1
|
Campero LM, Gual I, Sander VA, Morales LFM, Duarte VAR, Formigo PM, Sosa E, Lázaro F, Scioli MV, Atela A, Legarralde A, Hozbor FA, Cantón GJ, Angel SO, Moore DP, Clemente M. Immunization with plant-based vaccine expressing Toxoplasma gondii SAG1 fused to plant HSP90 elicits protective immune response in lambs. Acta Trop 2025; 262:107540. [PMID: 39894243 DOI: 10.1016/j.actatropica.2025.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Toxoplasma gondii is a protozoan parasite causing toxoplasmosis, a principal concern for public health and livestock industries. Effective vaccination strategies are crucial for controlling toxoplasmosis, particularly in the lamb, which are significant reservoirs of T. gondii. In addition, ovine toxoplasmosis also causes economic losses due to abortions and reproductive complications. In this study, we evaluated two immunization strategies to elucidate the immune protective potential of T. gondi major surface protein SAG1 fused to the plant heat shock proteins 90-kDa (pHsp90) adjuvant against experimental toxoplasmosis in lambs. We performed an oral administration of fresh leaves homogenate infiltrated with a B- and T-cell antigenic epitope-containing surface protein SAG1 (SAG1HC) fused to Arabidopsis thaliana Hsp90 (AtHsp81.2-SAG1HC) (Plant Vaccine) and a subcutaneous administration of recombinant SAG1HC fused to Nicotiana benthamiana Hsp90 (NbHsp90.3-SAG1HC) produced in Escherichia coli (Recombinant Vaccine). Our results showed that only the Recombinant Vaccine significantly increased anti-rSAG1 total IgG values (∼ 4-fold more than the Vehicle and Control groups). In addition, only lambs immunized with the Plant Vaccine showed a significant increase (∼ 3-fold more than the Vehicle and Control groups) in IFN-γ serum levels after the experimental infection (evaluated 8 days post-challenge). On the other hand, we also observed a statistically significant decrease (∼ 80 % less) in histopathological lesions (injury score) in challenged vaccinated lambs compared to challenged but not vaccinated animals (Vehicle and Control groups). Previously, we showed that the chimera recombinant Gra4-Gra7 protein is an acute marker of human infection. Since Gra4-Gra7 is not connected to the SAG1 immunogen, this chimera allows us to monitor infection in challenged lambs early. All lambs from the Control and Vehicle groups showed higher rates of serological reactivity than lambs from the vaccinated groups, concurrently with increased severity of lesions. These results suggest that the Plant-based and Recombinant Vaccines are promising candidates for controlling T. gondii infection in lambs, with potential benefits for enhancing public health and animal welfare.
Collapse
Affiliation(s)
- Lucía M Campero
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Ignacio Gual
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
| | - Valeria A Sander
- Laboratorio de Biotecnologías en Bovinos y Ovinos, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), UNSAM, Chascomús, Buenos Aires, Argentina
| | - Luisa F Mendoza Morales
- Laboratorio de Biotecnologías en Bovinos y Ovinos, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), UNSAM, Chascomús, Buenos Aires, Argentina
| | - Victor A Ramos Duarte
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Chascomús, Buenos Aires, Argentina; Laboratorio de Molecular Farming y Vacunas, INTECH, EByN, CONICET-UNSAM, Chascomús, Buenos Aires, Argentina
| | - Paula M Formigo
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Chascomús, Buenos Aires, Argentina; Laboratorio de Parasitología Molecular, INTECH, EByN, CONICET-UNSAM, Chascomús, Buenos Aires, Argentina
| | - Emiliano Sosa
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Fermín Lázaro
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - María Valeria Scioli
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Agustín Atela
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Chascomús, Buenos Aires, Argentina; Laboratorio de Molecular Farming y Vacunas, INTECH, EByN, CONICET-UNSAM, Chascomús, Buenos Aires, Argentina
| | - Ariel Legarralde
- Laboratorio de Molecular Farming y Vacunas, INTECH, EByN, CONICET-UNSAM, Chascomús, Buenos Aires, Argentina
| | - Federico A Hozbor
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Germán J Cantón
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Sergio O Angel
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Chascomús, Buenos Aires, Argentina; Laboratorio de Parasitología Molecular, INTECH, EByN, CONICET-UNSAM, Chascomús, Buenos Aires, Argentina
| | - Dadín P Moore
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
| | - Marina Clemente
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Chascomús, Buenos Aires, Argentina; Laboratorio de Molecular Farming y Vacunas, INTECH, EByN, CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Mendoza-Morales LF, Fiorani F, Morán KD, Hecker YP, Cirone KM, Sánchez-López EF, Ramos-Duarte VA, Corigliano MG, Bilbao MG, Clemente M, Moore DP, Sander VA. Immunogenicity, safety and dual DIVA-like character of a recombinant candidate vaccine against neosporosis in cattle. Acta Trop 2024; 257:107293. [PMID: 38901525 DOI: 10.1016/j.actatropica.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Neosporosis is the major infectious cause of abortion and reproductive losses in cattle worldwide; however, there are no available vaccines or drugs to control this disease. Recently, a dual (positive and negative) DIVA-like (Differentiation of Infected from Vaccinated Animals) vaccine was evaluated in a pregnant mouse model of neosporosis, showing promising immunogenic and protective results. The current report aimed to study the safety, the dose-dependent immunogenicity and the dual DIVA-like character of a recombinant subunit vaccine composed of the major surface antigen from Neospora caninum (rNcSAG1) and the carrier/adjuvant Heat shock protein 81.2 from Arabidopsis thaliana (rAtHsp81.2) in cattle. Healthy heifers were separated and assigned to experimental groups A-F and subcutaneously immunized with 2 doses of vaccine formulations 30 days apart as follows: A (n = 4): 50 μg rNcSAG1 + 150 μg rAtHsp81.2; B (n = 4): 200 μg rNcSAG1 + 600 μg rAtHsp81.2; C (n = 4): 500 μg rNcSAG1 + 1,500 μg rAtHsp81.2; D (n = 3): 150 μg rAtHsp81.2; E (n = 3):1,500 μg rAtHsp81.2, and F (n = 3) 2 ml of sterile PBS. The immunization of heifers with the different vaccine or adjuvant doses (groups A-E) was demonstrated to be safe and did not modify the mean value of the evaluated serum biomarkers of metabolic function (GOT/ASP, GPT/ALT, UREA, Glucose and total proteins). The kinetics and magnitude of the immune responses were dose-dependent. The higher dose of the vaccine formulation (group C) stimulated a broad and potent humoral and cellular immune response, characterized by an IgG1/IgG2 isotype profile and IFN-γ secretion. In addition, this was the first time that dual DIVA-like character of a vaccine against neosporosis was demonstrated, allowing us to differentiate vaccinated from infected heifers by two different DIVA compliant test approaches. These results encourage us to evaluate its protective efficacy in infected pregnant cattle in the future.
