1
|
Zhang S, Ren Y, Wang S, Song L, Jing Y, Xu T, Kang X, Li Y. EuHDZ25 positively affects rubber biosynthesis by targeting EuFPS1 in Eucommia leaves. Int J Biol Macromol 2024; 272:132707. [PMID: 38825274 DOI: 10.1016/j.ijbiomac.2024.132707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Eucommia ulmoides is a temperate gum source plant that produces trans-polyisoprene (TPI), also known as Eucommia rubber. The structural configuration and function of TPI offer a new material with important potential for industrial development. In this study, we detected the TPI content in the leaves of diploid and triploid E. ulmoides plants. The average TPI content in the leaves of triploid E. ulmoides was significantly higher than that of diploid. Transcriptome data and weighted gene co-expression network analyses identified a significant positive correlation between the EuFPS1 gene and TPI content. Overexpression of EuFPS1 increased the density of rubber particles and TPI content, indicating its crucial role in TPI biosynthesis. In addition, the expression of EuHDZ25 in E. ulmoides was significantly positively correlated with EuFPS1 expression. Yeast one-hybrid and dual-luciferase assays demonstrated that EuHDZ25 mainly promotes TPI biosynthesis through positive regulation of EuFPS1 expression. The significantly up-regulated expression of EuHDZ25 and its consequent upregulation of EuFPS1 during the biosynthesis of TPI may partially explain the increased TPI content of triploids. This study provides an important theoretical foundation for further exploring the molecular mechanism of secondary metabolites content variation in polyploids and can help to promote the development and utilization of rubber resources.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yongyu Ren
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
| | - Shun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lianjun Song
- Weixian Eucommia National Forest Tree Germplasm Repository, Weixian Forestry Cultivation Base of Superior Species, Hebei, China
| | - Yanchun Jing
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tingting Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Zhang S, Chen H, Wang S, Du K, Song L, Xu T, Xia Y, Guo R, Kang X, Li Y. Positive regulation of the Eucommia rubber biosynthesis-related gene EuFPS1 by EuWRKY30 in Eucommia ulmoides. Int J Biol Macromol 2024; 268:131751. [PMID: 38657917 DOI: 10.1016/j.ijbiomac.2024.131751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Eucommia rubber is a secondary metabolite from Eucommia ulmoides that has attracted much attention because of its unique properties and enormous potential for application. However, the transcriptional mechanism regulating its biosynthesis has not yet been determined. Farnesyl pyrophosphate synthase is a key enzyme in the Eucommia rubber biosynthesis. In this study, the promoter of EuFPS1 was used as bait, EuWRKY30 was screened from the cDNA library of EuFPS1 via a yeast one-hybrid system. EuWRKY30 belongs to the WRKY IIa subfamily and contains a WRKY domain and a C2H2 zinc finger motif, and the expressed protein is located in the nucleus. EuWRKY30 and EuFPS1 exhibited similar tissue expression patterns, and yeast one-hybrid and dual-luciferase experiments confirmed that EuWRKY30 directly binds to the W-box element in the EuFPS1 promoter and activates its expression. Moreover, the overexpression of EuWRKY30 significantly upregulated the expression level of EuFPS1, further increasing the density of the rubber particles and Eucommia rubber content. The results of this study indicated that EuWRKY30 positively regulates EuFPS1, which plays a critical role in the synthesis of Eucommia rubber, provided a basis for further analysis of the underlying transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kang Du
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lianjun Song
- Weixian Eucommia National Forest Tree Germplasm Repository, Weixian Forestry Cultivation Base of Superior Species, Hebei, China
| | - Tingting Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yufei Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruihua Guo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
