1
|
van den Akker GGH, Zacchini F, Housmans BAC, van der Vloet L, Caron MMJ, Montanaro L, Welting TJM. Current Practice in Bicistronic IRES Reporter Use: A Systematic Review. Int J Mol Sci 2021; 22:5193. [PMID: 34068921 PMCID: PMC8156625 DOI: 10.3390/ijms22105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.
Collapse
Affiliation(s)
- Guus Gijsbertus Hubert van den Akker
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Federico Zacchini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
| | - Bas Adrianus Catharina Housmans
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Laura van der Vloet
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Marjolein Maria Johanna Caron
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
- Programma Dipartimentale in Medicina di Laboratorio, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Tim Johannes Maria Welting
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| |
Collapse
|
2
|
Dimitrion P, Zhi Y, Clayton D, Apodaca GL, Wilcox MR, Johnson JW, Nimgaonkar V, D'Aiuto L. Low-Density Neuronal Cultures from Human Induced Pluripotent Stem Cells. MOLECULAR NEUROPSYCHIATRY 2017; 3:28-36. [PMID: 28879199 DOI: 10.1159/000476034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/21/2017] [Indexed: 12/31/2022]
Abstract
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented possibility to investigate defects occurring during neuronal differentiation in neuropsychiatric and neurodevelopmental disorders, but the density and intricacy of intercellular connections in neuronal cultures challenge currently available analytic methods. Low-density neuronal cultures facilitate the morphometric and functional analysis of neurons. We describe a differentiation protocol to generate low-density neuronal cultures (∼2,500 neurons/cm2) from human iPSC-derived neural stem cells/early neural progenitor cells. We generated low-density cultures using cells from 3 individuals. We also evaluated the morphometric features of neurons derived from 2 of these individuals, one harboring a microdeletion on chromosome 15q11.2 and the other without the microdeletion. An approximately 7.5-fold increase in the density of dendritic filopodia was observed in the neurons with the microdeletion, consistent with previous reports. Low-density neuronal cultures enable facile and unbiased comparisons of iPSC-derived neurons from different individuals or clones.
Collapse
Affiliation(s)
- Peter Dimitrion
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yun Zhi
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Dennis Clayton
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gerard L Apodaca
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madeleine R Wilcox
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vishwajit Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
D'Aiuto L, Zhi Y, Kumar Das D, Wilcox MR, Johnson JW, McClain L, MacDonald ML, Di Maio R, Schurdak ME, Piazza P, Viggiano L, Sweet R, Kinchington PR, Bhattacharjee AG, Yolken R, Nimgaonka VL, Nimgaonkar VL. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis 2015; 10:365-77. [PMID: 25629202 DOI: 10.1080/15476278.2015.1011921] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- a Department of Psychiatry ; Western Psychiatric Institute and Clinic ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Das DK, Tapias V, D'Aiuto L, Chowdari KV, Francis L, Zhi Y, Ghosh BA, Surti U, Tischfield J, Sheldon M, Moore JC, Fish K, Nimgaonkar V. Genetic and morphological features of human iPSC-derived neurons with chromosome 15q11.2 (BP1-BP2) deletions. MOLECULAR NEUROPSYCHIATRY 2015; 1:116-123. [PMID: 26528485 DOI: 10.1159/000430916] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Copy number variation on chromosome 15q11.2 (BP1-BP2) causes deletion of CYFIP1, NIPA1, NIPA2 and TUBGCP5; it also affects brain structure and elevates risk for several neurodevelopmental disorders that are associated with dendritic spine abnormalities. In rodents, altered cyfip1 expression changes dendritic spine morphology, motivating analyses of human neuronal cells derived from iPSCs (iPSC-neurons). METHODS iPSCs were generated from a mother and her offspring, both carrying the 15q11.2 (BP1-BP2) deletion, and a non-deletion control. Gene expression in the deletion region was estimated using quantitative real-time PCR assays. Neural progenitor cells (NPCs) and iPSC-neurons were characterized using immunocytochemistry. RESULTS CYFIP1, NIPA1, NIPA2 and TUBGCP5 gene expression was lower in iPSCs, NPCs and iPSC-neurons from the mother and her offspring in relation to control cells. CYFIP1 and PSD95 protein levels were lower in iPSC-neurons derived from the CNV bearing individuals using Western blot analysis. At 10 weeks post-differentiation, iPSC-neurons appeared to show dendritic spines and qualitative analysis suggested that dendritic morphology was altered in 15q11.2 deletion subjects compared with control cells. CONCLUSIONS The 15q11.2 (BP1-BP2) deletion is associated with reduced expression of four genes in iPSC-derived neuronal cells; it may also be associated altered iPSC-neuron dendritic morphology.
