1
|
Liu AY. Prostate cancer research: tools, cell types, and molecular targets. Front Oncol 2024; 14:1321694. [PMID: 38595814 PMCID: PMC11002103 DOI: 10.3389/fonc.2024.1321694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Multiple cancer cell types are found in prostate tumors. They are either luminal-like adenocarcinoma or less luminal-like and more stem-like non-adenocarcinoma and small cell carcinoma. These types are lineage related through differentiation. Loss of cancer differentiation from luminal-like to stem-like is mediated by the activation of stem cell transcription factors (scTF) such as LIN28A, NANOG, POU5F1 and SOX2. scTF expression leads to down-regulation of β2-microglobulin (B2M). Thus, cancer cells can change from the scT F ˜ B 2 M hi phenotype of differentiated to that of scT F ˙ B 2 M lo of dedifferentiated in the disease course. In development, epithelial cell differentiation is induced by stromal signaling and cell contact. One of the stromal factors specific to prostate encodes proenkephalin (PENK). PENK can down-regulate scTF and up-regulate B2M in stem-like small cell carcinoma LuCaP 145.1 cells indicative of exit from the stem state and differentiation. In fact, prostate cancer cells can be made to undergo dedifferentiation or reprogramming by scTF transfection and then to differentiate by PENK transfection. Therapies need to be designed for treating the different cancer cell types. Extracellular anterior gradient 2 (eAGR2) is an adenocarcinoma antigen associated with cancer differentiation that can be targeted by antibodies to lyse tumor cells with immune system components. eAGR2 is specific to cancer as normal cells express only the intracellular form (iAGR2). For AGR2-negative stem-like cancer cells, factors like PENK that can target scTF could be effective in differentiation therapy.
Collapse
Affiliation(s)
- Alvin Y. Liu
- Department of Urology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Liu AY. The opposing action of stromal cell proenkephalin and stem cell transcription factors in prostate cancer differentiation. BMC Cancer 2021; 21:1335. [PMID: 34911496 PMCID: PMC8675470 DOI: 10.1186/s12885-021-09090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Loss of prostate cancer differentiation or de-differentiation leads to an untreatable disease. Patient survival would benefit if this can be prevented or reversed. Cancer de-differentiation transforms luminal-like (differentiated) adenocarcinoma into less luminal-like and more stem-like (undifferentiated) small cell carcinoma through a sequential activation of stem cell transcription factors (scTF) POU5F1, LIN28A, SOX2 and NANOG. Like stem cells, prostate small cell carcinoma express this quartet of scTF as well as a 10-fold lower level of β2-microglobulin (B2M) than that of differentiated cell types. In organ development, prostate stromal mesenchyme cells mediate epithelial differentiation in part by secreted factors. Methods The identified prostate stromal-specific factor proenkephalin (PENK) was cloned, and transfected into scTF+B2Mlo stem-like small cell carcinoma LuCaP 145.1, reprogrammed luminal-like scTF−B2Mhi LNCaP, and luminal-like scTF−B2Mhi adenocarcinoma LuCaP 70CR. The expression of scTF, B2M and anterior gradient 2 (AGR2) was analyzed in the transfected cells. Results PENK caused down-regulation of scTF and up-regulation of B2M to indicate differentiation. When transfected into reprogrammed LNCaP, PENK reversed the reprogramming by down-regulation of scTF with attendant changes in cell appearance and colony morphology. When transfected into LuCaP 70CR, PENK up-regulated the expression of adenocarcinoma antigen AGR2, a marker associated with cancer cell differentiation. Conclusions Prostate cancer cells appear to retain their responsiveness to stromal PENK signaling. PENK can induce differentiation to counter de-differentiation caused by scTF activation. The many mutations and aneuploidy characteristic of cancer cells appear not to hinder these two processes. Loss of prostate cancer differentiation is like reprogramming from luminal-like to stem-like. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09090-y.