Collapse
Affiliation(s)
- Luisa Fernanda Mendoza-Morales
- Laboratorio de Biotecnologías en Bovinos y Ovinos, INTECH, CONICET-UNSAM, Intendente Marino Km 8,2; CC 164 (B7130IWA), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina
| | - Franco Fiorani
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Karen Daiana Morán
- Laboratorio de Reproducción, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), General Pico, La Pampa, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, La Pampa, Argentina
| | - Yanina Paola Hecker
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Karina Mariela Cirone
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Edwin Fernando Sánchez-López
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina; Laboratorio de Molecular Farming y Vacunas, INTECH, CONICET-UNSAM, Chascomús, Argentina
| | - Victor Andrés Ramos-Duarte
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina; Laboratorio de Molecular Farming y Vacunas, INTECH, CONICET-UNSAM, Chascomús, Argentina
| | - Mariana Georgina Corigliano
- Laboratorio de Biotecnologías en Bovinos y Ovinos, INTECH, CONICET-UNSAM, Intendente Marino Km 8,2; CC 164 (B7130IWA), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina
| | - María Guillermina Bilbao
- Laboratorio de Reproducción, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), General Pico, La Pampa, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, La Pampa, Argentina
| | - Marina Clemente
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina; Laboratorio de Molecular Farming y Vacunas, INTECH, CONICET-UNSAM, Chascomús, Argentina
| | - Dadín Prando Moore
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Valeria Analía Sander
- Laboratorio de Biotecnologías en Bovinos y Ovinos, INTECH, CONICET-UNSAM, Intendente Marino Km 8,2; CC 164 (B7130IWA), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Zhang X, Yuan H, Mahmmod YS, Yang Z, Zhao M, Song Y, Luo S, Zhang XX, Yuan ZG. Insight into the current Toxoplasma gondii DNA vaccine: a review article. Expert Rev Vaccines 2023; 22:66-89. [PMID: 36508550 DOI: 10.1080/14760584.2023.2157818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Toxoplasma gondii (T.gondii) is a widespread protozoan with significant economic losses and public health importance. But so far, the protective effect of reported DNA-based vaccines fluctuates widely, and no study has demonstrated complete protection. AREAS COVERED This review provides an inclusive summary of T. gondii DNA vaccine antigens, adjuvants, and some other parameters. A total of 140 articles from 2000 to 2021 were collected from five databases. By contrasting the outcomes of acute and chronic challenges, we aimed to investigate and identify viable immunological strategies for optimum protection. Furthermore, we evaluated and discussed the impact of several parameters on challenge outcomes in the hopes of developing some recommendations to assist better future horizontal comparisons among research. EXPERT OPINION In the coming five years of research, the exploration of vaccine cocktails combining invasion antigens and metabolic antigens with genetic adjuvants or novel DNA delivery methods may offer us desirable protection against this multiple stage of life parasite. In addition to finding a better immune strategy, developing better in silico prediction methods, solving problems posed by variables in practical applications, and gaining a more profound knowledge of T.gondii-host molecular interaction is also crucial towards a successful vaccine.
Collapse
Affiliation(s)
- Xirui Zhang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Hao Yuan
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yasser S Mahmmod
- Veterinary Sciences Division, Faculty of Health Sciences, Higher Colleges of Technology, 17155, Abu Dhabi, United Arab Emirates
| | - Zipeng Yang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Mengpo Zhao
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yining Song
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shengjun Luo
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Xiu-Xiang Zhang
- College of Agriculture, South China Agricultural University, 510642, Guangzhou, PR China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
4
|
Sánchez-López EF, Corigliano MG, Oliferuk S, Ramos-Duarte VA, Rivera M, Mendoza-Morales LF, Angel SO, Sander VA, Clemente M. Oral Immunization With a Plant HSP90-SAG1 Fusion Protein Produced in Tobacco Elicits Strong Immune Responses and Reduces Cyst Number and Clinical Signs of Toxoplasmosis in Mice. FRONTIERS IN PLANT SCIENCE 2021; 12:726910. [PMID: 34675949 PMCID: PMC8525317 DOI: 10.3389/fpls.2021.726910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 05/17/2023]
Abstract
Plant 90kDa heat shock protein (HSP90) is a potent adjuvant that increases both humoral and cellular immune responses to diverse proteins and peptides. In this study, we explored whether Arabidopsis thaliana HSP90 (AtHsp81.2) can improve the immune effects of a Toxoplasma gondii surface antigen 1 (SAG1). We designed two constructs containing the sequence of mature antigen (SAG1m), from aa77 to aa322, and B- and T-cell antigenic epitope-containing SAG1HC, from aa221 to aa319 fused to AtHsp81.2 sequence. When comparing the transient expression in Nicotiana tabacum X-27-8 leaves, which overexpress the suppressor helper component protease HC-Pro-tobacco etch virus (TEV), to that in N. benthamiana leaves, co-agroinfiltrated with the suppressor p19, optimal conditions included 6-week-old N. benthamiana plants, 7-day time to harvest, Agrobacterium tumefaciens cultures with an OD600nm of 0.6 for binary vectors and LED lights. While AtHsp81.2-SAG1m fusion protein was undetectable by Western blot in any of the evaluated conditions, AtHsp81.2-SAG1HC was expressed as intact fusion protein, yielding up to 90μg/g of fresh weight. Besides, the AtHsp81.2-SAG1HC mRNA was strongly expressed compared to the endogenous Nicotiana tabacum elongation factor-alpha (NtEFα) gene, whereas the AtHsp81.2-SAG1m mRNA was almost undetectable. Finally, mice were orally immunized with AtHsp81.2-SAG1HC-infiltrated fresh leaves (plAtHsp81.2-SAG1HC group), recombinant AtHsp81.2-SAG1HC purified from infiltrated leaves (rAtHsp81.2-SAG1HC group), non-infiltrated fresh leaves (control group), or phosphate-buffered saline (PBS group). Serum samples from plAtHsp81.2-SAG1HC-immunized mice had significantly higher levels of IgGt, IgG2a, and IgG2b anti-SAG1HC antibodies than serum from rAtHsp81.2-SAG1HC, control, and PBS groups. The number of cysts per brain in the plAtHsp81.2-SAG1HC-immunized mice was significantly reduced, and the parasite load in brain tissue was also lower in this group compared with the remaining groups. In an immunoblot assay, plant-expressed AtHsp81.2-SAG1HC was shown to react with antibodies present in sera from T. gondii-infected people. Therefore, the plant expression of a T. gondii antigen fused to the non-pathogenic adjuvant and carrier plant HSP90 as formulations against T. gondii can improve the vaccine efficacy, and plant extract can be directly used for vaccination without the need to purify the protein, making this platform a suitable and powerful biotechnological system for immunogenic antigen expression against toxoplasmosis.
Collapse
Affiliation(s)
- Edwin F. Sánchez-López
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Mariana G. Corigliano
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sonia Oliferuk
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Victor A. Ramos-Duarte
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Maximiliano Rivera
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Luisa F. Mendoza-Morales
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Valeria A. Sander
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
5
|
Nazeri S, Zakeri S, Mehrizi AA, Sardari S, Djadid ND. Measuring of IgG2c isotype instead of IgG2a in immunized C57BL/6 mice with Plasmodium vivax TRAP as a subunit vaccine candidate in order to correct interpretation of Th1 versus Th2 immune response. Exp Parasitol 2020; 216:107944. [PMID: 32619431 DOI: 10.1016/j.exppara.2020.107944] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023]
Abstract
Evaluation of the murine isotype antibodies is essential in subunit vaccine development because inbred mouse strains with diverse genetic backgrounds respond different to recombinant proteins. In this regard, the main goal of this study was to measuring and comparing the profile of IgG isotype responses in C57BL/6 mice. For this purpose, the extracellular region of plasmodium vivax thrombospondin-related adhesive protein (PvTRAP) gene was expressed in Escherichia coli Rosetta (DE3)-pET23a. Then, the recombinant PvTRAP alone or emulsified with Freund's complete adjuvant were applied for immunization of the C57BL/6 mice. The role of antibodies and cellular immune responses induced by recombinant PvTRAP were evaluated. The results showed the level of anti-rPvTRAP IgG2c was significantly higher than IgG2a in the groups that received rPvTRAP alone (mean OD490 = 0.798 ± 0.12 and 0.39 ± 0.1, respectively) and emulsified with CFA/IFA (mean OD490 = 1.48 ± 0.07 and 0.605 ± 0.13, respectively; P < 0.05, independent sample t-test). Additionally, the immunized mice with rPvTRAP and rPvTRAP + CFA/IFA had an intermediate-avidity IgG2a antibody but high-avidity IgG2c antibody as well as the mean of serum antibody titers results exhibited that in both rPvTRAP and rPvTRAP + CFA/IFA mouse groups, IgG2a end-point titer (1:3200 and 1:25,600, respectively) was noteworthy lower than IgG2c (1:25,600 and 1:102,400, respectively). Moreover, the results revealed the eliciting significant levels of IFN-γ (P < 0.05, independent sample t-test) and no detectable level of IL-4 in the mouse groups received rPvTRAP alone and emulsified with CFA/IFA as compared to the mouse control groups. In general, our results showed that for correctly interpreting of Th1 immune responses in C57BL/6 mouse strain it is critical to measure IgG2c instead of IgG2a along with IFN-γ.