He B, Shan T, Xu J, Zhong X, Zhang J, Han R, Yang Q, Wu J. Full-length transcriptome profiling of Acanthopanax gracilistylus provides new insight into the kaurenoic acid biosynthesis pathway. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:383-399. [PMID: 38633273 PMCID: PMC11018598 DOI: 10.1007/s12298-024-01436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Acanthopanax gracilistylus is a deciduous plant in the family Araliaceae, which is commonly used in Chinese herbal medicine, as the root bark has functions of nourishing the liver and kidneys, removing dampness and expelling wind, and strengthening the bones and tendons. Kaurenoic acid (KA) is the main effective substance in the root bark of A. gracilistylus with strong anti-inflammatory effects. To elucidate the KA biosynthesis pathway, second-generation (DNA nanoball) and third-generation (Pacific Biosciences) sequencing were performed to analyze the transcriptomes of the A. gracilistylus leaves, roots, and stems. Among the total 505,880 isoforms, 408,954 were annotated by seven major databases. Sixty isoforms with complete open reading frames encoding 11 key enzymes involved in the KA biosynthesis pathway were identified. Correlation analysis between isoform expression and KA content identified a total of eight key genes. Six key enzyme genes involved in KA biosynthesis were validated by real-time quantitative polymerase chain reaction. Based on the sequence analysis, the spatial structure of ent-kaurene oxidase was modeled, which plays roles in the three continuous oxidations steps of KA biosynthesis. This study greatly enriches the transcriptome data of A. gracilistylus and facilitates further analysis of the function and regulation mechanism of key enzymes in the KA biosynthesis pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01436-7.
Collapse
Affiliation(s)
- Bing He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Tingyu Shan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jingyao Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xinxin Zhong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingshan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Jiawen Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| |
Collapse
|
4
|
Wan L, Huang Q, Li C, Yu H, Tan G, Wei S, El-Sappah AH, Sooranna S, Zhang K, Pan L, Zhang Z, Lei M. Integrated metabolome and transcriptome analysis identifies candidate genes involved in triterpenoid saponin biosynthesis in leaves of Centella asiatica (L.) Urban. FRONTIERS IN PLANT SCIENCE 2024; 14:1295186. [PMID: 38283979 PMCID: PMC10811118 DOI: 10.3389/fpls.2023.1295186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Centella asiatica (L.) Urban is a well-known medicinal plant which has multiple pharmacological properties. Notably, the leaves of C. asiatica contain large amounts of triterpenoid saponins. However, there have only been a few studies systematically elucidating the metabolic dynamics and transcriptional differences regarding triterpenoid saponin biosynthesis during the leaf development stages of C. asiatica. Here, we performed a comprehensive analysis of the metabolome and transcriptome to reveal the dynamic patterns of triterpenoid saponin accumulation and identified the key candidate genes associated with their biosynthesis in C. asiatica leaves. In this study, we found that the key precursors in the synthesis of terpenoids, including DMAPP, IPP and β-amyrin, as well as 22 triterpenes and eight triterpenoid saponins were considered as differentially accumulated metabolites. The concentrations of DMAPP, IPP and β-amyrin showed significant increases during the entire stage of leaf development. The levels of 12 triterpenes decreased only during the later stages of leaf development, but five triterpenoid saponins rapidly accumulated at the early stages, and later decreased to a constant level. Furthermore, 48 genes involved in the MVA, MEP and 2, 3-oxidosqualene biosynthetic pathways were selected following gene annotation. Then, 17 CYP450s and 26 UGTs, which are respectively responsible for backbone modifications, were used for phylogenetic-tree construction and time-specific expression analysis. From these data, by integrating metabolomics and transcriptomics analyses, we identified CaHDR1 and CaIDI2 as the candidate genes associated with DMAPP and IPP synthesis, respectively, and CaβAS1 as the one regulating β-amyrin synthesis. Two genes from the CYP716 family were confirmed as CaCYP716A83 and CaCYP716C11. We also selected two UGT73 families as candidate genes, associated with glycosylation of the terpenoid backbone at C-3 in C. asiatica. These findings will pave the way for further research on the molecular mechanisms associated with triterpenoid saponin biosynthesis in C. asiatica.