Collapse
Affiliation(s)
- Alvin Y Liu
- Department of Urology and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Abugomaa A, Elbadawy M, Yamawaki H, Usui T, Sasaki K. Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cells 2020; 9:E235. [PMID: 31963556 PMCID: PMC7016964 DOI: 10.3390/cells9010235] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer (BC) is a complex and highly heterogeneous stem cell disease associated with high morbidity and mortality rates if it is not treated properly. Early diagnosis with personalized therapy and regular follow-up are the keys to a successful outcome. Cancer stem cells (CSCs) are the leading power behind tumor growth, with the ability of self-renewal, metastasis, and resistance to conventional chemotherapy. The fast-developing CSC field with robust genome-wide screening methods has found a platform for establishing more reliable therapies to target tumor-initiating cell populations. However, the high heterogeneity of the CSCs in BC disease remains a large issue. Therefore, in the present review, we discuss the various types of bladder CSC heterogeneity, important regulatory pathways, roles in tumor progression and tumorigenesis, and the experimental culture models. Finally, we describe the current stem cell-based therapies for BC disease.
Collapse
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan;
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| |
Collapse
|
4
|
Kanan AD, Corey E, Vêncio RZN, Ishwar A, Liu AY. Lineage relationship between prostate adenocarcinoma and small cell carcinoma. BMC Cancer 2019; 19:518. [PMID: 31146720 PMCID: PMC6543672 DOI: 10.1186/s12885-019-5680-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Prostate cancer displays different morphologies which, in turn, affect patient outcome. This fact prompted questions about the lineage relationship between differentiated, more treatable prostate adenocarcinoma and poorly differentiated, less treatable non-adenocarcinoma including small cell carcinoma, and the molecular mechanism underlying prostate cancer differentiation. METHODS Newly available non-adenocarcinoma/small cell carcinoma PDX LuCaP lines were analyzed for expression of stem cell transcription factors (scTF) LIN28A, NANOG, POU5F1, SOX2, which are responsible for reprogramming or de-differentiation. cDNA of these genes were cloned from small cell carcinoma LuCaP 145.1 into expression vectors to determine if they could function in reprogramming. RESULTS Expression of scTF was detected in small cell carcinoma LuCaP 93, 145.1, 145.2, and non-adenocarcinoma LuCaP 173.1, 173.2A. Transfection of scTF from LuCaP 145.1 altered the gene expression of prostate non-small cell carcinoma cells, as well as fibroblasts. The resultant cells grew in stem-like colonies. Of note was a 10-fold lower expression of B2M in the transfected cells. Low B2M was also characteristic of LuCaP 145.1. Conversely, B2M was increased when stem cells were induced to differentiate. CONCLUSIONS This work suggested a pathway in the emergence of non-adenocarcinoma/small cell carcinoma from adenocarcinoma through activation of scTF genes that produced cancer de-differentiation.
Collapse
Affiliation(s)
- Adelle D Kanan
- Department of Urology, University of Washington, Box 358056, 850 Republican Street, Seattle, Washington, 98195-6100, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - Eva Corey
- Department of Urology, University of Washington, Box 358056, 850 Republican Street, Seattle, Washington, 98195-6100, USA
| | - Ricardo Z N Vêncio
- Department of Mathematics, University of Sao Paulo, 3900 Ave Bandeirantes, Vila Monte Alegre, Ribeirão Preto, 14040-900, Brazil
| | - Arjun Ishwar
- Thermo Fisher Scientific, 168 3rd Ave, Waltham, Massachutts, 02451, USA
- Sophia Genetics, 1550 E Campbell Ave. #4032, Phoenix, Arizona, 85014, USA
| | - Alvin Y Liu
- Department of Urology, University of Washington, Box 358056, 850 Republican Street, Seattle, Washington, 98195-6100, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Bellmunt J. Stem-Like Signature Predicting Disease Progression in Early Stage Bladder Cancer. The Role of E2F3 and SOX4. Biomedicines 2018; 6:biomedicines6030085. [PMID: 30072631 PMCID: PMC6164884 DOI: 10.3390/biomedicines6030085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
The rapid development of the cancer stem cells (CSC) field, together with powerful genome-wide screening techniques, have provided the basis for the development of future alternative and reliable therapies aimed at targeting tumor-initiating cell populations. Urothelial bladder cancer stem cells (BCSCs) that were identified for the first time in 2009 are heterogenous and originate from multiple cell types; including urothelial stem cells and differentiated cell types—basal, intermediate stratum and umbrella cells Some studies hypothesize that BCSCs do not necessarily arise from normal stem cells but might derive from differentiated progenies following mutational insults and acquisition of tumorigenic properties. Conversely, there is data that normal bladder tissues can generate CSCs through mutations. Prognostic risk stratification by identification of predictive markers is of major importance in the management of urothelial cell carcinoma (UCC) patients. Several stem cell markers have been linked to recurrence or progression. The CD44v8-10 to standard CD44-ratio (total ratio of all CD44 alternative splicing isoforms) in urothelial cancer has been shown to be closely associated with tumor progression and aggressiveness. ALDH1, has also been reported to be associated with BCSCs and a worse prognosis in a large number of studies. UCC include