1
|
Spruijtenburg B, de Souza Lima BJF, Tosar STG, Borman AM, Andersen CT, Nizamuddin S, Ahmad S, de Almeida Junior JN, Vicente VA, Nosanchuk JD, Buil JB, de Hoog S, Meijer EFJ, Meis JF, de Groot T. The yeast genus Tardiomyces gen. nov. with one new species and two new combinations. Infection 2024; 52:1799-1812. [PMID: 38573472 PMCID: PMC11499460 DOI: 10.1007/s15010-024-02229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE Rare yeasts species are increasingly reported as causative agents of invasive human infection. Proper identification and antifungal therapy are essential to manage these infections. Candida blankii is one of these emerging pathogens and is known for its reduced susceptibility to multiple antifungals. METHODS To obtain more insight into the characteristics of this species, 26 isolates reported as C. blankii were investigated using genetic and phenotypical approaches. RESULTS Among the 26 isolates, seven recovered either from blood, sputum, urine, or the oral cavity, displayed substantial genetic and some phenotypical differences compared to the other isolates, which were confirmed as C. blankii. We consider these seven strains to represent a novel species, Tardiomyces depauwii. Phylogenomics assigned C. blankii, C. digboiensis, and the novel species in a distinct branch within the order Dipodascales, for which the novel genus Tardiomyces is erected. The new combinations Tardiomyces blankii and Tardiomyces digboiensis are introduced. Differences with related, strictly environmental genera Sugiyamaella, Crinitomyces, and Diddensiella are enumerated. All three Tardiomyces species share the rare ability to grow up to 42 °C, display slower growth in nutrient-poor media, and show a reduced susceptibility to azoles and echinocandins. Characteristics of T. depauwii include high MIC values with voriconazole and a unique protein pattern. CONCLUSION We propose the novel yeast species Tardiomyces depauwii and the transfer of C. blankii and C. digboiensis to the novel Tardiomyces genus.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands.
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands.
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands.
| | - Bruna Jacomel Favoreto de Souza Lima
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Sonia T Granadillo Tosar
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Andrew M Borman
- UK Health Security Agency National Mycology Reference Laboratory, Southmead Hospital, Bristol, BS10 5NB, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, UK
| | | | - Summiya Nizamuddin
- Section of Microbiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | | - Vânia Aparecida Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
- Microbiological Collections of Paraná Network (CMRP/Taxonline), Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Joshua D Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Jochem B Buil
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Sybren de Hoog
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Eelco F J Meijer
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Bhat MP, Kumar RS, Chakraborty B, Nagaraja SK, Gireesh Babu K, Nayaka S. Eicosane: An antifungal compound derived from Streptomyces sp. KF15 exhibits inhibitory potential against major phytopathogenic fungi of crops. ENVIRONMENTAL RESEARCH 2024; 251:118666. [PMID: 38462087 DOI: 10.1016/j.envres.2024.118666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
In the present scenario, food security is of major concern due to exponentially increasing population and depleted crop production. The fungal diseases have contributed majorly to the scarcity of staple food products and economic loss worldwide. This problem could be tackled by preventing the crop loss during both pre and post-harvest seasons. During the current investigation, the bioactive compound eicosane was extracted from Streptomyces sp. KF15, subjected to purification and identified based on mass spectrometry and NMR analysis. The evaluation of in-vitro antifungal activity was done by poisoned food method, SEM analysis and growth pattern analysis. The bioactive compound eicosane with molecular weight of 282.5475 g/mol was purified by column chromatography and the straight chain hydrocarbon structure of CH3CH2(18)CH3 was elucidated by NMR analysis. In poisoned food assay, eicosane effectively inhibited the radial growth of all tested fungal pathogens; F. oxysporum was found to be the most sensitive with 24.2%, 33.3%, 42.4%, and 63.6% inhibition at 25-100 μg/ml concentrations. The SEM micrograph established clear differences in the morphology of eicosane treated fungi with damaged hyphae, flaccid mycelium and collapsed spores as compared to the tubular, turgid and entire fungi in control sample. Finally, the growth curve assay depicted the right side shift in the pattern of eicosane treated fungi indicating the delay in adapting to the conditions of growth and multiplication. The findings of this study encourage further research and development towards the novel antifungal drugs that can act against major phytopathogens.
Collapse
Affiliation(s)
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India.
| | | | - K Gireesh Babu
- Department of Life Sciences, Parul University, Vadodara, 391760, Gujarat, India.
