1
|
Dong H, Wang D, Deng H, Yin L, Wang X, Yang W, Cai K. Application of a calcium and phosphorus biomineralization strategy in tooth repair: a systematic review. J Mater Chem B 2024; 12:8033-8047. [PMID: 39045831 DOI: 10.1039/d4tb00867g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Biomineralization is a natural process in which organisms regulate the growth of inorganic minerals to form biominerals with unique layered structures, such as bones and teeth, primarily composed of calcium and phosphorus. Tooth decay significantly impacts our daily lives, and the key to tooth regeneration lies in restoring teeth through biomimetic approaches, utilizing mineralization strategies or materials that mimic natural processes. This review delves into the types, properties, and transformations of calcium and phosphorus minerals, followed by an exploration of the mechanisms behind physiological and pathological mineralization in living organisms. It summarizes the mechanisms and commonalities of biomineralization and discusses the advancements in dental biomineralization research, guided by insights into calcium and phosphorus mineral biomineralization. This review concludes by addressing the current challenges and future directions in the field of dental biomimetic mineralization.
Collapse
Affiliation(s)
- Haide Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Danyang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Hanyue Deng
- Duke Kunshan University - Media Art - Creative Practice Kunshan, Jiangsu 215316, China
| | - Lijuan Yin
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Xiongying Wang
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
2
|
Ligorio C, Mata A. Synthetic extracellular matrices with function-encoding peptides. NATURE REVIEWS BIOENGINEERING 2023; 1:1-19. [PMID: 37359773 PMCID: PMC10127181 DOI: 10.1038/s44222-023-00055-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 06/28/2023]
Abstract
The communication of cells with their surroundings is mostly encoded in the epitopes of structural and signalling proteins present in the extracellular matrix (ECM). These peptide epitopes can be incorporated in biomaterials to serve as function-encoding molecules to modulate cell-cell and cell-ECM interactions. In this Review, we discuss natural and synthetic peptide epitopes as molecular tools to bioengineer bioactive hydrogel materials. We present a library of functional peptide sequences that selectively communicate with cells and the ECM to coordinate biological processes, including epitopes that directly signal to cells, that bind ECM components that subsequently signal to cells, and that regulate ECM turnover. We highlight how these epitopes can be incorporated in different biomaterials as individual or multiple signals, working synergistically or additively. This molecular toolbox can be applied in the design of biomaterials aimed at regulating or controlling cellular and tissue function, repair and regeneration.
Collapse
Affiliation(s)
- Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
- School of Pharmacy, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Ma L, Niu M, Ji Y, Liu L, Gu X, Luo J, Wei G, Yan M. Development of KLA-RGD integrated lipopeptide with the effect of penetrating membrane which target the α vβ 3 receptor and the application of combined antitumor. Colloids Surf B Biointerfaces 2023; 223:113186. [PMID: 36746066 DOI: 10.1016/j.colsurfb.2023.113186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Herein, an amphiphilic cationic anticancer lipopeptide P17 with α-helical structure was synthesized based on the integration of KLA and RGD peptide which could bind with the receptor of integrin αvβ3. P17 could self assemble into stable spherical aggregates in aqueous solution, and which could encapsulate the anticancer drugs (Such as Dox) to form P17 @ Anticancer drug nanomedicine (P17 @ Dox nanomedicine) which could play the combined therapy of P17 and anticancer drugs (Dox). The encapsulation efficiency of P17 aggregates to Dox was 80.4 ± 3.2 %, and the release behavior of P17 @ Dox nanomedicine in vitro had the characteristics of slow-release and pH responsiveness. The experiments in vitro showed that P17 lipopeptide had low cytotoxicity, high serum stability, low hemolysis and strong penetrating membrane ability. The release of Dox from P17 @ Dox in cells was time-dependment, and the P17 @ Dox nanomedicine had a good anticancer effect. The experiments in vivo showed that P17 and P17 @ Dox nanomedicine both had low hemolysis, and P17 @ Dox nanomedicine could effectively inhibit tumor growth and significantly reduce the toxic and side effects of Dox. Molecular docking experiments showed that P17 could effectively interact with the receptor of integrin αvβ3. In conclusion, P17 lipopeptide could be used as an excellent drug carrier and play the combined anticancer effect of P17 and anticancer drugs.
Collapse
Affiliation(s)
- Linhao Ma
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - Mingcong Niu
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - Yiping Ji
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - Lu Liu
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - XiuLian Gu
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - Junlin Luo
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China
| | - Guangcheng Wei
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China.
| | - Miaomiao Yan
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003,China.
| |
Collapse
|
5
|
Pal VK, Roy S. Cooperative Calcium Phosphate Deposition on Collagen-Inspired Short Peptide Nanofibers for Application in Bone Tissue Engineering. Biomacromolecules 2023; 24:807-824. [PMID: 36649490 DOI: 10.1021/acs.biomac.2c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In recent years, immense attention has been devoted over the production of osteoinductive materials. To this direction, collagen has a dominant role in developing hard tissues and plays a crucial role in the biomineralization of these tissues. Here, we demonstrated for the first time the potential of the shortest molecular pentapeptide domain inspired from collagen toward mineralizing hydroxyapatite on peptide fibers to develop bone-filling material. Our simplistic approach adapted the easy and facile route of introducing the metal ions onto the peptide nanofibers, displaying adsorbed glutamate onto the surface. This negatively charged surface further induces the nucleation of the crystalline growth of hydroxyapatite. Interestingly, nucleation and growth of the hydroxyapatite crystals lead to the formation of a self-supporting hydrogel to construct a suitable interface for cellular interactions. Furthermore, microscopic and spectroscopic investigations revealed the crystalline growth of the hydroxyapatite onto peptide fibers. The physical properties were also influenced by this crystalline deposition, as evident from the hierarchical organization leading to hydrogels with enhanced mechanical stiffness and improved thermal stability of the scaffold. Furthermore, the mineralized peptide fibers were highly compatible with osteoblast cells and showed increased cellular biomarkers production, which further reinforced the potential application toward effectively fabricating the grafts for bone tissue engineering.
Collapse
Affiliation(s)
- Vijay Kumar Pal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali140306, India
| |
Collapse
|
6
|
Hardan L, Chedid JCA, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Tosco V, Monjarás-Ávila AJ, Jabra M, Salloum-Yared F, Kharouf N, Mancino D, Haikel Y. Peptides in Dentistry: A Scoping Review. Bioengineering (Basel) 2023; 10:bioengineering10020214. [PMID: 36829708 PMCID: PMC9952573 DOI: 10.3390/bioengineering10020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Currently, it remains unclear which specific peptides could be appropriate for applications in different fields of dentistry. The aim of this scoping review was to scan the contemporary scientific papers related to the types, uses and applications of peptides in dentistry at the moment. Literature database searches were performed in the following databases: PubMed/MEDLINE, Scopus, Web of Science, Embase, and Scielo. A total of 133 articles involving the use of peptides in dentistry-related applications were included. The studies involved experimental designs in animals, microorganisms, or cells; clinical trials were also identified within this review. Most of the applications of peptides included caries management, implant osseointegration, guided tissue regeneration, vital pulp therapy, antimicrobial activity, enamel remineralization, periodontal therapy, the surface modification of tooth implants, and the modification of other restorative materials such as dental adhesives and denture base resins. The in vitro and in vivo studies included in this review suggested that peptides may have beneficial effects for treating early carious lesions, promoting cell adhesion, enhancing the adhesion strength of dental implants, and in tissue engineering as healthy promotors of the periodontium and antimicrobial agents. The lack of clinical trials should be highlighted, leaving a wide space available for the investigation of peptides in dentistry.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Jean Claude Abou Chedid
- Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | | | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology (DISCO), Polytechnic University of Marche, 60126 Ancona, Italy
| | - Ana Josefina Monjarás-Ávila
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
| | - Massa Jabra
- Faculty of Medicine, Damascus University, Damascus 0100, Syria
| | | | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| |
Collapse
|
7
|
Xu VW, Nizami MZI, Yin IX, Lung CYK, Yu OY, Chu CH. Caries Management with Non-Metallic Nanomaterials: A Systematic Review. Int J Nanomedicine 2022; 17:5809-5824. [PMID: 36474525 PMCID: PMC9719741 DOI: 10.2147/ijn.s389038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/23/2022] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Non-metallic nanomaterials do not stain enamel or dentin. Most have better biocompatibility than metallic nanomaterials do for management of dental caries. OBJECTIVE The objective of this study is to review the types, properties and potential uses of non-metallic nanomaterials systematically for managing dental caries. METHODS Two researchers independently performed a literature search of publications in English using PubMed, Scopus and Web of Science. The keywords used were (nanoparticles OR nanocomposites OR nanomaterials) AND (caries OR tooth decay). They screened the titles and abstracts to identify potentially eligible publications of original research reporting non-metallic nanomaterials for caries management. Then, they retrieved and studied the full text of the identified publications for inclusion in this study. RESULTS Out of 2497 resulting publications, this study included 75 of those. The non-metallic nanomaterials used in these publications were categorized as biological organic nanomaterials (n=45), synthetic organic nanomaterials (n=15), carbon-based nanomaterials (n=13) and selenium nanomaterials (n=2). They inhibited bacteria growth and/or promoted remineralization. They could be incorporated in topical agents (29/75, 39%), dental adhesives (11/75, 15%), restorative fillers (4/75, 5%), dental sealant (3/75, 4%), oral drugs (3/75, 4%), toothpastes (2/75, 3%) and functional candies (1/75, 1%). Other publications (22/75, 29%) do not mention specific applications. However, most publications (67/75, 89%) were in vitro studies. Six publications (6/75, 8%) were animal studies, and only two publications (2/75, 3%) were clinical studies. CONCLUSION The literature showed non-metallic nanomaterials have antibacterial and/or remineralising properties. The most common type of non-metallic nanomaterials for caries management is organic nanomaterials. Non-metallic nanomaterials can be incorporated into dental sealants, toothpaste, dental adhesives, topical agents and even candies and drugs. However, the majority of the publications are in vitro studies, and only two publications are clinical studies.