low-grade and high-grade non-muscle invasive bladder cancer (NMIBC) and high-grade muscle invasive bladder cancer (MIBC). Important genetic defects characterize the distinct pathways in each one of the stages and probably grades. As an example, amplification of chromosome 6p22 is one of the most frequent changes seen in MIBC and might act as an early event in tumor progression. Interestingly, among NMIBC there is a much higher rate of amplification in high-grade NMIBC compared to low grade NMIBC. CDKAL1, E2F3 and SOX4 are highly expressed in patients with the chromosomal 6p22 amplification aside from other six well known genes (ID4, MBOAT1, LINC00340, PRL, and HDGFL1). Based on that, SOX4, E2F3 or 6q22.3 amplifications might represent potential targets in this tumor type. Focusing more in SOX4, it seems to exert its critical regulatory functions upstream of the Snail, Zeb, and Twist family of transcriptional inducers of EMT (epithelial–mesenchymal transition), but without directly affecting their expression as seen in several cell lines of the Cancer Cell Line Encyclopedia (CCLE) project. SOX4 gene expression correlates with advanced cancer stages and poor survival rate in bladder cancer, supporting a potential role as a regulator of the bladder CSC properties. SOX4 might serve as a biomarker of the aggressive phenotype, also underlying progression from NMIBC to MIBC. The amplicon in chromosome 6 contains SOX4 and E2F3 and is frequently found amplified in bladder cancer. These genes/amplicons might be a potential target for therapy. As an existing hypothesis is that chromatin deregulation through enhancers or super-enhancers might be the underlying mechanism responsible of this deregulation, a potential way to target these transcription factors could be through epigenetic modifiers.
Collapse
Affiliation(s)
- Joaquim Bellmunt
- Department of Medical Oncology, Hospital del Mar, IMIM (PSMAR-Hospital del Mar Research Institute), 08003 Barcelona, Spain.
- Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Ahmad R, Nicora CD, Shukla AK, Smith RD, Qian WJ, Liu AY. An efficient method for native protein purification in the selected range from prostate cancer tissue digests. Chin Clin Oncol 2017; 5:78. [PMID: 28061542 DOI: 10.21037/cco.2016.12.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prostate cancer (CP) cells differ from their normal counterpart in gene expression. Genes encoding secreted or extracellular proteins with increased expression in CP may serve as potential biomarkers. For their detection and quantification, assays based on monoclonal antibodies are best suited for development in the clinical setting. One approach to obtain antibodies is to use recombinant proteins as immunogen. However, the synthesis of recombinant protein for each identified candidate is time-consuming and expensive. It is also not practical to generate high quality antibodies to all identified candidates individually. Furthermore, non-native forms (e.g., recombinant) of proteins may not always lead to useful antibodies. Our approach was to purify a subset of proteins from CP tissue specimens for use as immunogen. METHODS In the present investigation, ten cancer specimens obtained from cases scored Gleason 3+3, 3+4 and 4+3 were digested by collagenase to single cells in serum-free tissue culture media. Cells were pelleted after collagenase digestion, and the cell-free supernatant from each specimen were pooled and used for isolation of proteins in the 10-30 kDa molecular weight range using a combination of sonication, dialysis and Amicon ultrafiltration. Western blotting and mass spectrometry (MS) proteomics were performed to identify the proteins in the selected size fraction. RESULTS The presence of cancer-specific anterior gradient 2 (AGR2) and absence of prostate-specific antigen (PSA)/KLK3 were confirmed by Western blotting. Proteomics also detected AGR2 among many other proteins, some outside the selected molecular weight range, as well. CONCLUSIONS Using this approach, the potentially harmful (to the mouse host) exogenously added collagenase was removed as well as other abundant prostatic proteins like ACPP/PAP and AZGP1 to preclude the generation of antibodies against these species. The paper presents an optimized scheme for convenient and rapid isolation of native proteins in any desired size range with minor modifications.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Urology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Carrie D Nicora
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Anil K Shukla
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Wei-Jun Qian
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Borges GT, Vêncio EF, Vêncio RZN, Vessella RL, Ware CB, Liu AY. Reprogramming of prostate cancer cells--technical challenges. Curr Urol Rep 2015; 16:468. [PMID: 25404182 DOI: 10.1007/s11934-014-0468-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostate cancer progression is characterized by tumor dedifferentiation. Cancer cells of less differentiated tumors have a gene expression/transcriptome more similar to that of stem cells. In dedifferentiation, cancer cells may follow a specific program of gene expression changes to a stem-like state. In order to treat cancer effectively, the stem-like cancer cells and cancer differentiation pathway need to be identified and studied. Due to the very low abundance of stem-like cancer cells, their isolation from fresh human tumors is technically challenging. Induced pluripotent stem cell technology can reprogram differentiated cells into stem-like, and this may be a tool to generate sufficient stem-like cancer cells.
