1
|
Istomina PV, Gorchakov AA, Paoin C, Yamabhai M. Phage display for discovery of anticancer antibodies. N Biotechnol 2024; 83:205-218. [PMID: 39186973 DOI: 10.1016/j.nbt.2024.08.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Antibodies and antibody-based immunotherapeutics are the mainstays of cancer immunotherapy. Expanding the repertoire of cancer-specific and cancer-associated epitopes targetable with antibodies represents an important area of research. Phage display is a powerful approach allowing the use of diverse antibody libraries to be screened for binding to a wide range of targets. In this review, we summarize the basics of phage display technology and highlight the advances in anticancer antibody identification and modification via phage display platform. Finally, we describe phage display-derived anticancer monoclonal antibodies that have been approved to date or are in clinical development.
Collapse
Affiliation(s)
- Polina V Istomina
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Lavrentieva 8/2, Novosibirsk 630090, Russia
| | - Chatchanok Paoin
- Medical Oncology Division, Institute of Medicine, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Chorpunkul A, Boonyuen U, Limkittikul K, Saengseesom W, Phongphaew W, Putchong I, Chankeeree P, Theerawatanasirikul S, Hajitou A, Benjathummarak S, Pitaksajjakul P, Lekcharoensuk P, Ramasoota P. Development of novel canine phage display-derived neutralizing monoclonal antibody fragments against rabies virus from immunized dogs. Sci Rep 2024; 14:22939. [PMID: 39358469 PMCID: PMC11447112 DOI: 10.1038/s41598-024-73339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Animal rabies is a potentially fatal infectious disease in mammals, especially dogs. Currently, the number of rabies cases in pet dogs is increasing in several regions of Thailand. However, no passive postexposure prophylaxis (PEP) has been developed to combat rabies infection in animals. As monoclonal antibodies (MAbs) are promising biological therapies for postinfection, we developed a canine-neutralizing MAb against rabies virus (RABV) via the single-chain variable fragment (scFv) platform. Immunized phage-displaying scFv libraries were constructed from PBMCs via the pComb3XSS system. Diverse canine VHVLκ and VHVLλ libraries containing 2.4 × 108 and 1.3 × 106 clones, respectively, were constructed. Five unique clones that show binding affinity with the RABV glycoprotein were then selected, of which K9RABVscFv1 and K9RABVscFv16 showed rapid fluorescent foci inhibition test (RFFIT) neutralizing titers above the human protective level of 0.5 IU/ml. Finally, in silico docking predictions revealed that the residues on the CDRs of these neutralizing clones interact mainly with similar antigenic sites II and III on the RABV glycoprotein. These candidates may be used to develop complete anti-RABV MAbs as a novel PEP protocol in pet dogs and other animals.
Collapse
Affiliation(s)
- Apidsada Chorpunkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wachiraporn Saengseesom
- Queen Saovabha Memorial Institute (WHO Collaborating Center for Research on Rabies), Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Iyarath Putchong
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Penpitcha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Amin Hajitou
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pannamthip Pitaksajjakul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Xiang S, Zhu C, Zhou Y, Wu W, Zhang Y, Chen C, Wang F. Facile Generation of Neutralizing Antibodies on Tyrosine Phosphorylated IRS1 by Epitope-Directed Elicitation. ACS Chem Biol 2024; 19:2050-2059. [PMID: 39137393 DOI: 10.1021/acschembio.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Generating antibodies specific to the functional epitope containing phosphotyrosine remains highly challenging. Here, we create an "epitope-directed immunogen" by incorporating fluorosulfate-l-tyrosine (FSY) with cross-linking activities into a specific tyrosine phosphorylation site of insulin receptor substrate 1 (IRS1) and immunizing mice to elicit site-specific antibody responses. By taking advantage of antibody clonal selection and evolution in vivo, we efficiently identified antibodies that target the IRS1 Y612 epitope and are capable of neutralizing the binding interactions between IRS1 and p85α mediated by the phosphorylation of Y612. This epitope-directed antibody elicitation by encoding the cross-linking reactivity in the immunogen potentially enables a general method for facile generation of neutralizing antibodies to protein tyrosine phosphorylation sites.
Collapse
Affiliation(s)
- Shuqin Xiang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Chaoyang Zhu
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Yinjian Zhou
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Weiping Wu
- Suzhou Institute for Biomedical Research, Suzhou 215028, Jiangsu, China
| | - Yuhan Zhang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Chen Chen
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Feng Wang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Suzhou Institute for Biomedical Research, Suzhou 215028, Jiangsu, China
- Beijing Translational Center for Biopharmaceuticals, Beijing 100101, China
| |
Collapse
|
4
|
Chiawpanit C, Wathikthinnakorn M, Sawasdee N, Phanthaphol N, Sujjitjoon J, Junking M, Yamabhai M, Panaampon J, Yenchitsomanus PT, Panya A. Precision immunotherapy for cholangiocarcinoma: Pioneering the use of human-derived anti-cMET single chain variable fragment in anti-cMET chimeric antigen receptor (CAR) NK cells. Int Immunopharmacol 2024; 136:112273. [PMID: 38810311 DOI: 10.1016/j.intimp.2024.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Cholangiocarcinoma (CCA) presents a significant clinical challenge which is often identified in advanced stages, therby restricting the effectiveness of surgical interventions for most patients. The high incidence of cancer recurrence and resistance to chemotherapy further contribute to a bleak prognosis and low survival rates. To address this pressing need for effective therapeutic strategies, our study focuses on the development of an innovative cellular immunotherapy, specifically utilizing chimeric antigen receptor (CAR)-engineered natural killer (NK) cells designed to target the cMET receptor tyrosine kinase. In this investigation, we initiated the screening of a phage library displaying human single-chain variable fragment (ScFv) to identify novel ScFv molecules with specificity for cMET. Remarkably, ScFv11, ScFv72, and ScFv114 demonstrated exceptional binding affinity, confirmed by molecular docking analysis. These selected ScFvs, in addition to the well-established anti-cMET ScFvA, were integrated into a CAR cassette harboring CD28 transmembrane region-41BB-CD3ζ domains. The resulting anti-cMET CAR constructs were transduced into NK-92 cells, generating potent anti-cMET CAR-NK-92 cells. To assess the specificity and efficacy of these engineered cells, we employed KKU213A cells with high cMET expression and KKU055 cells with low cMET levels. Notably, co-culture of anti-cMET CAR-NK-92 cells with KKU213A cells resulted in significantly increased cell death, whereas no such effect was observed with KKU055 cells. In summary, our study identified cMET as a promising therapeutic target for CCA. The NK-92 cells, armed with the anti-cMET CAR molecule, have shown strong ability to kill cancer cells specifically, indicating their potential as a promising treatment for CCA in the future.
Collapse
Affiliation(s)
- Chutipa Chiawpanit
- Cell Engineering for Cancer Therapy Research Group, Chiang Mai University, Chiang Mai, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Methi Wathikthinnakorn
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattaporn Phanthaphol
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agriculture Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jutatip Panaampon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aussara Panya
- Cell Engineering for Cancer Therapy Research Group, Chiang Mai University, Chiang Mai, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Raeisi H, Safarnejad MR, Alavi SM, de Oliveira Andrade M, Farrokhi N, Elahinia SA. Transient expression of anti-HrpE scFv antibody reduces the hypersensitive response in non-host plant against bacterial phytopathogen Xanthomonas citri subsp. citri. Sci Rep 2024; 14:7121. [PMID: 38531981 DOI: 10.1038/s41598-024-57355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Citrus canker is a bacterial disease caused by Xanthomonas citri subsp. citri (Xcc) that affects the citrus industry worldwide. Hrp pili subunits (HrpE), an essential component of Type III secretion system (T3SS) bacteria, play a crucial role in the pathogenesis of Xcc by transporting effector proteins into the host cell and causing canker symptoms. Therefore, development of antibodies that block HrpE can suppress disease progression. In this study, a specific scFv detecting HrpE was developed using phage display technique and characterized using sequencing, ELISA, Western blotting, and molecular docking. In addition, a plant expression vector of pCAMBIA-scFvH6 was constructed and agroinfiltrated into Nicotiana tabacum cv. Samson leaves. The hypersensitive response (HR) in the leaves of transformed and non-transformed plants was evaluated by inoculating leaves with Xcc. After three rounds of biopanning of the phage library, a specific human scFv antibody, named scFvH6, was identified that showed high binding activity against HrpE in ELISA and Western blotting. Molecular docking results showed that five intermolecular hydrogen bonds are involved in HrpE-scFvH6 interaction, confirming the specificity and high binding activity of scFvH6. Successful transient expression of pCAMBIA-scFvH6 in tobacco leaves was verified using immunoassay tests. The binding activity of plant-produced scFvH6 to detect HrpE in Western blotting and ELISA was similar to that of bacterial-produced scFvH6 antibody. Interestingly, tobacco plants expressing scFvH6 showed a remarkable reduction in HR induced by Xcc compared with control plants, so that incidence of necrotic lesions was significantly higher in non-transformed controls (≥ 1.5 lesions/cm2) than in the plants producing scFvH6 (≤ 0.5 lesions/cm2) after infiltration with Xcc inoculum. Our results revealed that the expression of scFvH6 in tobacco leaves can confer resistance to Xcc, indicating that this approach could be considered to provide resistance to citrus bacterial canker disease.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran.
| | - Mohammad Reza Safarnejad
- Department of Plant Viruses, Agricultural Research Education and Extension Organization of Iran, Iranian Research Institute of Plant Protection, Tehran, Iran
| | - Seyed Mehdi Alavi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Maxuel de Oliveira Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Naser Farrokhi
- Departement of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University G.C, Evin, Tehran, Iran
| | - Seyed Ali Elahinia
- Department of Plant Protection, College of Agricultural Sciences, Guilan University, Rasht, Iran
| |
Collapse
|
6
|
Rodríguez S, García-García A, Garcia-Calvo E, Esteban V, Pastor-Vargas C, Díaz-Perales A, García T, Martín R. Generation of an Ovomucoid-Immune scFv Library for the Development of Novel Immunoassays in Hen's Egg Detection. Foods 2023; 12:3831. [PMID: 37893724 PMCID: PMC10606182 DOI: 10.3390/foods12203831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hen's egg allergy is the second most common food allergy among infants and young children. The possible presence of undeclared eggs in foods poses a significant risk to sensitized individuals. Therefore, reliable egg allergen detection methods are needed to ensure compliance with food labeling and improve consumer protection. This work describes for the first time the application of phage display technology for the generation of a recombinant antibody aimed at the specific detection of hen's ovomucoid. First, a single-chain variable fragment (scFv) library was constructed from mRNA isolated from the spleen of a rabbit immunized with ovomucoid. After rounds of biopanning, four binding clones were isolated and characterized. Based on the best ovomucoid-binding candidate SR-G1, an indirect phage enzyme-linked immunosorbent assay (phage-ELISA) was developed, reaching limits of detection and quantitation of 43 and 79 ng/mL of ovomucoid, respectively. The developed ELISA was applied to the analysis of a wide variety of food products, obtaining a good correlation with a commercial egg detection assay used as a reference. Finally, in silico modeling of the antigen-antibody complex revealed that the main interactions most likely occur between the scFv heavy chain and the ovomucoid domain-III, the most immunogenic region of this allergen.
