1
|
Blackstock C, Walters-Freke C, Richards N, Williamson A. Nucleic acid joining enzymes: biological functions and synthetic applications beyond DNA. Biochem J 2025; 482:39-56. [PMID: 39840831 DOI: 10.1042/bcj20240136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025]
Abstract
DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA. In particular, enzymes able to join UBP-XNA will be essential for generating large assemblies and also hold promise in the synthesis of single-stranded oligonucleotides. Here, we review recent and emerging advances in the DNA-joining enzymes, DNA polymerases and DNA ligases, and describe their applications to UBP-XNA manipulation. We also discuss the future directions of this field which we consider will involve two-pronged approaches of enzyme biodiscovery for natural UBP-XNA compatible enzymes, coupled with improvement by structure-guided engineering.
Collapse
Affiliation(s)
- Chelsea Blackstock
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| | | | - Nigel Richards
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, U.S.A
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Adele Williamson
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| |
Collapse
|
2
|
Alvarez‐Carreño C, Huynh AT, Petrov AS, Orengo C, Williams LD. BEAN and HABAS: Polyphyletic insertions in the DNA-directed RNA polymerase. Protein Sci 2024; 33:e5194. [PMID: 39467185 PMCID: PMC11515920 DOI: 10.1002/pro.5194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
The β and β' subunits of the RNA polymerase (RNAP) are large proteins with complex multi-domain architectures that include several insertional domains. Here, we analyze the domain organizations of RNAP-β and RNAP-β' using sequence, experimentally determined structures and AlphaFold structure predictions. We observe that lineage-specific insertional domains in bacterial RNAP-β belong to a group that we call BEAN (broadly embedded annex). We observe that lineage-specific insertional domains in bacterial RNAP-β' belong to a group that we call HABAS (hammerhead/barrel-sandwich hybrid). The BEAN domain has a characteristic three-dimensional structure composed of two square bracket-like elements that are antiparallel relative to each other. The HABAS domain contains a four-stranded open β-sheet with a GD-box-like motif in one of the β-strands and the adjoining loop. The BEAN domain is inserted not only in the bacterial RNAP-β', but also in the archaeal version of universal ribosomal protein L10. The HABAS domain is inserted in several metabolic proteins. The phylogenetic distributions of bacterial lineage-specific insertional domains of β and β' subunits of RNAP follow the Tree of Life. The presence of insertional domains can help establish a relative timeline of events in the evolution of a protein because insertion is inferred to post-date the base domain. We discuss mechanisms that might account for the discovery of homologous insertional domains in non-equivalent locations in bacteria and archaea.
Collapse
Affiliation(s)
| | - Angela T. Huynh
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Anton S. Petrov
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Christine Orengo
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | - Loren Dean Williams
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Mäkinen JJ, Rosenqvist P, Virta P, Metsä-Ketelä M, Belogurov GA. Probing the nucleobase selectivity of RNA polymerases with dual-coding substrates. J Biol Chem 2024; 300:107755. [PMID: 39260691 PMCID: PMC11474200 DOI: 10.1016/j.jbc.2024.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Formycin A (FOR) and pyrazofurin A (PYR) are nucleoside analogs with antiviral and antitumor properties. They are known to interfere with nucleic acid metabolism, but their direct effect on transcription is less understood. We explored how RNA polymerases (RNAPs) from bacteria, mitochondria, and viruses utilize FOR, PYR, and oxidized purine nucleotides. All tested polymerases incorporated FOR in place of adenine and PYR in place of uridine. FOR also exhibited surprising dual-coding behavior, functioning as a cytosine substitute, particularly for viral RNAP. In contrast, 8-oxoadenine and 8-oxoguanine were incorporated in place of uridine in addition to their canonical Watson-Crick codings. Our data suggest that the interconversion of canonical anti and alternative syn conformers underlies dual-coding abilities of FOR and oxidized purines. Structurally distinct RNAPs displayed varying abilities to utilize syn conformers during transcription. By examining base pairings that led to substrate incorporation and the entire spectrum of geometrically compatible pairings, we have gained new insights into the nucleobase selection processes employed by structurally diverse RNAPs. These insights may pave the way for advancements in antiviral therapies.
Collapse
Affiliation(s)
- Janne J Mäkinen
- Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, Finland
| | | | | |
Collapse
|
4
|
de Martín Garrido N, Chen CS, Ramlaul K, Aylett CHS, Yakunina M. Structure of the Bacteriophage PhiKZ Non-virion RNA Polymerase Transcribing from its Promoter p119L. J Mol Biol 2024; 436:168713. [PMID: 39029888 DOI: 10.1016/j.jmb.2024.168713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Bacteriophage ΦKZ (PhiKZ) is the founding member of a family of giant bacterial viruses. It has potential as a therapeutic as its host, Pseudomonas aeruginosa, kills tens of thousands of people worldwide each year. ΦKZ infection is independent of the host transcriptional apparatus; the virus forms a "nucleus", producing a proteinaceous barrier around the ΦKZ genome that excludes the host immune systems. It expresses its own non-canonical multi-subunit non-virion RNA polymerase (nvRNAP), which is imported into its "nucleus" to transcribe viral genes. The ΦKZ nvRNAP is formed by four polypeptides representing homologues of the eubacterial β/β' subunits, and a fifth that is likely to have evolved from an ancestral homologue to σ-factor. We have resolved the structure of the ΦKZ nvRNAP initiating transcription from its cognate promoter, p119L, including previously disordered regions. Our results shed light on the similarities and differences between ΦKZ nvRNAP mechanisms of transcription and those of canonical eubacterial RNAPs and the related non-canonical nvRNAP of bacteriophage AR9.
Collapse
Affiliation(s)
- Natàlia de Martín Garrido
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Chao-Sheng Chen
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Kailash Ramlaul
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Christopher H S Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
| | - Maria Yakunina
- Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, Guangdong Province 518172, People's Republic of China.
| |
Collapse
|
5
|
Ye J, Kan CH, Yang X, Ma C. Inhibition of bacterial RNA polymerase function and protein-protein interactions: a promising approach for next-generation antibacterial therapeutics. RSC Med Chem 2024; 15:1471-1487. [PMID: 38784472 PMCID: PMC11110800 DOI: 10.1039/d3md00690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
The increasing prevalence of multidrug-resistant pathogens necessitates the urgent development of new antimicrobial agents with innovative modes of action for the next generation of antimicrobial therapy. Bacterial transcription has been identified and widely studied as a viable target for antimicrobial development. The main focus of these studies has been the discovery of inhibitors that bind directly to the core enzyme of RNA polymerase (RNAP). Over the past two decades, substantial advancements have been made in understanding the properties of protein-protein interactions (PPIs) and gaining structural insights into bacterial RNAP and its associated factors. This has led to the crucial role of computational methods in aiding the identification of new PPI inhibitors to affect the RNAP function. In this context, bacterial transcriptional PPIs present promising, albeit challenging, targets for the creation of new antimicrobials. This review will succinctly outline the structural foundation of bacterial transcription networks and provide a summary of the known small molecules that target transcription PPIs.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei 230032 China
| | - Cheuk Hei Kan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| |
Collapse
|
6
|
Bao Y, Cao X, Landick R. RNA polymerase SI3 domain modulates global transcriptional pausing and pause-site fluctuations. Nucleic Acids Res 2024; 52:4556-4574. [PMID: 38554114 PMCID: PMC11077087 DOI: 10.1093/nar/gkae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024] Open
Abstract
Transcriptional pausing aids gene regulation by cellular RNA polymerases (RNAPs). A surface-exposed domain inserted into the catalytic trigger loop (TL) of Escherichia coli RNAP, called SI3, modulates pausing and is essential for growth. Here we describe a viable E. coli strain lacking SI3 enabled by a suppressor TL substitution (β'Ala941→Thr; ΔSI3*). ΔSI3* increased transcription rate in vitro relative to ΔSI3, possibly explaining its viability, but retained both positive and negative effects of ΔSI3 on pausing. ΔSI3* inhibited pauses stabilized by nascent RNA structures (pause hairpins; PHs) but enhanced other pauses. Using NET-seq, we found that ΔSI3*-enhanced pauses resemble the consensus elemental pause sequence whereas sequences at ΔSI3*-suppressed pauses, which exhibited greater association with PHs, were more divergent. ΔSI3*-suppressed pauses also were associated with apparent pausing one nucleotide upstream from the consensus sequence, often generating tandem pause sites. These '-2 pauses' were stimulated by pyrophosphate in vitro and by addition of apyrase to degrade residual NTPs during NET-seq sample processing. We propose that some pauses are readily reversible by pyrophosphorolysis or single-nucleotide cleavage. Our results document multiple ways that SI3 modulates pausing in vivo and may explain discrepancies in consensus pause sequences in some NET-seq studies.