Collapse
Affiliation(s)
- Lingyun Wan
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Cui Li
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Haixia Yu
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guiyu Tan
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Shugen Wei
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Suren Sooranna
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Kun Zhang
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Limei Pan
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhanjiang Zhang
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
5
|
Xin S, Hua Y, Li J, Dai X, Yang X, Udayabhanu J, Huang H, Huang T. Comparative analysis of latex transcriptomes reveals the potential mechanisms underlying rubber molecular weight variations between the Hevea brasiliensis clones RRIM600 and Reyan7-33-97. BMC PLANT BIOLOGY 2021; 21:244. [PMID: 34051757 PMCID: PMC8164328 DOI: 10.1186/s12870-021-03022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The processabilities and mechanical properties of natural rubber depend greatly on its molecular weight (MW) and molecular weight distribution (MWD). However, the mechanisms underlying the regulation of molecular weight during rubber biosynthesis remain unclear. RESULTS In the present study, we determined the MW and particle size of latex from 1-year-old virgin trees and 30-year-old regularly tapped trees of the Hevea clones Reyan7-33-97 and RRIM600. The results showed that both the MW and the particle size of latex varied between these two clones and increased with tree age. Latex from RRIM600 trees had a smaller average particle size than that from Reyan7-33-97 trees of the same age. In 1-year-old trees, the Reyan7-33-97 latex displayed a slightly higher MW than that of RRIM600, whereas in 30-year-old trees, the RRIM600 latex had a significantly higher MW than the Reyan7-33-97 latex. Comparative analysis of the transcriptome profiles indicated that the average rubber particle size is negatively correlated with the expression levels of rubber particle associated proteins, and that the high-MW traits of latex are closely correlated with the enhanced expression of isopentenyl pyrophosphate (IPP) monomer-generating pathway genes and downstream allylic diphosphate (APP) initiator-consuming non-rubber pathways. By bioinformatics analysis, we further identified a group of transcription factors that potentially regulate the biosynthesis of IPP. CONCLUSIONS Altogether, our results revealed the potential regulatory mechanisms involving gene expression variations in IPP-generating pathways and the non-rubber isoprenoid pathways, which affect the ratios and contents of IPP and APP initiators, resulting in significant rubber MW variations among same-aged trees of the Hevea clones Reyan7-33-97 and RRIM600. Our findings provide a better understanding of rubber biosynthesis and lay the foundation for genetic improvement of rubber quality in H. brasiliensis.
Collapse
Affiliation(s)
- Shichao Xin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Yuwei Hua
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Ji Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Xuemei Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Xianfeng Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Jinu Udayabhanu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Huasun Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China.
| | - Tiandai Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China.
| |
Collapse
|
6
|
Wei X, Peng P, Peng F, Dong J. Natural Polymer Eucommia Ulmoides Rubber: A Novel Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3797-3821. [PMID: 33761246 DOI: 10.1021/acs.jafc.0c07560] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As the second natural rubber resource, Eucommia ulmoides rubber (EUR) from Eucommia ulmoides Oliver is mainly composed of trans-1,4-polyisoprene, which is the isomer of natural rubber cis-1,4-polyisoprene from Hevea brasiliensis. In the past few years, the great potential application of EUR has received increasing attention, and there is a growing awareness that the natural polymer EUR could become an emerging research topic in field of the novel materials due to its unique and excellent duality of both rubber and plastic. To gain insight into its further development, in this review, the extraction, structure, physicochemical properties, and modification of EUR are discussed in detail. More emphasis on the potential applications in the fields of the environment, agriculture, engineering, and biomedical engineering is summarized. Finally, some insights into the challenges and perspectives of EUR are also suggested.