Collapse
Affiliation(s)
- Santiago Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Aina García-García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Eduardo Garcia-Calvo
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Vanesa Esteban
- Departamento de Alergia e Inmunología, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), 28040 Madrid, Spain;
| | - Carlos Pastor-Vargas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Araceli Díaz-Perales
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), 28223 Madrid, Spain;
| | - Teresa García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Rosario Martín
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| |
Collapse
|
7
|
Wongjard S, Aiemderm P, Monkhang K, Jaengwang K, Tabtimmai L, Kraiya C, Choowongkomon K, Swainson NM. Selection, alkaline phosphatase fusion, and application of single-chain variable fragment (scFv) specific to NT-proBNP as electrochemical immunosensor for heart failure. Heliyon 2023; 9:e19710. [PMID: 37809905 PMCID: PMC10558999 DOI: 10.1016/j.heliyon.2023.e19710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Heart failure has a high global prevalence, with symptoms such as breathlessness, fatigue, and swelling. Early detection is crucial, as the condition worsens over time and can be fatal. This study identified the single-chain variable fragment (scFv) that specifically binds to the heart failure biomarker N-terminal pro B-type natriuretic peptide (NT-proBNP) using biopanning techniques for the development of an alternative diagnostic tool. Ten clones were identified that bound to the target peptide, with two clones (scFv-16 and scFv-36) selected for further analysis. Soluble scFv-16 and scFv-36 were produced and fused with alkaline phosphatase (AP) for potential applications. The binding efficiency and specificity levels of scFv to natriuretic peptides were evaluated using surface plasmon resonance (SPR) analysis. The values of the dissociation constant (KD) for NT-proBNP of scFv-16, scFv-36, scFv-16-AP, and scFv-36-AP were in the range 3.72 × 10-7-3.42 × 10-8 M with high specificity. All constructed scFvs had specificity to NT-proBNP, while not binding to A-type (ANP) and C-type (CNP) natriuretic peptides. When AP was combined, the scFv had a slightly higher yield of expression. The enzyme activity of scFv-36-AP was observed first by the absorption at 405 nm at a minimum of 44 nM and then by the naked eye at a minimum of 88 nM. Additionally, the potential application of NT-proBNP binding scFv was preliminarily investigated using an electrochemical technique to directly detect NT-proBNP in phosphate buffer saline. The results revealed the limit of detection at 69.09 pg/mL, which was less than the cutoff value (150 pg/mL) to discharge patients or healthy people. These findings provided promising biomolecules for the development of a reliable and sensitive diagnostic tool for heart failure.
Collapse
Affiliation(s)
- Sureeporn Wongjard
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, 10900, Chatuchak, Bangkok, Thailand
| | - Pongsakorn Aiemderm
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, 10900, Chatuchak, Bangkok, Thailand
| | - Kanchana Monkhang
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, 10900, Chatuchak, Bangkok, Thailand
| | - Kittitat Jaengwang
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, 10900, Chatuchak, Bangkok, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok, 10800, Thailand
| | - Charoenkwan Kraiya
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, 10900, Chatuchak, Bangkok, Thailand
| | | |
Collapse
|
8
|
Rasri N, Tabtimmai L, Kraiya C, Yamabhai M, Sinthuvanich C, Rattanasrisomporn J, Choowongkomon K. Generation of a Single-Chain Variable Fragment Antibody against Feline Immunoglobulin G for Biosensor Applications. ACS OMEGA 2023; 8:27688-27696. [PMID: 37546656 PMCID: PMC10399156 DOI: 10.1021/acsomega.3c03581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
For many decades, feline infectious disease has been among the most common health problems and a leading cause of death in cats. These diseases include toxoplasmosis, feline leukemia virus (FeLV), and particularly feline immunodeficiency virus (FIV) disease. Early diagnosis is essential to increase the chance of successful treatment. Generally, measurement of the IgG level is considered to be indicative of an individual's immune status for a particular pathogen. The antibodies specific to feline IgG are crucial components for the development of a detection kit. In this study, feline IgG-bound scFv was selected using phage display technology. Three rounds of biopanning were conducted against purified feline IgG. Through an indirect enzyme-linked immunosorbent assay (ELISA), two scFv clones demonstrating the best binding ability to feline IgG were chosen for biochemical characterization. In addition, the selected scFv (N14) was expressed and purified in a bacterial system. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the size of the purified N14 was 29 kDa. A sandwich ELISA was used to evaluate the binding capacity of the purified scFv to feline IgG. As expected, the purified N14 had the capacity to bind feline IgG. Furthermore, N14 was modified to create a scFv-alkaline phosphatase (scFv-AP) fusion platform. The surface plasmon resonance (SPR) results revealed that N14-AP bound to feline IgG with an affinity binding value of 0.3 ± 0.496 μM. Additionally, the direct ELISA demonstrated the binding capacity of N14-AP to feline IgG in both cell lysate and purified protein. Moreover, N14-AP could be applied to detect feline IgG based on electrosensing with a detection limit of 10.42 nM. Overall, this study successfully selected a feline IgG-bound scFv and developed a scFv-AP platform that could be further engineered and applied in a feline infectious disease detection kit.
Collapse
Affiliation(s)
- Natchaya Rasri
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Lueacha Tabtimmai
- Department
of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Charoenkwan Kraiya
- Electrochemistry
and Optical Spectroscopy Center of Excellence, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Montarop Yamabhai
- Molecular
Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chomdao Sinthuvanich
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Jatuporn Rattanasrisomporn
- Department
of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| |
Collapse
|
9
|
Srila W, Min TT, Sumphanapai T, Rangnoi K, Berkmen M, Yamabhai M. Production and applications of fluorobody from redox-engineered Escherichia coli. Appl Microbiol Biotechnol 2023; 107:1959-1970. [PMID: 36729226 PMCID: PMC10050041 DOI: 10.1007/s00253-023-12395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Efficient selection and production of antibody fragments in microbial systems remain to be a challenging process. To optimize microbial production of single-chain variable fragments (scFvs), we have chosen five model targets, 1) a hapten, Zearalenone (ZEN) mycotoxin, along with infectious agents 2) rabies virus, 3) Propionibacterium acnes, 4) Pseudomonas aeruginosa, and a cancer cell 5) acute myeloid leukemia cell line (HL-60). The scFv binders were affinity selected from a non-immunized human phage display scFv antibody library and genetically fused to the N-terminus of emerald green fluorescent protein (EmGFP). The scFv-EmGFP fusion constructs were subcloned into an expression vector, under the control of T7 promoter, C-terminally tagged with hexa-histidine and expressed in different Escherichia coli (E. coli) hosts. This enabled the detection of cells that expressed the correct scFv-EmGFP fusion, termed fluorobody, via bright fluorescent signal in the cytoplasm. Among the three E. coli hosts tested, an engineered E. coli B strain called SHuffle B that promotes disulfide bond formation in the cytoplasm appeared to be the most appropriate host. The recombinant fluorobodies were well expressed (2-8 mg/L), possessed the fluorescence property of EmGFP, and retained the ability to bind to their cognate targets. Their specific bindings were demonstrated by ELISA, fluorescence-linked immunosorbent assay (FLISA), flow cytometry, and fluorescent microscope imaging. The fluorobody expression platform in this study could be further adopted as a one-step immunostaining technique based on scFv, isolated from phage display library to numerous desired targets. KEY POINTS: • E. coli SHuffle express T7 is a suitable expression host for scFv-EmGFP (fluorobody) • Only the clones harboring scFv-EmGFP plasmid will show bright fluorescent signal • This platform can be used to produce fluorobodies for numerous purposes.
Collapse
Affiliation(s)
- Witsanu Srila
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thae Thae Min
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thitima Sumphanapai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kuntalee Rangnoi
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | | | - Montarop Yamabhai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
10
|
Ge Q, Teng M, Li X, Guo Q, Tao Y. An epitope-directed selection strategy facilitating the identification of Frizzled receptor selective antibodies. Structure 2023; 31:33-43.e5. [PMID: 36513066 DOI: 10.1016/j.str.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
The lack of incorporating epitope information into the selection process makes the conventional antibody screening method less effective in identifying antibodies with desired functions. Here, we developed an epitope-directed antibody selection method by designing a directed library favoring the target epitope and a precise "counter" antigen for clearing irrelevant binders in the library. With this method, we successfully isolated an antibody, pF7_A5, that targets the less conserved region on the FZD2/7 CRD as designed. Guided by the structure of pF7_A5-FZD2CRD, a further round of evolution was conducted together with the "counter" antigen selection strategy, and ultimately, an FZD2-specific antibody and an FZD7-preferred antibody were obtained. Because of targeting the predefined functional site, all these antibodies exhibited the expected modulatory activity on the Wnt pathway. Together, the method developed here will be useful in antibody drug discovery, and the identified FZD antibodies will have clinical potential in FZD-related cancer therapy.