Collapse
Affiliation(s)
- Yu Bao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xinyun Cao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
K P, Madhana PN, Eswaramoorthy R, Ramasamy M. A computational approach to analyzing the functional and structural impacts of Tripeptidyl-Peptidase 1 missense mutations in neuronal ceroid lipofuscinosis. Metab Brain Dis 2024; 39:545-558. [PMID: 38185715 DOI: 10.1007/s11011-024-01341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Neuronal ceroid-lipofuscinosis (NCLs) are a group of severe neurodegenerative conditions, most likely present in infantile, late infantile, juvenile, and adult-onset forms. Their phenotypic characteristics comprise eyesight damage, reduced motor activity and cognitive function, and sometimes tend to die in the initial stage. In recent studies, NCLs have been categorized into at least 14 genetic collections (CLN1-14). CLN2 gene encodes Tripeptidyl peptidase 1 (TPP1), which affects late infantile-onset form. In this study, we retrieved a mutational dataset screening for TPP1 protein from various databases (ClinVar, UniProt, HGMD). Fifty-six missense mutants were enumerated with computational methods to perceive the significant mutants (G475R and G501C) and correlated with clinical and literature data. A structure-based screening method was initiated to understand protein-ligand interaction and dynamic simulation. The docking procedure was performed for the native (3EDY) and mutant (G473R and G501C) structures with Gemfibrozil (gem), which lowers the lipid level, decreases the triglycerides amount in the blood circulation, and controls hyperlipidemia. The Native had an interaction score of -5.57 kcal/mol, and the mutants had respective average binding scores of -6.24 (G473R) and - 5.17 (G501C) kcal/mol. Finally, molecular dynamics simulation showed that G473R and G501C mutants had better flexible and stable orientation in all trajectory analyses. Therefore, this work gives an extended understanding of both functional and structural levels of influence for the mutant form that leads to NCL disorder.
Collapse
Affiliation(s)
- Priyanka K
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, TamilNadu, 600116, India
| | - Priya N Madhana
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, TamilNadu, 600116, India
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, TamilNadu, India
| | - Magesh Ramasamy
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, TamilNadu, 600116, India.
| |
Collapse
|
8
|
Agmon I. Three Biopolymers and Origin of Life Scenarios. Life (Basel) 2024; 14:277. [PMID: 38398786 PMCID: PMC10890401 DOI: 10.3390/life14020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
To track down the possible roots of life, various models for the initial living system composed of different combinations of the three extant biopolymers, RNA, DNA, and proteins, are presented. The suitability of each molecular set is assessed according to its ability to emerge autonomously, sustain, and evolve continuously towards life as we know it. The analysis incorporates current biological knowledge gained from high-resolution structural data and large sequence datasets, together with experimental results concerned with RNA replication and with the activity demonstrated by standalone constructs of the ribosomal Peptidyl Transferase Center region. The scrutiny excludes the DNA-protein combination and assigns negligible likelihood to the existence of an RNA-DNA world, as well as to an RNA world that contained a replicase made of RNA. It points to the precedence of an RNA-protein system, whose model of emergence suggests specific processes whereby a coded proto-ribosome ribozyme, specifically aminoacylated proto-tRNAs and a proto-polymerase enzyme, could have autonomously emerged, cross-catalyzing the formation of each other. This molecular set constitutes a feasible starting point for a continuous evolutionary path, proceeding via natural processes from the inanimate matter towards life as we know it.
Collapse
Affiliation(s)
- Ilana Agmon
- Institute for Advanced Studies in Theoretical Chemistry, Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
9
|
Zabrady M, Zabrady K, Li AH, Doherty AJ. Reverse transcriptases prime DNA synthesis. Nucleic Acids Res 2023; 51:7125-7142. [PMID: 37279911 PMCID: PMC10415136 DOI: 10.1093/nar/gkad478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
The discovery of reverse transcriptases (RTs) challenged the central dogma by establishing that genetic information can also flow from RNA to DNA. Although they act as DNA polymerases, RTs are distantly related to replicases that also possess de novo primase activity. Here we identify that CRISPR associated RTs (CARTs) directly prime DNA synthesis on both RNA and DNA. We demonstrate that RT-dependent priming is utilized by some CRISPR-Cas complexes to synthesise new spacers and integrate these into CRISPR arrays. Expanding our analyses, we show that primer synthesis activity is conserved in representatives of other major RT classes, including group II intron RT, telomerase and retroviruses. Together, these findings establish a conserved innate ability of RTs to catalyse de novo DNA primer synthesis, independently of accessory domains or alternative priming mechanisms, which likely plays important roles in a wide variety of biological pathways.
Collapse
Affiliation(s)
- Matej Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Arthur W H Li
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| |
Collapse
|
10
|
Podder A, Ahmed FF, Suman MZH, Mim AY, Hasan K. Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory element analyses in sunflower (Helianthus annuus). PLoS One 2023; 18:e0286994. [PMID: 37294803 PMCID: PMC10256174 DOI: 10.1371/journal.pone.0286994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/27/2023] [Indexed: 06/11/2023] Open
Abstract
RNA interference (RNAi) regulates a variety of eukaryotic gene expressions that are engaged in response to stress, growth, and the conservation of genomic stability during developmental phases. It is also intimately connected to the post-transcriptional gene silencing (PTGS) process and chromatin modification levels. The entire process of RNA interference (RNAi) pathway gene families mediates RNA silencing. The main factors of RNA silencing are the Dicer-Like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) gene families. To the best of our knowledge, genome-wide identification of RNAi gene families like DCL, AGO, and RDR in sunflower (Helianthus annuus) has not yet been studied despite being discovered in some species. So, the goal of this study is to find the RNAi gene families like DCL, AGO, and RDR in sunflower based on bioinformatics approaches. Therefore, we accomplished an inclusive in silico investigation for genome-wide identification of RNAi pathway gene families DCL, AGO, and RDR through bioinformatics approaches such as (sequence homogeneity, phylogenetic relationship, gene structure, chromosomal localization, PPIs, GO, sub-cellular localization). In this study, we have identified five DCL (HaDCLs), fifteen AGO (HaAGOs), and ten RDR (HaRDRs) in the sunflower genome database corresponding to the RNAi genes of model plant Arabidopsis thaliana based on genome-wide analysis and a phylogenetic method. The analysis of the gene structure that contains exon-intron numbers, conserved domain, and motif composition analyses for all HaDCL, HaAGO, and HaRDR gene families indicated almost homogeneity among the same gene family. The protein-protein interaction (PPI) network analysis illustrated that there exists interconnection among identified three gene families. The analysis of the Gene Ontology (GO) enrichment showed that the detected genes directly contribute to the RNA gene-silencing and were involved in crucial pathways. It was observed that the cis-acting regulatory components connected to the identified genes were shown to be responsive to hormone, light, stress, and other functions. That was found in HaDCL, HaAGO, and HaRDR genes associated with the development and growth of plants. Finally, we are able to provide some essential information about the components of sunflower RNA silencing through our genome-wide comparison and integrated bioinformatics analysis, which open the door for further research into the functional mechanisms of the identified genes and their regulatory elements.
Collapse
Affiliation(s)
- Anamika Podder
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Zahid Hasan Suman
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Afsana Yeasmin Mim
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Khadiza Hasan
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
11
|
Deng S. The origin of genetic and metabolic systems: Evolutionary structuralinsights. Heliyon 2023; 9:e14466. [PMID: 36967965 PMCID: PMC10036676 DOI: 10.1016/j.heliyon.2023.e14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
DNA is derived from reverse transcription and its origin is related to reverse transcriptase, DNA polymerase and integrase. The gene structure originated from the evolution of the first RNA polymerase. Thus, an explanation of the origin of the genetic system must also explain the evolution of these enzymes. This paper proposes a polymer structure model, termed the stable complex evolution model, which explains the evolution of enzymes and functional molecules. Enzymes evolved their functions by forming locally tightly packed complexes with specific substrates. A metabolic reaction can therefore be considered to be the result of adaptive evolution in this way when a certain essential molecule is lacking in a cell. The evolution of the primitive genetic and metabolic systems was thus coordinated and synchronized. According to the stable complex model, almost all functional molecules establish binding affinity and specific recognition through complementary interactions, and functional molecules therefore have the nature of being auto-reactive. This is thermodynamically favorable and leads to functional duplication and self-organization. Therefore, it can be speculated that biological systems have a certain tendency to maintain functional stability or are influenced by an inherent selective power. The evolution of dormant bacteria may support this hypothesis, and inherent selectivity can be unified with natural selection at the molecular level.