Collapse
Affiliation(s)
- Saeed Nazeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Soroush Sardari
- Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Pagheh AS, Sarvi S, Sharif M, Rezaei F, Ahmadpour E, Dodangeh S, Omidian Z, Hassannia H, Mehrzadi S, Daryani A. Toxoplasma gondii surface antigen 1 (SAG1) as a potential candidate to develop vaccine against toxoplasmosis: A systematic review. Comp Immunol Microbiol Infect Dis 2020; 69:101414. [PMID: 31958746 DOI: 10.1016/j.cimid.2020.101414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that infects a broad range of animal species and humans. As the main surface antigen of the tachyzoite, SAG1 is involved in the process of recognition, adhesion and invasion of host cells. The aim of the current systematic review study is to clarify the latest status of studies in the literature regarding SAG1-associated recombinant proteins or SAG1-associated recombinant DNAs as potential vaccines against toxoplasmosis. Data were systematically collected from six databases including PubMed, Science Direct, Web of Science, Google Scholar, EBSCO and Scopus, up to 1st of January 2019. A total of 87 articles were eligible for inclusion criteria in the current systematic review. The most common antigens used for experimental cocktail vaccines together with SAG1 were ROP2 and SAG2. In addition, the most parasite strains used were RH and ME49. Freund's adjuvant and cholera toxin have been predominantly utilized. Furthermore, regarding the animal models, route and dose of vaccination, challenge methods, measurement of immune responses and cyst burden have been discussed in the text. Most of these experimental vaccines induce immune responses and have a high degree of protection against parasite infections, increase survival rates and duration and reduce cyst burdens. The data demonstrated that SAG1 antigen has a high potential for use as a vaccine and provided a promising approach for protecting humans and animals against toxoplasmosis.
Collapse
Affiliation(s)
- Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Fatemeh Rezaei
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Dodangeh
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Hadi Hassannia
- Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran..
| |
Collapse
|
7
|
Intragastric delivery of recombinant Lactococcus lactis displaying ectodomain of influenza matrix protein 2 (M2e) and neuraminidase (NA) induced focused mucosal and systemic immune responses in chickens. Mol Immunol 2019; 114:497-512. [PMID: 31518854 DOI: 10.1016/j.molimm.2019.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
Compounding with the problem of frequent antigenic shift and occasional drift of the segmented genome of Avian Influenza Virus (AIV), vaccines based on major surface glycoproteins such as haemagglutinin (HA) to counter heterosubtypic AIV infection in chickens remain unsuccessful. In contrast, neuraminidase (NA), the second most abundant surface glycoprotein present in viral capsid is less mutable and, in some instances, successful in eliciting inter-species cross-reactive antibody responses. However, without selective activation of B-cells and T-cells, the ability of NA to induce strong cell mediated immune responses is limited, thus NA based vaccines cannot singularly address the risk of virus escape from host defence. To this end, the highly conserved ectodomain of influenza matrix protein-2 (M2e) has emerged as an attractive cross-protective vaccine target. The present study describes the potential of recombinant Lactococcus lactis (rL. lactis) in expressing functional influenza NA or M2e proteins and conferring effective mucosal and systemic immune responses in the intestine as well as in the upper respiratory airways (trachea) of chickens. In addition, lavages collected from trachea and intestine of birds administered with rL. lactis expressing influenza NA or M2e protein were found to protect MDCK cells against avian influenza type A/PR/8/34 (H1N1) virus challenge. Although minor, the differences in the expression of pro-inflammatory cytokines gene transcripts targeted in this study among the birds administered with either empty or rL. lactis could be attributed to the activation of innate response by L. lactis.
Collapse
|
8
|
Sánchez-López EF, Corigliano MG, Albarracín RM, Sander VA, Legarralde A, Bengoa-Luoni SA, Clemente M. Plant Hsp90 is a novel adjuvant that elicits a strong humoral and cellular immune response against B- and T-cell epitopes of a Toxoplasma gondii SAG1 peptide. Parasit Vectors 2019; 12:140. [PMID: 30909938 PMCID: PMC6434815 DOI: 10.1186/s13071-019-3362-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The 90-kDa heat-shock protein (Hsp90) from Nicotiana benthamiana (NbHsp90.3) is a promising adjuvant, especially for those vaccines that require a T cell-mediated immune response. Toxoplasma gondii SAG1 is considered one of the most important antigens for the development of effective subunit vaccines. Some epitopes located in the SAG1 C-terminus region have showed a strong humoral and cellular immune response. In the present study, we aimed to assess the efficacy of NbHsp90.3 as carrier/adjuvant of SAG1-derived peptide (SAG1HC) in a T. gondii infection murine model. METHODS In the present study, C57BL/6 mice were intraperitoneal immunized with the NbHsp90.3-SAG1HC fusion protein (NbHsp90.3-SAG1HC group), mature SAG1 (SAG1m group), NbHsp90.3 (NbHsp90.3 group) or PBS buffer 1× (PBS group). The levels of IgG antibodies and the cytokine profile were determined by ELISA. Two weeks after the last immunization, all mice were orally challenged with 20 cysts of T. gondii Me49 strain and the number of brain cysts was determined. In addition, both humoral and cellular immune responses were also evaluated during the acute and chronic phase of T. gondii infection by ELISA. RESULTS The characterization of the immune response generated after vaccination with NbHsp90.3 as an adjuvant showed that NbHsp90.3-SAG1HC-immunized mice produced antibodies that were able to recognize not only rSAG1m but also the native SAG1 present in the total lysate antigen extract (SAG1TLA) from T. gondii tachyzoites, while control groups did not. Furthermore, anti-rSAG1m IgG2a/2b antibodies were significantly induced. In addition, only the spleen cell cultures from NbHsp90.3-SAG1HC-immunized mice showed a significantly increased production of IFN-γ. During the chronic phase of T. gondii infection, the antibodies generated by the infection were unable to detect the recombinant protein, but they did react with TLA extract. In addition, splenocytes from all groups showed a high production of IFN-γ when stimulated with rGRA4, but only those from NbHsp90.3-SAG1HC group stimulated with rSAG1m showed high production of IFN-γ. Finally, NbHsp90.3-SAG1HC-immunized mice exhibited a significant reduction in the cyst load (56%) against T. gondii infection. CONCLUSIONS We demonstrated that NbHsp90.3 enhances the humoral and cell-mediated immune response through a Th1 type cytokine production. Mice vaccinated with NbHsp90.3-SAG1HC exhibited a partial protection against T. gondii infection and it was correlated with the induction of memory immune response. We developed and validated a vaccine formulation which, to our knowledge, for the first time includes the NbHsp90.3 protein covalently fused to a peptide from T. gondii SAG1 protein that contains T- and B-cell epitopes.