Collapse
Affiliation(s)
- Qiangqiang Ge
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Maikun Teng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China.
| | - Xu Li
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China.
| | - Qiong Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China.
| | - Yuyong Tao
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China; Joint Laboratory of Innovation in Life Sciences University of Science and Technology of China (USTC) and Changchun Zhuoyi Biological Co. Ltd., 130616 Changchun, P.R. China.
| |
Collapse
|
11
|
Kim JW, Min SW, Lee J, Shin HG, Choi HL, Yang HR, Lee JH, Cho YB, Shim H, Lee S. Development and Characterization of Phage-Display-Derived Novel Human Monoclonal Antibodies against the Receptor Binding Domain of SARS-CoV-2. Biomedicines 2022; 10:biomedicines10123274. [PMID: 36552031 PMCID: PMC9775448 DOI: 10.3390/biomedicines10123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in an ongoing global pandemic crisis, caused by the life-threatening illness coronavirus disease 2019 (COVID-19). Thus, the rapid development of monoclonal antibodies (mAbs) to cope with COVID-19 is urgently necessary. In this study, we used phage display to develop four human mAbs specific to the receptor-binding domain (RBD) of SARS-CoV-2. Our intensive in vitro functional analyses demonstrated that K102.1, an anti-SARS-CoV-2 RBD-specific mAb, exerted potent neutralizing activity against pseudoviral and live viral infection and the interaction between SARS-CoV-2 RBD and human angiotensin-converting enzyme 2. Monotherapy with K102.1 also revealed the therapeutic potential against SARS-CoV-2 infection in vivo. Further, this study developed a sandwich enzyme-linked immunosorbent assay with a non-competing mAb pair, K102.1 and K102.2, that accurately detected the RBDs of SARS-CoV-2 wild-type and variants with high sensitivity in the picomolar range. These findings suggest that the phage-display-based mAb selection from an established antibody library may be an effective strategy for the rapid development of mAbs against the constantly evolving SARS-CoV-2.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Sung Won Min
- Research Center, SG Medical, Seoul 05548, Republic of Korea
| | - Jichul Lee
- Research Center, SG Medical, Seoul 05548, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Yea Bin Cho
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Hyunbo Shim
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sukmook Lee
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
- Correspondence:
| |
Collapse
|
12
|
Antoine D, Mohammadi M, McDermott CE, Walsh E, Johnson PA, Wawrousek KE, Wall JG. Isolation of SARS-CoV-2-blocking recombinant antibody fragments and characterisation of their binding to variant spike proteins. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1028186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2. From its initial appearance in Wuhan, China in 2019, it developed rapidly into a global pandemic. In addition to vaccines, therapeutic antibodies play an important role in immediately treating susceptible individuals to lessen severity of the disease. In this study, phage display technology was utilised to isolate human scFv antibody fragments that bind the receptor-binding domain (RBD) of SARS-CoV-2 Wuhan-Hu-1 spike protein. Of eight RBD-binding scFvs isolated, two inhibited interaction of RBD with ACE2 protein on VeroE6 cells. Both scFvs also exhibited binding to SARS-CoV-2 Delta variant spike protein but not to Omicron variant spike protein in a Raman spectroscopy immunotest. The study demonstrates the potential of recombinant antibody approaches to rapidly isolate antibody moieties with virus neutralisation potential.
Collapse
|
13
|
Sumphanapai T, Chester K, Sawatnatee S, Yeung J, Yamabhai M. Targeting acute myeloid cell surface using a recombinant antibody isolated from whole-cell biopanning of a phage display human scFv antibody library. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:205. [PMID: 36175701 DOI: 10.1007/s12032-022-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
To discover new therapeutic antibodies for treatment of acute myeloid leukemia (AML) without the requirement of a known antigen, a human single-chain variable fragment (scFv) library was used to isolate novel antibody fragments recognizing HL-60 AML cells. After three rounds of biopanning, scFv-expressing phages were selected to test for binding to the target cell by flow cytometry. The clone with highest binding specificity to HL-60 cells (designated y1HL63D6) was further investigated. Fluorescent staining indicated that y1HL63D6 scFv bound to a target located on the cell surface. Whole immunoglobulin, IgG-y1HL63D6 was then generated and tested for the binding against bone marrow mononuclear cells (BMMCs) from AML patients. Significantly higher fluorescent signals were observed for some patient samples when compared to normal BMMCs or non-AML patients' BMMCs. Next, the IgG-y1HL63D6 format was tested for antibody-dependent cell cytotoxicity (ADCC). The results demonstrated that IgG-y1HL63D6 but not the control antibody, trastuzumab, could mediate specific killing of HL-60 target cells. In conclusion, our results indicate that specific antibodies can be isolated by biopanning whole cells with a non-immunized human scFv antibody phage display library and that the isolated antibody against HL-60 cells showed therapeutic potential.
Collapse
Affiliation(s)
- Thitima Sumphanapai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Kerry Chester
- University College London Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - Surasak Sawatnatee
- Hematology Unit, Sunpasitthiprasong Hospital, Ubon Ratchathani, 34000, Thailand
| | - Jenny Yeung
- University College London Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
14
|
Isolation and characterization of human anti-CD20 single-chain variable fragment (scFv) from a Naive human scFv library. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:177. [PMID: 35999405 PMCID: PMC9398497 DOI: 10.1007/s12032-022-01757-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/30/2022] [Indexed: 12/03/2022]
Abstract
CD20 is a receptor expressed on B cells with anonymous functions. The receptor is the target of some food and drug administration (FDA) approved monoclonal antibodies (mAb), such as Rituximab and Obinutuzumab. Blocking CD20 using the aforementioned mAbs has improved Non-Hodgkin Lymphoma (NHL) therapy. All commercial mAbs on the market were raised in non-human animal models. Antibody humanization is inevitable to mitigate immune response. In order to keep the affinity of antibody intact, humanizations are only applied to frameworks which do not eliminate immune response to foreign CDRs sequences. To address this issue, human monoclonal antibody deemed imperative. Herein, we report the isolation and characterization of a fully human single-chain variable fragment (scFv) against the large loop of CD20 from naïve human antibody library. After three rounds of phage display, a library of enriched anti-CD20 scFv was obtained. The polyclonal phage ELISA demonstrated that after each round of phage display, the population of anti-CD20 scFv became dominant. The scFv, G7, with the most robust interaction with CD20 was selected for further characterization. The specificity of G7 scFv was evaluated by ELISA, western blot, and flow cytometry. Detecting CD20 in western blot showed that G7 binds to a linear epitope on CD20 large loop. Next, G7 scFv was also bound to Raji cell (CD20+) while no interaction was recorded with K562 cell line (CD20—). This data attested that the epitope recognized by G7 scFv is accessible on the cell membrane. The affinity of G7 scFv was estimated to be 63.41 ± 3.9 nM. Next, the sensitivity was evaluated to be 2 ng/ml. Finally, G7 scFv tertiary structure was modeled using Graylab software. The 3D structure illustrated two domains of variable heavy (VH) and variable light (VL) connected through a linker. Afterward, G7 scFv and CD20 were applied to in-silico docking using ClusPro to illustrate the interaction of G7 with the large loop of CD20. As the selected scFv from the human antibody library is devoid of interspecies immunogenic amino acids sequences, no humanization or any other modifications are required prior to clinical applications.
Collapse
|
15
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
16
|
Antoine D, Mohammadi M, Vitt M, Dickie JM, Jyoti SS, Tilbury MA, Johnson PA, Wawrousek KE, Wall JG. Rapid, Point-of-Care scFv-SERS Assay for Femtogram Level Detection of SARS-CoV-2. ACS Sens 2022; 7:866-873. [PMID: 35271769 PMCID: PMC8961876 DOI: 10.1021/acssensors.1c02664] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 12/19/2022]
Abstract
Rapid, sensitive, on-site identification of SARS-CoV-2 infections is an important tool in the control and management of COVID-19. We have developed a surface-enhanced Raman scattering (SERS) immunoassay for highly sensitive detection of SARS-CoV-2. Single-chain Fv (scFv) recombinant antibody fragments that bind the SARS-CoV-2 spike protein were isolated by biopanning a human scFv library. ScFvs were conjugated to magnetic nanoparticles and SERS nanotags, followed by immunocomplex formation and detection of the SARS-CoV-2 spike protein with a limit of detection of 257 fg/mL in 30 min in viral transport medium. The assay also detected B.1.1.7 ("alpha"), B.1.351 ("beta"), and B.1.617.2 ("delta") spike proteins, while no cross-reactivity was observed with the common human coronavirus HKU1 spike protein. Inactivated whole SARS-CoV-2 virus was detected at 4.1 × 104 genomes/mL, which was 10-100-fold lower than virus loads typical of infectious individuals. The assay exhibited higher sensitivity for SARS-CoV-2 than commercial lateral flow assays, was compatible with viral transport media and saliva, enabled rapid pivoting to detect new virus variants, and facilitated highly sensitive, point-of-care diagnosis of COVID-19 in clinical and public health settings.