Collapse
Affiliation(s)
- Shaojie Deng
- Chongqing (Fengjie) Municipal Bureau of Planning and Natural Resources, China
| |
Collapse
|
12
|
Šimičić P, Židovec-Lepej S. A Glimpse on the Evolution of RNA Viruses: Implications and Lessons from SARS-CoV-2. Viruses 2022; 15:1. [PMID: 36680042 PMCID: PMC9866536 DOI: 10.3390/v15010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
RNA viruses are characterised by extremely high genetic variability due to fast replication, large population size, low fidelity, and (usually) a lack of proofreading mechanisms of RNA polymerases leading to high mutation rates. Furthermore, viral recombination and reassortment may act as a significant evolutionary force among viruses contributing to greater genetic diversity than obtainable by mutation alone. The above-mentioned properties allow for the rapid evolution of RNA viruses, which may result in difficulties in viral eradication, changes in virulence and pathogenicity, and lead to events such as cross-species transmissions, which are matters of great interest in the light of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemics. In this review, we aim to explore the molecular mechanisms of the variability of viral RNA genomes, emphasising the evolutionary trajectory of SARS-CoV-2 and its variants. Furthermore, the causes and consequences of coronavirus variation are explored, along with theories on the origin of human coronaviruses and features of emergent RNA viruses in general. Finally, we summarise the current knowledge on the circulating variants of concern and highlight the many unknowns regarding SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
| | - Snježana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| |
Collapse
|
13
|
Comprehensive In Silico Analysis of RNA Silencing-Related Genes and Their Regulatory Elements in Wheat (Triticum aestivum L.). BIOMED RESEARCH INTERNATIONAL 2022; 2022:4955209. [PMID: 36177060 PMCID: PMC9513535 DOI: 10.1155/2022/4955209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) are known as the three major gene families that act as the critical components of RNA interference or silencing mechanisms through the noncoding small RNA molecules (miRNA and siRNA) to regulate the expressions of protein-coding genes in eukaryotic organisms. However, most of their characteristics including structures, chromosomal location, subcellular locations, regulatory elements, and gene networking were not rigorously studied. Our analysis identified 7 TaDCL, 39 TaAGO, and 16 TaRDR genes as RNA interference (RNAi) genes from the wheat genome. Phylogenetic analysis of predicted RNAi proteins with the RNAi proteins of Arabidopsis and rice showed that the predicted proteins of TaDCL, TaAGO, and TaRDR groups are clustered into four, eight, and four subgroups, respectively. Domain, 3D protein structure, motif, and exon-intron structure analyses showed that these proteins conserve identical characteristics within groups and maintain differences between groups. The nonsynonymous/synonymous mutation ratio (Ka/Ks) < 1 suggested that these protein sequences conserve some purifying functions. RNAi genes networking with TFs revealed that ERF, MIKC-MADS, C2H2, BBR-BPC, MYB, and Dof are the key transcriptional regulators of the predicted RNAi-related genes. The cis-regulatory element (CREs) analysis detected some important CREs of RNAi genes that are significantly associated with light, stress, and hormone responses. Expression analysis based on an online database exhibited that almost all of the predicted RNAi genes are expressed in different tissues and organs. A case-control study from the gene expression level showed that some RNAi genes significantly responded to the drought and heat stresses. Overall results would therefore provide an excellent basis for in-depth molecular investigation of these genes and their regulatory elements for wheat crop improvement against different stressors.
Collapse
|
14
|
Cui R, Li H, Zhao J, Li X, Gan J, Ma J. Structural insights into the dual activities of the two-barrel RNA polymerase QDE-1. Nucleic Acids Res 2022; 50:10169-10186. [PMID: 36039765 PMCID: PMC9508822 DOI: 10.1093/nar/gkac727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/27/2022] [Indexed: 11/19/2022] Open
Abstract
Neurospora crassa protein QDE-1, a member of the two-barrel polymerase superfamily, possesses both DNA- and RNA-dependent RNA polymerase (DdRP and RdRP) activities. The dual activities are essential for the production of double-stranded RNAs (dsRNAs), the precursors of small interfering RNAs (siRNAs) in N. crassa. Here, we report five complex structures of N-terminal truncated QDE-1 (QDE-1ΔN), representing four different reaction states: DNA/RNA-templated elongation, the de novo initiation of RNA synthesis, the first step of nucleotide condensation during de novo initiation and initial NTP loading. The template strand is aligned by a bridge-helix and double-psi beta-barrels 2 (DPBB2), the RNA product is held by DPBB1 and the slab domain. The DNA template unpairs with the RNA product at position –7, but the RNA template remains paired. The NTP analog coordinates with cations and is precisely positioned at the addition site by a rigid trigger loop and a proline-containing loop in the active center. The unique C-terminal tail from the QDE-1 dimer partner inserts into the substrate-binding cleft and plays regulatory roles in RNA synthesis. Collectively, this work elucidates the conserved mechanisms for DNA/RNA-dependent dual activities by QDE-1 and other two-barrel polymerase superfamily members.
Collapse
Affiliation(s)
- Ruixue Cui
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hao Li
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jin Zhao
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xuhang Li
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinbiao Ma
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
Zayed AA, Wainaina JM, Dominguez-Huerta G, Pelletier E, Guo J, Mohssen M, Tian F, Pratama AA, Bolduc B, Zablocki O, Cronin D, Solden L, Delage E, Alberti A, Aury JM, Carradec Q, da Silva C, Labadie K, Poulain J, Ruscheweyh HJ, Salazar G, Shatoff E, Coordinators TO, Bundschuh R, Fredrick K, Kubatko LS, Chaffron S, Culley AI, Sunagawa S, Kuhn JH, Wincker P, Sullivan MB. Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome. Science 2022; 376:156-162. [PMID: 35389782 PMCID: PMC10990476 DOI: 10.1126/science.abm5847] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.
Collapse
Affiliation(s)
- Ahmed A. Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - James M. Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Guillermo Dominguez-Huerta
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jiarong Guo
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Mohamed Mohssen
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Dylan Cronin
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Lindsey Solden
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Erwan Delage
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Corinne da Silva
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Elan Shatoff
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | | | - Ralf Bundschuh
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Laura S. Kubatko
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Statistics, Ohio State University, Columbus, OH 43210, USA
| | - Samuel Chaffron
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Alexander I. Culley
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Fluorogenic RNA aptamers to probe transcription initiation and co-transcriptional RNA folding by multi-subunit RNA polymerases. Methods Enzymol 2022; 675:207-233. [DOI: 10.1016/bs.mie.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
19
|
Fukudome A, Singh J, Mishra V, Reddem E, Martinez-Marquez F, Wenzel S, Yan R, Shiozaki M, Yu Z, Wang JCY, Takagi Y, Pikaard CS. Structure and RNA template requirements of Arabidopsis RNA-DEPENDENT RNA POLYMERASE 2. Proc Natl Acad Sci U S A 2021; 118:e2115899118. [PMID: 34903670 PMCID: PMC8713982 DOI: 10.1073/pnas.2115899118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 01/18/2023] Open
Abstract
RNA-dependent RNA polymerases play essential roles in RNA-mediated gene silencing in eukaryotes. In Arabidopsis, RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) physically interacts with DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and their activities are tightly coupled, with Pol IV transcriptional arrest, induced by the nontemplate DNA strand, somehow enabling RDR2 to engage Pol IV transcripts and generate double-stranded RNAs. The double-stranded RNAs are then released from the Pol IV-RDR2 complex and diced into short-interfering RNAs that guide RNA-directed DNA methylation and silencing. Here we report the structure of full-length RDR2, at an overall resolution of 3.1 Å, determined by cryoelectron microscopy. The N-terminal region contains an RNA-recognition motif adjacent to a positively charged channel that leads to a catalytic center with striking structural homology to the catalytic centers of multisubunit DNA-dependent RNA polymerases. We show that RDR2 initiates 1 to 2 nt internal to the 3' ends of its templates and can transcribe the RNA of an RNA/DNA hybrid, provided that 9 or more nucleotides are unpaired at the RNA's 3' end. Using a nucleic acid configuration that mimics the arrangement of RNA and DNA strands upon Pol IV transcriptional arrest, we show that displacement of the RNA 3' end occurs as the DNA template and nontemplate strands reanneal, enabling RDR2 transcription. These results suggest a model in which Pol IV arrest and backtracking displaces the RNA 3' end as the DNA strands reanneal, allowing RDR2 to engage the RNA and synthesize the complementary strand.