Collapse
Affiliation(s)
- Edwin F. Sánchez-López
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Mariana G. Corigliano
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Romina M. Albarracín
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Valeria A. Sander
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Ariel Legarralde
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Sofía A. Bengoa-Luoni
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| |
Collapse
|
9
|
Clemente M, Corigliano MG, Pariani SA, Sánchez-López EF, Sander VA, Ramos-Duarte VA. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int J Mol Sci 2019; 20:E1345. [PMID: 30884891 PMCID: PMC6471620 DOI: 10.3390/ijms20061345] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/12/2022] Open
Abstract
The serine protease inhibitors (SPIs) are widely distributed in living organisms like bacteria, fungi, plants, and humans. The main function of SPIs as protease enzymes is to regulate the proteolytic activity. In plants, most of the studies of SPIs have been focused on their physiological role. The initial studies carried out in plants showed that SPIs participate in the regulation of endogenous proteolytic processes, as the regulation of proteases in seeds. Besides, it was observed that SPIs also participate in the regulation of cell death during plant development and senescence. On the other hand, plant SPIs have an important role in plant defense against pests and phytopathogenic microorganisms. In the last 20 years, several transgenic plants over-expressing SPIs have been produced and tested in order to achieve the increase of the resistance against pathogenic insects. Finally, in molecular farming, SPIs have been employed to minimize the proteolysis of recombinant proteins expressed in plants. The present review discusses the potential biotechnological applications of plant SPIs in the agriculture field.
Collapse
Affiliation(s)
- Marina Clemente
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Mariana G Corigliano
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Sebastián A Pariani
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Edwin F Sánchez-López
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Valeria A Sander
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Víctor A Ramos-Duarte
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| |
Collapse
|
10
|
Experimental Porcine Toxoplasma gondii Infection as a Representative Model for Human Toxoplasmosis. Mediators Inflamm 2017; 2017:3260289. [PMID: 28883687 PMCID: PMC5572617 DOI: 10.1155/2017/3260289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/16/2017] [Accepted: 07/05/2017] [Indexed: 12/01/2022] Open
Abstract
Porcine infections are currently not the state-of-the-art model to study human diseases. Nevertheless, the course of human and porcine toxoplasmosis is much more comparable than that of human and murine toxoplasmosis. For example, severity of infection, transplacental transmission, and interferon-gamma-induced antiparasitic effector mechanisms are similar in pigs and humans. In addition, the severe immunosuppression during acute infection described in mice does not occur in the experimentally infected ones. Thus, we hypothesise that porcine Toxoplasma gondii infection data are more representative for human toxoplasmosis. We therefore suggest that the animal model chosen must be critically evaluated for its assignability to human diseases.
Collapse
|
11
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Jozefkowicz C, Bottero E, Pascuan C, Pagano E, Ayub ND, Soto G. Minimizing the time and cost of production of transgenic alfalfa libraries using the highly efficient completely sequenced vector pPZP200BAR. PLANT CELL REPORTS 2016; 35:1987-1990. [PMID: 27447893 DOI: 10.1007/s00299-016-2026-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Alfalfa is the most important forage legume worldwide. However, similar to other minor forage crops, it is usually harvested along with weeds, which decrease its nutrient quality and thus reduce its high value in the market. In addition, weeds reduce alfalfa yield by about 50 %. Although weeds are the limiting factor for alfalfa production, little progress has been made in the incorporation of herbicide-tolerant traits into commercial alfalfa. This is partially due to the high times and costs needed for the production of vast numbers of transgenic alfalfa events as an empirical approach to bypass the random transgenic silencing and for the identification of an event with optimal transgene expression. In this focus article, we report the complete sequence of pPZP200BAR and the extremely high efficiency of this binary vector in alfalfa transformation, opening the way for rapid and inexpensive production of transgenic events for alfalfa improvement public programs.
Collapse
Affiliation(s)
- Cintia Jozefkowicz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar C25 (1712), Buenos Aires, Argentina
| | - Emilia Bottero
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar C25 (1712), Buenos Aires, Argentina
| | - Cecilia Pascuan
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar C25 (1712), Buenos Aires, Argentina
| | - Elba Pagano
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar C25 (1712), Buenos Aires, Argentina
| | - Nicolás Daniel Ayub
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar C25 (1712), Buenos Aires, Argentina
| | - Gabriela Soto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar C25 (1712), Buenos Aires, Argentina.
| |
Collapse
|
13
|
Xia F, Li X, Li X, Zheng D, Sun Q, Liu J, Li Y, Hua J, Qi B. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes. PLoS One 2016; 11:e0158103. [PMID: 27433934 PMCID: PMC4951033 DOI: 10.1371/journal.pone.0158103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/12/2016] [Indexed: 12/23/2022] Open
Abstract
Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of foreign genes in yeast and Arabidopsis.
Collapse
Affiliation(s)
- Fei Xia
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Xueying Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Desong Zheng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Quanxi Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Jiang Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Yaxiao Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Jinping Hua
- Department of Plant Genetics & Breeding, College of Agronomy and Biotechnology, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Baoxiu Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
- * E-mail:
| |
Collapse
|
14
|
Jiménez JP, Chaparro Giraldo A. Diseño in silico y evaluación funcional de genes semisintéticos que confieran tolerancia a fosfinotricina. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n2.52206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La tolerancia a herbicidas es una de las características más usadas en los cultivos GM, con resultados positivos para los agricultores y el ambiente. El punto de partida, es el desarrollo de casetes de expresión que expresen la característica de interés, inicialmente construidos mediante técnicas de biología molecular convencionales. Actualmente, con herramientas de bioinformática y biología sintética, es posible diseñar y probar el constructo in silico, para luego contratar su síntesis. Esta aproximación, permite optimizar la expresión mediante la modificación del uso codónico. En este trabajo se diseñaron y evaluaron en Nicotiana benthamiana versiones semisintéticas de genes que confieren tolerancia al herbicida fosfinotricina. Se realizó un análisis de libertad de operación, con el fin de asegurar que los constructos diseñados no violen derechos de propiedad intelectual en Colombia. Se obtuvieron dos casetes de expresión con libertad de operación, que expresan versiones del gen bar. Palabras clave: cultivos GM, libertad de operación, tolerancia a herbicidas, uso codónico.
Collapse
|
15
|
Sánchez VR, Fenoy IM, Picchio MS, Soto AS, Arcon N, Goldman A, Martin V. Homologous prime-boost strategy with TgPI-1 improves the immune response and protects highly susceptible mice against chronic Toxoplasma gondii infection. Acta Trop 2015. [PMID: 26200784 DOI: 10.1016/j.actatropica.2015.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Subunit-based vaccines are safer than live or attenuated pathogen vaccines, although they are generally weak immunogens. Thus, proper combination of immunization strategies and adjuvants are needed to increase their efficacy. We have previously protected C3H/HeN mice from Toxoplasma gondii infection by immunization with the serine protease inhibitor-1 (TgPI-1) in combination with alum. In this work, we explore an original vaccination protocol that combines administration of recombinant TgPI-1 by intradermal and intranasal routes in order to enhance protection in the highly susceptible C57BL/6 strain. Mice primed intradermally with rTgPI-1 plus alum and boosted intranasally with rTgPI-1 plus CpG-ODN elicited a strong specific Th1/Th2 humoral response, along with a mucosal immune response characterized by specific-IgA in intestinal lavages. A positive cellular response of mesentheric lymph node cells and Th1/Th2 cytokine secretion in the ileon were also detected. When immunized mice were challenged with the cystogenic Me49 T. gondii strain, they displayed up to 62% reduction in brain parasite burden. Moreover, adoptive transfer of mesenteric lymph node cells from vaccinated to naïve mice induced significant protection against infection. These results demonstrate that this strategy that combines the administration of TgPI-1 by two different routes, intradermal priming and intranasal boost, improves protective immunity against T. gondii chronic infection in highly susceptible mice.