Collapse
Affiliation(s)
- Delphine Antoine
- Microbiology,
College of Science and Engineering, and SFI Centre for Medical Devices
(CÚRAM), National University of Ireland,
Galway (NUI Galway), Galway H91 TK33, Ireland
| | - Moein Mohammadi
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Madison Vitt
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Julia Marie Dickie
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | | | - Maura A. Tilbury
- Microbiology,
College of Science and Engineering, and SFI Centre for Medical Devices
(CÚRAM), National University of Ireland,
Galway (NUI Galway), Galway H91 TK33, Ireland
| | - Patrick A. Johnson
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Karen E. Wawrousek
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - J. Gerard Wall
- Microbiology,
College of Science and Engineering, and SFI Centre for Medical Devices
(CÚRAM), National University of Ireland,
Galway (NUI Galway), Galway H91 TK33, Ireland
| |
Collapse
|
17
|
You T, Ding Y, Chen H, Song G, Huang L, Wang M, Hua X. Development of competitive and noncompetitive immunoassays for clothianidin with high sensitivity and specificity using phage-displayed peptides. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128011. [PMID: 34896720 DOI: 10.1016/j.jhazmat.2021.128011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Clothianidin is a widely used pesticide that has been banned from outdoor use by the European Union due to its toxicity. To improve the sensitivity and specificity of existing clothianidin immunoassays, we developed competitive and noncompetitive immunoassays for clothianidin based on phage-displayed peptides. Cyclic 8-, 9-, and 10-residue peptide libraries were constructed using an optimized phagemid pComb-pVIII to prevent the loss of theoretical library diversity. Twenty-eight peptidomimetics and two anti-immunocomplex peptides were isolated through a blended panning process and used to develop competitive and noncompetitive phage enzyme-linked immunosorbent assays (P-ELISAs), respectively. After optimization, the half inhibition concentration (IC50) and half saturation concentration (SC50) of competitive and noncompetitive P-ELISAs were 3.83 ± 0.23 and 0.45 ± 0.02 ng/mL, respectively. Competitive P-ELISA showed 2.6-18.2% cross-reactivity with imidaclothiz, nitenpyram and imidacloprid. Importantly, noncompetitive P-ELISA, which has the best specificity and great sensitivity for clothianidin, showed no cross-reactivity with the analogs. The average recoveries of competitive and noncompetitive P-ELISAs were 73.8-104.1% and 76.6-102.2%, respectively, while the relative standard deviations were ≤ 11.0%. In addition, the results of P-ELISAs in the analysis of blind samples were consistent with those of high-performance liquid chromatography.
Collapse
Affiliation(s)
- Tianyang You
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - He Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Guangyue Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Lianrun Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
18
|
Wutti-in Y, Sujjitjoon J, Sawasdee N, Panya A, Kongkla K, Yuti P, Yongpitakwattana P, Thepmalee C, Junking M, Chieochansin T, Poungvarin N, Yamabhai M, Yenchitsomanus PT. Development of a Novel Anti-CD19 CAR Containing a Fully Human scFv and Three Costimulatory Domains. Front Oncol 2022; 11:802876. [PMID: 35117999 PMCID: PMC8804167 DOI: 10.3389/fonc.2021.802876] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Second-generation anti-CD19-chimeric antigen receptor T cells (anti-CD19-CAR2 T cells) are effective for treating B-cell malignancies; however, anti-CD19-CAR2 T cells can induce human anti-mouse immune responses because anti-CD19 single-chain variable fragment (scFv) in the CAR molecules is derived from a murine FMC63 (mFMC63) monoclonal antibody. Consequently, the persistence of mFMC63-CAR2 T cells and their therapeutic efficiency in patients are decreased, which results in tumor relapse. In an attempt to remedy this shortcoming, we generated a new anti-CD19-CAR T cells containing fully human anti-CD19 scFv (Hu1E7-CAR4 T cells) to pre-clinically evaluate and compare with mFMC63-CAR4 T cells. The human anti-CD19 scFv (Hu1E7) was isolated from a human scFv phage display library and fused to the hinge region of CD8α, the transmembrane domain of CD28, three intracellular costimulatory domains (CD28, 4-1BB, and CD27), and a CD3ζ signaling domain (28BB27ζ). Compared to mFMC63-CAR2 T cells (BBζ) and mFMC63-CAR3 (BB27ζ), the mFMC63-CAR4 T cells (28BB27ζ) exerted superior anti-tumor activity against Raji (CD19+) target cell. The Hu1E7-CAR4 and mFMC63-CAR4 T cells demonstrated comparable cytotoxicity and proliferation. Interestingly, compared to mFMC63-CAR4 T cells, the Hu1E7-CAR4 T cells secreted lower levels of cytokines (IFN-γ and TNF-α), which may be due to the lower binding affinity of Hu1E7-CAR4 T cells. These findings demonstrated the successfulness in creation of a new CAR T cells containing a novel fully human-derived scFv specific to CD19+ cancer cells. In vivo studies are needed to further compare the anti-tumor efficacy and safety of Hu1E7-CAR4 T cells and mFMC63-CAR4 T cells.
Collapse
Affiliation(s)
- Yupanun Wutti-in
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Pa-thai Yenchitsomanus, ; ; Jatuporn Sujjitjoon, ;
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aussara Panya
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Katesara Kongkla
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Petlada Yongpitakwattana
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutamas Thepmalee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Pa-thai Yenchitsomanus, ; ; Jatuporn Sujjitjoon, ;
| |
Collapse
|
19
|
Application of Recombinant Human scFv Antibody as a Powerful Tool to Monitor Nitrogen Fixing Biofertilizer in Rice and Legume. Microbiol Spectr 2021; 9:e0209421. [PMID: 34908451 PMCID: PMC8672896 DOI: 10.1128/spectrum.02094-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium is an endophytic bacterium under investigation as an efficient biofertilizer for sustainable legume-rice rotational cropping system. Monitoring and bio-imaging of this nitrogen fixing bacterium is essential for the study of plant-microbe evolution, soil microbiome, as well as quality control in organic farming. While phage display antibody technology has been widely used to generate recombinant antibody for myriad medical purposes, so far, this technology has been minimally applied in the agricultural sector. In this study, single-chain variable fragments (scFv) against two Bradyrhizobium strains SUTN9-2 (yiN92-1e10) and DOA9 (yiDOA9-162) were isolated from a human phage display antibody library. Specific binding of scFv was demonstrated by ELISA and confocal-immunofluorescence imaging techniques. Bradyrhizobium localization in both endophytic and bacteroid forms could be observed inside rice tissue and plant nodule, respectively. Moreover, successful application of the recombinant antibody for the evaluation of nodule occupancy was also demonstrated in comparison with standard GUS-staining method. The results of this study showed for the first time the potential use of human phage display scFv antibody for imaging and monitoring of Bradyrhizobium biofertilizer and thus could be further applied for point-of-detection of bacterial inoculum in the legume-rice rotational crop system. IMPORTANCE Human scFv antibody generated from phage display technology was successfully used for the generation of specific recombinant antibodies: yiN92-1e10 and yiDOA9-162 for the detection of Bradyrhizobium strains SUTN9-2 and DOA9, respectively. These two recombinant scFv antibodies could be used for precise detection of the rhizobia both in symbiosis with legume and endophyte in rice tissue by ELISA and immunofluorescent staining, during legume-rice rotational cropping system in the field. This methodology can be further employed for the study of other plant-microbe interactions and monitoring of biofertilizer in diverse sustainable cropping systems as well as in precision agriculture.
Collapse
|
20
|
Eskafi AH, Bagheri KP, Behdani M, Yamabhai M, Shahbazzadeh D, Kazemi-Lomedasht F. Development and characterization of human single chain antibody against Iranian Macrovipera lebetina snake venom. Toxicon 2021; 197:106-113. [DOI: 10.1016/j.toxicon.2021.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
|
21
|
Zhou S, Xu L, Kuang H, Xiao J, Xu C. Immunoassays for rapid mycotoxin detection: state of the art. Analyst 2021; 145:7088-7102. [PMID: 32990695 DOI: 10.1039/d0an01408g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread presence of mycotoxins in nature not only poses a huge health risk to people in terms of food but also causes incalculable losses to the agricultural economy. As a rapidly developing technology in recent years, the mycotoxin immunoassay technology has approached or even surpassed the traditional chromatography technology in some aspects. Using this approach, the lateral flow immunoassay (LFIA) has attracted the interest of researchers due to its user-friendly operation, short time consumption, little interference, low cost, and ability to process a large number of samples at the same time. This paper provides an overview of the immunogens commonly used for mycotoxins, the development of antibodies, and the use of gold nanoparticles, quantum dots, carbon nanoparticles, enzymes, and fluorescent microsphere labeling materials for the construction of LFIAs to improve detection sensitivity. The analytical performance, detection substrates, detection limits or detection ranges of LFIA for mycotoxins have been listed in recent years. Finally, we describe the future outlook for the field, predicting that portable mobile detection devices and simultaneous quantitative detection of multiple mycotoxins is one of the important directions for future development.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| | | | | | | | | |
Collapse
|
22
|
Perween R, Ahmed S, Shrivastava T, Parray HA, Singh B, Pindari KS, Sharma C, Shukla S, Sinha S, Panchal AK, Kumar R. A rapid novel strategy for screening of antibody phage libraries for production, purification, and functional characterization of amber stop codons containing single-chain antibody fragments. Biotechnol Prog 2021; 37:e3136. [PMID: 33620776 DOI: 10.1002/btpr.3136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
Phage display antibody (PDA) libraries, allows the rapid isolation and characterization of high specificity monoclonal antibodies for therapeutic and diagnostic applications. However, selection of positive binding clones from synthetic and semi-synthetic libraries has an inherent bias towards clones containing randomly generated amber stop codons, complicating the identification of high affinity binding antibodies. We screened Tomlinson I and J library against receptor binding domain (RBD) of SARS CoV2, eight clones which showed positive binding in phage ELISA, contained one or more amber stop codons in their single-chain antibody fragment (scFv) gene sequences. The presence of amber stop codons within the antibody sequence causes the premature termination of soluble form of scFv expression in nonsuppressor Escherichia coli strain. In the present study, we have used a novel strategy that allows soluble expression of scFvs having amber stop codon in their gene sequences (without phage PIII protein fusion), in the suppressor strain. This strategy of introduction of Ochre (TAA) codon at the junction of scFv and PIII gene, speeds up the initial screening process which is critical for selecting the right scFvs for further studies. Present strategy leads to the identification of a scFv, B8 that binds specifically with nanomolar affinity toward SARS CoV 2 RBD, which otherwise lost in terms of traditional methodology.