Collapse
Affiliation(s)
- Akihito Fukudome
- HHMI, Indiana University, Bloomington, IN 47405
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Jasleen Singh
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Vibhor Mishra
- HHMI, Indiana University, Bloomington, IN 47405
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Eswar Reddem
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 47405
| | - Francisco Martinez-Marquez
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 47405
| | - Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 47405
| | - Rui Yan
- CryoEM Facility, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147
| | - Momoko Shiozaki
- CryoEM Facility, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147
| | - Zhiheng Yu
- CryoEM Facility, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147
| | - Joseph Che-Yen Wang
- Indiana University Electron Microscopy Center, Indiana University, Bloomington, IN 47405
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 47405;
| | - Craig S Pikaard
- HHMI, Indiana University, Bloomington, IN 47405;
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| |
Collapse
|
20
|
Genome Evolution from Random Ligation of RNAs of Autocatalytic Sets. Int J Mol Sci 2021; 22:ijms222413526. [PMID: 34948321 PMCID: PMC8707343 DOI: 10.3390/ijms222413526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The evolutionary origin of the genome remains elusive. Here, I hypothesize that its first iteration, the protogenome, was a multi-ribozyme RNA. It evolved, likely within liposomes (the protocells) forming in dry-wet cycling environments, through the random fusion of ribozymes by a ligase and was amplified by a polymerase. The protogenome thereby linked, in one molecule, the information required to seed the protometabolism (a combination of RNA-based autocatalytic sets) in newly forming protocells. If this combination of autocatalytic sets was evolutionarily advantageous, the protogenome would have amplified in a population of multiplying protocells. It likely was a quasispecies with redundant information, e.g., multiple copies of one ribozyme. As such, new functionalities could evolve, including a genetic code. Once one or more components of the protometabolism were templated by the protogenome (e.g., when a ribozyme was replaced by a protein enzyme), and/or addiction modules evolved, the protometabolism became dependent on the protogenome. Along with increasing fidelity of the RNA polymerase, the protogenome could grow, e.g., by incorporating additional ribozyme domains. Finally, the protogenome could have evolved into a DNA genome with increased stability and storage capacity. I will provide suggestions for experiments to test some aspects of this hypothesis, such as evaluating the ability of ribozyme RNA polymerases to generate random ligation products and testing the catalytic activity of linked ribozyme domains.
Collapse
|
21
|
Kwasiborski A, Bastide F, Hamon B, Poupard P, Simoneau P, Guillemette T. In silico analysis of RNA interference components and miRNAs-like RNAs in the seed-borne necrotrophic fungus Alternaria brassicicola. Fungal Biol 2021; 126:224-234. [DOI: 10.1016/j.funbio.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/01/2022]
|
22
|
González-Delgado A, Mestre MR, Martínez-Abarca F, Toro N. Prokaryotic reverse transcriptases: from retroelements to specialized defense systems. FEMS Microbiol Rev 2021; 45:fuab025. [PMID: 33983378 PMCID: PMC8632793 DOI: 10.1093/femsre/fuab025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Reverse transcriptases (RTs) catalyze the polymerization of DNA from an RNA template. These enzymes were first discovered in RNA tumor viruses in 1970, but it was not until 1989 that they were found in prokaryotes as a key component of retrons. Apart from RTs encoded by the 'selfish' mobile retroelements known as group II introns, prokaryotic RTs are extraordinarily diverse, but their function has remained elusive. However, recent studies have revealed that different lineages of prokaryotic RTs, including retrons, those associated with CRISPR-Cas systems, Abi-like RTs and other yet uncharacterized RTs, are key components of different lines of defense against phages and other mobile genetic elements. Prokaryotic RTs participate in various antiviral strategies, including abortive infection (Abi), in which the infected cell is induced to commit suicide to protect the host population, adaptive immunity, in which a memory of previous infection is used to build an efficient defense, and other as yet unidentified mechanisms. These prokaryotic enzymes are attracting considerable attention, both for use in cutting-edge technologies, such as genome editing, and as an emerging research topic. In this review, we discuss what is known about prokaryotic RTs, and the exciting evidence for their domestication from retroelements to create specialized defense systems.
Collapse
Affiliation(s)
- Alejandro González-Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Mario Rodríguez Mestre
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| | - Francisco Martínez-Abarca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
23
|
Liu C, Huang H, Duan X, Chen Y. Integrated Metagenomic and Metaproteomic Analyses Unravel Ammonia Toxicity to Active Methanogens and Syntrophs, Enzyme Synthesis, and Key Enzymes in Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14817-14827. [PMID: 34657430 DOI: 10.1021/acs.est.1c00797] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
During anaerobic digestion, the active microbiome synthesizes enzymes by transcription and translation, and then enzymes catalyze multistep bioconversions of substrates before methane being produced. However, little information is available on how ammonia affects truly active microbes containing the expressed enzymes, enzyme synthesis, and key enzymes. In this study, an integrated metagenomic and metaproteomic investigation showed that ammonia suppressed not only the obligate acetotrophic methanogens but also the syntrophic propionate and butyrate oxidation taxa and their assistant bacteria (genus Desulfovibrio), which declined the biotransformations of propionate and butyrate → acetate → methane. Although the total population of the hydrolyzing and acidifying bacteria was not affected by ammonia, the bacteria with ammonia resistance increased. Our study also revealed that ammonia restrained the enzyme synthesis process by inhibiting the RNA polymerase (subunits A' and D) during transcription and the ribosome (large (L3, L12, L13, L22, and L25) and small (S3, S3Ae, and S7) ribosomal subunits) and aminoacyl-tRNA synthesis (aspartate-tRNA synthetase) in translation. Further investigation suggested that methylmalonyl-CoA mutase, acetyl-CoA C-acetyltransferase, and CH3-CoM reductase, which regulate propionate and butyrate oxidation and acetoclastic methanation, were significantly downregulated by ammonia. This study provides intrinsic insights into the fundamental mechanisms of how ammonia inhibits anaerobic digestion.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
24
|
Obligate movements of an active site-linked surface domain control RNA polymerase elongation and pausing via a Phe pocket anchor. Proc Natl Acad Sci U S A 2021; 118:2101805118. [PMID: 34470825 DOI: 10.1073/pnas.2101805118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The catalytic trigger loop (TL) in RNA polymerase (RNAP) alternates between unstructured and helical hairpin conformations to admit and then contact the NTP substrate during transcription. In many bacterial lineages, the TL is interrupted by insertions of two to five surface-exposed, sandwich-barrel hybrid motifs (SBHMs) of poorly understood function. The 188-amino acid, two-SBHM insertion in Escherichia coli RNAP, called SI3, occupies different locations in elongating, NTP-bound, and paused transcription complexes, but its dynamics during active transcription and pausing are undefined. Here, we report the design, optimization, and use of a Cys-triplet reporter to measure the positional bias of SI3 in different transcription complexes and to determine the effect of restricting SI3 movement on nucleotide addition and pausing. We describe the use of H2O2 as a superior oxidant for RNAP disulfide reporters. NTP binding biases SI3 toward the closed conformation, whereas transcriptional pausing biases SI3 toward a swiveled position that inhibits TL folding. We find that SI3 must change location in every round of nucleotide addition and that restricting its movements inhibits both transcript elongation and pausing. These dynamics are modulated by a crucial Phe pocket formed by the junction of the two SBHM domains. This SI3 Phe pocket captures a Phe residue in the RNAP jaw when the TL unfolds, explaining the similar phenotypes of alterations in the jaw and SI3. Our findings establish that SI3 functions by modulating TL folding to aid transcriptional regulation and to reset secondary channel trafficking in every round of nucleotide addition.