Collapse
|
16
|
Fei D, Zhang H, Diao Q, Jiang L, Wang Q, Zhong Y, Fan Z, Ma M. Codon Optimization, Expression in Escherichia coli, and Immunogenicity of Recombinant Chinese Sacbrood Virus (CSBV) Structural Proteins VP1, VP2, and VP3. PLoS One 2015; 10:e0128486. [PMID: 26067659 PMCID: PMC4466328 DOI: 10.1371/journal.pone.0128486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is a small RNA virus family belonging to the genus Iflavirus that causes larval death, and even the collapse of entire bee colonies. The virus particle is spherical, non-enveloped, and its viral capsid is composed of four proteins, although the functions of the structural proteins are unclear. In this study, we used codon recoding to express the recombinant proteins VP1, VP2, and VP3 in Escherichia coli. SDS-PAGE analysis and Western blotting revealed that the target genes were expressed at high levels. Mice were then immunized with the purified, recombinant proteins, and antibody levels and lymphocyte proliferation were analyzed by ELISA and the MTT assay, respectively. The results show that the recombinant proteins induced high antibody levels and promoted lymphocyte proliferation. Polyclonal antibodies directed against these proteins will aid future studies of the molecular pathogenesis of CSBV.
Collapse
Affiliation(s)
- Dongliang Fei
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Haochun Zhang
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Qingyun Diao
- Honeybee Research Institute, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Jiang
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Qiang Wang
- Liaoning Water Conservancy Vocational College, Shenyang, China
| | - Yi Zhong
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Zhaobin Fan
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Mingxiao Ma
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
- * E-mail:
| |
Collapse
|
17
|
Moustafa K, Makhzoum A, Trémouillaux-Guiller J. Molecular farming on rescue of pharma industry for next generations. Crit Rev Biotechnol 2015; 36:840-50. [DOI: 10.3109/07388551.2015.1049934] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Makhzoum A, Benyammi R, Moustafa K, Trémouillaux-Guiller J. Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming. BioDrugs 2015; 28:145-59. [PMID: 23959796 PMCID: PMC7100180 DOI: 10.1007/s40259-013-0062-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant molecular pharming is a promising system to produce important recombinant proteins such as therapeutic antibodies, pharmaceuticals, enzymes, growth factors, and vaccines. The system provides an interesting alternative method to the direct extraction of proteins from inappropriate source material while offering the possibility to overcome problems related to product safety and source availability. Multiple factors including plant hosts, genes of interest, expression vector cassettes, and extraction and purification techniques play important roles in the plant molecular pharming. Plant species, as a biosynthesis platform, are a crucial factor in achieving high yields of recombinant protein in plant. The choice of recombinant gene and its expression strategy is also of great importance in ensuring a high amount of the recombinant proteins. Many studies have been conducted to improve expression, accumulation, and purification of the recombinant protein from molecular pharming systems. Re-engineered vectors and expression cassettes are also pivotal tools in enhancing gene expression at the transcription and translation level, and increasing protein accumulation, stability, retention and targeting of specific organelles. In this review, we report recent advances and strategies of plant molecular pharming while focusing on the choice of plant hosts and the role of some molecular pharming elements and approaches: promoters, codon optimization, signal sequences, and peptides used for upstream design, purification and downstream processing.
Collapse
Affiliation(s)
- Abdullah Makhzoum
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7 Canada
| | - Roukia Benyammi
- Laboratory of Genetic Resources and Biotechnology of the National Superior School of Agronomy, Algiers, Algeria
| | - Khaled Moustafa
- Institut Mondor de la Recherche Biomédicale, Hôpital Henri-Mondor, Créteil, France
| | | |
Collapse
|
19
|
Albarracín RM, Becher ML, Farran I, Sander VA, Corigliano MG, Yácono ML, Pariani S, López ES, Veramendi J, Clemente M. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts. Biotechnol J 2015; 10:748-59. [PMID: 25823559 DOI: 10.1002/biot.201400742] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/12/2015] [Accepted: 03/25/2015] [Indexed: 11/12/2022]
Abstract
Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production.
Collapse
Affiliation(s)
- Romina M Albarracín
- Laboratorio de Biotecnología Vegetal, IIB-INTECH, CONICET-UNSAM, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fahad S, Khan FA, Pandupuspitasari NS, Ahmed MM, Liao YC, Waheed MT, Sameeullah M, Darkhshan, Hussain S, Saud S, Hassan S, Jan A, Jan MT, Wu C, Chun MX, Huang J. Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett 2015; 37:265-79. [PMID: 25326175 PMCID: PMC7088338 DOI: 10.1007/s10529-014-1699-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 12/17/2022]
Abstract
Infectious diseases and cancers are some of the commonest causes of deaths throughout the world. The previous two decades have witnessed a combined endeavor across various biological sciences to address this issue in novel ways. The advent of recombinant DNA technologies has provided the tools for producing recombinant proteins that can be used as therapeutic agents. A number of expression systems have been developed for the production of pharmaceutical products. Recently, advances have been made using plants as bioreactors to produce therapeutic proteins directed against infectious diseases and cancers. This review highlights the recent progress in therapeutic protein expression in plants (stable and transient), the factors affecting heterologous protein expression, vector systems and recent developments in existing technologies and steps towards the industrial production of plant-made vaccines, antibodies, and biopharmaceuticals.
Collapse
Affiliation(s)
- Shah Fahad
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Faheem Ahmed Khan
- Molecular Biotechnology Laboratory for Triticeae Crops, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China
| | | | | | - Yu Cai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muhammad Sameeullah
- Biotechnology Lab., Department of Biology, Faculty of Science and Arts, Abant Izzet Baysal University, Golkoy Campus, 14280 Bolu, Turkey
| | - Darkhshan
- Women Institute of Learning, Abbottabad, Pakistan
| | - Saddam Hussain
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Shah Saud
- Department of Horticultural, Northeast Agricultural University, Harbin, 150030 China
| | - Shah Hassan
- Agriculture University, Peshawar, 25000 Pakistan
| | | | | | - Chao Wu
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Ma Xiao Chun
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| |
Collapse
|
21
|
Lim SSY, Othman RY. Recent advances in Toxoplasma gondii immunotherapeutics. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:581-93. [PMID: 25548409 PMCID: PMC4277020 DOI: 10.3347/kjp.2014.52.6.581] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022]
Abstract
Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.