Collapse
Affiliation(s)
- Reshma Perween
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Shubbir Ahmed
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tripti Shrivastava
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Hilal A Parray
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Balwant Singh
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Kamal S Pindari
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Chandresh Sharma
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Shivangi Shukla
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Subrata Sinha
- Department of Biochemistry, third floor, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar Panchal
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Rajesh Kumar
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
23
|
Min TT, Yamabhai M. Human Hexa-Histidine-Tagged Single-Chain Variable Fragments for Bioimaging of Bacterial Infections. ACS OMEGA 2021; 6:762-774. [PMID: 33458528 PMCID: PMC7808144 DOI: 10.1021/acsomega.0c05340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The single-chain variable fragment (scFv) of monoclonal antibodies is a promising recombinant nanostructure for various medical applications, including bioimaging and targeted therapy. While numerous scFv antibodies against eukaryotic cell surface proteins (especially cancer biomarkers) have been generated and engineered to suit various purposes, only a few specific scFv against bacterial cell surfaces have been developed, especially those of human origin. Recent incidents of emerging multidrug-resistant pathogenic bacteria and the realization of the importance of a balanced microbiota on the health of the host has led to more interests in the development of recombinant antibacterial antibodies as a detection probe or targeted therapy for bacterial infections. This study reports the generation of two specific human antibacterial scFv using phage display antibody technology. The recombinant scFv fragments of about 30 kDa and a diameter of 5 nm were produced and purified from engineered Escherichia coli that can enhance cytosolic disulfide bond formation. As a proof of principle, Propionibacterium acnes and Pseudomonas aeruginosa were used as model Gram-positive and Gram-negative bacteria, respectively. Specificity at the strain and species level to both planktonic and biofilm forms of these bacteria were demonstrated in various assay formats, namely, ELISA, flow cytometry, western blot, immunofluorescence, and electron microscopy via the hexa-histidine tag. This recombinant scFv generation platform can be applied for other bacteria, and since the scFv obtained has a benefit of being a human origin, it could be conveniently engineered for various therapeutic or theranostic applications with minimized adverse immunoreaction.
Collapse
|
24
|
Somasundaram R, Choraria A, Antonysamy M. An approach towards development of monoclonal IgY antibodies against SARS CoV-2 spike protein (S) using phage display method: A review. Int Immunopharmacol 2020; 85:106654. [PMID: 32512271 PMCID: PMC7266779 DOI: 10.1016/j.intimp.2020.106654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
The present state of diagnostic and therapeutic developmental race for vaccines against the SARS CoV-2 (nCOVID-19) focuses on prevention and control of this global pandemic which also represents a critical challenge to the global health community. Although development of novel vaccines can prevent the SARS CoV-2 infections, it is still impeded by several other factors and therefore novel approaches towards treatment and management of this disease is the urgent need. Passive immunotherapy plays a vital role as a possible alternative to meet this challenge and among various antibody sources, chicken egg yolk antibodies (IgY) can be used as an alternative to mammalian antibodies which have been previously studied against SARS CoV outbreak in China. In this review, we discuss the strategies for the use of chicken egg yolk (IgY) antibodies in the development of rapid diagnosis and immunotherapy against SARS CoV-2. Also, IgY antibodies have previously been used against various respiratory bacterial and viral infections in humans and animals. Compared to mammalian antibodies (IgG), chicken egg yolk antibodies (IgY) have greater binding affinity to specific antigens, ease of extraction and lower production costs, hence possessing remarkable pathogen-neutralizing activity of pathogens in respiratory and lungs. We provide an overall importance for the use of monoclonal chicken egg yolk antibodies (IgY) using phage display method describing their potential passive immunotherapeutic application for the treatment and prevention of SARS CoV-2 infection which is simple, fast and safe way of approach for treating patients effectively.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Antibody Affinity
- Antibody Specificity
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Testing
- Cell Surface Display Techniques
- Chickens
- Clinical Laboratory Techniques
- Coronavirus Infections/diagnosis
- Coronavirus Infections/therapy
- Egg Yolk
- Forecasting
- Humans
- Immunization, Passive
- Immunoglobulins/immunology
- Mammals/immunology
- Models, Molecular
- Pandemics
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/therapy
- RNA, Viral/genetics
- SARS-CoV-2
- Single-Chain Antibodies/immunology
- Species Specificity
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- COVID-19 Serotherapy
Collapse
Affiliation(s)
| | - Ankit Choraria
- Department of Microbiology, PSG College of Arts & Science, Coimbatore, TN, India.
| | - Michael Antonysamy
- Department of Microbiology, PSG College of Arts & Science, Coimbatore, TN, India.
| |
Collapse
|
25
|
Nazari A, Samianifard M, Rabie H, Mirakabadi AZ. Recombinant antibodies against Iranian cobra venom as a new emerging therapy by phage display technology. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190099. [PMID: 32695146 PMCID: PMC7346683 DOI: 10.1590/1678-9199-jvatitd-2019-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The production of antivenom from immunized animals is an established treatment for snakebites; however, antibody phage display technology may have the capacity to delivery results more quickly and with a better match to local need. Naja oxiana, the Iranian cobra, is a medically important species, responsible for a significant number of deaths annually. This study was designed as proof of principle to determine whether recombinant antibodies with the capacity to neutralize cobra venom could be isolated by phage display. Methods: Toxic fractions from cobra venom were prepared by chromatography and used as targets in phage display to isolate recombinant antibodies from a human scFv library. Candidate antibodies were expressed in E. coli HB2151 and purified by IMAC chromatography. The selected clones were analyzed in in vivo and in vitro experiments. Results: Venom toxicity was contained in two fractions. Around a hundred phage clones were isolated against each fraction, those showing the best promise were G12F3 and G1F4. While all chosen clones showed low but detectable neutralizing effect against Naja oxiana venom, clone G12F3 could inhibit PLA2 activity. Conclusion: Therefore, phage display is believed to have a good potential as an approach to the development of snake antivenom.
Collapse
Affiliation(s)
- Ali Nazari
- Department of Biochemistry and Proteomics, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maedeh Samianifard
- Department of Biochemistry and Proteomics, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hadi Rabie
- Department of Venomous Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Abbas Zare Mirakabadi
- Department of Venomous Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
26
|
Chen J, Zhao Y, Feng W. Selection, preparation and characterization of scFv against human lipocalin 6 by phage display technology. Protein Expr Purif 2020; 171:105627. [PMID: 32205279 DOI: 10.1016/j.pep.2020.105627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/15/2022]
Abstract
Human lipocalin 6 (hLCN6) is a newly discovered epididymal-specific secreted protein, capable of binding to the head and tail of spermatozoa and involved in sperm maturation. Anti-hLCN6 monoclonal antibody coupled immunomagnetic beads (IMBs) can be effectively used for the separation and forensic identification of sperm cells from mixed stains. But the source of monoclonal antibody is limited. In this study, an immunized mouse phage display antibody library was constructed and the single-chain variable fragments (scFvs) against hLCN6 were screened. The selection was performed using four rounds of biopanning and positive clones were validated by phage ELISA. Two anti-hLCN6 scFv clones with highest affinity were selected and sequencing result showed that the two sequences were identical. After prokaryotic expression and purification, the purified scFv could specifically recognize the hLCN6 in the lysate of human sperm cells and epididymis by western blot analysis, without any cross-reactivity with cellular antigens in female epithelial cells. The dissociation constant (Kd) of anti-hLCN6 scFv was 6.69 × 10-7 mol/L measured by indirect ELISA. Therefore, our work not only provides a useful tool for further exploration of the biological functions of hLCN6, but also opens up new research avenues for the separation of sperm cells from mixed stains based on immuno-binding reaction.
Collapse
Affiliation(s)
- Jiong Chen
- Department of Forensic Biology, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Yue Zhao
- CITIC Heavy Industries Co., Ltd, Luoyang, 471003, China
| | - Wei Feng
- Department of Forensic Biology, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
27
|
Kazemi-Lomedasht F, Yamabhai M, Sabatier JM, Behdani M, Zareinejad MR, Shahbazzadeh D. Development of a human scFv antibody targeting the lethal Iranian cobra (Naja oxiana) snake venom. Toxicon 2019; 171:78-85. [DOI: 10.1016/j.toxicon.2019.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 11/24/2022]
|
28
|
Basu K, Green EM, Cheng Y, Craik CS. Why recombinant antibodies - benefits and applications. Curr Opin Biotechnol 2019; 60:153-158. [PMID: 30849700 PMCID: PMC6728236 DOI: 10.1016/j.copbio.2019.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/22/2018] [Accepted: 01/21/2019] [Indexed: 01/07/2023]
Abstract
Antibodies (Abs) are ubiquitous reagents for biological and biochemical research and are rapidly expanding into new therapeutic areas. They are one of the most important probes for determining how proteins function under normal and pathophysiological conditions. Abs are required for the quantification of targets, detection of temporal and spatial patterns of protein expression in cells and tissues, and identification of interacting partners and their biological activities. Their remarkable specificity and unique binding properties can facilitate three-dimensional structure determination using X-ray crystallography and electron cryomicroscopy. While hybridoma technology that involves animal immunization is often productive, many antigen targets do not generate useful Abs. This is particularly true if unique states of the target or critical non-immunogenic target sequences need to be recognized by the Abs. By using the methods of recombinant antibody generation, identification, and engineering, these 'hybridoma-refractory' antigens can be readily targeted. Specific, reproducible, and renewable recombinant Abs are proving to be invaluable reagents in applications ranging from biological discovery to structure determination of challenging macromolecules.