Collapse
|
25
|
Ahmed FF, Hossen MI, Sarkar MAR, Konak JN, Zohra FT, Shoyeb M, Mondal S. Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory elements analyses in banana (Musa acuminata). PLoS One 2021; 16:e0256873. [PMID: 34473743 PMCID: PMC8412350 DOI: 10.1371/journal.pone.0256873] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
RNA silencing is mediated through RNA interference (RNAi) pathway gene families, i.e., Dicer-Like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) and their cis-acting regulatory elements. The RNAi pathway is also directly connected with the post-transcriptional gene silencing (PTGS) mechanism, and the pathway controls eukaryotic gene regulation during growth, development, and stress response. Nevertheless, genome-wide identification of RNAi pathway gene families such as DCL, AGO, and RDR and their regulatory network analyses related to transcription factors have not been studied in many fruit crop species, including banana (Musa acuminata). In this study, we studied in silico genome-wide identification and characterization of DCL, AGO, and RDR genes in bananas thoroughly via integrated bioinformatics approaches. A genome-wide analysis identified 3 MaDCL, 13 MaAGO, and 5 MaRDR candidate genes based on multiple sequence alignment and phylogenetic tree related to the RNAi pathway in banana genomes. These genes correspond to the Arabidopsis thaliana RNAi silencing genes. The analysis of the conserved domain, motif, and gene structure (exon-intron numbers) for MaDCL, MaAGO, and MaRDR genes showed higher homogeneity within the same gene family. The Gene Ontology (GO) enrichment analysis exhibited that the identified RNAi genes could be involved in RNA silencing and associated metabolic pathways. A number of important transcription factors (TFs), e.g., ERF, Dof, C2H2, TCP, GATA and MIKC_MADS families, were identified by network and sub-network analyses between TFs and candidate RNAi gene families. Furthermore, the cis-acting regulatory elements related to light-responsive (LR), stress-responsive (SR), hormone-responsive (HR), and other activities (OT) functions were identified in candidate MaDCL, MaAGO, and MaRDR genes. These genome-wide analyses of these RNAi gene families provide valuable information related to RNA silencing, which would shed light on further characterization of RNAi genes, their regulatory elements, and functional roles, which might be helpful for banana improvement in the breeding program.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
- * E-mail:
| | - Md. Imran Hossen
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Faculty of Biological Science and Technology, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Jesmin Naher Konak
- Faculty of Life Science, Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Fatema Tuz Zohra
- Faculty of Agriculture, Laboratory of Fruit Science, Saga University, Honjo-machi, Saga, Japan
| | - Md. Shoyeb
- Faculty of Biological Science and Technology, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Samiran Mondal
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
26
|
de Martín Garrido N, Orekhova M, Lai Wan Loong Y, Litvinova A, Ramlaul K, Artamonova T, Melnikov A, Serdobintsev P, Aylett CHS, Yakunina M. Structure of the bacteriophage PhiKZ non-virion RNA polymerase. Nucleic Acids Res 2021; 49:7732-7739. [PMID: 34181731 PMCID: PMC8287921 DOI: 10.1093/nar/gkab539] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage ΦKZ (PhiKZ) is the archetype of a family of massive bacterial viruses. It is considered to have therapeutic potential as its host, Pseudomonas aeruginosa, is an opportunistic, intrinsically antibiotic resistant, pathogen that kills tens of thousands worldwide each year. ΦKZ is an incredibly interesting virus, expressing many systems that the host already possesses. On infection, it forms a ‘nucleus’, erecting a barrier around its genome to exclude host endonucleases and CRISPR-Cas systems. ΦKZ infection is independent of the host transcriptional apparatus. It expresses two different multi-subunit RNA polymerases (RNAPs): the virion RNAP (vRNAP) is injected with the viral DNA during infection to transcribe early genes, including those encoding the non-virion RNAP (nvRNAP), which transcribes all further genes. ΦKZ nvRNAP is formed by four polypeptides thought to represent homologues of the eubacterial β/β′ subunits, and a fifth with unclear homology, but essential for transcription. We have resolved the structure of ΦKZ nvRNAP to better than 3.0 Å, shedding light on its assembly, homology, and the biological role of the fifth subunit: it is an embedded, integral member of the complex, the position, structural homology and biochemical role of which imply that it has evolved from an ancestral homologue to σ-factor.
Collapse
Affiliation(s)
| | | | | | - Anna Litvinova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Kailash Ramlaul
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Tatyana Artamonova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Alexei S Melnikov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | | | | | | |
Collapse
|
27
|
Bhatia S, Narayanan N, Nagpal S, Nair DT. Antiviral therapeutics directed against RNA dependent RNA polymerases from positive-sense viruses. Mol Aspects Med 2021; 81:101005. [PMID: 34311994 DOI: 10.1016/j.mam.2021.101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/18/2023]
Abstract
Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.
Collapse
Affiliation(s)
- Sonam Bhatia
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
28
|
Burke GR, Hines HM, Sharanowski BJ. The Presence of Ancient Core Genes Reveals Endogenization from Diverse Viral Ancestors in Parasitoid Wasps. Genome Biol Evol 2021; 13:evab105. [PMID: 33988720 PMCID: PMC8325570 DOI: 10.1093/gbe/evab105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The Ichneumonoidea (Ichneumonidae and Braconidae) is an incredibly diverse superfamily of parasitoid wasps that includes species that produce virus-like entities in their reproductive tracts to promote successful parasitism of host insects. Research on these entities has traditionally focused upon two viral genera Bracovirus (in Braconidae) and Ichnovirus (in Ichneumonidae). These viruses are produced using genes known collectively as endogenous viral elements (EVEs) that represent historical, now heritable viral integration events in wasp genomes. Here, new genome sequence assemblies for 11 species and 6 publicly available genomes from the Ichneumonoidea were screened with the goal of identifying novel EVEs and characterizing the breadth of species in lineages with known EVEs. Exhaustive similarity searches combined with the identification of ancient core genes revealed sequences from both known and novel EVEs. One species harbored a novel, independently derived EVE related to a divergent large double-stranded DNA (dsDNA) virus that manipulates behavior in other hymenopteran species. Although bracovirus or ichnovirus EVEs were identified as expected in three species, the absence of ichnoviruses in several species suggests that they are independently derived and present in two younger, less widespread lineages than previously thought. Overall, this study presents a novel bioinformatic approach for EVE discovery in genomes and shows that three divergent virus families (nudiviruses, the ancestors of ichnoviruses, and Leptopilina boulardi Filamentous Virus-like viruses) are recurrently acquired as EVEs in parasitoid wasps. Virus acquisition in the parasitoid wasps is a common process that has occurred in many more than two lineages from a diverse range of arthropod-infecting dsDNA viruses.
Collapse
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Heather M Hines
- Department of Biology and Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
29
|
Lei L, Burton ZF. Early Evolution of Transcription Systems and Divergence of Archaea and Bacteria. Front Mol Biosci 2021; 8:651134. [PMID: 34026831 PMCID: PMC8131849 DOI: 10.3389/fmolb.2021.651134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
DNA template-dependent multi-subunit RNA polymerases (RNAPs) found in all three domains of life and some viruses are of the two-double-Ψ-β-barrel (DPBB) type. The 2-DPBB protein format is also found in some RNA template-dependent RNAPs and a major replicative DNA template-dependent DNA polymerase (DNAP) from Archaea (PolD). The 2-DPBB family of RNAPs and DNAPs probably evolved prior to the last universal common cellular ancestor (LUCA). Archaeal Transcription Factor B (TFB) and bacterial σ factors include homologous strings of helix-turn-helix units. The consequences of TFB-σ homology are discussed in terms of the evolution of archaeal and bacterial core promoters. Domain-specific DPBB loop inserts functionally connect general transcription factors to the RNAP active site. Archaea appear to be more similar to LUCA than Bacteria. Evolution of bacterial σ factors from TFB appears to have driven divergence of Bacteria from Archaea, splitting the prokaryotic domains.
Collapse
Affiliation(s)
- Lei Lei
- Department of Biology, University of New England, Biddeford, ME, United States
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, United States
| |
Collapse
|
30
|
Barba-Aliaga M, Alepuz P, Pérez-Ortín JE. Eukaryotic RNA Polymerases: The Many Ways to Transcribe a Gene. Front Mol Biosci 2021; 8:663209. [PMID: 33968992 PMCID: PMC8097091 DOI: 10.3389/fmolb.2021.663209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
In eukaryotic cells, three nuclear RNA polymerases (RNA pols) carry out the transcription from DNA to RNA, and they all seem to have evolved from a single enzyme present in the common ancestor with archaea. The multiplicity of eukaryotic RNA pols allows each one to remain specialized in the synthesis of a subset of transcripts, which are different in the function, length, cell abundance, diversity, and promoter organization of the corresponding genes. We hypothesize that this specialization of RNA pols has conditioned the evolution of the regulatory mechanisms used to transcribe each gene subset to cope with environmental changes. We herein present the example of the homeostatic regulation of transcript levels versus changes in cell volume. We propose that the diversity and instability of messenger RNAs, transcribed by RNA polymerase II, have conditioned the appearance of regulatory mechanisms based on different gene promoter strength and mRNA stability. However, for the regulation of ribosomal RNA levels, which are very stable and transcribed mainly by RNA polymerase I from only one promoter, different mechanisms act based on gene copy variation, and a much simpler regulation of the synthesis rate.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| |
Collapse
|
31
|
Mäkinen JJ, Shin Y, Vieras E, Virta P, Metsä-Ketelä M, Murakami KS, Belogurov GA. The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases. Nat Commun 2021; 12:796. [PMID: 33542236 PMCID: PMC7862312 DOI: 10.1038/s41467-021-21005-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/06/2021] [Indexed: 01/18/2023] Open
Abstract
RNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2'dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2'OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2'dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2'dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2'OH group to promote NTP binding, but selectively inhibits incorporation of 2'dNTPs by interacting with their 3'OH group to favor the catalytically-inert 2'-endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs.