Collapse
Affiliation(s)
- Gisely T Borges
- School of Pharmacology, Federal University of Goiás, Goiânia, Brazil,
| | | | | | | | | | | |
Collapse
|
8
|
Abdou AG, El-Wahed MMA, Kandil MAE, Samaka RM, Elkady N. Immunohistochemical analysis of the role and relationship between Notch-1 and Oct-4 expression in urinary bladder carcinoma. APMIS 2013; 121:982-96. [PMID: 23594289 DOI: 10.1111/apm.12086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022]
Abstract
Most tumors contain a minor population of cancer stem cells that are responsible for tumor heterogeneity, resistance to therapy and recurrence. Oct-4 is a transcription factor responsible for self-renewal of stem cells, whereas the Notch family of receptors and ligands may play a pivotal role in the regulation of stem cell maintenance and differentiation. This study aimed at an evaluation of Oct-4 and Notch-1 expression in both carcinoma and stromal cells of 83 cases of primary bladder carcinoma and to study the relationship between them. Notch-1 was expressed in carcinoma and stromal cells of all malignant cases, where expression in both cell types was correlated with parameters indicating differentiation, such as low grade (p < 0.05) and less proliferation (p < 0.05). However, Notch-1 expression in stromal cells was associated with nodal metastasis (p = 0.016) and advanced stage (p = 0.030). 56.6 and 75.9% of carcinoma and stromal cells of malignant cases showed Oct-4 expression, respectively. Oct-4 expression in carcinoma cells or stromal cells was associated with aggressive features of bladder carcinoma, such as poor differentiation (p = 0.001), high proliferation (p < 0.001, 0.030), and liability for recurrence (p = 0.010, p < 0.001). There was an inverse relationship between Notch-1 and Oct-4 expression in carcinoma cells (p = 0.002), but stromal expression of Notch-1 was found to be associated with a nuclear pattern of Oct-4 expression in carcinoma cells (p = 0.030). Oct-4 as a stem cell marker is expressed in carcinoma cells and in stromal cells of bladder carcinoma, where they may cooperate in the progression of bladder carcinoma by acquiring aggressive features, such as a liability for recurrence and dissemination. Notch-1 is also expressed in both carcinoma cells and stromal cells of bladder carcinoma. Although they could share in enhancing differentiation, stromal expression of Notch-1 may have a bad impact, possibly through up-regulation of the active nuclear form of Oct-4 in carcinoma cells.
Collapse
Affiliation(s)
- Asmaa Gaber Abdou
- Pathology Department, Faculty of Medicine, Menofiya University, Shebein Elkom, Egypt
| | | | | | | | | |
Collapse
|
9
|
Vêncio EF, Nelson AM, Cavanaugh C, Ware CB, Milller DG, Garcia JCO, Vêncio RZN, Loprieno MA, Liu AY. Reprogramming of prostate cancer-associated stromal cells to embryonic stem-like. Prostate 2012; 72:1453-63. [PMID: 22314551 DOI: 10.1002/pros.22497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/11/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND CD90(+) prostate cancer-associated (CP) stromal cells represent a diseased cell type found only in tumor tissue. They differ from their normal counterpart in gene expression and inductive signaling. Genetic reprogramming by induced pluripotent stem (iPS) cell technology can effectively change adult cells into stem-like cells through wholesale alteration of the gene expression program. This technology might be used to 'erase' the abnormal gene expression of diseased cells. The resultant iPS cells would no longer express the disease phenotype, and behave like stem cells. METHODS CP stromal cells, isolated from tumor tissue of a surgically resected prostate by anti-CD90-mediated sorting and cultured in vitro, were transfected with in vitro packaged lentiviral expression vectors containing stem cell transcription factor genes POU5F1, LIN28, NANOG, and SOX2. RESULTS Alkaline phosphatase-positive iPS cells were obtained in about 3 weeks post-transfection at a frequency of 10(-4) . Their colony morphology was indistinguishable from that of human embryonic stem (ES) cells. Transcriptome analysis showed a virtually complete match in gene expression between the iPS and ES cells. CONCLUSIONS Genes of CP stromal cells could be fully inactivated by genetic reprogramming. As a consequence, the disease phenotype was 'cured'.