Collapse
Affiliation(s)
- Koli Basu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - Evan M Green
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States; Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| |
Collapse
|
29
|
Development of an anti-CD45RA-quantum dots conjugated scFv to detect leukemic cancer stem cells. Mol Biol Rep 2019; 47:225-234. [DOI: 10.1007/s11033-019-05122-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/09/2019] [Indexed: 11/26/2022]
|
30
|
Norbury LJ, Basałaj K, Bąska P, Zawistowska-Deniziak A, Kalinowska A, Wilkowski P, Wesołowska A, Wędrychowicz H. Generation of a single-chain variable fragment phage display antibody library from naïve mice panned against Fasciola hepatica antigens. Exp Parasitol 2019; 205:107737. [PMID: 31401060 DOI: 10.1016/j.exppara.2019.107737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Monoclonal antibodies have a wide range of applications in basic and applied research as well as in the medical and pharmaceutical industries. Phage display antibody libraries offer an alternative to hybridoma technology for the generation of monoclonal antibodies and can be applied to high-throughput screening and facilitate the generation of novel antibodies. Despite their utility in several fields of research there has been limited application of antibody libraries in the study of trematode parasites. Fasciola hepatica causes considerable loss to the agriculture sector and is also a human pathogen. The parasite's excretory/secretory material contains numerous molecules that facilitate its invasion and survival within the mammalian host, including cathepsin B and L proteases. F. hepatica cathepsin B2 is expressed during the initial weeks of infection and has suspected roles in immune evasion and as a digestive enzyme in the parasite's gut; it is considered a good target for vaccination or therapeutic inhibitors. In this study, we produced a single-chain variable fragment (scFv) phage display library from naïve mice. The library was used to identify several scFv that can bind to antigens from adult F. hepatica homogenate, and a scFv that can bind to F. hepatica cathepsin B2. The results highlight the potential applicability of such a library to facilitate the study of F. hepatica and other parasites. This is the first report of the application of a naïve phage display antibody library to the study of F. hepatica.
Collapse
Affiliation(s)
- Luke J Norbury
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Przemysław Wilkowski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Agnieszka Wesołowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Halina Wędrychowicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| |
Collapse
|
31
|
Generation of human and rabbit recombinant antibodies for the detection of Zearalenone by phage display antibody technology. Talanta 2019; 201:397-405. [DOI: 10.1016/j.talanta.2019.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 01/15/2023]
|
32
|
Kumar R, Parray HA, Shrivastava T, Sinha S, Luthra K. Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol 2019; 135:907-918. [PMID: 31170490 DOI: 10.1016/j.ijbiomac.2019.06.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 12/29/2022]
Abstract
Monoclonal antibodies (mAbs) and their derivatives have achieved remarkable success as medicine, targeting both diagnostic and therapeutic applications associated with communicable and non-communicable diseases. In the last 3 to 4 decades, tremendous success has been manifested in the field of cancer therapy, autoimmune diseases, cardiovascular and infectious diseases. MAbs are the fastest growing class of biopharmaceuticals, with more than 25 derivatives are in clinical use and 7 of these have been isolated through phage display technology. Phage display technology has gained impetus in the field of medical and health sciences, as a large repertoire of diverse recombinant antibodies, targeting various antigens have been generated in a short span of time. A prominent number of phage display derived antibodies are already approved for therapy and significant numbers are currently in clinical trials. In this review we have discussed the various strategies employed for generation of monoclonal antibodies; their advantages, limitations and potential therapeutic applications. We also discuss the potential of phage display antibody libraries in isolation of monoclonal antibodies.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India; Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Hilal Ahmed Parray
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
33
|
Selection and expression of CD40 single chain variable fragment by phage display and evaluation of tumor specific immune activation. Int Immunopharmacol 2019; 71:224-232. [DOI: 10.1016/j.intimp.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 01/27/2019] [Accepted: 03/08/2019] [Indexed: 01/27/2023]
|
34
|
Luo J, Yang L, Long Z, Xiao Z, Sun X, Zhuang S, Xie L, Wang W, Zhang G, Qu Y, Liu T. Construction and preliminary identification of a prokaryotic expression single-chain antibody fragments library against Streptococcus pneumoniae from antibody-producing cells in human tonsil. Bioengineered 2019; 10:162-171. [PMID: 31088324 PMCID: PMC6527077 DOI: 10.1080/21655979.2019.1616492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Tonsillitis is the inflammation of the tonsils due to infection, many patients ultimately have to undergo tonsillectomy. In order to improve the accuracy of diagnosis and even create a new treatment for tonsillitis, we constructed a prokaryotic expression single-chain antibody fragment library against Streptococcus pneumoniae with immunoglobulin heavy chain variable region (VH), κ light chain (Vκ), and λ light chain (Vλ) genes by using human tonsil tissue. Plasmid DNA sequencing showed that single-chain antibodies were complete and constructed correctly. The binding activity of recombinant clones was detected by enzyme-linked immunosorbent assay (ELISA), results showed that the binding activity and specificity of anti-S. pneumoniae single-chain fragment variable (scfv) is proved to be successful. The single-chain antibody may be an attractive strategy for tonsillitis etiologic diagnosis and therapy.
Collapse
Affiliation(s)
- Jiaqi Luo
- a Departments of Otolaryngology-Head & Neck Surgery , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Lu Yang
- a Departments of Otolaryngology-Head & Neck Surgery , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Zhen Long
- a Departments of Otolaryngology-Head & Neck Surgery , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Zhiwen Xiao
- a Departments of Otolaryngology-Head & Neck Surgery , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Xiaomei Sun
- a Departments of Otolaryngology-Head & Neck Surgery , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Shimin Zhuang
- a Departments of Otolaryngology-Head & Neck Surgery , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Liangen Xie
- a Departments of Otolaryngology-Head & Neck Surgery , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Wei Wang
- a Departments of Otolaryngology-Head & Neck Surgery , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Guanping Zhang
- a Departments of Otolaryngology-Head & Neck Surgery , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Yue Qu
- b Department of Pediatrics , University of Texas Medical Branch at Galveston , Guangzhou , People's Republic of China
| | - Tianrun Liu
- a Departments of Otolaryngology-Head & Neck Surgery , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , People's Republic of China
| |
Collapse
|
35
|
Abstract
Modern analysis of food and feed is mostly focused on development of fast and reliable portable devices intended for field applications. In this review, electrochemical biosensors based on immunological reactions and aptamers are considered in the determination of mycotoxins as one of most common contaminants able to negatively affect human health. The characteristics of biosensors are considered from the point of view of general principles of bioreceptor implementation and signal transduction providing sub-nanomolar detection limits of mycotoxins. Moreover, the modern trends of bioreceptor selection and modification are discussed as well as future trends of biosensor development for mycotoxin determination are considered.
Collapse
|
36
|
Zhang F, Chen Y, Yang L, Zhu J. Construction and characterization of porcine single-chain fragment variable antibodies that neutralize transmissible gastroenteritis virus in vitro. Arch Virol 2019; 164:983-994. [PMID: 30729994 PMCID: PMC7087081 DOI: 10.1007/s00705-019-04156-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/02/2019] [Indexed: 11/17/2022]
Abstract
Transmissible gastroenteritis virus (TGEV) infection causes severe diarrhea in piglets and imposes a significant economic burden on pig farms. Single-chain fragment variable (scFv) antibodies effectively inhibit virus infection and could be a potential therapeutic reagent for preventing disease. In this study, a recombinant scFv antibody phage display library was constructed from peripheral blood lymphocytes of piglets infected with TGEV. The library was screened with four rounds of biopanning using purified TGEV antigen, and scFv antibodies that bound to TGEV were obtained. The scFv gene was subcloned into the pET-28a(+), and the constituted plasmid was introduced into Escherichia coli BL21 (DE3) for protein expression. All three scFv clones identified had neutralizing activity against TGEV. An immunofluorescence assay and western blot analysis demonstrated that two scFv antibodies reacted with the spike protein of TGEV. These results indicate that scFv antibodies provide protection against viral infection in vitro and may be a therapeutic candidate for both prevention and treatment of TGEV infection in swine.
Collapse
Affiliation(s)
- Fanqing Zhang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, People's Republic of China
| | - Yuxue Chen
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, People's Republic of China.,Shanghai Frontan Animal Health Co., Ltd., Shanghai, 201502, People's Republic of China
| | - Liang Yang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, People's Republic of China.,Shanghai Frontan Animal Health Co., Ltd., Shanghai, 201502, People's Republic of China
| | - Jianguo Zhu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, People's Republic of China. .,School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai JiaoTong university, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
37
|
Jalilzadeh-Razin S, Mantegi M, Tohidkia MR, Pazhang Y, Pourseif MM, Barar J, Omidi Y. Phage antibody library screening for the selection of novel high-affinity human single-chain variable fragment against gastrin receptor: an in silico and in vitro study. ACTA ACUST UNITED AC 2019; 27:21-34. [PMID: 30607886 DOI: 10.1007/s40199-018-0233-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND As a membrane G protein coupled receptors (GPCRs) family, gastrin/cholecystokinin-2 receptor (CCK2R) plays a key role in the initiation and development of gastric cancer. OBJECTIVES Targeting CCK2R by immunotherapeutics such as single-chain variable fragments (scFvs) may provide an effective treatment modality against gastric cancer. Thus, the main objective of this study was to isolate scFvs specific to CCK2R. METHODS To isolate scFvs specific to the CCK2R, we capitalized on a semi-synthetic diverse phage antibody library (PAL) and a solution-phase biopanning process. The library was panned against a biotinylated peptide of the second extracellular loop (ECL2) of CCK2R. After four rounds of biopanning, the selected soluble scFv clones were screened by enzyme-linked immunosorbent assay (ELISA) and examined for specific binding to the peptide. The selected scFvs were purified using immobilized metal affinity chromatography (IMAC). The binding affinity and specificity of the scFvs were examined by the surface plasmon resonance (SPR), immunoblotting and flow cytometry assays and molecular docking using ZDOCK v3.0.2. RESULTS Ten different scFvs were isolated, which displayed binding affinity ranging from 0.68 to 8.0 (nM). Immunoblotting and molecular docking analysis revealed that eight scFvs were able to detect the denatured form of CCK2R protein. Of the isolated scFvs, two scFvs showed high-binding affinity to the human gastric adenocarcinoma AGS cells. CONCLUSIONS Based on our findings, a couple of the selected scFvs showed markedly high-binding affinity to immobilized CCK2R peptide and CCK2R-overexpressing AGS cells. Therefore, these scFvs are proposed to serve as targeting and/or treatment agents in the diagnosis and immunotherapy of CCK2R-positive tumors. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sepideh Jalilzadeh-Razin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Malihe Mantegi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Islamic Azad University of Urmia, Urmia, Iran
| | - Mohammad R Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yaghub Pazhang
- Department of Biochemistry, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Therapeutic Antibody Discovery in Infectious Diseases Using Single-Cell Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:89-102. [PMID: 29943298 DOI: 10.1007/978-981-13-0502-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the discovery of mouse hybridoma technology by Kohler and Milstein in 1975, significant progress has been made in monoclonal antibody production. Advances in B cell immortalization and phage display technologies have generated a myriad of valuable monoclonal antibodies for diagnosis and treatment. Technological breakthroughs in various fields of 'omics have shed crucial insights into cellular heterogeneity of a biological system in which the functional individuality of a single cell must be considered. Based on this important concept, remarkable discoveries in single-cell analysis have made in identifying and isolating functional B cells that produce beneficial therapeutic monoclonal antibodies. In this review, we will discuss three traditional methods of antibody discovery. Recent technological platforms for single-cell antibody discovery will be reviewed. We will discuss the application of the single-cell analysis in finding therapeutic antibodies for human immunodeficiency virus and emerging Zika arbovirus.