Collapse
Affiliation(s)
- Sherene Swee-Yin Lim
- Genetics and Molecular Biology Department, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rofina Yasmin Othman
- Genetics and Molecular Biology Department, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. ; Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Lu G, Zhou A, Meng M, Wang L, Han Y, Guo J, Zhou H, Cong H, Zhao Q, Zhu XQ, He S. Alpha-galactosylceramide enhances protective immunity induced by DNA vaccine of the SAG5D gene of Toxoplasma gondii. BMC Infect Dis 2014; 14:3862. [PMID: 25527277 PMCID: PMC4312432 DOI: 10.1186/s12879-014-0706-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 12/11/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Toxoplasmosis caused by the intracellular parasite Toxoplasma gondii (T. gondii) is a global epidemic parasitic disease. DNA vaccines play an important role in preventing the spread of toxoplasmosis. SAG family genes encoding particular surface proteins of T. gondii are the best candidates of DNA vaccine. As a member of SAG family genes, SAG5 gene has been proved to have better antigenic than SAG1. In addition, alpha-Galactosylceramide (α-GalCer) was used to be an adjuvant in malaria vaccine and received positive results. In this study, the effect of the DNA vaccine enhanced by α-GalCer was evaluated by immunizing BALB/c mice. METHODS In the present study, SAG5D gene of T. gondii was cloned, sequenced, and biologically characterized. BALB/c mice were randomly divided into five groups, including three experimental groups (pEGFP-C1-SAG5D, α-GalCer and α-GalCer/pEGFP-C1-SAG5D) and two control groups (PBS and pEGFP-C1), and were immunized intramuscularly three times. The levels of IgG antibodies and cytokine productions in mouse sera were determined by enzyme-linked immunosorbent assays (ELISA). Two weeks after the last immunization, all mice were challenged intraperitoneally with 1 × 10(4) tachyzoites of T. gondii and the survival time of mice was recorded. RESULTS A significant level of increase of IgG response against the soluble tachyzoite antigens (STAg) was detected by ELISA in experimental group. It revealed relatively high level of IFN-γ production by the spleen cells. There were higher productions of interleukin-4 (IL-4) in α-GalCer treated groups compared to control groups. Challenge experiment showed a longer survival period (11 days compared with 5 days in control) in SAG5D DNA vaccinated mice was found after a lethal challenge with T. gondii RH strain. CONCLUSIONS The present study suggested that T. gondii SAG5D was a novel and positive DNA vaccine candidate against toxoplasmosis. In addition, the adjuvant (α-GalCer) enhanced the body's cellular immune response and prolonged the survival time of mice after challenge.
Collapse
Affiliation(s)
- Gang Lu
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Aihua Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Shandong University School of Medicine, Jinan, Shandong Province, 250021, Peoples Republic of China.
| | - Min Meng
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Lin Wang
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Yali Han
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Jingjing Guo
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Huaiyu Zhou
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Hua Cong
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Qunli Zhao
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, Peoples Republic of China.
| | - Shenyi He
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| |
Collapse
|
23
|
Mohammadzadeh S, Khabiri A, Roohvand F, Memarnejadian A, Salmanian AH, Ajdary S, Ehsani P. Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana tabacum, a Protein With Potential Clinical Applications. HEPATITIS MONTHLY 2014; 14:e20524. [PMID: 25598788 PMCID: PMC4286711 DOI: 10.5812/hepatmon.20524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/29/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is major cause of liver cirrhosis in humans. HCV capsid (core) protein (HCVcp) is a highly demanded antigen for various diagnostic, immunization and pathogenesis studies. Plants are considered as an expression system for producing safe and inexpensive biopharmaceutical proteins. Although invention of transgenic (stable) tobacco plants expressing HCVcp with proper antigenic properties was recently reported, no data for "transient-expression" that is currently the method of choice for rapid, simple and lower-priced protein expression in plants is available for HCVcp. OBJECTIVES The purpose of this study was to design a highly codon-optimized HCVcp gene for construction of an efficient transient-plant expression system for production of HCVcp with proper antigenic properties in a regional tobacco plant (Iranian Jafarabadi-cultivar) by evaluation of different classes of vectors and suppression of gene-silencing in tobacco. MATERIALS AND METHODS A codon-optimized gene encoding the Kozak sequence, 6xHis-tag, HCVcp (1-122) and KDEL peptide in tandem (from N- to C-terminal) was designed and inserted into potato virus-X (PVX) and classic pBI121 binary vectors in separate cloning reactions. The resulted recombinant plasmids were transferred into Agrobacterium tumefaciens and vacuum infiltrated into tobacco leaves. The effect of gene silencing suppressor P19 protein derived from tomato bushy stunt virus on the expression yield of HCVcp by each construct was also evaluated by co-infiltration in separate groups. The expressed HCVcp was evaluated by dot and western blotting and ELISA assays. RESULTS The codon-optimized gene had an increased adaptation index value (from 0.65 to 0.85) and reduced GC content (from 62.62 to 51.05) in tobacco and removed the possible deleterious effect of "GGTAAG" splice site in native HCVcp. Blotting assays via specific antibodies confirmed the expression of the 15 kDa HCVcp. The expression level of HCVcp was enhanced by 4-5 times in P19 co-agroinfiltrated plants with better outcomes for PVX, compared to pBI121 vector (0.022% versus 0.019% of the total soluble protein). The plant-derived HCVcp (pHCVcp) could properly identify the HCVcp antibody in HCV-infected human sera compared to Escherichia coli-derived HCVcp (eHCVcp), indicating its potential for diagnostic/immunization applications. CONCLUSIONS By employment of gene optimization strategies, use of viral-based vectors and suppression of plant-derived gene silencing effect, efficient transient expression of HCVcp in tobacco with proper antigenic properties could be possible.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Alireza Khabiri
- Department of Mycology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding Authors: Parastoo Ehsani, Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax.: +98 21 6411-2167, E-mail: . Farzin Roohvand, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| | - Arash Memarnejadian
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran
| | - Ali Hatef Salmanian
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding Authors: Parastoo Ehsani, Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax.: +98 21 6411-2167, E-mail: . Farzin Roohvand, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| |
Collapse
|
24
|
Bogado SS, Dalmasso MC, Ganuza A, Kim K, Sullivan WJ, Angel SO, Vanagas L. Canonical histone H2Ba and H2A.X dimerize in an opposite genomic localization to H2A.Z/H2B.Z dimers in Toxoplasma gondii. Mol Biochem Parasitol 2014; 197:36-42. [PMID: 25286383 DOI: 10.1016/j.molbiopara.2014.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 02/01/2023]
Abstract
Histone H2Ba of Toxoplasma gondii was expressed as recombinant protein (rH2Ba) and used to generate antibody in mouse that is highly specific. Antibody recognizing rH2Ba detects a single band in tachyzoite lysate of the expected molecular weight (12kDa). By indirect immunofluorescence (IFA) in in vitro grown tachyzoites and bradyzoites, the signal was detected only in the parasite nucleus. The nucleosome composition of H2Ba was determined through co-immunoprecipitation assays. H2Ba was detected in the same immunocomplex as H2A.X, but not with H2A.Z. Through chromatin immunoprecipitation (ChIP) assays and qPCR, it was observed that H2Ba is preferentially located at promoters of inactive genes and silent regions, accompanying H2A.X and opposed to H2A.Z/H2B.Z dimers.
Collapse
Affiliation(s)
- Silvina S Bogado
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - María C Dalmasso
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina; Scientific Research Commission (CIC, Buenos Aires), Argentina
| | - Kami Kim
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - William J Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina.
| |
Collapse
|
25
|
Deepa K, Rodionov RN, Weiss N, Parani M. Transgenic expression and functional characterization of human platelet derived growth factor BB (hPDGF-BB) in tobacco (Nicotiana tabacum L.). Appl Biochem Biotechnol 2013; 171:1390-404. [PMID: 23955346 DOI: 10.1007/s12010-013-0413-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Recombinant human platelet derived growth factor BB (rhPDGF-BB) is clinically approved for treating diabetic neuropathic ulcers. Plant-based expression systems offer less expensive ways of producing recombinant drugs, which do not require purification for clinical use. From this perspective, rhPDGF-BB is an ideal candidate for expression in plants as it can be applied topically. Here, we report a proof of concept study, in which rhPDGF-BB was expressed in tobacco plants, and its biological activity was tested in vitro. The mature human platelet derived growth factor BB (hPDGF-BB) gene was codon-optimized for tobacco and fused with ER targeting and retention signals, 5' and 3' UTRs of arc5-1 gene along with CaMV 35S promoter, and then, transferred by Agrobacterium-mediated transformation. Gene and protein expression of hPDGF-BB were confirmed by PCR and immunoblot studies. Bioactivity of hPDGF-BB expressed protein was determined by in vitro assays such as proliferation and migration in NIH3T3 cells. Our data reveals that total soluble proteins containing hPDGF-BB from transgenic plants showed a 4.5-fold increase in fibroblast proliferation compared to non-transgenic plants. Furthermore, plant-made rhPDGF-BB induced chemotaxis of treated cells and promoted wound healing in vitro. These results clearly demonstrate that functionally active rhPDGF-BB protein can be produced in plants and might have therapeutic benefits.