Collapse
Affiliation(s)
- Janne J Mäkinen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Yeonoh Shin
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Eeva Vieras
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, Finland
| | | | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| | | |
Collapse
|
32
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
33
|
Drobysheva AV, Panafidina SA, Kolesnik MV, Klimuk EI, Minakhin L, Yakunina MV, Borukhov S, Nilsson E, Holmfeldt K, Yutin N, Makarova KS, Koonin EV, Severinov KV, Leiman PG, Sokolova ML. Structure and function of virion RNA polymerase of a crAss-like phage. Nature 2021; 589:306-309. [PMID: 33208949 DOI: 10.1038/s41586-020-2921-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/08/2020] [Indexed: 01/29/2023]
Abstract
CrAss-like phages are a recently described expansive group of viruses that includes the most abundant virus in the human gut1-3. The genomes of all crAss-like phages encode a large virion-packaged protein2,4 that contains a DFDxD sequence motif, which forms the catalytic site in cellular multisubunit RNA polymerases (RNAPs)5. Here, using Cellulophaga baltica crAss-like phage phi14:2 as a model system, we show that this protein is a DNA-dependent RNAP that is translocated into the host cell along with the phage DNA and transcribes early phage genes. We determined the crystal structure of this 2,180-residue enzyme in a self-inhibited state, which probably occurs before virion packaging. This conformation is attained with the help of a cleft-blocking domain that interacts with the active site and occupies the cavity in which the RNA-DNA hybrid binds. Structurally, phi14:2 RNAP is most similar to eukaryotic RNAPs that are involved in RNA interference6,7, although most of the phi14:2 RNAP structure (nearly 1,600 residues) maps to a new region of the protein fold space. Considering this structural similarity, we propose that eukaryal RNA interference polymerases have their origins in phage, which parallels the emergence of the mitochondrial transcription apparatus8.
Collapse
Affiliation(s)
- Arina V Drobysheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sofia A Panafidina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Matvei V Kolesnik
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeny I Klimuk
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Leonid Minakhin
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Maria V Yakunina
- Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine at Stratford, Stratford, NJ, USA
| | - Emelie Nilsson
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Karin Holmfeldt
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Konstantin V Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Maria L Sokolova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
34
|
Mosharaf MP, Rahman H, Ahsan MA, Akond Z, Ahmed FF, Islam MM, Moni MA, Mollah MNH. In silico identification and characterization of AGO, DCL and RDR gene families and their associated regulatory elements in sweet orange (Citrus sinensis L.). PLoS One 2020; 15:e0228233. [PMID: 33347517 PMCID: PMC7751981 DOI: 10.1371/journal.pone.0228233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
RNA interference (RNAi) plays key roles in post-transcriptional and chromatin modification levels as well as regulates various eukaryotic gene expressions which are involved in stress responses, development and maintenance of genome integrity during developmental stages. The whole mechanism of RNAi pathway is directly involved with the gene-silencing process by the interaction of Dicer-Like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) gene families and their regulatory elements. However, these RNAi gene families and their sub-cellular locations, functional pathways and regulatory components were not extensively investigated in the case of economically and nutritionally important fruit plant sweet orange (Citrus sinensis L.). Therefore, in silico characterization, gene diversity and regulatory factor analysis of RNA silencing genes in C. sinensis were conducted by using the integrated bioinformatics approaches. Genome-wide comparison analysis based on phylogenetic tree approach detected 4 CsDCL, 8 CsAGO and 4 CsRDR as RNAi candidate genes in C. sinensis corresponding to the RNAi genes of model plant Arabidopsis thaliana. The domain and motif composition and gene structure analyses for all three gene families exhibited almost homogeneity within the same group members. The Gene Ontology enrichment analysis clearly indicated that the predicted genes have direct involvement into the gene-silencing and other important pathways. The key regulatory transcription factors (TFs) MYB, Dof, ERF, NAC, MIKC_MADS, WRKY and bZIP were identified by their interaction network analysis with the predicted genes. The cis-acting regulatory elements associated with the predicted genes were detected as responsive to light, stress and hormone functions. Furthermore, the expressed sequence tag (EST) analysis showed that these RNAi candidate genes were highly expressed in fruit and leaves indicating their organ specific functions. Our genome-wide comparison and integrated bioinformatics analyses provided some necessary information about sweet orange RNA silencing components that would pave a ground for further investigation of functional mechanism of the predicted genes and their regulatory factors.
Collapse
Affiliation(s)
- Md. Parvez Mosharaf
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Hafizur Rahman
- Department of Microbiology, Rajshahi Institute of Biosciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Asif Ahsan
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Zobaer Akond
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Institute of Environmental Science, University of Rajshahi, Rajshahi, Bangladesh
- Agricultural Statistics and ICT Division, Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh
| | - Fee Faysal Ahmed
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Mazharul Islam
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammad Ali Moni
- The University of Sydney, Sydney Medical School, School of Medical Sciences, Discipline of Biomedical Science, Sydney, New South Wales, Australia
| | - Md. Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail:
| |
Collapse
|
35
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
36
|
Cao Y, Xu X, Jiang L. Integrative analysis of the RNA interference toolbox in two Salicaceae willow species, and their roles in stress response in poplar (Populus trichocarpa Torr. & Gray). Int J Biol Macromol 2020; 162:1127-1139. [DOI: 10.1016/j.ijbiomac.2020.06.235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
|
37
|
Genome-Wide Identification and Coexpression Network Analysis of DNA Methylation Pathway Genes and Their Differentiated Functions in Ginkgo biloba L. FORESTS 2020. [DOI: 10.3390/f11101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA methylation plays a vital role in diverse biological processes. DNA methyltransferases (DNMTs) genes and RNA-directed DNA methylation (RdDM)-related genes are key genes responsible for establishing and maintaining genome DNA methylation in plants. In the present study, we systematically identified nine GbDNMTs in Ginkgo biloba, including the three common families of GbMET1a/1b, GbCMT2, and GbDRMa/b/2a/2b/2c, and a fourth family—GbDNMT3—which is absent in most angiosperms. We also identified twenty RdDM-related genes, including four GbDCLs, six GbAGOs, and ten GbRDRs. Expression analysis of the genes showed the different patterns of individual genes, and 15 of 29 genes displayed expression change under five types of abiotic stress. Gene coexpression analysis and weighted gene co-expression network analysis (WGCNA) using 126 public transcriptomic datasets revealed that these genes were clustered into two groups. In group I, genes covered members from all six families which were preferentially expressed in the ovulate strobile and fruit. A gene ontology (GO) enrichment analysis of WGCNA modules indicated that group I genes were most correlated with the biological process of cell proliferation. Group II only consisted of RdDM-related genes, including GbDRMs, GbAGOs, and GbRDRs, but no GbDCLs, and these genes were specifically expressed in the cambium, suggesting that they may function in a dicer-like (DCL)-independent RdDM pathway in specific tissues. The gene module related to group II was most enriched in signal transduction, cell communication, and the response to the stimulus. These results demonstrate that gene family members could be conserved or diverged across species, and multi-member families in the same pathway may cluster into different modules to function differentially. The study provides insight into the DNA methylation genes and their possible functions in G. biloba, laying a foundation for the further study of DNA methylation in gymnosperms.
Collapse
|
38
|
A distinct lineage of Caudovirales that encodes a deeply branching multi-subunit RNA polymerase. Nat Commun 2020; 11:4506. [PMID: 32908149 PMCID: PMC7481178 DOI: 10.1038/s41467-020-18281-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/14/2020] [Indexed: 01/27/2023] Open
Abstract
Bacteriophages play critical roles in the biosphere, but their vast genomic diversity has obscured their evolutionary origins, and phylogenetic analyses have traditionally been hindered by their lack of universal phylogenetic marker genes. In this study we mine metagenomic data and identify a clade of Caudovirales that encodes the β and β' subunits of multi-subunit RNA polymerase (RNAP), a high-resolution phylogenetic marker which enables detailed evolutionary analyses. Our RNAP phylogeny revealed that the Caudovirales RNAP forms a clade distinct from cellular homologs, suggesting an ancient acquisition of this enzyme. Within these multimeric RNAP-encoding Caudovirales (mReC), we find that the similarity of major capsid proteins and terminase large subunits further suggests they form a distinct clade with common evolutionary origin. Our study characterizes a clade of RNAP-encoding Caudovirales and suggests the ancient origin of this enzyme in this group, underscoring the important role of viruses in the early evolution of life on Earth.