Collapse
|
39
|
Wang Y, Shan Y, Gao X, Gong R, Zheng J, Zhang XD, Zhao Q. Screening and expressing HIV-1 specific antibody fragments in Saccharomyces cerevisiae. Mol Immunol 2018; 103:279-285. [PMID: 30342371 DOI: 10.1016/j.molimm.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/26/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023]
Abstract
Yeast displaying techniques have been widely used for identifying novel single-chain variable fragments (scFvs) and engineering their binding properties. In this study, we establish a set of vectors for scFv screening and production in the yeast system of Saccharomyces cerevisiae. This suite includes a display vector pYS for screening of recombinant scFv libraries as well as an expression vector pYE for production of scFv candidates in Saccharomyces cerevisiae. The display vector, pYS, give the identification of the HIV-1-specific scFv clones from one scFv display library by fluorescence-activated cell sorting. Subsequently, the expression vector pYE can offer high quality scFvs of interest up to hundreds of microgram scale for bioactivity analysis. As the result, one identified scFv was confirmed to exhibit HIV-1 neutralization activity in a cell line-based pseudovirus assay. The advantage of this system enables the identical post-translation of mammalian scFvs in the same host cells. Therefore, this vector set can be useful for the rapid screening and expression of antibody genes.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyu Gao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Zheng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China; Institute of Translational Medicine, Faculty of Heath Sciences, University of Macau, Macau, China
| | - Xiaohua Douglas Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China; Institute of Translational Medicine, Faculty of Heath Sciences, University of Macau, Macau, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China; Institute of Translational Medicine, Faculty of Heath Sciences, University of Macau, Macau, China.
| |
Collapse
|
40
|
Kumar R, Kumari R, Khan L, Sankhyan A, Parray HA, Tiwari A, Wig N, Sinha S, Luthra K. Isolation and Characterization of Cross-Neutralizing Human Anti-V3 Single-Chain Variable Fragments (scFvs) Against HIV-1 from an Antigen Preselected Phage Library. Appl Biochem Biotechnol 2018; 187:1011-1027. [DOI: 10.1007/s12010-018-2862-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
41
|
Rangnoi K, Choowongkomon K, O'Kennedy R, Rüker F, Yamabhai M. Enhancement and Analysis of Human Antiaflatoxin B1 (AFB1) scFv Antibody-Ligand Interaction Using Chain Shuffling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5713-5722. [PMID: 29781609 DOI: 10.1021/acs.jafc.8b01141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A human antiaflatoxin B1 (AFB1) scFv antibody (yAFB1-c3), selected from a naı̈ve human phage-displayed scFv library, was used as a template for improving and analysis of antibody-ligand interactions using the chain-shuffling technique. The variable-heavy and variable-light (VH/VL)-shuffled library was constructed from the VH of 25 preselected clones recombined with the VL of yAFB1-c3 and vice versa. Affinity selection from these libraries demonstrated that the VH domain played an important role in the binding of scFv to free AFB1. Therefore, in the next step, VH-shuffled scFv library was constructed from variable-heavy (VH) chain repertoires, amplified from the naı̈ve library, recombined with the variable-light (VL) chain of the clone yAFB1-c3. This library was then used to select a specific scFv antibody against soluble AFB1 by a standard biopanning method. Three clones that showed improved binding properties were isolated. Amino acid sequence analysis indicated that the improved clones have amino acid mutations in framework 1 (FR1) and the complementarity determining region (CDR1) of the VH chain. One clone, designated sAFH-3e3, showed 7.5-fold improvement in sensitivity over the original scFv clone and was selected for molecular binding studies with AFB1. Homology modeling and molecular docking were used to compare the binding of this and the original clones. The results confirmed that VH is more important than VL for AFB1 binding.
Collapse
Affiliation(s)
- Kuntalee Rangnoi
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agriculture Technology , Suranaree University of Technology , Nakhon Ratchasima 3000 , Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science , Kasetsart University , 50 Ngam Wong Wan Road, Chatuchak , Bangkok 10900 , Thailand
| | - Richard O'Kennedy
- School of Biotechnology and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Florian Rüker
- Department of Biotechnology , University of National Resource and Life Sciences , Muthgasse 18 , Vienna A-1190 , Austria
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agriculture Technology , Suranaree University of Technology , Nakhon Ratchasima 3000 , Thailand
| |
Collapse
|
42
|
The Use of Phage Display and Yeast Based Expression System for the Development of a Von Willebrand Factor Propeptide Assay: Development of a Von Willebrand Factor Propeptide Assay. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6232091. [PMID: 29992156 PMCID: PMC5994315 DOI: 10.1155/2018/6232091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/12/2018] [Accepted: 03/25/2018] [Indexed: 11/18/2022]
Abstract
Background The diagnosis of von Willebrand disease is complex due to the heterogeneity of the disease. About eighty percent of von Willebrand disease patients are diagnosed with a quantitative defect of von Willebrand factor (VWF) where fifty percent is due to an increased clearance of von Willebrand factor. These patients do not respond well to the treatment of choice, Desmopressin (DDAVP) due to decreased efficacy. The ratio between the VWF propeptide and the mature VWF antigen is used to diagnose these patients. Commercial VWF propeptide assays are too expensive for use in developing countries. In this study, we developed a cost-effective ELISA assay. Methods We first displayed VWF propeptide on yeast. Antibody fragments were selected against the displayed VWF propeptide by using phage display technology. The antibodies were used to develop a cost-effective VWF propeptide assay and compared to a commercial VWF propeptide assay. Results Two of these antibody fragments bound specific to the VWF propeptide and not to the yeast used for the expression of the propeptides. These purified antibody fragments were able to detect VWF propeptide in normal plasma. Conclusion Our assay performed well when compared to a commercial kit. It also showed a higher binding affinity for VWF propeptide in plasma at especially lower plasma concentrations.
Collapse
|
43
|
Huang S, Feng L, An G, Zhang X, Zhao Z, Han R, Lei F, Zhang Y, Luo A, Jing X, Zhao L, Gu S, Zhao X, Zhang L. Ribosome display and selection of single-chain variable fragments effectively inhibit growth and progression of microspheres in vitro and in vivo. Cancer Sci 2018; 109:1503-1512. [PMID: 29575477 PMCID: PMC5980252 DOI: 10.1111/cas.13574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Distinguishing the surface markers of cancer stem cells (CSCs) is a useful method for early diagnosis and treatment of tumors, as CSCs may participate in tumorigenesis and metastasis by migrating into the circulatory system. However, the potential targets of CSCs are expressed at low levels in the natural state and are always changing. Thus, dynamic screening has been reported to be an effective measure for exploring CSC markers. In recent years, diverse single-chain variable fragments (scFvs) have been widely used in immunotherapy. In this study, we determined that the scFvs, screened using RD, had a high affinity to microspheres and could inhibit their progression. We also observed that the selected scFvs underwent evolution in vitro, and antitumor-associated proteins were successfully expressed. Combined with chemotherapy, the scFvs had a synergistic effect on the inhibition of the microspheres' progression in vitro and in vivo, which could be ascribed to their high affinity for stem-like cells and the inhibition of the microspheres' collective behaviors. In addition, proteins inhibiting CD44+ /CD24+ and MAPK were involved. Our data indicated that dynamic screening of the scFvs in a natural state was of great significance in the inhibition of the microspheres in vitro and in vivo.
Collapse
Affiliation(s)
- Shangke Huang
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Feng
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gaili An
- Department of Clinical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaojin Zhang
- Department of The Medical School of Shaoxing University, Shaoxing, China
| | - Zixuan Zhao
- Elite Property Management Ltd., Saskatoon, SK, Canada
| | - Rui Han
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fuxi Lei
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Zhang
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Anqi Luo
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Jing
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lin Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shanzhi Gu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinhan Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingxiao Zhang
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
44
|
Zhang H, Wang X, Li X, Ma Z, Feng R. Construction, expression, and characterization of a single-chain variable fragment (ScFv) antibody targeting to the encephalomyocarditis virus. J Med Virol 2018; 90:1184-1191. [PMID: 29476627 DOI: 10.1002/jmv.25065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022]
Abstract
Encephalomyocarditis virus (EMCV) is as a potential zoonotic agent with a wide host range. Here, applying gene splicing by overlap extension PCR (SOE-PCR), we describe a simple method for producing single-chain variable fragment (scFv) antibody against EMCV that configurates in the orientation of VH-(GGGGS)4 -VL. DNA template was resverse transcribed by total RNA that derived from hyperimmunized antibody positive mice spleen after inoculation inactivated EMCV-PV21 as antigen. Using the degenerate primers designed for the variable regions of IgG of murine antibody, the 417 bp of gene encoding VH-linker (VHL) and 360 bp of gene encoding linker-VL (LVL) of the anti-EMCV was individually amplified from DNA template by PCR, repectively. The 762 bp gene encoding anti-EMCV scFv was constructed by SOE-PCR when the mixed VHL and LVL genes were used as the template. The amplified gene subcloned into pGEX-6P1 to yield pGEX-6P1/EMCV-scFv. Recombinant vector transformed into the Escherichia coli BL21 (DE3) and a 53 KDa GST-scFv fusion protein was obtained by SDS-PAGE electrophoresis. Animal experiment results showed that the pretective rate of mice in group A which challenged 500 μL 104 TCID50 EMCV per mouse for 7 d post-inoculation scFv 3 d (0.5 mg purified recombinant scFv per mouse) was 91.67% (11/12). The serum anti-EMCV antibody titer in group A mice was most significantly higher than that in positive control mouse (P < 0.01), coversely the serum relative mRNA copies were significantly lower than that in positive control mouse (P < 0.05). These findings indicated that recombinant anti-EMCV scFv has remarkable anti-EMCV effect in mice.