Collapse
Affiliation(s)
- Kanagasabapathy Deepa
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, 603 203, Tamil Nadu, India
| | | | | | | |
Collapse
|
26
|
Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Rev Vaccines 2013; 12:1287-99. [PMID: 24093877 DOI: 10.1586/14760584.2013.844652] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Toxoplasmosis caused by the protozoan Toxoplasma gondii is a major public health problem, infecting one-third of the world human beings, and leads to abortion in domestic animals. A vaccine strategy would be an ideal tool for improving disease control. Many efforts have been made to develop vaccines against T. gondii to reduce oocyst shedding in cats and tissue cyst formation in mammals over the last 20 years, but only a live-attenuated vaccine based on the S48 strain has been licensed for veterinary use. Here, the authors review the recent development of T. gondii vaccines in cats, food-producing animals and mice, and present its future perspectives. However, a single or only a few antigen candidates revealed by various experimental studies are limited by only eliciting partial protective immunity against T. gondii. Future studies of T. gondii vaccines should include as many CTL epitopes as the live attenuated vaccines.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | |
Collapse
|
27
|
Zhao G, Zhou A, Lu G, Meng M, Sun M, Bai Y, Han Y, Wang L, Zhou H, Cong H, Zhao Q, Zhu XQ, He S. Identification and characterization of Toxoplasma gondii aspartic protease 1 as a novel vaccine candidate against toxoplasmosis. Parasit Vectors 2013; 6:175. [PMID: 23768047 PMCID: PMC3691725 DOI: 10.1186/1756-3305-6-175] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/09/2013] [Indexed: 11/26/2022] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that can pose a serious threat to human health by causing toxoplasmosis. There are no drugs that target the chronic cyst stage of this infection; therefore, development of an effective vaccine would be an important advance. Aspartic proteases play essential roles in the T. gondii lifecycle. The parasite has four aspartic protease encoding genes, which are called toxomepsin 1, 2, 3 and 5 (TgASP1, 2, 3 and 5, respectively). Methods Bioinformatics approaches have enabled us to identify several promising linear-B cell epitopes and potential Th-cell epitopes on TgASP1, thus supporting its potential as a DNA vaccine against toxoplasmosis. We expressed TgASP1 in Escherichia coli and used the purified protein to immunize BALB/c mice. The antibodies obtained were used to determine where TgASP1 was localized in the parasite. We also made a TgASP1 DNA vaccine construct and evaluated it for the level of protection conferred to mice against infection with the virulent RH strain of T. gondii. Results TgASP1 appears to be a membrane protein located primarily at the tip of the T. gondii tachyzoite. Investigation of its potential as a DNA vaccine showed that it elicited strong humoral and cellular immune responses in mice, and that these responses were mediated by Th-1 cells. Mice immunized with the vaccine had greater levels of protection against mortality following challenge with T. gondii RH tachyzoites than did those immunized with PBS or the empty vector control. Conclusions TgASP1 is a novel candidate DNA vaccine that merits further investigation.
Collapse
Affiliation(s)
- Guanghui Zhao
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Skarjinskaia M, Ruby K, Araujo A, Taylor K, Gopalasamy-Raju V, Musiychuk K, Chichester JA, Palmer GA, de la Rosa P, Mett V, Ugulava N, Streatfield SJ, Yusibov V. Hairy Roots as a Vaccine Production and Delivery System. BIOTECHNOLOGY OF HAIRY ROOT SYSTEMS 2013; 134:115-34. [DOI: 10.1007/10_2013_184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Del L Yácono M, Farran I, Becher ML, Sander V, Sánchez VR, Martín V, Veramendi J, Clemente M. A chloroplast-derived Toxoplasma gondii GRA4 antigen used as an oral vaccine protects against toxoplasmosis in mice. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1136-44. [PMID: 23020088 DOI: 10.1111/pbi.12001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/16/2012] [Accepted: 08/25/2012] [Indexed: 05/25/2023]
Abstract
The parasitic protozoan Toxoplasma gondii, the causal agent of toxoplasmosis, can infect most mammals and birds. In human medicine, T. gondii can cause complications in pregnant women and immunodeficient individuals, while in veterinary medicine, T. gondii infection has economic importance due to abortion and neonatal loss in livestock. Thus, the development of an effective anti-Toxoplasma vaccine would be of great value. In this study, we analysed the expression of T. gondii GRA4 antigen by chloroplast transformation (chlGRA4) in tobacco plants and evaluated the humoral and cellular responses and the grade of protection after oral administration of chlGRA4 in a murine model. The Western blot analysis revealed a specific 34-kDa band mainly present in the insoluble fractions. The chlGRA4 accumulation levels were approximately 6 μg/g of fresh weight (equivalent to 0.2% of total protein). Oral immunization with chlGRA4 resulted in a decrease of 59% in the brain cyst load of mice compared to control mice. ChlGRA4 immunization elicited both a mucosal immune response characterized by the production of specific IgA, and IFN-γ, IL-4 and IL-10 secretion by mesenteric lymph node cells, and a systemic response in terms of GRA4-specific serum antibodies and secretion of IFN-γ, IL-4 and IL-10 by splenocytes. Our results indicate that oral administration of chlGRA4 promotes the elicitation of both mucosal and systemic balanced Th1/Th2 responses that control Toxoplasma infection, reducing parasite loads.
Collapse
Affiliation(s)
- María Del L Yácono
- Laboratorio de Biotecnología Vegetal, IIB-INTECH, CONICET-UNSAM, Chascomús, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Overview of plant-made vaccine antigens against malaria. J Biomed Biotechnol 2012; 2012:206918. [PMID: 22911156 PMCID: PMC3403509 DOI: 10.1155/2012/206918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/18/2022] Open
Abstract
This paper is an overview of vaccine antigens against malaria produced in plants. Plant-based expression systems represent an interesting production platform due to their reduced manufacturing costs and high scalability. At present, different Plasmodium antigens and expression strategies have been optimized in plants. Furthermore, malaria antigens are one of the few examples of eukaryotic proteins with vaccine value expressed in plants, making plant-derived malaria antigens an interesting model to analyze. Up to now, malaria antigen expression in plants has allowed the complete synthesis of these vaccine antigens, which have been able to induce an active immune response in mice. Therefore, plant production platforms offer wonderful prospects for improving the access to malaria vaccines.