Collapse
|
39
|
Koonin EV, Krupovic M, Ishino S, Ishino Y. The replication machinery of LUCA: common origin of DNA replication and transcription. BMC Biol 2020; 18:61. [PMID: 32517760 PMCID: PMC7281927 DOI: 10.1186/s12915-020-00800-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Origin of DNA replication is an enigma because the replicative DNA polymerases (DNAPs) are not homologous among the three domains of life, Bacteria, Archaea, and Eukarya. The homology between the archaeal replicative DNAP (PolD) and the large subunits of the universal RNA polymerase (RNAP) responsible for transcription suggests a parsimonious evolutionary scenario. Under this model, RNAPs and replicative DNAPs evolved from a common ancestor that functioned as an RNA-dependent RNA polymerase in the RNA-protein world that predated the advent of DNA replication. The replicative DNAP of the Last Universal Cellular Ancestor (LUCA) would be the ancestor of the archaeal PolD.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 75015, Paris, France
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
40
|
Gutbrod MJ, Martienssen RA. Conserved chromosomal functions of RNA interference. Nat Rev Genet 2020; 21:311-331. [PMID: 32051563 DOI: 10.1038/s41576-019-0203-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi), a cellular process through which small RNAs target and regulate complementary RNA transcripts, has well-characterized roles in post-transcriptional gene regulation and transposon repression. Recent studies have revealed additional conserved roles for RNAi proteins, such as Argonaute and Dicer, in chromosome function. By guiding chromatin modification, RNAi components promote chromosome segregation during both mitosis and meiosis and regulate chromosomal and genomic dosage response. Small RNAs and the RNAi machinery also participate in the resolution of DNA damage. Interestingly, many of these lesser-studied functions seem to be more strongly conserved across eukaryotes than are well-characterized functions such as the processing of microRNAs. These findings have implications for the evolution of RNAi since the last eukaryotic common ancestor, and they provide a more complete view of the functions of RNAi.
Collapse
Affiliation(s)
- Michael J Gutbrod
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Robert A Martienssen
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
41
|
Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. eLife 2019; 8:e49375. [PMID: 31841111 PMCID: PMC6970531 DOI: 10.7554/elife.49375] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022] Open
Abstract
TraR and its homolog DksA are bacterial proteins that regulate transcription initiation by binding directly to RNA polymerase (RNAP) rather than to promoter DNA. Effects of TraR mimic the combined effects of DksA and its cofactor ppGpp, but the structural basis for regulation by these factors remains unclear. Here, we use cryo-electron microscopy to determine structures of Escherichia coli RNAP, with or without TraR, and of an RNAP-promoter complex. TraR binding induced RNAP conformational changes not seen in previous crystallographic analyses, and a quantitative analysis revealed TraR-induced changes in RNAP conformational heterogeneity. These changes involve mobile regions of RNAP affecting promoter DNA interactions, including the βlobe, the clamp, the bridge helix, and several lineage-specific insertions. Using mutational approaches, we show that these structural changes, as well as effects on σ70 region 1.1, are critical for transcription activation or inhibition, depending on the kinetic features of regulated promoters.
Collapse
Affiliation(s)
- James Chen
- The Rockefeller UniversityNew YorkUnited States
| | | | | | - Albert Y Chen
- Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUnited States
| | | | - Richard L Gourse
- Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUnited States
| | - Wilma Ross
- Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUnited States
| | | |
Collapse
|
42
|
Kaján GL, Doszpoly A, Tarján ZL, Vidovszky MZ, Papp T. Virus-Host Coevolution with a Focus on Animal and Human DNA Viruses. J Mol Evol 2019; 88:41-56. [PMID: 31599342 PMCID: PMC6943099 DOI: 10.1007/s00239-019-09913-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023]
Abstract
Viruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the formation of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of an unceasing arms race, where weapons are often shuttled between the participants. In this literature review we try to give a short insight into some general consequences or traits of virus–host coevolution, and after this we zoom in to the viral clades of adenoviruses, herpesviruses, nucleo-cytoplasmic large DNA viruses, polyomaviruses and, finally, circoviruses.
Collapse
Affiliation(s)
- Győző L Kaján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary.
| | - Andor Doszpoly
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Zoltán László Tarján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Tibor Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| |
Collapse
|
43
|
Mourão K, Schurch NJ, Lucoszek R, Froussios K, MacKinnon K, Duc C, Simpson G, Barton GJ. Detection and mitigation of spurious antisense expression with RoSA. F1000Res 2019. [DOI: 10.12688/f1000research.18952.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antisense transcription is known to have a range of impacts on sense gene expression, including (but not limited to) impeding transcription initiation, disrupting post-transcriptional processes, and enhancing, slowing, or even preventing transcription of the sense gene. Strand-specific RNA-Seq protocols preserve the strand information of the original RNA in the data, and so can be used to identify where antisense transcription may be implicated in regulating gene expression. However, our analysis of 199 strand-specific RNA-Seq experiments reveals that spurious antisense reads are often present in these datasets at levels greater than 1% of sense gene expression levels. Furthermore, these levels can vary substantially even between replicates in the same experiment, potentially disrupting any downstream analysis, if the incorrectly assigned antisense counts dominate the set of genes with high antisense transcription levels. Currently, no tools exist to detect or correct for this spurious antisense signal. Our tool, RoSA (Removal of Spurious Antisense), detects the presence of high levels of spurious antisense read alignments in strand-specific RNA-Seq datasets. It uses incorrectly spliced reads on the antisense strand and/or ERCC spikeins (if present in the data) to calculate both global and gene-specific antisense correction factors. We demonstrate the utility of our tool to filter out spurious antisense transcript counts in an Arabidopsis thaliana RNA-Seq experiment. Availability: RoSA is open source software available under the GPL licence via the Barton Group GitHub page https://github.com/bartongroup.
Collapse
|
44
|
Sauguet L. The Extended "Two-Barrel" Polymerases Superfamily: Structure, Function and Evolution. J Mol Biol 2019; 431:4167-4183. [PMID: 31103775 DOI: 10.1016/j.jmb.2019.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
DNA and RNA polymerases (DNAP and RNAP) play central roles in genome replication, maintenance and repair, as well as in the expression of genes through their transcription. Multisubunit RNAPs carry out transcription and are represented, without exception, in all cellular life forms as well as in nucleo-cytoplasmic DNA viruses. Since their discovery, multisubunit RNAPs have been the focus of intense structural and functional studies revealing that they all share a well-conserved active-site region called the two-barrel catalytic core. The two-barrel core hosts the polymerase active site, which is located at the interface between two double-psi β-barrel domains that contribute distinct amino acid residues to the active site in an asymmetrical fashion. Recently, sequencing and structural studies have added a surprising variety of DNA and RNA to the two-barrel superfamily, including the archaeal replicative DNAP (PolD), which extends the family to DNA-dependent DNAPs involved in replication. While all these polymerases share a minimal core that must have been present in their common ancestor, the two-barrel polymerase superfamily now encompasses a remarkable diversity of enzymes, including DNA-dependent RNAPs, RNA-dependent RNAPs, and DNA-dependent DNAPs, which participate in critical biological processes such as DNA transcription, DNA replication, and gene silencing. The present review will discuss both common features and differences among the extended two-barrel polymerase superfamily, focusing on the newly discovered members. Comparing their structures provides insights into the molecular mechanisms evolved by the contemporary two-barrel polymerases to accomplish their different biological functions.
Collapse
Affiliation(s)
- Ludovic Sauguet
- Institut Pasteur, Unité de Dynamique Structurale des Macromolécules, 75015 Paris, France.
| |
Collapse
|
45
|
Hajheidari M, Koncz C, Bucher M. Chromatin Evolution-Key Innovations Underpinning Morphological Complexity. FRONTIERS IN PLANT SCIENCE 2019; 10:454. [PMID: 31031789 PMCID: PMC6474313 DOI: 10.3389/fpls.2019.00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
The history of life consists of a series of major evolutionary transitions, including emergence and radiation of complex multicellular eukaryotes from unicellular ancestors. The cells of multicellular organisms, with few exceptions, contain the same genome, however, their organs are composed of a variety of cell types that differ in both structure and function. This variation is largely due to the transcriptional activity of different sets of genes in different cell types. This indicates that complex transcriptional regulation played a key role in the evolution of complexity in eukaryotes. In this review, we summarize how gene duplication and subsequent evolutionary innovations, including the structural evolution of nucleosomes and chromatin-related factors, contributed to the complexity of the transcriptional system and provided a basis for morphological diversity.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Biological Research Center, Institute of Plant Biology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
46
|
Transcription in cyanobacteria: a distinctive machinery and putative mechanisms. Biochem Soc Trans 2019; 47:679-689. [DOI: 10.1042/bst20180508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 02/03/2023]
Abstract
Abstract
Transcription in cyanobacteria involves several fascinating features. Cyanobacteria comprise one of the very few groups in which no proofreading factors (Gre homologues) have been identified. Gre factors increase the efficiency of RNA cleavage, therefore helping to maintain the fidelity of the RNA transcript and assist in the resolution of stalled RNAPs to prevent genome damage. The vast majority of bacterial species encode at least one of these highly conserved factors and so their absence in cyanobacteria is intriguing. Additionally, the largest subunit of bacterial RNAP has undergone a split in cyanobacteria to form two subunits and the SI3 insertion within the integral trigger loop element is roughly 3.5 times larger than in Escherichia coli. The Rho termination factor also appears to be absent, leaving cyanobacteria to rely solely on an intrinsic termination mechanism. Furthermore, cyanobacteria must be able to respond to environment signals such as light intensity and tightly synchronise gene expression and other cell activities to a circadian rhythm.