Collapse
Affiliation(s)
- Eneida F Vêncio
- Department of Urology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yu J, Xing X, Zeng L, Sun J, Li W, Sun H, He Y, Li J, Zhang G, Wang C, Li Y, Xie L. SyStemCell: a database populated with multiple levels of experimental data from stem cell differentiation research. PLoS One 2012; 7:e35230. [PMID: 22807998 PMCID: PMC3396617 DOI: 10.1371/journal.pone.0035230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
Elucidation of the mechanisms of stem cell differentiation is of great scientific interest. Increasing evidence suggests that stem cell differentiation involves changes at multiple levels of biological regulation, which together orchestrate the complex differentiation process; many related studies have been performed to investigate the various levels of regulation. The resulting valuable data, however, remain scattered. Most of the current stem cell-relevant databases focus on a single level of regulation (mRNA expression) from limited stem cell types; thus, a unifying resource would be of great value to compile the multiple levels of research data available. Here we present a database for this purpose, SyStemCell, deposited with multi-level experimental data from stem cell research. The database currently covers seven levels of stem cell differentiation-associated regulatory mechanisms, including DNA CpG 5-hydroxymethylcytosine/methylation, histone modification, transcript products, microRNA-based regulation, protein products, phosphorylation proteins and transcription factor regulation, all of which have been curated from 285 peer-reviewed publications selected from PubMed. The database contains 43,434 genes, recorded as 942,221 gene entries, for four organisms (Homo sapiens, Mus musculus, Rattus norvegicus, and Macaca mulatta) and various stem cell sources (e.g., embryonic stem cells, neural stem cells and induced pluripotent stem cells). Data in SyStemCell can be queried by Entrez gene ID, symbol, alias, or browsed by specific stem cell type at each level of genetic regulation. An online analysis tool is integrated to assist researchers to mine potential relationships among different regulations, and the potential usage of the database is demonstrated by three case studies. SyStemCell is the first database to bridge multi-level experimental information of stem cell studies, which can become an important reference resource for stem cell researchers. The database is available at http://lifecenter.sgst.cn/SyStemCell/.
Collapse
Affiliation(s)
- Jian Yu
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Xiaobin Xing
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lingyao Zeng
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Tongji University, Shanghai, China
| | - Jiehuan Sun
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Huazhong Science and Technology University, Wuhan, Hubei, China
| | - Wei Li
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Huazhong Science and Technology University, Wuhan, Hubei, China
| | - Han Sun
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying He
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Li
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Huazhong Science and Technology University, Wuhan, Hubei, China
| | - Guoqing Zhang
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Chuan Wang
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Yixue Li
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (LX); (YL)
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai, China
- * E-mail: (LX); (YL)
| |
Collapse
|
11
|
Liu AY, Vêncio RZN, Page LS, Ho ME, Loprieno MA, True LD. Bladder expression of CD cell surface antigens and cell-type-specific transcriptomes. Cell Tissue Res 2012; 348:589-600. [PMID: 22427119 DOI: 10.1007/s00441-012-1383-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/23/2012] [Indexed: 12/13/2022]
Abstract
Many cell types have no known functional attributes. In the bladder and prostate, basal epithelial and stromal cells appear similar in cytomorphology and share several cell surface markers. Their total gene expression (transcriptome) should provide a clear measure of the extent to which they are alike functionally. Since urologic stromal cells are known to mediate organ-specific tissue formation, these cells in cancers might exhibit aberrant gene expression affecting their function. For transcriptomes, cluster designation (CD) antigens have been identified for cell sorting. The sorted cell populations can be analyzed by DNA microarrays. Various bladder cell types have unique complements of CD molecules. CD9(+) urothelial, CD104(+) basal and CD13(+) stromal cells of the lamina propria were therefore analyzed, as were CD9(+) cancer and CD13(+) cancer-associated stromal cells. The transcriptome datasets were compared by principal components analysis for relatedness between cell types; those with similarity in gene expression indicated similar function. Although bladder and prostate basal cells shared CD markers such as CD104, CD44 and CD49f, they differed in overall gene expression. Basal cells also lacked stem cell gene expression. The bladder luminal and stromal transcriptomes were distinct from their prostate counterparts. In bladder cancer, not only the urothelial but also the stromal cells showed gene expression alteration. The cancer process in both might thus involve defective stromal signaling. These cell-type transcriptomes provide a means to monitor in vitro models in which various CD-isolated cell types can be combined to study bladder differentiation and bladder tumor development based on cell-cell interaction.