Collapse
Affiliation(s)
- Haixia Zhang
- The Key Bio-Engineering and Technology Laboratory of SEAC, Northwest Minzu University, Lanzhou, PR China.,Animal Cell Engineering and Technology Research Center of Gansu, Northwest Minzu University, Lanzhou, PR China
| | - Xinglong Wang
- School of Life Science and Bioengineering, Northwest Minzu University, Lanzhou, PR China
| | - Xiangrong Li
- The Key Bio-Engineering and Technology Laboratory of SEAC, Northwest Minzu University, Lanzhou, PR China
| | - Zhongren Ma
- Animal Cell Engineering and Technology Research Center of Gansu, Northwest Minzu University, Lanzhou, PR China
| | - Ruofei Feng
- The Key Bio-Engineering and Technology Laboratory of SEAC, Northwest Minzu University, Lanzhou, PR China.,Animal Cell Engineering and Technology Research Center of Gansu, Northwest Minzu University, Lanzhou, PR China
| |
Collapse
|
45
|
Complement and Immunoglobulin Biology Leading to Clinical Translation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Kumar S, Kumar R, Khan L, Makhdoomi MA, Thiruvengadam R, Mohata M, Agarwal M, Lodha R, Kabra SK, Sinha S, Luthra K. CD4-Binding Site Directed Cross-Neutralizing scFv Monoclonals from HIV-1 Subtype C Infected Indian Children. Front Immunol 2017; 8:1568. [PMID: 29187855 PMCID: PMC5694743 DOI: 10.3389/fimmu.2017.01568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Progression of human immunodeficiency virus type-1 (HIV-1) infection in children is faster than adults. HIV-1 subtype C is responsible for more than 50% of the infections globally and more than 90% infections in India. To date, there is no effective vaccine against HIV-1. Recent animal studies and human Phase I trials showed promising results of the protective effect of anti-HIV-1 broadly neutralizing antibodies (bnAbs). Interaction between CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein and CD4 receptor on the host immune cells is the primary event leading to HIV-1 infection. The CD4bs is a highly conserved region, comprised of a conformational epitope, and is a potential target of bnAbs such as VRC01 that is presently under human clinical trials. Recombinant scFvs can access masked epitopes due to their small size and have shown the potential to inhibit viral replication and neutralize a broad range of viruses. Pediatric viruses are resistant to many of the existing bnAbs isolated from adults. Therefore, in this study, pooled peripheral blood mononuclear cells from 9 chronically HIV-1 subtype C infected pediatric cross-neutralizers whose plasma antibodies exhibited potent and cross-neutralizing activity were used to construct a human anti-HIV-1 scFv phage library of 9 × 108 individual clones. Plasma mapping using CD4bs-specific probes identified the presence of CD4bs directed antibodies in 4 of these children. By extensive biopanning of the library with CD4bs-specific antigen RSC3 core protein, we identified two cross-neutralizing scFv monoclonals 2B10 and 2E4 demonstrating a neutralizing breadth and GMT of 77%, 17.9 µg/ml and 32%, 51.2 µg/ml, respectively, against a panel of 49 tier 1, 2 and 3 viruses. Both scFvs competed with anti-CD4bs bnAb VRC01 confirming their CD4bs epitope specificity. The 2B10 scFv was effective in neutralizing the 7 subtype C and subtype A pediatric viruses tested. Somatic hypermutations in the VH gene of scFvs (10.1–11.1%) is comparable with that of the adult antibodies. These cross-neutralizing CD4bs-directed scFvs can serve as potential reagents for passive immunotherapy. A combination of cross-neutralizing scFvs of diverse specificities with antiretroviral drugs may be effective in suppressing viremia at an early stage of HIV-1 infection and prevent disease progression.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lubina Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Madhav Mohata
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mudit Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
47
|
Generation of a rabbit single-chain fragment variable (scFv) antibody for specific detection of Bradyrhizobium sp. DOA9 in both free-living and bacteroid forms. PLoS One 2017; 12:e0179983. [PMID: 28654662 PMCID: PMC5487062 DOI: 10.1371/journal.pone.0179983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant-microbe interactions in the future.
Collapse
|
48
|
Bezverbnaya K, Mathews A, Sidhu J, Helsen CW, Bramson JL. Tumor-targeting domains for chimeric antigen receptor T cells. Immunotherapy 2017; 9:33-46. [PMID: 28000526 DOI: 10.2217/imt-2016-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immunotherapy with chimeric antigen receptor (CAR) T cells has been advancing steadily in clinical trials. Since the ability of engineered T cells to recognize intended tumor-associated targets is crucial for the therapeutic success, antigen-binding domains play an important role in shaping T-cell responses. Single-chain antibody and T-cell receptor fragments, natural ligands, repeat proteins, combinations of the above and universal tag-specific domains have all been used in the antigen-binding moiety of chimeric receptors. Here we outline the advantages and disadvantages of different domains, discuss the concepts of affinity and specificity, and highlight the recent progress of each targeting strategy.
Collapse
Affiliation(s)
- Ksenia Bezverbnaya
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ashish Mathews
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jesse Sidhu
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Christopher W Helsen
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jonathan L Bramson
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
49
|
Lee W, Syed Atif A, Tan SC, Leow CH. Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies. J Immunol Methods 2017; 447:71-85. [PMID: 28502720 DOI: 10.1016/j.jim.2017.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 03/02/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
Abstract
The advantages of chicken (Gallus gallus domesticus) antibodies as immunodiagnostic and immunotherapeutic biomolecules has only been recently recognized. Even so, chicken antibodies remain less-well characterized than their mammalian counterparts. This review aims at providing a current overview of the structure, function, development and generation of chicken antibodies. Additionally, brief but comprehensive insights into current knowledge pertaining to the immunogenetic framework and diversity-generation of the chicken immunoglobulin repertoire which have contributed to the establishment of recombinant chicken mAb-generating methods are discussed. Focus is provided on the current methods used to generate antibodies from chickens with added emphasis on the generation of recombinant chicken mAbs and its derivative formats. The advantages and limitations of established protocols for the generation of chicken mAbs are highlighted. The various applications of recombinant chicken mAbs and its derivative formats in immunodiagnostics and immunotherapy are further detailed.
Collapse
Affiliation(s)
- Warren Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Minden, Penang, Malaysia
| | - Ali Syed Atif
- New Iberia Research Center, University of Louisiana at Lafayette4401 W Admiral Doyle Dr, New Iberia, LA 70560, United States
| | - Soo Choon Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Minden, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Minden, Penang, Malaysia.
| |
Collapse
|
50
|
Khan L, Kumar R, Thiruvengadam R, Parray HA, Makhdoomi MA, Kumar S, Aggarwal H, Mohata M, Hussain AW, Das R, Varadarajan R, Bhattacharya J, Vajpayee M, Murugavel KG, Solomon S, Sinha S, Luthra K. Cross-neutralizing anti-HIV-1 human single chain variable fragments(scFvs) against CD4 binding site and N332 glycan identified from a recombinant phage library. Sci Rep 2017; 7:45163. [PMID: 28332627 PMCID: PMC5362912 DOI: 10.1038/srep45163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/15/2017] [Indexed: 11/30/2022] Open
Abstract
More than 50% of HIV-1 infection globally is caused by subtype_C viruses. Majority of the broadly neutralizing antibodies (bnAbs) targeting HIV-1 have been isolated from non-subtype_C infected donors. Mapping the epitope specificities of bnAbs provides useful information for vaccine design. Recombinant antibody technology enables generation of a large repertoire of monoclonals with diverse specificities. We constructed a phage recombinant single chain variable fragment (scFv) library with a diversity of 7.8 × 108 clones, using a novel strategy of pooling peripheral blood mononuclear cells (PBMCs) of six select HIV-1 chronically infected Indian donors whose plasma antibodies exhibited potent cross neutralization efficiency. The library was panned and screened by phage ELISA using trimeric recombinant proteins to identify viral envelope specific clones. Three scFv monoclonals D11, C11 and 1F6 selected from the library cross neutralized subtypes A, B and C viruses at concentrations ranging from 0.09 μg/mL to 100 μg/mL. The D11 and 1F6 scFvs competed with mAbs b12 and VRC01 demonstrating CD4bs specificity, while C11 demonstrated N332 specificity. This is the first study to identify cross neutralizing scFv monoclonals with CD4bs and N332 glycan specificities from India. Cross neutralizing anti-HIV-1 human scFv monoclonals can be potential candidates for passive immunotherapy and for guiding immunogen design.
Collapse
Affiliation(s)
- Lubina Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Hilal Ahmad Parray
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Heena Aggarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Madhav Mohata
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul Wahid Hussain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Raksha Das
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Jayanta Bhattacharya
- HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.,International AIDS Vaccine initiative, USA
| | - Madhu Vajpayee
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - K G Murugavel
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Suniti Solomon
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.,National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|