Collapse
|
47
|
Silvestri A, Fiorilli V, Miozzi L, Accotto GP, Turina M, Lanfranco L. In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics 2019; 20:169. [PMID: 30832582 PMCID: PMC6399891 DOI: 10.1186/s12864-019-5561-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are short non-coding RNA molecules (20-30 nt) that regulate gene expression at transcriptional or post-transcriptional levels in many eukaryotic organisms, through a mechanism known as RNA interference (RNAi). Recent studies have highlighted that they are also involved in cross-kingdom communication: sRNAs can move across the contact surfaces from "donor" to "receiver" organisms and, once in the host cells of the receiver, they can target specific mRNAs, leading to a modulation of host metabolic pathways and defense responses. Very little is known about RNAi mechanism and sRNAs occurrence in Arbuscular Mycorrhizal Fungi (AMF), an important component of the plant root microbiota that provide several benefits to host plants, such as improved mineral uptake and tolerance to biotic and abiotic stress. RESULTS Taking advantage of the available genomic resources for the AMF Rhizophagus irregularis we described its putative RNAi machinery, which is characterized by a single Dicer-like (DCL) gene and an unusual expansion of Argonaute-like (AGO-like) and RNA-dependent RNA polymerase (RdRp) gene families. In silico investigations of previously published transcriptomic data and experimental assays carried out in this work provided evidence of gene expression for most of the identified sequences. Focusing on the symbiosis between R. irregularis and the model plant Medicago truncatula, we characterized the fungal sRNA population, highlighting the occurrence of an active sRNA-generating pathway and the presence of microRNA-like sequences. In silico analyses, supported by host plant degradome data, revealed that several fungal sRNAs have the potential to target M. truncatula transcripts, including some specific mRNA already shown to be modulated in roots upon AMF colonization. CONCLUSIONS The identification of RNAi-related genes, together with the characterization of the sRNAs population, suggest that R. irregularis is equipped with a functional sRNA-generating pathway. Moreover, the in silico analysis predicted 237 plant transcripts as putative targets of specific fungal sRNAs suggesting that cross-kingdom post-transcriptional gene silencing may occur during AMF colonization.
Collapse
Affiliation(s)
- Alessandro Silvestri
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Laura Miozzi
- Institute for Sustainable Plant Protection – CNR Torino, Strada delle Cacce 73, 10131 Torino, Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection – CNR Torino, Strada delle Cacce 73, 10131 Torino, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection – CNR Torino, Strada delle Cacce 73, 10131 Torino, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
48
|
Pinzón N, Bertrand S, Subirana L, Busseau I, Escrivá H, Seitz H. Functional lability of RNA-dependent RNA polymerases in animals. PLoS Genet 2019; 15:e1007915. [PMID: 30779744 PMCID: PMC6396948 DOI: 10.1371/journal.pgen.1007915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/01/2019] [Accepted: 12/24/2018] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) requires RNA-dependent RNA polymerases (RdRPs) in many eukaryotes, and RNAi amplification constitutes the only known function for eukaryotic RdRPs. Yet in animals, classical model organisms can elicit RNAi without possessing RdRPs, and only nematode RNAi was shown to require RdRPs. Here we show that RdRP genes are much more common in animals than previously thought, even in insects, where they had been assumed not to exist. RdRP genes were present in the ancestors of numerous clades, and they were subsequently lost at a high frequency. In order to probe the function of RdRPs in a deuterostome (the cephalochordate Branchiostoma lanceolatum), we performed high-throughput analyses of small RNAs from various Branchiostoma developmental stages. Our results show that Branchiostoma RdRPs do not appear to participate in RNAi: we did not detect any candidate small RNA population exhibiting classical siRNA length or sequence features. Our results show that RdRPs have been independently lost in dozens of animal clades, and even in a clade where they have been conserved (cephalochordates) their function in RNAi amplification is not preserved. Such a dramatic functional variability reveals an unexpected plasticity in RNA silencing pathways. RNA interference (RNAi) is a conserved gene regulation system in eukaryotes. In non-animal eukaryotes, it necessitates RNA-dependent RNA polymerases (“RdRPs”). Among animals, only nematodes appear to require RdRPs for RNAi. Yet additional animal clades have RdRPs and it is assumed that they participate in RNAi. Here, we find that RdRPs are much more common in animals than previously thought, but their genes were independently lost in many lineages. Focusing on a species with RdRP genes (a cephalochordate), we found that it does not use them for RNAi. While RNAi is the only known function for eukaryotic RdRPs, our results suggest additional roles. Eukaryotic RdRPs thus have a complex evolutionary history in animals, with frequent independent losses and apparent functional diversification.
Collapse
Affiliation(s)
- Natalia Pinzón
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Isabelle Busseau
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
| | - Hector Escrivá
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Hervé Seitz
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
- * E-mail:
| |
Collapse
|
49
|
Banwell EF, Piette BMAG, Taormina A, Heddle JG. Reciprocal Nucleopeptides as the Ancestral Darwinian Self-Replicator. Mol Biol Evol 2019; 35:404-416. [PMID: 29126321 PMCID: PMC5850689 DOI: 10.1093/molbev/msx292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Even the simplest organisms are too complex to have spontaneously arisen fully formed, yet precursors to first life must have emerged ab initio from their environment. A watershed event was the appearance of the first entity capable of evolution: the Initial Darwinian Ancestor. Here, we suggest that nucleopeptide reciprocal replicators could have carried out this important role and contend that this is the simplest way to explain extant replication systems in a mathematically consistent way. We propose short nucleic acid templates on which amino-acylated adapters assembled. Spatial localization drives peptide ligation from activated precursors to generate phosphodiester-bond-catalytic peptides. Comprising autocatalytic protein and nucleic acid sequences, this dynamical system links and unifies several previous hypotheses and provides a plausible model for the emergence of DNA and the operational code.
Collapse
Affiliation(s)
- Eleanor F Banwell
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Anne Taormina
- Department for Mathematical Sciences, Durham University, Durham, United Kingdom
| | - Jonathan G Heddle
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
50
|
An updated structural classification of replicative DNA polymerases. Biochem Soc Trans 2019; 47:239-249. [PMID: 30647142 DOI: 10.1042/bst20180579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Replicative DNA polymerases are nano-machines essential to life, which have evolved the ability to copy the genome with high fidelity and high processivity. In contrast with cellular transcriptases and ribosome machines, which evolved by accretion of complexity from a conserved catalytic core, no replicative DNA polymerase is universally conserved. Strikingly, four different families of DNA polymerases have evolved to perform DNA replication in the three domains of life. In Bacteria, the genome is replicated by DNA polymerases belonging to the A- and C-families. In Eukarya, genomic DNA is copied mainly by three distinct replicative DNA polymerases, Polα, Polδ, and Polε, which all belong to the B-family. Matters are more complicated in Archaea, which contain an unusual D-family DNA polymerase (PolD) in addition to PolB, a B-family replicative DNA polymerase that is homologous to the eukaryotic ones. PolD is a heterodimeric DNA polymerase present in all Archaea discovered so far, except Crenarchaea. While PolD is an essential replicative DNA polymerase, it is often underrepresented in the literature when the diversity of DNA polymerases is discussed. Recent structural studies have shown that the structures of both polymerase and proofreading active sites of PolD differ from other structurally characterized DNA polymerases, thereby extending the repertoire of folds known to perform DNA replication. This review aims to provide an updated structural classification of all replicative DNAPs and discuss their evolutionary relationships, both regarding the DNA polymerase and proofreading active sites.
Collapse
|