Collapse
Affiliation(s)
- Alvin Y Liu
- Department of Urology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Pascal LE, Vêncio RZ, Vessella RL, Ware CB, Vêncio EF, Denyer G, Liu AY. Lineage relationship of prostate cancer cell types based on gene expression. BMC Med Genomics 2011; 4:46. [PMID: 21605402 PMCID: PMC3113924 DOI: 10.1186/1755-8794-4-46] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 05/23/2011] [Indexed: 02/06/2023] Open
Abstract
Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology) and pattern 4 (aglandular) sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype) and LuCaP 49 (neuroendocrine/small cell carcinoma) grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like) grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Vêncio EF, Pascal LE, Page LS, Denyer G, Wang AJ, Ruohola-Baker H, Zhang S, Wang K, Galas DJ, Liu AY. Embryonal carcinoma cell induction of miRNA and mRNA changes in co-cultured prostate stromal fibromuscular cells. J Cell Physiol 2011; 226:1479-88. [PMID: 20945389 DOI: 10.1002/jcp.22464] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prostate stromal mesenchyme controls organ-specific development. In cancer, the stromal compartment shows altered gene expression compared to non-cancer. The lineage relationship between cancer-associated stromal cells and normal tissue stromal cells is not known. Nor is the cause underlying the expression difference. Previously, the embryonal carcinoma (EC) cell line, NCCIT, was used by us to study the stromal induction property. In the current study, stromal cells from non-cancer (NP) and cancer (CP) were isolated from tissue specimens and co-cultured with NCCIT cells in a trans-well format to preclude heterotypic cell contact. After 3 days, the stromal cells were analyzed by gene arrays for microRNA (miRNA) and mRNA expression. In co-culture, NCCIT cells were found to alter the miRNA and mRNA expression of NP stromal cells to one like that of CP stromal cells. In contrast, NCCIT had no significant effect on the gene expression of CP stromal cells. We conclude that the gene expression changes in stromal cells can be induced by diffusible factors synthesized by EC cells, and suggest that cancer-associated stromal cells represent a more primitive or less differentiated stromal cell type.
Collapse
Affiliation(s)
- Eneida F Vêncio
- Department of Pathology, Federal University of Goias, Goiania, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pascal LE, Ai J, Vêncio RZN, Vêncio EF, Zhou Y, Page LS, True LD, Wang Z, Liu AY. Differential Inductive Signaling of CD90 Prostate Cancer-Associated Fibroblasts Compared to Normal Tissue Stromal Mesenchyme Cells. CANCER MICROENVIRONMENT 2011; 4:51-9. [PMID: 21505567 PMCID: PMC3047627 DOI: 10.1007/s12307-010-0061-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/16/2010] [Indexed: 12/16/2022]
Abstract
Prostate carcinomas are surrounded by a layer of stromal fibroblastic cells that are characterized by increased expression of CD90. These CD90+ cancer-associated stromal fibroblastic cells differ in gene expression from their normal counterpart, CD49a+CD90lo stromal smooth muscle cells; and were postulated to represent a less differentiated cell type with altered inductive properties. CD90+ stromal cells were isolated from tumor tissue specimens and co-cultured with the pluripotent embryonal carcinoma cell line NCCIT in order to elucidate the impact of tumor-associated stroma on stem cells, and the ‘cancer stem cell.’ Transcriptome analysis identified a notable decreased induction of smooth muscle and prostate stromal genes such as PENK, BMP2 and ChGn compared to previously determined NCCIT response to normal prostate stromal cell induction. CD90+ stromal cell secreted factors induced an increased expression of CD90 and differential induction of genes involved in extracellular matrix remodeling and the RECK pathway in NCCIT. These results suggest that, compared to normal tissue stromal cells, signaling from cancer-associated stromal cells has a markedly different effect on stem cells as represented by NCCIT. Given that stromal cells are important in directing organ-specific differentiation, stromal cells in tumors appear to be defective in this function, which may contribute to abnormal differentiation found in diseases such as cancer.