Collapse
Affiliation(s)
- Veena Wenqing Xu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | | | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Christie Ying Kei Lung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
8
|
Zhang L, Zhang Y, Yu T, Peng L, Sun Q, Han B. Engineered Fabrication of Enamel-Mimetic Materials. ENGINEERING 2022; 14:113-123. [DOI: 10.1016/j.eng.2021.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
9
|
Tang S, Dong Z, Ke X, Luo J, Li J. Advances in biomineralization-inspired materials for hard tissue repair. Int J Oral Sci 2021; 13:42. [PMID: 34876550 PMCID: PMC8651686 DOI: 10.1038/s41368-021-00147-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
- Med-X Center for Materials, Sichuan University, Chengdu, PR China.
| |
Collapse
|
10
|
Cell-Free Biomimetic Mineralization Strategies to Regenerate the Enamel Microstructure. CRYSTALS 2021. [DOI: 10.3390/cryst11111385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The distinct architecture of native enamel gives it its exquisite appearance and excellent intrinsic-extrinsic fracture toughening properties. However, damage to the enamel is irreversible. At present, the clinical treatment for enamel lesion is an invasive method; besides, its limitations, caused by the chemical and physical difference between restorative materials and dental hard tissue, makes the restorative effects far from ideal. With more investigations on the mechanism of amelogenesis, biomimetic mineralization techniques for enamel regeneration have been well developed, which hold great promise as a non-invasive strategy for enamel restoration. This review disclosed the chemical and physical mechanism of amelogenesis; meanwhile, it overviewed and summarized studies involving the regeneration of enamel microstructure in cell-free biomineralization approaches, which could bring new prospects for resolving the challenges in enamel regeneration.
Collapse
|
11
|
Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH. Efficacy of the dual-action GA-KR12 peptide for remineralising initial enamel caries: an in vitro study. Clin Oral Investig 2021; 26:2441-2451. [PMID: 34635946 DOI: 10.1007/s00784-021-04210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the antibiofilm and remineralising effects of the dual-action peptide GA-KR12 on artificial enamel caries. MATERIALS AND METHODS Enamel blocks with artificial caries were treated with sterilised deionised water as control or GA-KR12. The blocks underwent biochemical cycling with Streptococcus mutans for 3 weeks. The architecture, viability, and growth kinetics of the biofilm were determined, respectively, by scanning electron microscopy (SEM), confocal laser scanning microscopy, and quantitative (culture colony-forming units, CFUs). The mineral loss, calcium-to-phosphorus ratio, surface morphology, and crystal characteristics of the enamel surface were determined, respectively, using micro-computed tomography, energy dispersive spectroscopy, SEM, and X-ray diffraction (XRD). RESULTS SEM showed confluent growth of S. mutans in the control group but not in the GA-KR12-treated group. The dead-to-live ratios of the control and GA-KR12-treated groups were 0.42 ± 0.05 and 0.81 ± 0.08, respectively (p < 0.001). The log CFUs of the control and GA-KR12-treated groups were 8.15 ± 0.32 and 6.70 ± 0.49, respectively (p < 0.001). The mineral losses of the control and GA-KR12-treated groups were 1.39 ± 0.09 gcm-3 and 1.19 ± 0.05 gcm-3, respectively (p < 0.001). The calcium-to-phosphorus molar ratios of the control and GA-KR12-treated groups were 1.47 ± 0.03 and 1.57 ± 0.02, respectively (p < 0.001). A uniformly remineralised prismatic pattern on enamel blocks was observed in the GA-KR12-treated but not in the control group. The hydroxyapatite in the GA-KR12-treated group was better crystallised than that in the control group. CONCLUSION The dual-action peptide GA-KR12 inhibited the growth of S. mutans biofilm and promoted the remineralisation of enamel caries. CLINICAL RELEVANCE GA-KR12 potentially is applicable for managing enamel caries.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Quan-Li Li
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China. .,Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Wang J, Liu Z, Ren B, Wang Q, Wu J, Yang N, Sui X, Li L, Li M, Zhang X, Li X, Wang B. Biomimetic mineralisation systems for in situ enamel restoration inspired by amelogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:115. [PMID: 34455518 PMCID: PMC8403113 DOI: 10.1007/s10856-021-06583-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/05/2021] [Indexed: 05/28/2023]
Abstract
Caries and dental erosion are common oral diseases. Traditional treatments involve the mechanical removal of decay and filling but these methods are not suitable for cases involving large-scale enamel erosion, such as hypoplasia. To develop a noninvasive treatment, promoting remineralisation in the early stage of caries is of considerable clinical significance. Therefore, biomimetic mineralisation is an ideal approach for restoring enamel. Biomimetic mineralisation forms a new mineral layer that is tightly attached to the surface of the enamel. This review details the state-of-art achievements on the application of amelogenin and non-amelogenin, amorphous calcium phosphate, ions flow and other techniques in the biomimetic mineralisation of enamel. The ultimate goal of this review was to shed light on the requirements for enamel biomineralisation. Hence, herein, we summarise two strategies of biological minimisation systems for in situ enamel restoration inspired by amelogenesis that have been developed in recent years and compare their advantages and disadvantages.