Collapse
Affiliation(s)
- D K Das
- University of Pittsburgh School of Medicine, Dept of Psychiatry
| | - V Tapias
- University of Pittsburgh, Dept. of Neurology
| | - L D'Aiuto
- University of Pittsburgh School of Medicine, Dept of Psychiatry
| | - K V Chowdari
- University of Pittsburgh School of Medicine, Dept of Psychiatry
| | - L Francis
- University of Pittsburgh School of Medicine, Dept of Psychiatry
| | - Y Zhi
- University of Pittsburgh School of Medicine, Dept of Psychiatry ; Tsinghua University School of Medicine
| | | | - U Surti
- University of Pittsburgh School of Medicine, Dept. of Pathology ; University of Pittsburgh, Graduate School of Public Health, Department of Human Genetics
| | - J Tischfield
- Dept. of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey
| | - M Sheldon
- Dept. of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey
| | - J C Moore
- Dept. of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey
| | - K Fish
- University of Pittsburgh School of Medicine, Dept of Psychiatry
| | - V Nimgaonkar
- University of Pittsburgh School of Medicine, Dept of Psychiatry ; University of Pittsburgh, Graduate School of Public Health, Department of Human Genetics
| |
Collapse
|
5
|
Ben-Yehudah A, Campanaro BM, Wakefield LM, Kinney TN, Brekosky J, Eisinger VM, Castro CA, Carlisle DL. Nicotine exposure during differentiation causes inhibition of N-myc expression. Respir Res 2013; 14:119. [PMID: 24499207 PMCID: PMC3828478 DOI: 10.1186/1465-9921-14-119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 10/11/2013] [Indexed: 11/10/2022] Open
Abstract
Background The ability of chemicals to disrupt neonatal development can be studied using embryonic stem cells (ESC). One such chemical is nicotine. Prenatal nicotine exposure is known to affect postnatal lung function, although the mechanisms by which it has this effect are not clear. Since fibroblasts are a critical component of the developing lung, providing structure and secreting paracrine factors that are essential to epithelialization, this study focuses on the differentiation of ESC into fibroblasts using a directed differentiation protocol. Methods Fibroblasts obtained from non-human primate ESC (nhpESC) differentiation were analyzed by immunohistochemistry, immunostaining, Affymetrix gene expression array, qPCR, and immunoblotting. Results Results of these analyses demonstrated that although nhpESCs differentiate into fibroblasts in the presence of nicotine and appear normal by some measures, including H&E and SMA staining, they have an altered gene expression profile. Network analysis of expression changes demonstrated an over-representation of cell-cycle related genes with downregulation of N-myc as a central regulator in the pathway. Further investigation demonstrated that cells differentiated in the presence of nicotine had decreased N-myc mRNA and protein expression and longer doubling times, a biological effect consistent with downregulation of N-myc. Conclusions This study is the first to use primate ESC to demonstrate that nicotine can affect cellular differentiation from pluripotency into fibroblasts, and in particular, mediate N-myc expression in differentiating ESCs. Given the crucial role of fibroblasts throughout the body, this has important implications for the effect of cigarette smoke exposure on human development not only in the lung, but in organogenesis in general.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diane L Carlisle
- Division of Developmental and Regenerative Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
6
|
D'Aiuto L, Di Maio R, Heath B, Raimondi G, Milosevic J, Watson AM, Bamne M, Parks WT, Yang L, Lin B, Miki T, Mich-Basso JD, Arav-Boger R, Sibille E, Sabunciyan S, Yolken R, Nimgaonkar V. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells. PLoS One 2012; 7:e49700. [PMID: 23209593 PMCID: PMC3507916 DOI: 10.1371/journal.pone.0049700] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 10/12/2012] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS) cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs), neural progenitor cells (NPCs) and neurons suggests that (i) iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii) Neural stem cells have impaired differentiation when infected by HCMV; (iii) NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv) most iPS-derived neurons are not permissive to HCMV infection; and (v) infected neurons have impaired calcium influx in response to glutamate.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
D'Aiuto L, Di Maio R, Mohan KN, Minervini C, Saporiti F, Soreca I, Greenamyre JT, Chaillet JR. Mouse ES cells overexpressing DNMT1 produce abnormal neurons with upregulated NMDA/NR1 subunit. Differentiation 2011; 82:9-17. [PMID: 21492995 DOI: 10.1016/j.diff.2011.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
High levels of DNA methyltransferase 1 (DNMT1), hypermethylation, and downregulation of GAD(67) and reelin have been described in GABAergic interneurons of patients with schizophrenia (SZ) and bipolar (BP) disorders. However, overexpression of DNMT1 is lethal, making it difficult to assess the direct effect of high levels of DNMT1 on neuronal development in vivo. We therefore used Dnmt1(tet/tet) mouse ES cells that overexpress DNMT1 as an in vitro model to investigate the impact of high levels of DNMT1 on neuronal differentiation. Although there is down-regulation of DNMT1 during early stages of differentiation in wild type and Dnmt1(tet/tet) ES cell lines, neurons derived from Dnmt1(tet/tet) cells showed abnormal dendritic arborization and branching. The Dnmt1(tet/tet) neuronal cells also showed elevated levels of functional N-methyl d-aspartate receptor (NMDAR), a feature also reported in some neurological and neurodegenerative disorders. Considering the roles of reelin and GAD(67) in neuronal networking and excitatory/inhibitory balance, respectively, we studied methylation of these genes' promoters in Dnmt1(tet/tet) ES cells and neurons. Both reelin and GAD(67) promoters were not hypermethylated in the Dnmt1(tet/tet) ES cells and neurons, suggesting that overexpression of DNMT1 may not directly result in methylation-mediated repression of these two genes. Taken together, our results suggest that overexpression of DNMT1 in ES cells results in an epigenetic change prior to the onset of differentiation. This epigenetic change in turn results in abnormal neuronal differentiation and upregulation of functional NMDA receptor.