Collapse
Affiliation(s)
- Laura E. Pascal
- Department of Urology, and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
- Institute for Systems Biology, Seattle, WA 98103 USA
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
| | - Junkui Ai
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
| | - Ricardo Z. N. Vêncio
- Institute for Systems Biology, Seattle, WA 98103 USA
- Department of Genetics, University of São Paulo’s Medical School, Ribeirão Preto, Brazil
| | - Eneida F. Vêncio
- Department of Urology, and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
- Institute for Systems Biology, Seattle, WA 98103 USA
- Present Address: Department of Pathology, School of Dentistry, Federal University of Goias, Goiania, GO Brazil
| | - Yong Zhou
- Institute for Systems Biology, Seattle, WA 98103 USA
| | - Laura S. Page
- Department of Urology, and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
- Institute for Systems Biology, Seattle, WA 98103 USA
| | - Lawrence D. True
- Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232 USA
| | - Alvin Y. Liu
- Department of Urology, and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
- Institute for Systems Biology, Seattle, WA 98103 USA
| |
Collapse
|
15
|
Maresh EL, Mah V, Alavi M, Horvath S, Bagryanova L, Liebeskind ES, Knutzen LA, Zhou Y, Chia D, Liu AY, Goodglick L. Differential expression of anterior gradient gene AGR2 in prostate cancer. BMC Cancer 2010; 10:680. [PMID: 21144054 PMCID: PMC3009682 DOI: 10.1186/1471-2407-10-680] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 12/13/2010] [Indexed: 01/11/2023] Open
Abstract
Background The protein AGR2 is a putative member of the protein disulfide isomerase family and was first identified as a homolog of the Xenopus laevis gene XAG-2. AGR2 has been implicated in a number of human cancers. In particular, AGR2 has previously been found to be one of several genes that encode secreted proteins showing increased expression in prostate cancer cells compared to normal prostatic epithelium. Methods Gene expression levels of AGR2 were examined in prostate cancer cells by microarray analysis. We further examined the relationship of AGR2 protein expression to histopathology and prostate cancer outcome on a population basis using tissue microarray technology. Results At the RNA and protein level, there was an increase in AGR2 expression in adenocarcinoma of the prostate compared to morphologically normal prostatic glandular epithelium. Using a tissue microarray, this enhanced AGR2 expression was seen as early as premalignant PIN lesions. Interestingly, within adenocarcinoma samples, there was a slight trend toward lower levels of AGR2 with increasing Gleason score. Consistent with this, relatively lower levels of AGR2 were highly predictive of disease recurrence in patients who had originally presented with high-stage primary prostate cancer (P = 0.009). Conclusions We have shown for the first time that despite an increase in AGR2 expression in prostate cancer compared to non-malignant cells, relatively lower levels of AGR2 are highly predictive of disease recurrence following radical prostatectomy.