Collapse
Affiliation(s)
- Jue Wang
- Department of Obsterics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Bingyu Ren
- Department of Thyroid surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qian Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jia Wu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Nan Yang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xin Sui
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Lingfeng Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Meihui Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xiao Zhang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xinyue Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Bowei Wang
- Department of Obsterics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
13
|
Najafi H, Jafari M, Farahavar G, Abolmaali SS, Azarpira N, Borandeh S, Ravanfar R. Recent advances in design and applications of biomimetic self-assembled peptide hydrogels for hard tissue regeneration. Biodes Manuf 2021; 4:735-756. [PMID: 34306798 PMCID: PMC8294290 DOI: 10.1007/s42242-021-00149-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
Abstract The development of natural biomaterials applied for hard tissue repair and regeneration is of great importance, especially in societies with a large elderly population. Self-assembled peptide hydrogels are a new generation of biomaterials that provide excellent biocompatibility, tunable mechanical stability, injectability, trigger capability, lack of immunogenic reactions, and the ability to load cells and active pharmaceutical agents for tissue regeneration. Peptide-based hydrogels are ideal templates for the deposition of hydroxyapatite crystals, which can mimic the extracellular matrix. Thus, peptide-based hydrogels enhance hard tissue repair and regeneration compared to conventional methods. This review presents three major self-assembled peptide hydrogels with potential application for bone and dental tissue regeneration, including ionic self-complementary peptides, amphiphilic (surfactant-like) peptides, and triple-helix (collagen-like) peptides. Special attention is given to the main bioactive peptides, the role and importance of self-assembled peptide hydrogels, and a brief overview on molecular simulation of self-assembled peptide hydrogels applied for bone and dental tissue engineering and regeneration. Graphic abstract
Collapse
Affiliation(s)
- Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Ghazal Farahavar
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, 7193711351 Shiraz, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
- Polymer Technology Research Group, Department of Chemical and Metallurgical Engineering, Aalto University, 02152 Espoo, Finland
| | - Raheleh Ravanfar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
14
|
A novel dual-action antimicrobial peptide for caries management. J Dent 2021; 111:103729. [PMID: 34146653 DOI: 10.1016/j.jdent.2021.103729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES To develop a novel dual-action peptide with antimicrobial and mineralising properties. METHODS A novel peptide, namely GA-KR12, was synthesised through grafting gallic acid to KR12. The secondary structure of GA-KR12 was evaluated by circular dichroism spectroscopy. The stability was evaluated by high-performance liquid chromatography. The cytotoxicity was evaluated by a mitochondrial dehydrogenase activity assay. The antimicrobial properties against common cariogenic species were evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). The morphology of cariogenic species was analysed by transmission electron microscope (TEM). To assess the mineralising effect of GA-KR12 on enamel, the lesion depths, mineral loss, surface morphology, calcium-to-phosphorus ratio and crystal characteristics were determined using micro-computed tomography, scanning electron microscopy (SEM) and energy dispersive spectroscopy X-ray diffraction, respectively. RESULTS GA-KR12 did not exhibit cytotoxicity against HGF. Around 82% of the GA-KR12 remained in human saliva at 37°C for 1 h. The MIC and MBC/MFC against the tested species were 10-320 μM and 20-1,280 μM, respectively. GA-KR12 induced remarkable morphological defects in the tested species. The enamel treated with GA-KR12 had smaller lesion depths (p < 0.001), less mineral loss (p < 0.001) and higher calcium-to-phosphorus molar ratios (p < 0.001) than those in the enamel treated with water. SEM showed a well-organised prism pattern in enamel treated with GA-KR12. X-ray diffraction revealed that the hydroxyapatite on the enamel treated with GA-KR12 was better crystalised. CONCLUSIONS This study developed a biocompatible and stable peptide which inhibited the growth of cariogenic species and mineralised the enamel caries. CLINICAL SIGNIFICANCE The novel dual-action peptide, GA-KR12, is potential applicable in the management of caries.
Collapse
|
15
|
Wang QQ, Wang S, Zhao T, Li Y, Yang J, Liu Y, Zhang H, Miao L, Sun W. Biomimetic oligopeptide formed enamel-like tissue and dentin tubule occlusion via mineralization for dentin hypersensitivity treatment. J Appl Biomater Funct Mater 2021; 19:22808000211005384. [PMID: 33784188 DOI: 10.1177/22808000211005384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Dentin hypersensitivity (DH) is a common oral disease with approximately 41.9% prevalence. Reconstruction of dental hard tissues is the preferred treatment for relieving DH. Here, we applied biomineralization method using oligopeptide simulating cementum protein 1 (CEMP1) to regenerate hard tissues on demineralized dentin. METHODS The self-assembly and biomineralization property of the oligopeptide were detected by scanning electron microscopy (SEM), circular dichroism spectroscopy, and transmission electron microscopy. Oligopeptide's binding capacity to demineralized dentin was evaluated by SEM and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Remineralization was characterized using SEM, ATR-FTIR, X-ray diffraction, and nanoindentation. Oligopeptide's biocompatibility was evaluated using periodontal ligament cells. RESULTS Oligopeptides self-assembled into nano-matrix and templated mineral precursor formation within 24 h. Moreover, oligopeptide nano-matrix bound firmly on demineralized dentin and resisted water rinsing. Then, bound nano-matrix served as a template to initiate nucleation and transformation of hydroxyapatite on demineralized dentin. After 96 h, oligopeptide nano-matrix regenerated an enamel-like tissue layer with a thickness of 15.35 μm, and regenerated crystals occluded dentin tubules with a depth of 31.27 μm. Furthermore, the oligopeptide nano-matrix had good biocompatibility when co-cultured with periodontal ligament cells. CONCLUSIONS This biomimetic oligopeptide simulating CEMP1 effectively induced remineralization and reconstructed hard tissues on demineralized dentin, providing a potential biomaterial for DH treatment.
Collapse
Affiliation(s)
- Qing-Qing Wang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Siqing Wang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tian Zhao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jie Yang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yumei Liu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - He Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Sarikaya R, Song L, Yuca E, Xie SX, Boone K, Misra A, Spencer P, Tamerler C. Bioinspired multifunctional adhesive system for next generation bio-additively designed dental restorations. J Mech Behav Biomed Mater 2021; 113:104135. [PMID: 33160267 PMCID: PMC8101502 DOI: 10.1016/j.jmbbm.2020.104135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/17/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Resin-based composite has overtaken dental amalgam as the most popular material for the repair of lost or damaged tooth structure. In spite of the popularity, the average composite lifetime is about half that of amalgam restorations. The leading cause of composite-restoration failure is decay at the margin where the adhesive is applied. The adhesive is intended to seal the composite/tooth interface, but the adhesive seal to dentin is fragile and readily degraded by acids, enzymes and other oral fluids. The inherent weakness of this material system is attributable to several factors including the lack of antimicrobial properties, remineralization capabilities and durable mechanical performance - elements that are central to the integrity of the adhesive/dentin (a/d) interfacial seal. Our approach to this problem offers a transition from a hybrid to a biohybrid structure. Discrete peptides are tethered to polymers to provide multi-bio-functional adhesive formulations that simultaneously achieve antimicrobial and remineralization properties. The bio-additive materials design combines several functional properties with the goal of providing an adhesive that will serve as a durable barrier to recurrent decay at the composite/tooth interface. This article provides an overview of our multi-faceted approach which uses peptides tethered to polymers and new polymer chemistries to achieve the next generation adhesive system - an adhesive that provides antimicrobial properties, repair of defective dentin and enhanced mechanical performance.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Linyong Song
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34210, Turkey
| | - Sheng-Xue Xie
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Anil Misra
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Civil, Environmental and Architectural Engineering Department, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA.
| |
Collapse
|
17
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
18
|
Challenges of Engineering Biomimetic Dental and Paradental Tissues. Tissue Eng Regen Med 2020; 17:403-421. [PMID: 32621282 DOI: 10.1007/s13770-020-00269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Loss of the dental and paradental tissues resulting from trauma, caries or from systemic diseases considered as one of the most significant and frequent clinical problem to the healthcare professionals. Great attempts have been implemented to recreate functionally, healthy dental and paradental tissues in order to substitute dead and diseased tissues resulting from secondary trauma of car accidents, congenital malformations of cleft lip and palate or due to acquired diseases such as cancer and periodontal involvements. METHOD An extensive literature search has been done on PubMed database from 2010 to 2019 about the challenges of engineering a biomimetic tooth (BioTooth) regarding basic biology of the tooth and its supporting structures, strategies, and different techniques of obtaining biological substitutes for dental tissue engineering. RESULTS It has been found that great challenges need to be considered before engineering biomimetic individual parts of the tooth such as enamel, dentin-pulp complex and periodontium. In addition, two approaches have been adopted to engineer a BioTooth. The first one was to engineer a BioTooth as an individual unit and the other was to engineer a BioTooth with its supporting structures. CONCLUSION Engineering of BioTooth with its supporting structures thought to be in the future will replace the traditional and conventional treatment modalities in the field of dentistry. To accomplish this goal, different cell lines and growth factors with a variety of scaffolds at the nano-scale level are now in use. Recent researches in this area of interest are dedicated for this objective, both in vivo and in vitro. Despite progress in this field, there are still many challenges ahead and need to be overcome, many of which related to the basic tooth biology and its supporting structures and some others related to the sophisticated techniques isolating cells, fabricating the needed scaffolds and obtaining the signaling molecules.