Collapse
|
31
|
Min J, Qu D, Li C, Song X, Zhao Q, Li XA, Yang Y, Liu Q, He S, Zhou H. Enhancement of protective immune responses induced by Toxoplasma gondii dense granule antigen 7 (GRA7) against toxoplasmosis in mice using a prime-boost vaccination strategy. Vaccine 2012; 30:5631-6. [PMID: 22789504 DOI: 10.1016/j.vaccine.2012.06.081] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/27/2012] [Accepted: 06/29/2012] [Indexed: 11/15/2022]
Abstract
Effective vaccines against Toxoplasma gondii may contribute to preventing and controlling the spread of toxoplasmosis, which is important for improving outcomes of infections in humans and livestock animals. The dense granule antigen 7 (GRA7) of T. gondii might be an immunodominant antigen for a vaccine candidate. In the present study, a further exploration of its vaccine effect, a heterologous prime-boost vaccination strategy with a recombinant eukaryotic plasmid pEGFP-GRA7 and a recombinant protein GRA7 expressed from a prokaryotic plasmid pET30-GRA7, was performed in BALB/c mice. The data reveal that a DNA prime-protein boost vaccination induces both humoral and cellular immune responses against T. gondii associated with high levels of total IgG, IgG2a isotype and gamma interferon (IFN-γ). Challenge experiments further show that the DNA prime-protein boost vaccination significantly increases survival rate (60%), compared with controls in which all died within 8 days of challenge. Therefore, the DNA prime-protein boost vaccination based on GRA7 might be a promising regimen for further development of an effective vaccine against T. gondii.
Collapse
Affiliation(s)
- Juan Min
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong 250012, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fang R, Feng H, Hu M, Khan MK, Wang L, Zhou Y, Zhao J. Evaluation of immune responses induced by SAG1 and MIC3 vaccine cocktails against Toxoplasma gondii. Vet Parasitol 2012; 187:140-6. [DOI: 10.1016/j.vetpar.2011.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
33
|
Jung SK, McDonald K. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics 2011; 12:340. [PMID: 21846353 PMCID: PMC3215308 DOI: 10.1186/1471-2105-12-340] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/16/2011] [Indexed: 08/26/2023] Open
Abstract
Background Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. Results The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Conclusion Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at http://www.visualgenedeveloper.net.
Collapse
Affiliation(s)
- Sang-Kyu Jung
- Department of Chemical Engineering and Materials Science, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | | |
Collapse
|
34
|
Corigliano MG, Maglioco A, Laguía Becher M, Goldman A, Martín V, Angel SO, Clemente M. Plant Hsp90 proteins interact with B-cells and stimulate their proliferation. PLoS One 2011; 6:e21231. [PMID: 21701588 PMCID: PMC3118808 DOI: 10.1371/journal.pone.0021231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 05/24/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The molecular chaperone heat shock protein 90 (Hsp90) plays an important role in folding stabilization and activation of client proteins. Besides, Hsp90 of mammals and mammalian pathogens displays immunostimulatory properties. Here, we investigated the role of plant-derived Hsp90s as B-cell mitogens by measuring their proliferative responses in vitro. METHODOLOGY Plant cytosolic Hsp90 isoforms from Arabidopsis thaliana (AtHsp81.2) and Nicotiana benthamiana (NbHsp90.3) were expressed in E. coli. Over-expression of recombinant plant Hsp90s (rpHsp90s) was confirmed by SDS-PAGE and western blot using and anti-AtHsp81.2 polyclonal anti-body. Both recombinant proteins were purified by Ni-NTA affinity chromatography and their identity confirmed by MALDI-TOF-TOF. Recombinant AtHsp81.2 and NbHsp90.3 proteins induced prominent proliferative responses in spleen cells form BALB/c mice. Polymyxin-B, a potent inhibitor of lipopolysaccharide (LPS), did not eliminate the rpHsp90-induced proliferation. In addition, in vitro incubation of spleen cells with rpHsp90 led to the expansion of CD19-bearing populations, suggesting a direct effect of these proteins on B lymphocytes. This effect was confirmed by immunofluorescence analysis, where a direct binding of rpHsp90 to B- but not to T-cells was observed in cells from BALB/c and C3H/HeN mice. Finally, we examined the involvement of Toll Like Receptor 4 (TLR4) molecules in the rpHsp90s induction of B-cell proliferation. Spleen cells from C3H/HeJ mice, which carry a point mutation in the cytoplasmic region of TLR4, responded poorly to prAtHsp90. However, the interaction between rpHsp90 and B-cells from C3H/HeJ mice was not altered, suggesting that the mutation on TLR4 would be affecting the signal cascade but not the rpHsp90-TLR4 receptor interaction. CONCLUSIONS Our results show for the first time that spleen cell proliferation can be stimulated by a non-pathogen-derived Hsp90. Furthermore, our data provide a new example of a non-pathogen-derived ligand for TLRs.
Collapse
Affiliation(s)
- Mariana G. Corigliano
- Laboratorio de Biotecnología Vegetal, IIB-INTECH, CONICET-UNSAM, Chascomús, Provincia de Buenos Aires, Argentina
| | - Andrea Maglioco
- Instituto de Leucemia Experimental (ILEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Melina Laguía Becher
- Laboratorio de Biotecnología Vegetal, IIB-INTECH, CONICET-UNSAM, Chascomús, Provincia de Buenos Aires, Argentina
| | - Alejandra Goldman
- CESyMA, Escuela de Ciencia y Tecnología, UNSAM, San Martín, Argentina
| | - Valentina Martín
- CESyMA, Escuela de Ciencia y Tecnología, UNSAM, San Martín, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Chascomús, Provincia de Buenos Aires, Argentina
| | - Marina Clemente
- Laboratorio de Biotecnología Vegetal, IIB-INTECH, CONICET-UNSAM, Chascomús, Provincia de Buenos Aires, Argentina
| |
Collapse
|
35
|
Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Pabst M, Castilho A, Kunert R, Liang M, Arcalis E, Robinson DG, Depicker A, Steinkellner H. Expression of antibody fragments with a controlled N-glycosylation pattern and induction of endoplasmic reticulum-derived vesicles in seeds of Arabidopsis. PLANT PHYSIOLOGY 2011; 155:2036-48. [PMID: 21325568 PMCID: PMC3091078 DOI: 10.1104/pp.110.171330] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/11/2011] [Indexed: 05/18/2023]
Abstract
Intracellular trafficking and subcellular deposition are critical factors influencing the accumulation and posttranslational modifications of proteins. In seeds, these processes are not yet fully understood. In this study, we set out to investigate the intracellular transport, final destination, N-glycosylation status, and stability of the fusion of recombinant single-chain variable fragments to the crystallizing fragment of an antibody (scFv-Fc) of two antiviral monoclonal antibodies (2G12 and HA78). The scFv-Fcs were expressed in Arabidopsis (Arabidopsis thaliana) seeds and leaves both as secretory molecules and tagged with an endoplasmic reticulum (ER) retention signal. We demonstrate differential proteolytic degradation of scFv-Fcs in leaves versus seeds, with higher degradation in the latter organ. In seeds, we show that secretory versions of HA78 scFv-Fcs are targeted to the extracellular space but are deposited in newly formed ER-derived vesicles upon KDEL tagging. These results are in accordance with the obtained N-glycosylation profiles: complex-type and ER-typical oligomannosidic N-glycans, respectively. HA78 scFv-Fcs, expressed in seeds of an Arabidopsis glycosylation mutant lacking plant-specific N-glycans, exhibit custom-made human-type N-glycosylation. In contrast, 2G12 scFv-Fcs carry exclusively ER-typical oligomannosidic N-glycans and were deposited in newly formed ER-derived vesicles irrespective of the targeting signals. HA78 scFv-Fcs exhibited efficient virus neutralization activity, while 2G12 scFv-Fcs were inactive. We demonstrate the efficient generation of scFv-Fcs with a controlled N-glycosylation pattern. However, our results also reveal aberrant subcellular deposition and, as a consequence, unexpected N-glycosylation profiles. Our attempts to elucidate intracellular protein transport in seeds contributes to a better understanding of this basic cell biological mechanism and is a step toward the versatile use of Arabidopsis seeds as an alternative expression platform for pharmaceutically relevant proteins.
Collapse
|