Collapse
Affiliation(s)
- Erin L Maresh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cancer stem cells in urologic cancers. Urol Oncol 2010; 28:585-90. [DOI: 10.1016/j.urolonc.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/14/2009] [Accepted: 06/16/2009] [Indexed: 12/31/2022]
|
17
|
Pascal LE, Vêncio RZN, Page LS, Liebeskind ES, Shadle CP, Troisch P, Marzolf B, True LD, Hood LE, Liu AY. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes. BMC Cancer 2009; 9:452. [PMID: 20021671 PMCID: PMC2809079 DOI: 10.1186/1471-2407-9-452] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 12/18/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer cells in primary tumors have been typed CD10-/CD13-/CD24hi/CD26+/CD38lo/CD44-/CD104-. This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. METHODS CD26+ cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. RESULTS The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. CONCLUSIONS Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pascal LE, Goo YA, Vêncio RZ, Page LS, Chambers AA, Liebeskind ES, Takayama TK, True LD, Liu AY. Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes. BMC Cancer 2009; 9:317. [PMID: 19737398 PMCID: PMC2745432 DOI: 10.1186/1471-2407-9-317] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 09/08/2009] [Indexed: 12/12/2022] Open
Abstract
Background The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THY1. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Methods Prostate CD90+ stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. Results The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. Conclusion CD90+ prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pascal LE, Vêncio RZN, Goo YA, Page LS, Shadle CP, Liu AY. Temporal expression profiling of the effects of secreted factors from prostate stromal cells on embryonal carcinoma stem cells. Prostate 2009; 69:1353-65. [PMID: 19455603 DOI: 10.1002/pros.20982] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND There is a growing body of evidence indicating that epigenetic influences originating from stromal cells in the immediate microenvironment may play a role in carcinogenesis. Determining the molecular mechanisms involved in stromal-stem cell interaction could provide critical insight into prostate development and disease progression, particularly with regard to their relationship to and influence on the putative cancer stem cell. METHODS Prostate and bladder stromal cells prepared from tissue specimens were co-cultured with the pluripotent embryonal carcinoma cell line NCCIT. Transcriptome analysis was used to characterize NCCIT cell response to prostate or bladder signaling. RESULTS A systems approach demonstrated that prostate stromal cells were capable of inducing gene expression changes in NCCIT through secreted factors. Induction led to a loss of embryonic stem cell markers, with concurrent up-regulation of many genes characteristic of stromal mesenchyme cells as well as some of epithelial and cancer stem cells. Bladder stromal signaling produced gene expression changes different from those of prostate signaling. CONCLUSIONS This study indicates that paracrine stromal cell signaling can affect cancer stem cell response in an organ-specific manner and may provide insight for future development of treatment strategies such as differentiation therapy.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 2009; 297:F1477-501. [PMID: 19587142 DOI: 10.1152/ajprenal.00327.2009] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The uroepithelium sits at the interface between the urinary space and underlying tissues, where it forms a high-resistance barrier to ion, solute, and water flux, as well as pathogens. However, the uroepithelium is not simply a passive barrier; it can modulate the composition of the urine, and it functions as an integral part of a sensory web in which it receives, amplifies, and transmits information about its external milieu to the underlying nervous and muscular systems. This review examines our understanding of uroepithelial regeneration and how specializations of the outermost umbrella cell layer, including tight junctions, surface uroplakins, and dynamic apical membrane exocytosis/endocytosis, contribute to barrier function and how they are co-opted by uropathogenic bacteria to infect the uroepithelium. Furthermore, we discuss the presence and possible functions of aquaporins, urea transporters, and multiple ion channels in the uroepithelium. Finally, we describe potential mechanisms by which the uroepithelium can transmit information about the urinary space to the other tissues in the bladder proper.
Collapse
|
21
|
Abstract
Immunoperoxidase histochemistry is a widespread method of assessing expression of biomolecules in tissue samples. Accurate assessment of the expression levels of genes is critical for the management of disease, particularly as therapy targeted to specific molecules becomes more widespread. Determining the quality of preservation of macromolecules in tissue is important to avoid false negative and false positive results. In this review we discuss (1) issues of sensitivity (false negativity) and specificity (false positivity) of immunohistochemical stains, (2) approaches to better understanding differences in immunostains done by different laboratories (including the recently proposed MISFISHIE specification for tissue localization studies), and (3) approaches to assessing the quality of preservation of macromolecules in tissue, particularly in small biopsy samples.
Collapse
|
22
|
Pascal LE, True LD, Campbell DS, Deutsch EW, Risk M, Coleman IM, Eichner LJ, Nelson PS, Liu AY. Correlation of mRNA and protein levels: cell type-specific gene expression of cluster designation antigens in the prostate. BMC Genomics 2008; 9:246. [PMID: 18501003 PMCID: PMC2413246 DOI: 10.1186/1471-2164-9-246] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 05/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND : Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD) genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate - basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial - and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. RESULTS : Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63). Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50) but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. CONCLUSION : Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, University of Washington, Seattle WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|