Collapse
|
19
|
Wang S, Zhang L, Chen W, Jin H, Zhang Y, Wu L, Shao H, Fang Z, He X, Zheng S, Cao CY, Wong HM, Li Q. Rapid regeneration of enamel-like-oriented inorganic crystals by using rotary evaporation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111141. [PMID: 32600729 DOI: 10.1016/j.msec.2020.111141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Enamel, the hardest tissue in the human body, has excellent mechanical properties, mainly due to its highly ordered spatial structure. Fabricating enamel-like structure is still a challenge today. In this work, a simple and highly efficient method was introduced, using the silk fibroin as a template to regulate calcium- and phosphate- supersaturated solution to regenerate enamel-like hydroxyapatite crystals on various substrates (enamel, dentin, titanium, and polyethylene) under rotary evaporation. The enamel-like zinc oxide nanorod array structure was also successfully synthesized using the aforementioned method. This strategy provides a new approach to design and fabricate mineral crystals with particular orientation coatings for materials.
Collapse
Affiliation(s)
- Shengrui Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Le Zhang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Wendy Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Huimin Jin
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Ya Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hui Shao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zehui Fang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaoxue He
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Shunli Zheng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China.
| | - Quanli Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
20
|
Wang QQ, Miao L, Zhang H, Wang SQ, Li Q, Sun W. A novel amphiphilic oligopeptide induced the intrafibrillar mineralisation via interacting with collagen and minerals. J Mater Chem B 2020; 8:2350-2362. [PMID: 32104824 DOI: 10.1039/c9tb02928a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mineralised collagen fibrils constitute the basic building blocks of bone, dentin and cementum. Noncollagenous proteins (NCPs) that are indispensable for collagen biomineralisation are not commercially available, and the mechanism of intrafibrillar mineralisation remains debatable. Herein, synthetic biomimetic molecules are regarded as alternative candidates for NCPs, and more convenient in revealing the mechanism of intrafibrillar mineralisation in vitro. Here, we fabricated a novel amphiphilic oligopeptide imitating a natural NCP. We aimed to investigate the effectiveness of the oligopeptide in intrafibrillar mineralisation and partially reveal the corresponding mechanism in vitro. The effectiveness of the oligopeptide in intrafibrillar mineralisation was characterised from the following aspects: (1) mineral interaction, (2) collagen binding and (3) induction of intrafibrillar mineralisation. Results indicated that the self-assembled oligopeptide could attract calcium ions inducing the formation of amorphous precursors; and bind onto the surface of collagen fibrils. These processes were mainly driven by the electrostatic attraction and hydrogen bonds. The self-assembled oligopeptide induced the intrafibrillar mineralisation of reconstituted collagen fibrils, in which the c-axis of apatite crystallites was roughly parallel to the long axis of the fibrils. The collagen mineralisation was achieved by binding with the self-assembled oligopeptide to increase the pool of mineralization precursors available for intrafibrillar mineralisation. In addition, the self-assembled oligopeptide induced dentin collagen remineralisation and formed a 30 μm-thick remineralised layer within 96 h. Our work sheds light on the fabrication of a novel biomimetic molecule for collagen mineralisation. The results should serve as a reference for understanding the mechanism of intrafibrillar mineralisation.
Collapse
Affiliation(s)
- Qing-Qing Wang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30, Central Road, Xuanwu District, Nanjing, 210000, China.
| | | | | | | | | | | |
Collapse
|
21
|
Ding L, Han S, Wang K, Zheng S, Zheng W, Peng X, Niu Y, Li W, Zhang L. Remineralization of enamel caries by an amelogenin-derived peptide and fluoride in vitro. Regen Biomater 2020; 7:283-292. [PMID: 32523730 PMCID: PMC7266664 DOI: 10.1093/rb/rbaa003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/29/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Dental caries is one of the most common oral diseases in the world. This study was tantamount to investigate the combinatory effects of an amelogenin-derived peptide (called QP5) and fluoride on the remineralization of artificial enamel caries. The peptide QP5 was synthesized and characterized, and the binding capability of the peptide on hydroxyapatite (HA) and demineralized tooth enamel surface was analysed. Then, the mineralization function of the peptide and fluoride was studied through the spontaneous mineralization testing and remineralization on enamel caries in vitro. First, the novel peptide QP5 could bind on the hydroxyapatite and demineralized tooth enamel surfaces. Second, QP5 can transitorily stabilize the formation of amorphous calcium phosphate and direct the transformation into hydroxyapatite crystals alone and in combination with fluoride. In addition, compared to blocks treated by peptide QP5 alone or fluoride, the sample blocks showed significantly higher surface microhardness, lower mineral loss and shallower lesion depth after treatment with a combination of QP5 and fluoride at high or low concentrations. The peptide QP5 could control the crystallization of hydroxyapatite, and combinatory application of peptide QP5 and fluoride had a potential synergistic effect on the remineralization of enamel caries.
Collapse
Affiliation(s)
- Longjiang Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sili Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sainan Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyue Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiu Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yumei Niu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Zhou L, Wong HM, Zhang YY, Li QL. Constructing an Antibiofouling and Mineralizing Bioactive Tooth Surface to Protect against Decay and Promote Self-Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3021-3031. [PMID: 31877018 DOI: 10.1021/acsami.9b19745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous methods have been investigated to manage dental caries, one of the top three diseases threatening human health as reported by the World Health Organization. An innovative strategy was proposed to prevent dental caries and achieve self-healing of the decayed tooth, and a novel bioactive peptide was designed and synthesized to construct an antibiofouling and mineralizing dual-bioactive tooth surface. Compared to its original endogenous peptide, the synthesized bioactive peptide showed statistically significantly higher binding affinity to the tooth surface, stronger suppression of demineralization, and a certain promotion of tooth remineralization. The abilities of the peptide to inhibit Streptococcus mutans (S. mutans) biofilm formation and S. mutans adhesion on the tooth surface were not affected after synthesis. Biocompatibility tests revealed the safety of the synthesized bioactive peptide. Interaction mechanisms between the synthesized bioactive peptide and tooth surface were also explained by molecular dynamic simulation analysis. In summary, the synthesized bioactive peptide could be applied safely to prevent dental caries and effectively induce in situ self-healing remineralization for treatment of the decayed tooth.
Collapse
Affiliation(s)
- Li Zhou
- Department of Paediatric Dentistry, Faculty of Dentistry , The University of Hong Kong , Hong Kong SAR 999077 , China
| | - Hai Ming Wong
- Department of Paediatric Dentistry, Faculty of Dentistry , The University of Hong Kong , Hong Kong SAR 999077 , China
| | - Yu Yuan Zhang
- Department of Paediatric Dentistry, Faculty of Dentistry , The University of Hong Kong , Hong Kong SAR 999077 , China
| | - Quan Li Li
- Department of Prosthodontic, College and Hospital of Stomatology , Anhui Medical University , Hefei 230000 , China
| |
Collapse
|
23
|
Šupová M. The Significance and Utilisation of Biomimetic and Bioinspired Strategies in the Field of Biomedical Material Engineering: The Case of Calcium Phosphat-Protein Template Constructs. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E327. [PMID: 31936830 PMCID: PMC7013803 DOI: 10.3390/ma13020327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate-protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.
Collapse
Affiliation(s)
- Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, V Holešovičkách 41, 182 09 Prague, Czech Republic
| |
Collapse
|
24
|
Sztukowska MN, Roky M, Demuth DR. Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms. Mol Oral Microbiol 2019; 34:169-182. [PMID: 31389653 PMCID: PMC6772003 DOI: 10.1111/omi.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
The development of the oral biofilm requires a complex series of interactions between host tissues and the colonizing bacteria as well as numerous interspecies interactions between the organisms themselves. Disruption of normal host-microbe homoeostasis in the oral cavity can lead to a dysbiotic microbial community that contributes to caries or periodontal disease. A variety of approaches have been pursued to develop novel potential therapeutics that are active against the oral biofilm and/or target specific oral bacteria. The structure and function of naturally occurring antimicrobial peptides from oral tissues and secretions as well as external sources such as frog skin secretions have been exploited to develop numerous peptide mimetics and small molecule peptidomimetics that show improved antimicrobial activity, increased stability and other desirable characteristics relative to the parent peptides. In addition, a rational and minimalist approach has been developed to design small artificial peptides with amphipathic α-helical properties that exhibit potent antibacterial activity. Furthermore, with an increased understanding of the molecular mechanisms of beneficial and/or antagonistic interspecies interactions that contribute to the formation of the oral biofilm, new potential targets for therapeutic intervention have been identified and both peptide-based and small molecule mimetics have been developed that target these key components. Many of these mimetics have shown promising results in in vitro and pre-clinical testing and the initial clinical evaluation of several novel compounds has demonstrated their utility in humans.
Collapse
Affiliation(s)
- Maryta N. Sztukowska
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Mohammad Roky
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Donald R. Demuth
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| |
Collapse
|
25
|
Guentsch A, Fahmy MD, Wehrle C, Nietzsche S, Popp J, Watts DC, Kranz S, Krafft C, Sigusch BW. Effect of biomimetic mineralization on enamel and dentin: A Raman and EDX analysis. Dent Mater 2019; 35:1300-1307. [PMID: 31208774 PMCID: PMC9668404 DOI: 10.1016/j.dental.2019.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effect of an experimental biomimetic mineralization kit (BIMIN) on the chemical composition and crystallinity of caries-free enamel and dentin samples in vitro. METHODS Enamel and dentin samples from 20 human teeth (10 for enamel; 10 for dentin) were divided into a control group without treatment and test samples with BIMIN treatment. Quantitative analysis of tissue penetration of fluoride, phosphate, and calcium was performed using energy-dispersive X-ray spectroscopy (EDX). Mineralization depth was measured by Raman spectroscopy probing the symmetric valence vibration near 960cm-1 as a marker for crystallinity. EDX data was statistically analyzed using a paired t-test and Raman data was analyzed using the Student's t-test. RESULTS EDX analysis demonstrated a penetration depth of fluoride of 4.10±3.32μm in enamel and 4.31±2.67μm in dentin. Calcium infiltrated into enamel 2.65±0.64μm and into dentin 5.58±1.63μm, while the penetration depths for phosphate were 4.83±2.81μm for enamel and 6.75±3.25μm for dentin. Further, up to 25μm of a newly mineralized enamel-like layer was observed on the surface of the samples. Raman concentration curves demonstrated an increased degree of mineralization up to 5-10μm into the dentin and enamel samples. SIGNIFICANCE Biomimetic mineralization of enamel and dentin samples resulted in an increase of mineralization and a penetration of fluoride into enamel and dentin.
Collapse
Affiliation(s)
- Arndt Guentsch
- Marquette University School of Dentistry, Milwaukee, WI, USA; Clinic of Conservative Dentistry and Periodontology, Center of Dental Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Germany.
| | - Mina D Fahmy
- University of Tennessee Medical Center, Department of Oral and Maxillofacial Surgery, Knoxville, TN, USA
| | - Constanze Wehrle
- Clinic of Conservative Dentistry and Periodontology, Center of Dental Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Germany
| | - Sandor Nietzsche
- Center of Electron Microscopy, Friedrich-Schiller University Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Germany
| | - David C Watts
- School of Dentistry and Photon Science Institute, University of Manchester, Manchester, UK
| | - Stefan Kranz
- Clinic of Conservative Dentistry and Periodontology, Center of Dental Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Germany
| | | | - Bernd W Sigusch
- Clinic of Conservative Dentistry and Periodontology, Center of Dental Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Germany
| |
Collapse
|
26
|
Zheng W, Ding L, Wang Y, Han S, Zheng S, Guo Q, Li W, Zhou X, Zhang L. The effects of 8DSS peptide on remineralization in a rat model of enamel caries evaluated by two nondestructive techniques. J Appl Biomater Funct Mater 2019; 17:2280800019827798. [PMID: 30808229 DOI: 10.1177/2280800019827798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nowadays, dental caries is one of the most common oral health problems, affecting most individuals. It has been found that, by remineralizing enamel at an early stage in the formation of enamel caries, teeth can be effectively protected from dental caries. In this work, a peptide with eight repetitive sequences of aspartate-serine-serine (8DSS) is applied as the bio-mineralizer in an in-vivo rat enamel caries model. Nondestructive quantitative light-induced fluorescence-digital (QLF-D) imaging and micro-computed tomography (micro-CT) are used to evaluate the remineralization of enamel carious lesions by measuring the total fluorescence radiance loss of the molar area (Δ QTotal), acquired using QLF-D imaging, and the mineral density and residual molar enamel volume, acquired using micro-CT. Correlations are explored between Δ QTotal and mineral density (strong correlation, r = 0.8000, p < 0.001) and Δ QTotal and residual molar enamel volume (moderate correlation, r = 0.6375, p < 0.001). Our results demonstrate that 8DSS is a promising in-vivo remineralization agent that exhibits comparable effects to NaF ( p < 0.05), which has been verified using the classical Keyes method. Moreover, the nondestructive QLF-D and micro-CT methods can be combined to quantify the remineralization of enamel carious lesions three-dimensionally in vivo, making them broadly applicable in quantifying hard tissues.
Collapse
Affiliation(s)
- Wenyue Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sili Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sainan Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Zhang YY, Wong HM, McGrath CPJ, Li QL. Repair of dentine-related lesions without a drill or injection. RSC Adv 2019; 9:15099-15107. [PMID: 35516323 PMCID: PMC9064202 DOI: 10.1039/c9ra02759a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 11/21/2022] Open
Abstract
For covering the shortages of traditional treatments, a novel and non-invasive system was developed with the simple adaption of nature's own repair process, while an extrinsic electric field was introduced to improve its remineralization kinetics. In an in vivo study, acid-etched rabbit dentine was used to evaluate the remineralization efficacy and safety of the system. The exposed dentine tubules were fully occluded after 5 hours/1.0 mA and 8 hours/0.5 mA of remineralization. After 5 hours of remineralization (1.0 mA), the micro-hardness of the demineralized dentine was fully recovered, equal to native rabbit dentine. Haematoxylin-eosin staining demonstrated no obvious inflammatory reaction. This study provides a feasible solution to realize rapid repair of dentine.
Collapse
Affiliation(s)
- Yu Yuan Zhang
- Faculty of Dentistry, The University of Hong Kong, The Prince Philip Dental Hospital 34 Hospital Road Hong Kong +852 25593803 +852 28590261
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, The Prince Philip Dental Hospital 34 Hospital Road Hong Kong +852 25593803 +852 28590261
| | - Colman P J McGrath
- Faculty of Dentistry, The University of Hong Kong, The Prince Philip Dental Hospital 34 Hospital Road Hong Kong +852 25593803 +852 28590261
| | - Quan Li Li
- Department of Prosthodontic, College and Hospital of Stomatology, Anhui Medical University No. 69, Meishan Road Hefei China +86 0551 5111538 +86 0551 5118677
| |
Collapse
|
28
|
Rivas M, Del Valle LJ, Alemán C, Puiggalí J. Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels 2019; 5:E14. [PMID: 30845674 PMCID: PMC6473879 DOI: 10.3390/gels5010014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Amphiphilic peptides can be self-assembled by establishing physical cross-links involving hydrogen bonds and electrostatic interactions with divalent ions. The derived hydrogels have promising properties due to their biocompatibility, reversibility, trigger capability, and tunability. Peptide hydrogels can mimic the extracellular matrix and favor the growth of hydroxyapatite (HAp) as well as its encapsulation. Newly designed materials offer great perspectives for applications in the regeneration of hard tissues such as bones, teeth, and cartilage. Furthermore, development of drug delivery systems based on HAp and peptide self-assembly is attracting attention.