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Microbiology and Molecular Genetics, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bolhassani A, Taheri T, Taslimi Y, Zamanilui S, Zahedifard F, Seyed N, Torkashvand F, Vaziri B, Rafati S. Fluorescent Leishmania species: development of stable GFP expression and its application for in vitro and in vivo studies. Exp Parasitol 2010; 127:637-45. [PMID: 21187086 DOI: 10.1016/j.exppara.2010.12.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 02/06/2023]
Abstract
Reporter genes have proved to be an excellent tool for studying disease progression. Recently, the green fluorescent protein (GFP) ability to quantitatively monitor gene expression has been demonstrated in different organisms. This report describes the use of Leishmania tarentolae (L. tarentolae) expression system (LEXSY) for high and stable levels of GFP production in different Leishmania species including L. tarentolae, L. major and L. infantum. The DNA expression cassette (pLEXSY-EGFP) was integrated into the chromosomal ssu locus of Leishmania strains through homologous recombination. Fluorescent microscopic image showed that GFP transgenes can be abundantly and stably expressed in promastigote and amastigote stages of parasites. Furthermore, flow cytometry analysis indicated a clear quantitative distinction between wild type and transgenic Leishmania strains at both promastigote and amastigote forms. Our data showed that the footpad lesions with GFP-transfected L. major are progressive over time by using fluorescence small-animal imaging system. Consequently, the utilization of stable GFP-transfected Leishmania species will be appropriate for in vitro and in vivo screening of anti-leishmanial drugs and vaccine development as well as understanding the biology of the host-parasite interactions at the cellular level.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
D'Aiuto L, Marzulli M, Mohan KN, Borowczyk E, Saporiti F, VanDemark A, Chaillet JR. Dissection of structure and function of the N-terminal domain of mouse DNMT1 using regional frame-shift mutagenesis. PLoS One 2010; 5:e9831. [PMID: 20352123 PMCID: PMC2843745 DOI: 10.1371/journal.pone.0009831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/27/2010] [Indexed: 11/18/2022] Open
Abstract
Deletion analysis of mouse DNMT1, the primary maintenance methyltransferase in mammals, showed that most of the N-terminal regulatory domain (amino acid residues 412-1112) is required for its enzymatic activity. Although analysis of deletion mutants helps to identify regions of a protein sequence required for a particular activity, amino acid deletions can have drastic effects on protein structure and/or stability. Alternative approaches represented by rational design and directed evolution are resource demanding, and require high-throughput selection or screening systems. We developed Regional Frame-shift Mutagenesis (RFM) as a new approach to identify portions required for the methyltransferase activity of DNMT1 within the N-terminal 89-905 amino acids. In this method, a short stretch of amino acids in the wild-type protein is converted to a different amino acid sequence. The resultant mutant protein retains the same amino acid length as the wild type, thereby reducing physical constrains on normal folding of the mutant protein. Using RFM, we identified three small regions in the amino-terminal one-third of the protein that are essential for DNMT1 function. Two of these regions (amino acids 124-160 and 341-368) border a large disordered region that regulates maintenance methylation activity. This organization of DNMT1's amino terminus suggests that the borders define the position of the disordered region within the DNMT1 protein, which in turn allows for its proper function.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - K. Naga Mohan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ewa Borowczyk
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Federica Saporiti
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - J. Richard Chaillet
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
10
|
Dube A, Gupta R, Singh N. Reporter genes facilitating discovery of drugs targeting protozoan parasites. Trends Parasitol 2009; 25:432-9. [PMID: 19720564 DOI: 10.1016/j.pt.2009.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/24/2009] [Accepted: 06/22/2009] [Indexed: 02/03/2023]
Abstract
Transfection of protozoan parasites, such as Plasmodium, Leishmania, Trypanosoma and Toxoplasma, with various reporter gene constructs, has revolutionized studies to understand the biology of the host-parasite interactions at the cellular level. It has provided impetus to the development of rapid and reliable drug screens both for established drugs and for new molecules against different parasites and other pathogens. Furthermore, reporter genes have proved to be an excellent and promising tool for studying disease progression. Here, we review the recent advances made by using reporter genes for in vitro and in vivo drug screening, high-throughput screening, whole-animal non-invasive imaging for parasites and for the study of several aspects of host-parasite interactions.
Collapse
Affiliation(s)
- Anuradha Dube
- Division of Parasitology, Central Drug Research Institute, Lucknow 226 001, India.
| | | | | |
Collapse
|