Collapse
Affiliation(s)
- Xingneng Wei
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Liu YC, Peng XX, Lu YB, Wu XX, Chen LW, Feng H. Genome-wide association study reveals the genes associated with the leaf inclusion contents in Chinese medical tree Eucommia ulmoides. Biosci Biotechnol Biochem 2021; 85:233-241. [PMID: 33604631 DOI: 10.1093/bbb/zbaa005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022]
Abstract
Eucommia ulmoides is an economic tree that can biosynthesize secondary metabolites with pharmacological functions. Genetic basis of biosynthesis of these compounds is almost unknown. Therefore, genomic-wide association study was performed to exploit the genetic loci maybe involved in biosynthetic pathways of 5 leaf inclusions (aucubin, chlorogenic acid, gutta-percha, polyphenols, total flavonoids). It was shown that contents of the 5 leaf metabolites have a wide variation following normal distribution. A total of 2 013 102 single nucleotide polymorphism (SNP) markers were identified in a population containing 62 individual clones. Through genome-wide association study analysis, many SNP loci were identified perhaps associated with phenotypes of the leaf inclusions. Higher transcriptional levels of the candidate genes denoted by significant SNPs in leaves suggested they may be involved in biosynthesis of the leaf inclusions. These genetic loci provide with invaluable information for further studies on the gene functions in biosynthesis of the leaf inclusions and selective breeding of the plus trees.
Collapse
Affiliation(s)
- Yong-Cheng Liu
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | | | - Yan-Bing Lu
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | | | | | - Hong Feng
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Molecular Sex Identification in the Hardy Rubber Tree ( Eucommia ulmoides Oliver) via ddRAD Markers. Int J Genomics 2020; 2020:2420976. [PMID: 32509842 PMCID: PMC7246395 DOI: 10.1155/2020/2420976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/03/2020] [Indexed: 11/18/2022] Open
Abstract
Eucommia ulmoides, also known as the industrially and medicinally important hardy rubber tree, is the sole species of Eucommiaceae. Nevertheless, its dioecious property hinders sex recognition by traditional morphological observation at very early developmental stages, thus inhibiting breeding and economic cropping. In this study, double-digest restriction site-associated DNA sequencing (ddRAD-seq) was applied to screen sex-linked molecular markers for sex identification and investigation of the sex determination system in 20 male and female E. ulmoides individual plants, respectively. In consequence, five candidate male-specific loci but no female-specific loci were predicated among the 183,752 male and 147,122 female catalogue loci by bioinformatics analysis. Subsequent PCR (polymerase chain reaction) amplification and Sanger sequencing examinations were performed on another 24 individuals, 12 for each sex, from a separate population. One ideal sex-linked locus, MSL4, was identified among the five putative male-specific loci that were found using ddRAD data. MSL4 is 479 bp in length and highly conserved in all the male individuals, suggesting its feature of being stable and repeatable. Our results also indicated that the sex of E. ulmoides is likely determined genetically. In short, this study provides a consistent and reproducible ddRAD marker (MSL4) that is able to discriminate male from female seedlings in E. ulmoides, which will be valuable for rapid breeding practice and better commercial production of this economically important tree.
Collapse
|
9
|
Ye J, Han W, Fan R, Liu M, Li L, Jia X. Integration of Transcriptomes, Small RNAs, and Degradome Sequencing to Identify Putative miRNAs and Their Targets Related to Eu-Rubber Biosynthesis in Eucommia ulmoides. Genes (Basel) 2019; 10:genes10080623. [PMID: 31430866 PMCID: PMC6722833 DOI: 10.3390/genes10080623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Eucommia ulmoides has attracted much attention as a valuable natural rubber (Eu-rubber) production tree. As a strategic material, Eu-rubber plays a vital role in general and defence industries. However, the study of Eu-rubber biosynthesis at a molecular level is scarce, and the regulatory network between microRNAs (miRNAs) and messenger RNAs (mRNAs) in Eu-rubber biosynthesis has not been assessed. In this study, we comprehensively analyzed the transcriptomes, small RNAs (sRNAs) and degradome to reveal the regulatory network of Eu-rubber biosynthesis in E. ulmoides. A total of 82,065 unigenes and 221 miRNAs were identified using high-throughput sequencing; 20,815 targets were predicted using psRNATarget software. Of these targets, 779 miRNA-target pairs were identified via degradome sequencing. Thirty-one miRNAs were differentially expressed; 22 targets of 34 miRNAs were annotated in the terpenoid backbone biosynthesis pathway (ko00900) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG). These miRNAs were putatively related to Eu-rubber biosynthesis. A regulatory network was constructed according to the expression profiles of miRNAs and their targets. These results provide a comprehensive analysis of transcriptomics, sRNAs and degradome to reveal the Eu-rubber accumulation, and provide new insights into genetic engineering techniques which may improve the content of Eu-rubber in E. ulmoides.
Collapse
Affiliation(s)
- Jing Ye
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Wenjing Han
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Ruisheng Fan
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Minhao Liu
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Long Li
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Xiaoming Jia
- College of Forestry, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
10
|
Sarabia LE, López MF, Obregón-Molina G, Cano-Ramírez C, Sánchez-Martínez G, Zúñiga G. The Differential Expression of Mevalonate Pathway Genes in the Gut of the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) Is Unrelated to the de Novo Synthesis of Terpenoid Pheromones. Int J Mol Sci 2019; 20:E4011. [PMID: 31426479 PMCID: PMC6721070 DOI: 10.3390/ijms20164011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Bark beetles commonly produce de novo terpenoid pheromones using precursors synthesized through the mevalonate pathway. This process is regulated by Juvenile Hormone III (JH III). In this work, the expression levels of mevalonate pathway genes were quantified after phloem feeding-to induce the endogenous synthesis of JH III-and after the topical application of a JH III solution. The mevalonate pathway genes from D. rhizophagus were cloned, molecularly characterized, and their expression levels were quantified. Also, the terpenoid compounds produced in the gut were identified and quantified by Gas Chromatography Mass Spectrometry (GC-MS). The feeding treatment produced an evident upregulation, mainly in acetoacetyl-CoA thiolase (AACT), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), phosphomevalonate kinase (PMK), and isopentenyl diphosphate isomerase (IPPI) genes, and males reached higher expression levels compared to females. In contrast, the JH III treatment did not present a clear pattern of upregulation in any sex or time. Notably, the genes responsible for the synthesis of frontalin and ipsdienol precursors (geranyl diphosphate synthase/farnesyl diphosphate synthase (GPPS/FPPS) and geranylgeranyl diphosphate synthase (GGPPS)) were not clearly upregulated, nor were these compounds further identified. Furthermore, trans-verbenol and myrtenol were the most abundant compounds in the gut, which are derived from an α-pinene transformation rather than de novo synthesis. Hence, the expression of mevalonate pathway genes in D. rhizophagus gut is not directed to the production of terpenoid pheromones, regardless of their frequent occurrence in the genus Dendroctonus.
Collapse
Affiliation(s)
- Laura Elisa Sarabia
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela, Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City CP 11340, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela, Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City CP 11340, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela, Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City CP 11340, Mexico
| | - Claudia Cano-Ramírez
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela, Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City CP 11340, Mexico
| | - Guillermo Sánchez-Martínez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Pabellón, Km. 32.5 Carr. Ags.-Zac., Pabellón de Arteaga, Ags. CP 20660, Mexico
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela, Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City CP 11340, Mexico.
| |
Collapse
|
11
|
Men X, Wang F, Chen GQ, Zhang HB, Xian M. Biosynthesis of Natural Rubber: Current State and Perspectives. Int J Mol Sci 2018; 20:E50. [PMID: 30583567 PMCID: PMC6337083 DOI: 10.3390/ijms20010050] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Natural rubber is a kind of indispensable biopolymers with great use and strategic importance in human society. However, its production relies almost exclusively on rubber-producing plants Hevea brasiliensis, which have high requirements for growth conditions, and the mechanism of natural rubber biosynthesis remains largely unknown. In the past two decades, details of the rubber chain polymerization and proteins involved in natural rubber biosynthesis have been investigated intensively. Meanwhile, omics and other advanced biotechnologies bring new insight into rubber production and development of new rubber-producing plants. This review summarizes the achievements of the past two decades in understanding the biosynthesis of natural rubber, especially the massive information obtained from the omics analyses. Possibilities of natural rubber biosynthesis in vitro or in genetically engineered microorganisms are also discussed.
Collapse
Affiliation(s)
- Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guo-Qiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Hai-Bo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| |
Collapse
|
12
|
Overexpression and RNAi-mediated downregulation of TwIDI regulates triptolide and celastrol accumulation in Tripterygium wilfordii. Gene 2018; 679:195-201. [DOI: 10.1016/j.gene.2018.08.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 11/23/2022]
|
13
|
Wang W, Zhang X. Identification of the Sex-Biased Gene Expression and Putative Sex-Associated Genes in Eucommia ulmoides Oliver Using Comparative Transcriptome Analyses. Molecules 2017; 22:E2255. [PMID: 29258253 PMCID: PMC6149867 DOI: 10.3390/molecules22122255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 12/04/2022] Open
Abstract
Eucommia ulmoides is a model representative of the dioecious plants with sex differentiation at initiation. Nevertheless, the genetic mechanisms of sexual dimorphism and sex determination in E. ulmoides remain poorly understood. In this study de novo transcriptome sequencing on Illumina platform generated >45 billion high-quality bases from fresh leaves of six male and female individuals of E. ulmoides. A total of 148,595 unigenes with an average length of 801 base-pairs (bp) were assembled. Through comparative transcriptome analyses, 116 differentially expressed genes (DEGs) between the males and the females were detected, including 73 male-biased genes and 43 female-biased genes. Of these DEGs, three female-biased genes were annotated to be related with the sexually dimorphic gutta content in E. ulmoides. One male-biased DEG was identified as putative MADS box gene APETALA3, a B class floral organ identity gene in the flowering plants. SNPs calling analyses further confirmed that the APETALA3-like gene was probably involved in the sex determination in E. ulmoides. Four other male-biased DEGs were potential sex-associated genes as well with segregated SNPs in accord with sex type. In addition, the SNPs density was 1.02 per kilobase (kb) in the expressed genes of E. ulmoides, implying a relatively high genetic diversity.
Collapse
Affiliation(s)
- Wencai Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Xianzhi Zhang
- Department of Forestry Protection, College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Khan S, ur Rahman L. Pathway Modulation of Medicinal and Aromatic Plants Through Metabolic Engineering Using Agrobacterium tumefaciens. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Chaves JE, Romero PR, Kirst H, Melis A. Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production. PHOTOSYNTHESIS RESEARCH 2016; 130:517-527. [PMID: 27412351 DOI: 10.1007/s11120-016-0293-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Heterologous production of isoprene (C5H8) hydrocarbons in cyanobacteria, emanating from sunlight, CO2, and water, is now attracting increasing attention. The concept entails application of an isoprene synthase transgene from terrestrial plants, heterologously expressed in cyanobacteria, aiming to reprogram carbon flux in the terpenoid biosynthetic pathway toward formation and spontaneous release of this volatile chemical from the cell and liquid culture. However, flux manipulations and carbon-partitioning reactions between isoprene (the product) and native terpenoid biosynthesis for cellular needs are not yet optimized for isoprene yield. The primary reactant for isoprene biosynthesis is dimethylallyl diphosphate (DMAPP), whereas both DMAPP and its isopentenyl diphosphate (IPP) isomer are needed for cellular terpenoid biosynthesis. The present work addressed the function of an isopentenyl diphosphate (IPP) isomerase in cyanobacteria and its role in carbon partitioning between IPP and DMAPP, both of which serve, in variable ratios, as reactants for the synthesis of different cellular terpenoids. The work was approached upon the heterologous expression in Synechocystis of the "isopentenyl diphosphate isomerase" gene (FNI) from Streptococcus pneumoniae, using isoprene production as a "reporter process" for substrate partitioning between DMAPP and IPP. It is shown that transgenic expression of the FNI gene in Synechocystis resulted in a 250 % increase in the "reporter isoprene" rate and yield, suggesting that the FNI isomerase shifted the endogenous DMAPP-IPP steady-state pool size toward DMAPP, thereby enhancing rates and yield of isoprene production. The work provides insight into the significance and functional role of the IPP isomerase in these photosynthetic microorganisms.
Collapse
Affiliation(s)
- Julie E Chaves
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720-3102, USA
| | - Paloma Rueda Romero
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720-3102, USA
| | - Henning Kirst
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720-3102, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720-3102, USA.
| |
Collapse
|
16
|
Wang L, Du H, Wuyun TN. Genome-Wide Identification of MicroRNAs and Their Targets in the Leaves and Fruits of Eucommia ulmoides Using High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1632. [PMID: 27877179 PMCID: PMC5099690 DOI: 10.3389/fpls.2016.01632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs), a group of endogenous small non-coding RNAs, play important roles in plant growth, development, and stress response processes. Eucommia ulmoides Oliver (hardy rubber tree) is one of the few woody plants capable of producing trans-1, 4-polyisoprene (TPI), also known as Eu-rubber, which has been utilized as an industrial raw material and is extensively cultivated in China. However, the mechanism of TPI biosynthesis has not been identified in E. ulmoides. To characterize small RNAs and their targets with potential biological roles involved in the TPI biosynthesis in E. ulmoides, in the present study, eight small RNA libraries were constructed and sequenced from young and mature leaves and fruits of E. ulmoides. Further analysis identified 34 conserved miRNAs belonging to 20 families (two unclassified families), and 115 novel miRNAs seemed to be specific to E. ulmoides. Among these miRNAs, fourteen conserved miRNAs and 49 novel miRNAs were significantly differentially expressed and identified as Eu-rubber accumulation related miRNAs. Based on the E. ulmoides genomic data, 202 and 306 potential target genes were predicted for 33 conserved and 92 novel miRNAs, respectively; the predicted targets are mostly transcription factors and functional genes, which were enriched in metabolic pathways and biosynthesis of secondary metabolites. Noticeably, based on the expression patterns of miRNAs and their target genes in combination with the Eu-rubber accumulation, the negative correlation of expression of six miRNAs (Eu-miR14, Eu-miR91, miR162a, miR166a, miR172c, and miR396a) and their predicted targets serving as potential regulators in Eu-rubber accumulation. This study is the first to detect conserved and novel miRNAs and their potential targets in E. ulmoides and identify several candidate genes potentially controlling rubber accumulation, and thus provide molecular evidence for understanding the roles of miRNAs in regulating the TPI biosynthesis in E. ulmoides.
Collapse
Affiliation(s)
- Lin Wang
- Non-timber Forest Research and Development Center, Chinese Academy of ForestryZhengzhou, China
- The Eucommia Engineering Research Center of State Forestry AdministrationZhengzhou, China
| | - Hongyan Du
- Non-timber Forest Research and Development Center, Chinese Academy of ForestryZhengzhou, China
- The Eucommia Engineering Research Center of State Forestry AdministrationZhengzhou, China
| | - Ta-na Wuyun
- Non-timber Forest Research and Development Center, Chinese Academy of ForestryZhengzhou, China
- The Eucommia Engineering Research Center of State Forestry AdministrationZhengzhou, China
| |
Collapse
|
17
|
Piccolomini AA, Fiabon A, Borrotti M, De Lucrezia D. Optimization of thermophilictrans-isoprenyl diphosphate synthase expression inEscherichia coliby response surface methodology. Biotechnol Appl Biochem 2016; 64:70-78. [DOI: 10.1002/bab.1459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/11/2015] [Indexed: 11/10/2022]
|
18
|
Tong Y, Zhang M, Su P, Zhao Y, Wang X, Zhang X, Gao W, Huang L. Cloning and functional characterization of an isopentenyl diphosphate isomerase gene fromTripterygium wilfordii. Biotechnol Appl Biochem 2015; 63:863-869. [DOI: 10.1002/bab.1427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/25/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Yuru Tong
- School of Traditional Chinese Medicine; Capital Medical University; Beijing People's Republic of China
- National Resource Center for Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing People's Republic of China
| | - Meng Zhang
- School of Traditional Chinese Medicine; Capital Medical University; Beijing People's Republic of China
| | - Ping Su
- School of Traditional Chinese Medicine; Capital Medical University; Beijing People's Republic of China
- National Resource Center for Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing People's Republic of China
| | - Yujun Zhao
- School of Traditional Chinese Medicine; Capital Medical University; Beijing People's Republic of China
| | - Xiujuan Wang
- School of Traditional Chinese Medicine; Capital Medical University; Beijing People's Republic of China
| | - Xianan Zhang
- School of Traditional Chinese Medicine; Capital Medical University; Beijing People's Republic of China
| | - Wei Gao
- School of Traditional Chinese Medicine; Capital Medical University; Beijing People's Republic of China
- Beijing Key Lab of TCM Collateral Disease Theory Research; Beijing People's Republic of China
| | - Luqi Huang
- School of Traditional Chinese Medicine; Capital Medical University; Beijing People's Republic of China
- National Resource Center for Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing People's Republic of China
| |
Collapse
|
19
|
Large-Scale Evolutionary Analysis of Genes and Supergene Clusters from Terpenoid Modular Pathways Provides Insights into Metabolic Diversification in Flowering Plants. PLoS One 2015; 10:e0128808. [PMID: 26046541 PMCID: PMC4457800 DOI: 10.1371/journal.pone.0128808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
An important component of plant evolution is the plethora of pathways producing more than 200,000 biochemically diverse specialized metabolites with pharmacological, nutritional and ecological significance. To unravel dynamics underlying metabolic diversification, it is critical to determine lineage-specific gene family expansion in a phylogenomics framework. However, robust functional annotation is often only available for core enzymes catalyzing committed reaction steps within few model systems. In a genome informatics approach, we extracted information from early-draft gene-space assemblies and non-redundant transcriptomes to identify protein families involved in isoprenoid biosynthesis. Isoprenoids comprise terpenoids with various roles in plant-environment interaction, such as pollinator attraction or pathogen defense. Combining lines of evidence provided by synteny, sequence homology and Hidden-Markov-Modelling, we screened 17 genomes including 12 major crops and found evidence for 1,904 proteins associated with terpenoid biosynthesis. Our terpenoid genes set contains evidence for 840 core terpene-synthases and 338 triterpene-specific synthases. We further identified 190 prenyltransferases, 39 isopentenyl-diphosphate isomerases as well as 278 and 219 proteins involved in mevalonate and methylerithrol pathways, respectively. Assessing the impact of gene and genome duplication to lineage-specific terpenoid pathway expansion, we illustrated key events underlying terpenoid metabolic diversification within 250 million years of flowering plant radiation. By quantifying Angiosperm-wide versatility and phylogenetic relationships of pleiotropic gene families in terpenoid modular pathways, our analysis offers significant insight into evolutionary dynamics underlying diversification of plant secondary metabolism. Furthermore, our data provide a blueprint for future efforts to identify and more rapidly clone terpenoid biosynthetic genes from any plant species.
Collapse
|