Collapse
Affiliation(s)
- Manuel Rivas
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Luís J Del Valle
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Carlos Alemán
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jordi Puiggalí
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
29
|
Pandya M, Diekwisch TGH. Enamel biomimetics-fiction or future of dentistry. Int J Oral Sci 2019. [PMID: 30610185 DOI: 10.1038/s41368-018-0038-6,1-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Tooth enamel is a complex mineralized tissue consisting of long and parallel apatite crystals configured into decussating enamel rods. In recent years, multiple approaches have been introduced to generate or regenerate this highly attractive biomaterial characterized by great mechanical strength paired with relative resilience and tissue compatibility. In the present review, we discuss five pathways toward enamel tissue engineering, (i) enamel synthesis using physico-chemical means, (ii) protein matrix-guided enamel crystal growth, (iii) enamel surface remineralization, (iv) cell-based enamel engineering, and (v) biological enamel regeneration based on de novo induction of tooth morphogenesis. So far, physical synthesis approaches using extreme environmental conditions such as pH, heat and pressure have resulted in the formation of enamel-like crystal assemblies. Biochemical methods relying on enamel proteins as templating matrices have aided the growth of elongated calcium phosphate crystals. To illustrate the validity of this biochemical approach we have successfully grown enamel-like apatite crystals organized into decussating enamel rods using an organic enamel protein matrix. Other studies reviewed here have employed amelogenin-derived peptides or self-assembling dendrimers to re-mineralize mineral-depleted white lesions on tooth surfaces. So far, cell-based enamel tissue engineering has been hampered by the limitations of presently existing ameloblast cell lines. Going forward, these limitations may be overcome by new cell culture technologies. Finally, whole-tooth regeneration through reactivation of the signaling pathways triggered during natural enamel development represents a biological avenue toward faithful enamel regeneration. In the present review we have summarized the state of the art in enamel tissue engineering and provided novel insights into future opportunities to regenerate this arguably most fascinating of all dental tissues.
Collapse
Affiliation(s)
- Mirali Pandya
- Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Thomas G H Diekwisch
- Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
30
|
Abstract
Tooth enamel is a complex mineralized tissue consisting of long and parallel apatite crystals configured into decussating enamel rods. In recent years, multiple approaches have been introduced to generate or regenerate this highly attractive biomaterial characterized by great mechanical strength paired with relative resilience and tissue compatibility. In the present review, we discuss five pathways toward enamel tissue engineering, (i) enamel synthesis using physico-chemical means, (ii) protein matrix-guided enamel crystal growth, (iii) enamel surface remineralization, (iv) cell-based enamel engineering, and (v) biological enamel regeneration based on de novo induction of tooth morphogenesis. So far, physical synthesis approaches using extreme environmental conditions such as pH, heat and pressure have resulted in the formation of enamel-like crystal assemblies. Biochemical methods relying on enamel proteins as templating matrices have aided the growth of elongated calcium phosphate crystals. To illustrate the validity of this biochemical approach we have successfully grown enamel-like apatite crystals organized into decussating enamel rods using an organic enamel protein matrix. Other studies reviewed here have employed amelogenin-derived peptides or self-assembling dendrimers to re-mineralize mineral-depleted white lesions on tooth surfaces. So far, cell-based enamel tissue engineering has been hampered by the limitations of presently existing ameloblast cell lines. Going forward, these limitations may be overcome by new cell culture technologies. Finally, whole-tooth regeneration through reactivation of the signaling pathways triggered during natural enamel development represents a biological avenue toward faithful enamel regeneration. In the present review we have summarized the state of the art in enamel tissue engineering and provided novel insights into future opportunities to regenerate this arguably most fascinating of all dental tissues. Five pathways for tooth enamel engineering hold great promise for developing new technologies, leading to novel biomaterials and biotechnologies to regenerate enamel tissue. Tooth enamel is a unique tissue-specific biomaterial with exceptional structural and mechanical properties. In recent years, many approaches have been adopted to generate or regenerate this complex tissue; Mirali Pandya and Thomas Diekwisch of Texas A&M College of Dentistry, USA conducted a review of the current state and future directions of enamel tissue engineering. In their review, the authors focused on five pathways for enamel tissue engineering: (1) physical synthesis of enamel; (2) biochemical enamel engineering; (3) in situ enamel engineering; (4) cell-based enamel engineering; and (5) whole tooth regeneration. The authors conclude that those five approaches will help identify the biological mechanisms that lead to the generation of tooth enamel.
Collapse
|
31
|
Wang X, Wang Y, Wang K, Ren Q, Li H, Zheng S, Niu Y, Zhou X, Li W, Zhang L. Bifunctional anticaries peptides with antibacterial and remineralizing effects. Oral Dis 2018; 25:488-496. [PMID: 30291730 DOI: 10.1111/odi.12990] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Xiuqing Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology; Fujian Medical University; Fuzhou China
| | - Yufei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Kun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Qian Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Haoran Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Sainan Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Yumei Niu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics; West China Hospital of Stomatology, Sichuan University; Chengdu China
| |
Collapse
|
32
|
Zhang L, Li QL, Cao Y, Wang Y. Regenerating a monoblock to obturate root canalsvia a mineralising strategy. Sci Rep 2018; 8:13356. [PMID: 30190589 PMCID: PMC6127146 DOI: 10.1038/s41598-018-31643-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022] Open
Abstract
To develop a novel strategy for sealing and obturating dental root canals by tooth-like tissue regeneration, premolars with mature root apices were freshly collected, and root canals were prepared by following the clinical protocols in vitro. The teeth were immersed in supersaturated calcium and phosphate solution containing gallic acid and fluoride. At certain intervals, the dental roots were taken out, and their mineral precipitates were characterised by scanning electron microscopy, energy-dispersive spectroscopy mapping, X-ray diffraction and transmission electron microscopy. The cytocompatibility of the mineralizing products were evaluated with rabbit bone-marrow-derived mesenchymal stem cells in vitro. Results showed that the precipitates were mainly composed of fluoridated hydroxyapatite with ahexagonal prism morphology. Fluoridated hydroxyapatite initially nucleated and grew from the root canal dentine surface to the root canal centre. The fluoridated hydroxyapatite precipitate and root canal dentine intergraded together such that the interface became hardly distinguishable. The fluoridated hydroxyapatite precipitate grew into and obturated the dentinal tubules. In the root canal, the regenerated fluoridated hydroxyapatite densely packed and bundled together with a c-axis extension. After 7 days of mineralisation, the root canal was completely obturated, and the apical foramen was sealed. The mineralizing products had good biocompatibility with the cells, and the cells grew well on the mineralized surface. Biomimetic mineralisation strategy provides a novel means to regenerate tooth-like tissue to seal the root canal system permanently other than by passive synthetic material filling.
Collapse
Affiliation(s)
- Le Zhang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Quan-Li Li
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Ying Cao
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yun Wang
- College of Stomatology, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
33
|
Chu J, Feng X, Guo H, Zhang T, Zhao H, Zhang Q. Remineralization Efficacy of an Amelogenin-Based Synthetic Peptide on Carious Lesions. Front Physiol 2018; 9:842. [PMID: 30026702 PMCID: PMC6041723 DOI: 10.3389/fphys.2018.00842] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/14/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of this study was to evaluate the remineralization efficacy of an amelogenin-based peptide on initial enamel carious lesions in vitro. Furthermore, we attempted to provide insights into the possible mechanism of the remineralization, including determining the calcium-binding properties of the peptide and its effects on calcium phosphate mineralization. Methods: The peptide comprising the N-terminus and the C-terminus of porcine amelogenin was synthesized by Synpeptide Co., Ltd. Fifty specimens were randomly assigned to five immersing treatment groups for 12 days: remineralizing medium only; 12.5 μg/mL peptide + remineralizing medium; 25 μg/mL peptide + remineralizing medium; 50 μg/mL peptide + remineralizing medium; fluoride + remineralizing medium. After immersion, mean mineral loss before and after remineralization of each specimen was determined using micro-CT. Mean mineral gain after remineralization was calculated. Calcium binding properties were measured by Isothermal titration calorimetry (ITC). TEM and Fourier transform-infrared were used to determine the effects of the peptide on calcium phosphate mineralization. Results: A significant decrease in mineral loss after remineralization process in all groups was observed (p < 0.05). Treatment in remineralizing medium resulted in the lowest mineral gain while the fluoridated treatment exhibited the highest mineral gain among all groups. Inclusion of synthetic peptide in the remineralizing medium exhibited a higher mineral gain and the gain of 50 μg/mL group was greater than that of the 25 μg/mL group. No significant difference in mineral gain was observed between the remineralizing medium only group and the 12.5 μg/mL peptide group (p > 0.05). ITC values showed that the Ca2+-binding affinity of the peptide is about 9.914 × 104M−1. Furthermore, the peptide was found to inhibit calcium phosphate precipitation and stabilize amorphous calcium phosphate formation for more than 2 h and finally transform into ordered hydroxyapatite crystals. Conclusion: Specific concentrations of the amelogenin-based synthetic peptide promoted in vitro remineralization, with higher concentrations exhibiting significantly greater remineralization. This study presented evidence suggesting that the peptide may act as a Ca2+carrier as well as a regulating factor. When the stabilizing calcium and phosphorus ions bind with the peptide they become biologically available for the remineralization of deeper carious lesions, while also regulated by the peptide to transform into ordered hydroxyapatite crystals.
Collapse
Affiliation(s)
- Jinpu Chu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofang Feng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Huijing Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tieting Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hualei Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Qun Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Stomatology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Mineral Surface-Templated Self-Assembling Systems: Case Studies from Nanoscience and Surface Science towards Origins of Life Research. Life (Basel) 2018; 8:life8020010. [PMID: 29738443 PMCID: PMC6027067 DOI: 10.3390/life8020010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 01/20/2023] Open
Abstract
An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.
Collapse
|
35
|
Dogan S, Fong H, Yucesoy DT, Cousin T, Gresswell C, Dag S, Huang G, Sarikaya M. Biomimetic Tooth Repair: Amelogenin-Derived Peptide Enables in Vitro Remineralization of Human Enamel. ACS Biomater Sci Eng 2018; 4:1788-1796. [PMID: 33445335 DOI: 10.1021/acsbiomaterials.7b00959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
White spot lesions (WSL) and incipient caries on enamel surfaces are the earliest clinical outcomes for demineralization and caries. If left untreated, the caries can progress and may cause complex restorative procedures or even tooth extraction which destroys soft and hard tissue architecture as a consequence of connective tissue and bone loss. Current clinical practices are insufficient in treating dental caries. A long-standing practical challenge associated with demineralization related to dental diseases is incorporating a functional mineral microlayer which is fully integrated into the molecular structure of the tooth in repairing damaged enamel. This study demonstrates that small peptide domains derived from native protein amelogenin can be utilized to construct a mineral layer on damaged human enamel in vitro. Six groups were prepared to carry out remineralization on artificially created lesions on enamel: (1) no treatment, (2) Ca2+ and PO43- only, (3) 1100 ppm fluoride (F), (4) 20 000 ppm F, (5) 1100 ppm F and peptide, and (6) peptide alone. While the 1100 ppm F sample (indicative of common F content of toothpaste for homecare) did not deliver F to the thinly deposited mineral layer, high F test sample (indicative of clinical varnish treatment) formed mainly CaF2 nanoparticles on the surface. Fluoride, however, was deposited in the presence of the peptide, which also formed a thin mineral layer which was partially crystallized as fluorapatite. Among the test groups, only the peptide-alone sample resulted in remineralization of fairly thick (10 μm) dense mineralized layer containing HAp mineral, resembling the structure of the healthy enamel. The newly formed mineralized layer exhibited integration with the underlying enamel as evident by cross-sectional imaging. The peptide-guided remineralization approach sets the foundation for future development of biomimetic products and treatments for dental health care.
Collapse
|
36
|
Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1543-1562. [PMID: 28232213 DOI: 10.1016/j.nano.2017.01.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 02/05/2023]
Abstract
Nanotechnology has paved multiple ways in preventing, reversing or restoring dental caries which is one of the major health care problems. Nanotechnology aided in processing variety of nanomaterials with innovative dental applications. Some showed antimicrobial effect helping in the preventive stage. Others have remineralizing potential intercepting early lesion progression as nanosized calcium phosphate, carbonate hydroxyapatite nanocrystals, nanoamorphous calcium phosphate and nanoparticulate bioactive glass particularly with provision of self-assembles protein that furnish essential role in biomimetic repair. The unique size of nanomaterials makes them fascinating carriers for dental products. Thus, it is recentlyclaimedthat fortifying the adhesives with nanomaterials that possess biological meritsdoes not only enhance the mechanical and physical properties of the adhesives, but also help to attain and maintain a durable adhesive joint and enhanced longevity. Accordingly, this review will focus on the current status and the future implications of nanotechnology in preventive and adhesive dentistry.
Collapse
Affiliation(s)
- Dina Elkassas
- Department of Operative Dentistry, Faculty of Oral and Dental Medicine, Misr International University, Egypt
| | - Abla Arafa
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Oral and Dental Medicine, Misr International University, Egypt.
| |
Collapse
|
37
|
Tao S, Fan M, Xu HHK, Li J, He L, Zhou X, Liang K, Li J. The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. RSC Adv 2017. [DOI: 10.1039/c7ra11844a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to examine the dentin remineralization extent that poly(amido amine) (PAMAM) induces quantitatively, and select the most effective kind of PAMAM with a certain terminal group for dentin remineralization, both for the first time.
Collapse
Affiliation(s)
- Siying Tao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Menglin Fan
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics
- University of Maryland School of Dentistry
- Baltimore
- USA
- Center for Stem Cell Biology & Regenerative Medicine
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Libang He
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Jiyao Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| |
Collapse
|
38
|
Ding C, Chen Z, Li J. From molecules to macrostructures: recent development of bioinspired hard tissue repair. Biomater Sci 2017; 5:1435-1449. [DOI: 10.1039/c7bm00247e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the bioinspired strategies for hard tissue repair, ranging from molecule-induced mineralization, to microscale assembly to macroscaffold fabrication.
Collapse
Affiliation(s)
- Chunmei Ding
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Zhuoxin Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
39
|
Pugliese R, Gelain F. Peptidic Biomaterials: From Self-Assembling to Regenerative Medicine. Trends Biotechnol 2016; 35:145-158. [PMID: 27717599 DOI: 10.1016/j.tibtech.2016.09.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
Abstract
Peptidic biomaterials represent a particularly exciting topic in regenerative medicine. Peptidic scaffolds can be specifically designed for biomimetic customization for targeted therapy. The field is at a pivotal point where preclinical research is being translated into clinics, so it is crucial to understand the theory and describe the status of this rapidly developing technology. In this review, we highlight major advantages and current limitations of self-assembling peptide-based biomaterials, and we discuss the most widely used classes of assembling peptides, describing recent and promising approaches in tissue engineering, drug delivery, and clinics. We also suggest design strategies and hurdles that still need to be overcome to fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Raffaele Pugliese
- IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy
| | - Fabrizio Gelain
- IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' Ospedale Maggiore 3, 20162 Milan, Italy.
| |
Collapse
|
40
|
Yilmaz ED, Schneider GA. Mechanical behavior of enamel rods under micro-compression. J Mech Behav Biomed Mater 2016; 63:183-194. [PMID: 27415405 DOI: 10.1016/j.jmbbm.2016.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/09/2016] [Accepted: 06/17/2016] [Indexed: 11/24/2022]
|
41
|
Yang Y, Lv X, Shi W, Zhou X, Li J, Zhang L. Synergistic Inhibition of Enamel Demineralization by Peptide 8DSS and Fluoride. Caries Res 2016; 50:32-9. [PMID: 26836439 DOI: 10.1159/000442896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 11/27/2015] [Indexed: 02/05/2023] Open
Abstract
The biomimetic peptide 8DSS has shown beneficial effects in promoting remineralization of demineralized enamel in vitro. Here we examined the ability of 8DSS alone and in combination with fluoride to inhibit enamel demineralization during pH-cycling mimicking intraoral conditions. Enamel blocks were subjected to 9 days of pH-cycling in the presence of 1,000 ppm NaF (positive control), distilled-deionized water (DDW; negative control), 25 μM 8DSS alone, 25 μM 8DSS with 500 ppm NaF (8DSS-FL) or 25 μM 8DSS with 1,000 ppm NaF (8DSS-FH) twice daily for 1 min each time. The blocks were analyzed in terms of surface microhardness (SMH), fluoride uptake and mineral content. The 8DSS-treated blocks showed significantly lower mineral loss, shallower lesions and higher SMH than the DDW-treated blocks. No significant differences were observed between the blocks treated with 8DSS alone or fluoride alone. The blocks treated with 8DSS alone or DDW showed similar amounts of fluoride uptake, which was the lowest of all the treatment groups. The blocks treated with 8DSS-FL or 8DSS-FH did not differ significantly, and both groups showed significantly greater SMH and fluoride uptake as well as significantly lower mineral loss and shallower lesions than the NaF-treated blocks. Mineral content was significantly higher in the 8DSS-treated blocks than in the DDW-treated blocks from the surface layer (10 µm) to the lesion depth (110 µm), and it was significantly higher in the blocks treated with 8DSS-FL or 8DSS-FH than in the NaF-treated blocks from 10 to 90 µm. These findings illustrate the potential of 8DSS for inhibiting enamel demineralization and for enhancing the anticaries effect of NaF.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel.