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India.
| |
Collapse
|
3
|
Maziere M, Andrade JC, Rompante P, Rodrigues CF. Evaluation of the antifungal effect of plant extracts on oral Candidaspp. - a critical methodological analysis of the last decade. Crit Rev Microbiol 2024:1-11. [PMID: 38497208 DOI: 10.1080/1040841x.2024.2326995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION In 2022, the World Health Organization published a report encouraging researchers to focus on Candida spp. to strengthen the global response to fungal oral infections and antifungal resistance. In the context of innovative research, it seems pertinent to investigate the antifungal potential of natural extracts of plants and the methodology involved in the recent reports. The aim of this systematic review is to identify the current state of in vitro research on the evaluation of the ability of plant extracts to inhibit Candida spp. MATERIAL AND METHODS A bibliographic search has been developed to on a 10-year period to identify which plant extracts have an antifungal effect on the Candida spp. found in the oral cavity. RESULTS A total of 20 papers were reviewed and fulfilled all the selection criteria and were included in the full data analysis. DISCUSSION Plants have been tested in a wide range of states - whole extracts, extraction of particular components such as flavonoids or polyphenols, or even using the plant to synthesize nanoparticles. Of forty-five plants tested, five of them did not show any effect against Candida spp., which weren't part of the same family. There is a wide range of plant that exhibit antifungal proprieties. CONCLUSION Many plants have been tested in a wide range of states - whole extracts, extraction of components such as flavonoids or polyphenols, or even using the plant to synthetize nanoparticles. The combination of plants, the addition of plants to a traditional antifungal and the interference with adhesion provided by some plants seem to be promising strategies. Nonetheless, on contrary to drugs, there is a critical lack of standardization on methodologies and protocols, which makes it difficult to compare data and, consequently, to conclude, beyond doubts, about the most promising plants to fight Candida spp. oral infections.
Collapse
Affiliation(s)
- M Maziere
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS - CESPU), Gandra, Portugal
| | - J C Andrade
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| | - P Rompante
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS - CESPU), Gandra, Portugal
| | - C F Rodrigues
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
4
|
Rauf A, Anyanwu M, Aliiri AA, Alanazi HAH, Alharbi AMA, Wadood A, Aljohani ASM, Muhammad N, Samad A, Shah SUA, Gianoncelli A, Ribaudo G. Antifungal and Antiproliferative Activity of Pistagremic Acid and Flavonoids Extracted from the Galls of Pistacia chinensis subsp. integerrima. Chem Biodivers 2024; 21:e202301815. [PMID: 38152840 DOI: 10.1002/cbdv.202301815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Pistacia chinensis subsp. integerrima (J.L. Stewart) Rech. f. is a plant known for its therapeutic applications in traditional medicine, which are related to its antimicrobial, anticancer, antioxidant, anti-inflammatory, analgesic, antidiarrheal, and muscle relaxant properties. The galls of P. chinensis are rich in triterpenes and flavonoids, and we here report the extraction of pistagremic acid (1), apigenin (2) and sakuranetin (3) from this source. The isolated compounds were tested against Aspergillus flavus, Candida albicans, Candida glabrata, Fusarium solani, Microsporum canis and Trichoderma longibrachiatum. The results highlighted the antimicrobial activity of flavonoids 2 and 3, suggesting that this class of molecules may be responsible for the effect related to the traditional use. On the other hand, when the compounds and the extract were tested for their antiproliferative activity on a panel of 4 human cancer cell lines, the triterpene pistagremic acid (1) showed a higher potential, thus demonstrating a different bioactivity profile. Structure-based docking and molecular dynamics simulations were used to help the interpretation of experimental results. Taken together, the here reported findings pave the way for the rationalization of the use of P. chinensis extracts, highlighting the contributions of the different components of galls to the observed bioactivity.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Margrate Anyanwu
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Ahmad A Aliiri
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Animal Resource, Ministry of Environment, Water and Agriculture, Saudi Arabia
| | - Hamdan A H Alanazi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Directorie of Markets and Slaughterhouses, Ministry of Environment, Water and Agriculture, Saudi Arabia
| | - Abdulrahman M A Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Environmental Health Department, Al-Dhahria Municipality, Ministry of Municipal Rural Affaires & Housing, Saudi Arabia
| | - Abdul Wadood
- Department of Pharmacy, Abdul Wali Khan University Mardan KPK, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan KPK, Pakistan
| | - Abdus Samad
- Department of Pharmacy, Abdul Wali Khan University Mardan KPK, Pakistan
| | - Syed Uzair Ali Shah
- Department of Pharmacy, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | | | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
5
|
Chen J, Yu D, Li X, Deng Q, Yang H, Chen L, Bai L. A review of Brucea javanica: metabolites, pharmacology and clinical application. Front Pharmacol 2024; 14:1317620. [PMID: 38371913 PMCID: PMC10871038 DOI: 10.3389/fphar.2023.1317620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024] Open
Abstract
This review examines advances in the metabolites, pharmacological research, and therapeutic applications of the medicinal fruit of Brucea javanica (L.) Merr. Brucea javanica (BJ) is derived from the fruit of the Brucea javanica (L.) Merr. There are nearly 200 metabolites present in BJ, and due to the diversity of its metabolites, BJ has a wide range of pharmacological effects. The traditional pharmacological effects of BJ include anti-dysentery, anti-malaria, etc. The research investigating the contemporary pharmacological impacts of BJ mainly focuses on its anti-tumor properties. In the article, the strong monomeric metabolites among these pharmacological effects were preliminarily screened. Regarding the pharmacological mechanism of action, current research has initially explored BJ's pharmacological agent and molecular signaling pathways. However, a comprehensive system has yet to be established. BJ preparations have been utilized in clinical settings and have demonstrated effectiveness. Nevertheless, clinical research is primarily limited to observational studies, and there is a need for higher-quality research evidence to support its clinical application. There are still many difficulties and obstacles in studying BJ. However, it is indisputable that BJ is a botanical drugs with significant potential for application, and it is expected to have broader global usage.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Guangyuan Central Hospital of Sichuan Province, Guangyuan, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pharmacy, Guanghan People's Hospital, Guanghan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Bhat MP, Rudrappa M, Hugar A, Gunagambhire PV, Suresh Kumar R, Nayaka S, Almansour AI, Perumal K. In-vitro investigation on the biological activities of squalene derived from the soil fungus Talaromyces pinophilus. Heliyon 2023; 9:e21461. [PMID: 38027970 PMCID: PMC10654146 DOI: 10.1016/j.heliyon.2023.e21461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The consistent increase in multidrug resistance among pathogens and increased cancer incidence are serious public health concerns and threaten humans by killing countless lives. In the present study, Talaromyces pinophilus CJ15 was characterized and evaluated for its antibacterial, candidicidal and cytotoxic activities. The selected isolate Talaromyces pinophilus CJ15 with 18S rRNA gene sequence of 1021 base pairs exhibited antifungal activity on plant pathogens via dual culture. The GC-MS profiling of crude extract illustrated the existence of many bioactive macromolecules which include squalene belonging to the terpenoids family. The biological macromolecules in the bioactive fraction of CJ15 exhibited increasing antibacterial activity with an increase in concentration such that the highest activity was recorded against Shigella flexneri with 15, 18, 20, and 24 mm inhibition zones at 25, 50, 75 and 100 μl concentrations, respectively. The squalene, having a molecular weight of 410.718 g/mol, displayed candidicidal activity with a right-side shifted log phase in the growth curve of all the treated Candida species, indicating delayed exponential growth. In cytotoxic activity, the extracted squalene exhibited an IC50 concentration of 26.22 μg/ml against JURKAT cells and induced apoptosis-induced cell death. This study's outcomes encourage the researchers to explore further the development of new and improved bioactive macromolecules that could help to prevent infections and human blood cancer.
Collapse
Affiliation(s)
| | - Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India
| | - Anil Hugar
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India
| | | | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
7
|
Majhi R, Maharjan R, Shrestha M, Mali A, Basnet A, Baral M, Duwal R, Manandhar R, Rajbhandari P. Effect of altitude and solvent on Psidium guajava Linn. leaves extracts: phytochemical analysis, antioxidant, cytotoxicity and antimicrobial activity against food spoilage microbes. BMC Chem 2023; 17:36. [PMID: 37055840 PMCID: PMC10100324 DOI: 10.1186/s13065-023-00948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Guava (Psidium guajava Linn.) has been traditionally used in the treatment of a wide range of diseases due to its rich content of secondary metabolites. AIM This study was aimed to evaluate the effect of altitude and solvent systems on guava leaves crude extract's phenolics and flavonoid content, antioxidant, antimicrobial, and toxicity nature. METHODS Guava leaves were collected from three different geographical locations in Nepal while solvents with an increasing polarity index were used for extraction. The yield percentage of extracts was calculated. Total Phenolic Content, Total Flavonoid Content, and antioxidant activity were determined by the Folin-Ciocalteu method, Aluminium chloride colorimetric method, and DPPH (2,2'-Diphenyl-1-picrylhydrazyl) assay respectively. The quantification of fisetin and quercetin was performed using the HPLC with method validation. The antimicrobial activity of the extracts was tested against bacteria and fungus isolated from spoiled fruits and vegetables and identified through 16s and 18s rRNA sequencing. Finally, Brine Shrimp Lethality Assay (BSLA) was used for testing the toxicity of the extracts. RESULTS The phenolic and total flavonoid content was found to be higher in ethanol extract (331.84 mg GAE/g dry extract) and methanol extract (95.53 mg QE/g dry extract) from Kuleshwor respectively. Water extract of guava leaves from Kuleshwor (WGK) did not show significantly different antioxidant activity when compared to methanol and ethanol extracts. Fisetin and quercetin were higher in WGK (1.176 mg/100 g) and (10.967 mg/100 g) dry extract weight respectively. Antibacterial activity against food spoilage bacteria was dose-dependent and found to be highest for all the extracts from different solvents and altitudes at higher concentrations (80 mg/ml). Similarly, methanol and ethanol guava extracts from all locations showed antifungal activity against Geotrichum candidum RIBB-SCM43 and Geotrichum candidum RIBB-SCM44. WGK was found to be non-toxic. CONCLUSION Our study concludes that the antioxidant and antimicrobial activity of WGK was found to be similar statistically to that of methanol and ethanol extracts of Bishnupur Katti and Mahajidiya. These results suggest the possibility of using water as a sustainable solvent to extract natural antioxidant and antimicrobial compounds which can further be used as natural preservatives to extend the shelf life of fruits and vegetables.
Collapse
Affiliation(s)
- Rita Majhi
- Department of Natural Product and Green Chemistry, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Rukusha Maharjan
- Department of Natural Product and Green Chemistry, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Mitesh Shrestha
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Aatish Mali
- Department of Natural Product and Green Chemistry, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Angisha Basnet
- Department of Natural Product and Green Chemistry, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Manish Baral
- Department of Plant Physiology and Environmental Sciences, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Rabin Duwal
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Rojlina Manandhar
- Department of Natural Product and Green Chemistry, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Prajwal Rajbhandari
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal.
| |
Collapse
|
8
|
Diwan B, Gupta P. Key media microsupplements for boosting de novo lipogenesis in an oleaginic yeast isolate. J Biosci Bioeng 2022; 134:95-104. [PMID: 35659719 DOI: 10.1016/j.jbiosc.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
Present work reports a simple approach of microsupplementing nitrogen starved production media with potential activators of lipogenic enzymes for boosting de novo lipogenesis and demonstrated a 70-117 % rise in lipid content (LC) of yeast isolate Geotrichum candidum NBT-1. A hypothesis was proposed to increase the LC in the isolate at fixed minimum C/N ratio and small molecular activators for 3 key enzymes of lipogenic pathways. ATP citrate lyase, malic enzyme and acetyl CoA-carboxylase were screened in silico. Screened molecules were microsupplemented in nitrogen-starved media for examining the actual influence of their individual and synergistic combination on boosting LC of the isolate, which revealed sodium acetate as a major effector. Acetate in 4 mM concentration, independently and in combination with citric acid and sucrose resulted in a 2-2.2-fold increase in G. candidum LC from 24.8% in control to 49.27% and 53.96%, respectively. A volumetric lipid productivity of 0.0288 g/L/h with appreciable lipid coefficient of 9.77 was achieved in acetate supplemented media. Extracted lipids were 70-90% concentrated in a medium chain fatty acid (MCFA)-caprylic acid (C8:0), which has upsurging nutritional and nutraceutical importance.
Collapse
Affiliation(s)
- Batul Diwan
- Department of Biotechnology, National Institute of Technology, GE Road, Raipur 492010, India; Centre for Ayurveda Biology and Holistic Nutrition (CABHN), The University of Transdisciplinary Health Science and Technology Bangalore, Bangalore 560064, India.
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, GE Road, Raipur 492010, India.
| |
Collapse
|
9
|
Alhakamy NA, Hosny KM, Rizg WY, Eshmawi BA, Badr MY, Safhi AY, Murshid SSA. Development and Optimization of Hyaluronic Acid-Poloxamer In-Situ Gel Loaded with Voriconazole Cubosomes for Enhancement of Activity against Ocular Fungal Infection. Gels 2022; 8:gels8040241. [PMID: 35448142 PMCID: PMC9032757 DOI: 10.3390/gels8040241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Fungal eye infections are largely disseminated, especially in developing countries where they may leave over half a million people blind per year. The current study aims to boost the voriconazole antifungal efficiency via loading it as cubosomes (VZ-Cub) into hyaluronic acid and poloxamer-based ocular in situ gel. VZ-Cub were fabricated applying Box-Behnken design and employing phytantriol, poloxamer F127, and VZ amounts as independent variables. The produced nano vesicles were evaluated for the dependent variables of particle size (PS), entrapment efficiency (EE%), and transcorneal steady-state flux (Jss) of the VZ, and, the obtained optimal VZ-Cub was loaded into an in situ gel base to enhance its ocular residence time. The in situ gel formulation was tested for its gelation temperature, drug release behavior, transcorneal permeation effects, and antifungal activity. The optimized VZ-Cub consisted of 100 mg of phytantriol, 60 mg of poloxamer F127, and 21 mg of VZ. This formulation led to a minimum PS of 71 nm, an EE% of 66%, Jss value of 6.5 µg/(cm2·min), and stability index of 94 ± 2%. The optimized VZ-Cub-loaded in situ gel released 84% VZ after 12 h and yielded a 4.5-fold increase in drug permeation compared with the VZ aqueous dispersion. The antifungal activity, which was obtained by measuring the fungal growth inhibition zones, revealed that the VZ-Cub-loaded in situ gel formulation had a 3.89-fold increase in antifungal activity compared with the VZ dispersion. In summary, an ocular in situ gel loaded with VZ-Cub could be an effective novel nano-paradigm with enhanced transcorneal permeation and antifungal properties.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence:
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bayan A. Eshmawi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
| | - Moutaz Y. Badr
- Department of Pharmaceutics, Collage of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia;
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
10
|
Zarafshan H, Mojarab M, Zangeneh MM, Moradipour P, Bagheri F, Aghaz F, Arkan E. A novel biocompatible and biodegradable electrospun nanofibers containing M. neglectum: Antifungal properties and in vitro investigation. IEEE Trans Nanobioscience 2021; 21:520-528. [PMID: 34784282 DOI: 10.1109/tnb.2021.3128407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present study, biocompatible nanofibers containing aqueous extracts from Muscari neglectum (M. neglectum) plants (produced nanofiber) were prepared and their antifungal and cytotoxicity effects were investigated. For this purpose, the extracts obtained from flowers, stem leaves, and fresh onion from M. neglectum were lyophilized at various concentrations. Produced nanofibers were prepared using electrospinning techniques. During the electrospinning process, two auxiliary natural polymers including gelatin and chitosan were used. After synthesis, the physicochemical properties of the nanofibers were confirmed by Scanning Electron Microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray energy diffraction spectroscopy (EDS or EDX), and Differential Scanning Calorimetry (DSC). The electrospun produced nanofibers have continuous and uniform structures. The cytotoxicity assay of these electrospun nanofibers were done on Human dermal fibroblast cell (HDF) and HUVEC cell (Human Umbilical Endothelial Cells) lines and results showed that nanofiber doesn't have any toxicity to normal cell lines. For anti-fungal activity tests, the appropriate amounts of nanofibers containing M. neglectum were placed in media with five different fungal species utilizing two methods: disc diffusion and well diffusion. In vitro results showed that all electrospun nanofibers containing M. neglectum had strong antifungal activity against Candida albicans, Glabrata, Parapacillus, Guillermoides, Crocus fungi species. Our findings also showed that nanofibers containing 86.88% polyvinyl alcohol/ gelatin/ chitosan/ M. neglectum root extract (produced nanofibers) were had better swelling and physicochemical properties and stronger antifungal activity than others (fiber formed with plant root). In a nutshell, natural nanofibers can be used as a beneficial drug delivery system.
Collapse
|
11
|
Kamal LZM, Adam MAA, Shahpudin SNM, Shuib AN, Sandai R, Hassan NM, Tabana Y, Basri DF, Than LTL, Sandai D. Identification of Alkaloid Compounds Arborinine and Graveoline from Ruta angustifolia (L.) Pers for their Antifungal Potential against Isocitrate lyase (ICL1) gene of Candida albicans. Mycopathologia 2021; 186:221-236. [PMID: 33550536 DOI: 10.1007/s11046-020-00523-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/18/2020] [Indexed: 10/20/2022]
Abstract
Candida albicans has been reported globally as the most widespread pathogenic species contributing candidiasis from superficial to systemic infections in immunocompromised individuals. Their metabolic adaptation depends on glyoxylate cycle to survive in nutrient-limited host. The long term usage of fungistatic drugs and the lack of cidal drugs frequently result in strains that could resist commonly used antifungals and display multidrug resistance (MDR). In search of potential therapeutic intervention and novel fungicidals, we have explored a plant alkaloids, namely arborinine and graveoline for its antifungal potential. Alkaloids belongs to Rutaceae family have been reported with numerous antimicrobial activities. In this study, we aimed to isolate and identify the antifungal active alkaloids of R. angustifolia and assess antifungal effect targeting C. albicans isocitrate lyase (ICL) gene which regulates isocitrate lyase, key enzyme in glyoxylate cycle contributing to the virulence potential of C. albicans. Alkaloids were extracted by bioassay guided isolation technique which further identified by TLC profile and compared with the standard through HPLC and NMR analysis. The antifungal activities of the extracted alkaloids were quantified by means of MIC (Minimum Inhibitory Concentration). The gene expression of the targeted gene upon treatment was analysed using RT-qPCR and western blot. Additionally, this study looked at the drug-likeness and potential toxicity effect of the active alkaloid compounds in silico analysis. Spectroscopic analysis showed that the isolated active alkaloids were characterized as acridone, furoquinoline, 4-quinolone known as arborinine and graveoline. Results showed that each compound significantly inhibited the growth of C. albicans at the dose of 250 to 500 µg/mL which confirm its antifungal activity. Each alkaloid was found to successfully downregulate the expression of both ICL1 gene CaIcl1 protein. Finally, ADMET analysis suggests a good prediction of chemical properties, namely absorption, distribution, metabolism, excretion and toxicity (ADMET) that will contribute in drug discovery and development later on.
Collapse
Affiliation(s)
- Laina Zarisa Mohd Kamal
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Mowaffaq Adam Ahmed Adam
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Siti Nurfatimah Mohd Shahpudin
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Ahmad Naqeeb Shuib
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Rosline Sandai
- Faculty of Language and Communication, Universiti Pendidikan Sultan Idris, Perak, Malaysia
| | - Norazian Mohd Hassan
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| | - Dayang Fredalina Basri
- School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Doblin Sandai
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
12
|
Supreetha R, Bindya S, Deepika P, Vinusha H, Hema B. Characterization and biological activities of synthesized citrus pectin-MgO nanocomposite. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
13
|
Gonzalez MF, Magdama F, Galarza L, Sosa D, Romero C. Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum. Commun Integr Biol 2020; 13:160-169. [PMID: 33149802 PMCID: PMC7583711 DOI: 10.1080/19420889.2020.1829267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Trichoderma is a saprophytic, soil-borne fungus with a worldwide distribution that has been extensively studied due to their capacity to synthesize secondary metabolites with antimicrobial activity, parasitize other fungi and directly interact with plant roots, inducing resistance to disease and tolerance to abiotic stresses. Fusarium wilt caused by the soil-inhabiting fungus Fusarium oxysporum is considered one of the most important diseases that affect banana cultivars. Currently, more environmentally friendly alternatives to control this disease are being proposed, these strategies include the application of low doses of synthetic fungicides and the use of biocontrol agents such as Trichoderma or Xylaria. Thus, this study aimed to evaluate under in vitro conditions the synergistic effect of the biological control agent T. reesei C2A combined with low doses of mancozeb to inhibit the mycelial growth of F. oxysporum F1. To perform the synergistic essays, 0.1 mg/mL of mancozeb was suspended in PDA plates, then plugs of T. ressei C2A were placed at the center of the Petri dishes, the plates were incubated for 7 days at 28°C. Results showed that the mycoparasitic capacity of the biocontrol strain to inhibit the mycelial growth of F. oxysporum F1 was enhanced approximately 36% compared to the control plates. Although these results are promising, future studies under greenhouse and field conditions are necessary to corroborate the effectiveness of this approach.
Collapse
Affiliation(s)
- María Fernanda Gonzalez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Guayaquil, Ecuador.,Facultad de Ingeniería Química, Universidad de Guayaquil, Guayaquil, Ecuador
| | - Freddy Magdama
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Guayaquil, Ecuador.,Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Luis Galarza
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Guayaquil, Ecuador.,Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Daynet Sosa
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Guayaquil, Ecuador.,Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Christian Romero
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Guayaquil, Ecuador.,Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| |
Collapse
|
14
|
Das P, Hasnu S, Lahkar L, Mahanta S, Borthakur SK, Tanti B. Antimicrobial activity and antioxidant properties of Brucea mollis Wall. ex Kurz: a medicinal plant of Northeast India. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Muñoz-Escobar A, Reyes-López SY. Antifungal susceptibility of Candida species to copper oxide nanoparticles on polycaprolactone fibers (PCL-CuONPs). PLoS One 2020; 15:e0228864. [PMID: 32092072 PMCID: PMC7039411 DOI: 10.1371/journal.pone.0228864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
The integration of metallic or ceramic nanoparticles in polymer matrices has improved the antimicrobial and antifungal behavior, resulting in the search for composites with increased bactericidal and antimycotic properties. A polycaprolactone fibers with copper oxide nanoparticles was prepared. Polycaprolactone-copper fibers (PCL- CuONPs) were prepared into two major steps in situ method: (a) Synthesis of CuO particles, then (b) incorporation of polycaprolactone to electrospun process. The first step is the reduction of Cu+2 ions by gallic acid in N,N-dimethylformamide and tetrahydrofuran solution with the simple addition of polycaprolactone in the solution for the second electrospun step. Raman spectra provide information about the nature of the copper oxide synthesized. There are three Raman peaks in the sample, at 294 and 581 cm-1 and a very broad band from 400 to 600 cm-1 which are characteristics bands for CuO. Scanning electron microscopy (TEM) revealed copper oxide nanoparticles with semispherical shapes with diameter 35 ±11 nm. Dynamic light scattering (DLS) analysis showed uniform CuONPs in a range of 88±11 nm. Scanning electron microscopy (SEM) of PCL-CuONps reveled fibers with diameters ranging from 925 to 1080 nm were successfully obtained by electrospinning technique. Orientation, morphology and diameter were influenced by the increment on CuONPs concentration, with the smaller diameter present in samples prepared from low concentrated solutions. The antimycotic applicability of the composite was evaluated to determine the antifungal activity in three species of the genus Candida (Candida albicans, Candida glabrata and Candida tropicalis). PCL-CuONPs exhibit a considerable antifungal effect on all species tested. The preparation of PCL-CuONPs was simple, fast and low-cost for practical application as an antifungal dressing.
Collapse
Affiliation(s)
- Antonio Muñoz-Escobar
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua, México
| | - Simón Yobanny Reyes-López
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua, México
- * E-mail:
| |
Collapse
|
16
|
Yamazaki T, Ushikoshi-Nakayama R, Shirone K, Suzuki M, Abe S, Matsumoto N, Inoue H, Saito I. Evaluation of the effect of a heat-killed lactic acid bacterium, Enterococcus faecalis 2001, on oral candidiasis. Benef Microbes 2019. [DOI: 10.3920/bm2018.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of a preparation of heat-killed Gram-positive lactic acid bacteria Enterococcus faecalis 2001 (EF-2001) on oral candidiasis was evaluated by two studies. An in vitro study was performed to assess the inhibitory effect on mycelial growth of Candida strains isolated from a patient with oral candidiasis, and a clinical study was done in patients with oral candidiasis. In the in vitro study, EF-2001 inhibited mycelial growth of IT-1, a Candida strain isolated from a patient with oral candidiasis, at concentrations ≥2.34×109 cells/ml. An open clinical study was performed in 13 patients with oral candidiasis. The subjects took a powder containing 7.5×1011 heat-killed EF-2001 once a day before bedtime for seven consecutive days. In 11 of the 12 patients available for analysis (92%), the oral Candida load (cfu/swab) showed a significant decrease (P=0.01079, d=-0.437). There was a 55% decrease of Candida albicans and a 93.8% decrease of Candida glabrata. The following symptoms showed significant improvement: tinnitus (P=0.048, d=-0.462), cold feeling (P=0.048, d=-0.463), and depression (P=0.019, d=-0.34). In addition, 4 out of 26 oral symptoms tended to improve. These results suggest that EF-2001 significantly decreased the oral Candida load in patients with oral candidiasis by inhibiting mycelial growth and that EF-2001 is an effective treatment for oral candidiasis.
Collapse
Affiliation(s)
- T. Yamazaki
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - R. Ushikoshi-Nakayama
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - K. Shirone
- Shirone Dental Clinic, 276-1 Fushimi Shinmachi, Kanazawa-shi, Ishikawa Prefecture 921-8172, Japan
| | - M. Suzuki
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| | - S. Abe
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| | - N. Matsumoto
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - H. Inoue
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
- Department of Pharmacotherapy, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kita-Adachi-gun, Saitama 362-0806, Japan
| | - I. Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| |
Collapse
|
17
|
Qiu ZH, Zhang WW, Zhang HH, Jiao GH. Brucea javanica oil emulsion improves the effect of radiotherapy on esophageal cancer cells by inhibiting cyclin D1-CDK4/6 axis. World J Gastroenterol 2019; 25:2463-2472. [PMID: 31171890 PMCID: PMC6543247 DOI: 10.3748/wjg.v25.i20.2463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal cancer is one of the most common cancers around the world, and it has high incidence and mortality rates. The conventional therapy for esophageal cancer is radiotherapy, although its effect is highly limited by the resistance of esophageal cancer cells. Thus, strong radiosensitizers can be very crucial during radiotherapy against esophageal cancer. Brucea javanica oil emulsion (BJOE) is a widely used drug against various cancers, such as liver, colon, and ovarian cancer. However, its anti-cancer effect and mechanism and the use of BJOE as a radiosensitizer have not been explored in esophageal cancer.
AIM To evaluate the anti-cancer effect and mechanism of BJOE and explore the potential use of BJOE as a radiosensitizer during radiotherapy.
METHODS The inhibitory effect of BJOE and its enhancement function with radiation on cell viability were examined with the calculated half-maximal effective concentration and half-maximal lethal concentration. The influence of BJOE on cell migration and invasion were measured with EC109 and JAR cells by wound-healing and transwell assay. Clonogenesis and apoptotic rate, which was measured by Hoechst staining, were investigated to confirm its enhancement function with radiation. To investigate the molecular pathway underlying the effect of BJOE, the expressions of several apoptosis- and cycle-related proteins was detected by western blotting.
RESULTS Our results demonstrated that BJOE inhibited the growth of esophageal cancer cell lines more than normal cell lines, and it markedly reduced migration and invasion in esophageal cancer cells (EC109 and JAR). Moreover, it promoted cell apoptosis and enhanced the effect of radiotherapy against esophageal cancerous cells. In the viability test, the values of half-maximal effective concentration and half-maximal lethal concentration were reduced. Compared to the control, only around 1/5 colonies formed when using BJOE and radiation together in the clonogenic assay. The apoptotic rate in EC109 was obviously promoted when BJOE was added during radiotherapy. Our study suggests that the expression of the apoptosis-proteins Bax and p21 were increased, while the expression of Bcl-2 was stable. Further detection of downstream proteins revealed that the expression of cyclin D1 and cyclin-dependent kinase 4/6 were significantly decreased.
CONCLUSION BJOE has a strong anti-cancer effect on esophageal cancer and can be used as a radiosensitizer to promote apoptosis in cancerous esophageal cells via the cyclin D1-cyclin-dependent kinase 4/6 axis.
Collapse
Affiliation(s)
- Zhong-Hua Qiu
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| | - Hong-Hua Zhang
- Department of Neurology, Liangshan County People's Hospital, Jining, 272600, Shandong Province, China
| | - Gui-Hua Jiao
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| |
Collapse
|
18
|
Fahim A, Himratul-Aznita WH, Abdul-Rahman PS. Polymicrobial interactions between Streptococcus mitis, Streptococcus sanguinis and oral associated Candida albicans on an in vitro salivary biofilm and differential expression of ALS1, ALS2 and ALS3 genes. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1577173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Ayesha Fahim
- Department of Oral & Craniofacial Sciences Faculty of Dentistry, University of Malaya, Kualalumpur, Malaysia
| | - Wan Harun Himratul-Aznita
- Department of Oral & Craniofacial Sciences Faculty of Dentistry, University of Malaya, Kualalumpur, Malaysia
| | | |
Collapse
|
19
|
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol 2017; 8:1927. [PMID: 29081766 PMCID: PMC5645804 DOI: 10.3389/fmicb.2017.01927] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023] Open
Abstract
Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects.
Collapse
Affiliation(s)
| | | | - Guilherme M. Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
20
|
Chen C, Wang B. Brucea javanica oil emulsion alleviates cachexia induced by Lewis lung cancer cells in mice. J Drug Target 2017; 26:222-230. [PMID: 28701059 DOI: 10.1080/1061186x.2017.1354003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chao Chen
- Department of Radiotherapy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Binbin Wang
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
21
|
Soliman S, Alnajdy D, El-Keblawy AA, Mosa KA, Khoder G, Noreddin AM. Plants' Natural Products as Alternative Promising Anti- Candida Drugs. Pharmacogn Rev 2017; 11:104-122. [PMID: 28989245 PMCID: PMC5628516 DOI: 10.4103/phrev.phrev_8_17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Candida is a serious life-threatening pathogen, particularly with immunocompromised patients. Candida infections are considered as a major cause of morbidity and mortality in a broad range of immunocompromised patients. Candida infections are common in hospitalized patients and elderly people. The difficulty to eradicate Candida infections is owing to its unique switch between yeast and hyphae forms and more likely to biofilm formations that render resistance to antifungal therapy. Plants are known sources of natural medicines. Several plants show significant anti-Candida activities and some of them have lower minimum inhibitory concentration, making them promising candidates for anti-Candida therapy. However, none of these plant products is marketed for anti-Candida therapy because of lack of sufficient information about their efficacy, toxicity, and kinetics. This review revises major plants that have been tested for anti-Candida activities with recommendations for further use of some of these plants for more investigation and in vivo testing including the use of nanostructure lipid system.
Collapse
Affiliation(s)
- Sameh Soliman
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Dina Alnajdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ali A. El-Keblawy
- Department of Applied Biology, University of Sharjah, Sharjah, United Arab Emirates
| | - Kareem A. Mosa
- Department of Applied Biology, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ayman M. Noreddin
- Department of Pharmacy Practice and Pharmacotherapy, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice, School of Pharmacy, Chapman University, Irvine, California, USA
| |
Collapse
|
22
|
H Gopalkrishna A, M S, Muddaiah S, R S. In vitro antifungal activity of different components of Centratherum anthelminticum and Ocimum sanctum seed oils and their synergism against oral pathogenic fungi. J Dent Res Dent Clin Dent Prospects 2016; 10:92-8. [PMID: 27429725 PMCID: PMC4945999 DOI: 10.15171/joddd.2016.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 03/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background. Opportunistic fungal infections like candidiasis are common in the oral cavity. In recent years Candida species have shown resistance against a number of synthetic drugs. This study assessed the antifungal activity of Centratherum anthelminticum and Ocimum sanctum seed oils against six common pathogenic Candida strains. Synergistic activity of the major oil components was also studied. Methods. Antifungal activity of Centratherum anthelminticum and Ocimum sanctum seed oils were tested against six oral fungal pathogens, Candida albicans ATCC 90028, Candida krusei 6258, Candida tropicalis 13803, Candida parapsilosis22019, Candida glabrata 90030 and Candida dubliniensis MYA 646, by disc diffusion and broth microdilution methods to determine the diameter of inhibition zone (DIZ) and minimum inhibitory concentration (MIC), respectively. The oil was extracted using Soxhlet apparatus from seeds subjected to columnchromatography (CC) and thin layer chromatography (TLC) and major components were separated and quantified. Results. All the six Candida strains showed growth inhibition to a variable degree when tested with both seed oils. Both seed oils showed antifungal activity. For Centratherum anthelminticum seed oil maximum DIZ at 7 μL was recorded at 75.7 mm for Candida albicans ATCC 90028, and the least DIZ was 45.7 mm for Candida dubliniensis MYA 646. For Ocimum sanctum seed oil maximum DIZ at 7 μL was 61.0 mm for Candida krusei ATCC 6258 and the least DIZ was 46.7 mm for Candida tropicalis ATCC 13803. The mixtures of phospholipids and unsaponifiable matter exhibitedMIC values at 1.25 μL for both oils, whereas neutral lipids fraction and unsaponifiable matter exhibited similar MIC at 2.5 μL against Candida albicans and Candida krusei. