cell viability obviously decreased and cytotoxicity increased in time-dependent way. And Annexin V/PI staining indicated increased apoptosis ratio by flow cytometry. The protein level of GABAA receptor, pro-apoptotic protein Bax and apoptosis protein Caspase-3 increased; while anti-apoptotic protein Bcl-2 decreased. And bicuculline could reverse all detrimental results caused by sevoflurane. CONCLUSION Sevoflurane can inhibit the central nervous system by activating GABAA, resulting in apoptosis of neural stem cells, thus leading to the NSCs degeneration.
Collapse
Affiliation(s)
- Jianlei Qiu
- Department of Anesthesiology, Dezhou People’s Hospital, Dezhou, Shandong China
- School of Medicine, Shandong University, Ji’nan, Shandong China
| | - Pengcai Shi
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Ji’nan, Shandong China
| | - Wude Mao
- Department of Anesthesiology, Jiaozhou Central Hospital of Qingdao, Qingdao, Shandong China
| | - Yuyi Zhao
- Department of Anesthesiology, Dezhou People’s Hospital, Dezhou, Shandong China
| | - Wenshuai Liu
- Department of Emergency, Dezhou People’s Hospital, Dezhou, Shandong China
| | - Yuelan Wang
- School of Medicine, Shandong University, Ji’nan, Shandong China
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Ji’nan, Shandong China
| |
Collapse
|
35
|
Zhao T, Liu M, Gu C, Wang X, Wang Y. Activation of c-Src tyrosine kinase mediated the degradation of occludin in ventilator-induced lung injury. Respir Res 2014; 15:158. [PMID: 25471013 PMCID: PMC4262993 DOI: 10.1186/s12931-014-0158-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/25/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is characterized by increased alveolar permeability, pulmonary edema. The tyrosine kinase, c-Src, is involved in VILI but its role has not been fully elucidated. This study examined the relationship between c-Src activation and occludin levels in VILI both in vitro and in vivo. METHODS For the in vivo study, Wistar rats were randomly divided into five groups: control (group C); normal tidal volume (group M); normal tidal volume + c-Src inhibitor (PP2) (group M + P); high tidal volume (group H); and high tidal volume + c-Src inhibitor (PP2) (group H + P). Rats in all groups but group C underwent mechanical ventilation for 4 h. For the in vitro study, MLE-12 cells pretreated with PP2 and siRNA underwent cyclic stretching at 8% or 20% for 0, 1, 2 and 4 h. The expressions of occludin, c-Src, and p-c-Src were analyzed by western blotting, hematoxylin and eosin (HE) staining, and immunofluorescence. RESULTS For the in vivo study, rats in group H showed decreased occludin expression and activated c-Src compared with group C. HE staining and lung injury score showed more severe lung injury and alveolar edema in group H compared with group M and group C. Group H + P had less pulmonary edema induced by the high tidal volume ventilation. For the in vitro study, occludin expression decreased and c-Src activation increased as indicated by the phosphorylation of c-Src over time. Consistently, PP2 could restore occludin levels. CONCLUSIONS Mechanical ventilation can activate c-Src by phosphorylation and increase the degradation of occludin. c-Src inhibitor can ameliorate barrier function and lung injury by up-regulating occludin.
Collapse
Affiliation(s)
- Tao Zhao
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Mengjie Liu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Changping Gu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Xin Wang
- Department of Anesthesiology, Jinan Fifth People's Hospital, Ji'nan, Shandong, China.
| | - Yuelan Wang
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| |
Collapse
|