Collapse
Affiliation(s)
- Qichao Ruan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
43
|
Lv X, Yang Y, Han S, Li D, Tu H, Li W, Zhou X, Zhang L. Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries. Arch Oral Biol 2015; 60:1482-7. [PMID: 26263536 DOI: 10.1016/j.archoralbio.2015.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/22/2015] [Accepted: 07/13/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE In this study we give a preliminary study of a rationally designed small peptide, which is based on the enamel matrix protein amelogenin, to investigate its effect on remineralization of initial enamel caries lesions. DESIGN A novel peptide was designed and synthesized to investigate its effects on the remineralization of initial enamel carious lesions during pH cycling that simulates intra-oral conditions. Initial lesions were created in bovine enamel blocks, which were then pH-cycled for 12 days in the presence of 25μM peptide, 1g/L NaF (positive control), 50mM HEPES buffer(negative control). Before and after pH cycling, enamel blocks were analyzed by surface microhardness testing, polarized light microscopy and transverse microradiography. RESULTS Percentage of surface microhardness recovery (SMHR%) after pH cycling was significantly higher in peptide group than HEPES group. Lower lesion depth and less mineral mineral loss were found in peptide or NaF treatment groups after the cycling, and were significantly different to HEPES group. No significant differences were observed between the blocks treated with peptide and those treated with NaF. CONCLUSSION This study provides in vitro evidence that this amelogenin based peptide promotes enamel caries remineralization, offering a promising remineralizing biomaterial in initial enamel carious treatment.
Collapse
Affiliation(s)
- Xueping Lv
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yang Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Sili Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Danxue Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Huanxin Tu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Wei Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
44
|
Abstract
Biomimetic mineralisation is an alternative restorative methodology that imitates the natural process of mineralisation. We aimed to systematically review the laboratory methods on the biomimetic mineralisation of demineralised enamel. A search in the PubMed, ScienceDirect, and ISI Web of Science databases was performed. Clinical trials, reviews, non-English articles, animal teeth, non-tooth substrates, and irrelevant studies were excluded. After screening the titles and abstracts of initially searched articles, 20 papers remained for full-text analysis. Eight articles were identified from the references of the remaining papers. A total of 28 studies were included in this systematic review. We found that protein or protein analogues were used to mimic the function of natural protein in 23 studies. Bioactive components inspired by mussel, an agarose hydrogel model, a glycerine-enriched gelatine technique, and ethylenediaminetetraacetic acid, were also used for biomimetic mineralisation of enamel. These laboratory studies reported success in the biomimetic mineralisation of enamel. Potential further research on the biomimetic mineralisation of enamel was discussed.
Collapse
|
45
|
Shafiei F, Hossein BG, Farajollahi MM, Fathollah M, Marjan B, Tahereh JK. Leucine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: An in vitro study. SCANNING 2015; 37:179-185. [PMID: 25676352 DOI: 10.1002/sca.21196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
This study was carried out to obtain more information about the assembly of hydroxyapatite bundles formed in the presence of Leucine-Rich Amelogenin Peptide (LRAP) and to evaluate its effect on the remineralization of enamel defects through a biomimetic approach. One or 2 mg/mL LRAP solutions containing 2.5 mM of Ca(+2) and 1.5 mM phosphate were prepared (pH = 7.2) and stored at 37 °C for 24 h. The products of the reaction were studied using atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Vickers surface microhardness recovery (SMR%) of acid-etched bovine enamel, with or without LRAP surface treatment, were calculated to evaluate the influence of peptide on the lesion remineralization. Distilled water and 1 or 2 mg/mL LRAP solution (pH = 7.2) were applied on the lesions and the specimens were incubated in mineralization solution (2.5mM Ca(+2) , 1.5mM PO4 (-3) , pH = 7.2) for 24 h. One-way ANOVA and Tukey's multi-comparison tests were used for statistical analysis. The pattern of enamel surface repair was studied using FE-SEM. AFM showed the formation of highly organized hierarchical structures, composed of hydroxyapatite (HA) crystals, similar to the dental enamel microstructure. ANOVA procedure showed significant effect of peptide treatment on the calculated SMR% (p < 0.001). Tukey's test revealed that peptide treated groups had significantly higher values of SMR%. In conclusion, LRAP is able to regulate the formation of HA and enhances the remineralization of acid-etched enamel as a surface treatment agent.
Collapse
Affiliation(s)
- Farhad Shafiei
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Northern Kargar str., Hakim Highway, Tehran, Iran
| | - Bagheri G Hossein
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Northern Kargar str., Hakim Highway, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medicine/Cellular and Molecular Research Center, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Moztarzadeh Fathollah
- Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Biomaterials Group, Amirkabir University of Technology, Hafez str., Tehran, Iran
| | - Behroozibakhsh Marjan
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Northern Kargar str., Hakim Highway, Tehran, Iran
| | - Jafarzadeh Kashi Tahereh
- Department of Dental Biomaterials, School of Dentistry, Iranian Tissue Bank & Research Center, Research Center for Science and Technology, Tehran University of Medical Sciences, Northern Kargar str., Hakim Highway, Tehran, Iran
| |
Collapse
|
46
|
Padovano JD, Ravindran S, Snee PT, Ramachandran A, Bedran-Russo AK, George A. DMP1-derived peptides promote remineralization of human dentin. J Dent Res 2015; 94:608-14. [PMID: 25694469 DOI: 10.1177/0022034515572441] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Remineralization of dentin during dental caries is of considerable clinical interest. Dentin matrix protein 1 (DMP1) is a non-collagenous calcium-binding protein that plays a critical role in biomineralization. In the present study, we tested if peptides derived from DMP1 can be used for dentin remineralization. Peptide pA (pA, MW = 1.726 kDa) and peptide pB (pB, MW = 2.185), containing common collagen-binding domains and unique calcium-binding domains, were synthesized by solid-phase chemistry. An extreme caries lesion scenario was created by collagenase digestion, and the biomineral-nucleating potential of these peptides was ascertained when coated on collagenase-treated dentin matrix and control, native human dentin matrix under physiological levels of calcium and phosphate. Scanning electron microscopy analysis suggests that peptide pB was an effective nucleator when compared with pA. However, a 1:4 ratio of pA to pB was determined to be ideal for dentin remineralization, based on hydroxyapatite (HA) morphology and calcium/phosphorus ratios. Interestingly, HA was nucleated on collagenase-challenged dentin with as little as 20 min of 1:4 peptide incubation. Electron diffraction confirmed the presence of large HA crystals that produced a diffraction pattern indicative of a rod-like crystal structure. These findings suggest that DMP1-derived peptides may be useful to modulate mineral deposition and subsequent formation of HA when exposed to physiological concentrations of calcium and phosphate.
Collapse
Affiliation(s)
- J D Padovano
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - S Ravindran
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - P T Snee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - A Ramachandran
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - A K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - A George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Ruan Q, Moradian-Oldak J. Amelogenin and enamel biomimetics. J Mater Chem B 2015. [DOI: 10.1039/c5tb00163c and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mature tooth enamel is acellular and does not regenerate itself.
Collapse
Affiliation(s)
- Qichao Ruan
- Center for Craniofacial Molecular Biology
- Herman Ostrow School of Dentistry
- University of Southern California
- Los Angeles
- USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology
- Herman Ostrow School of Dentistry
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|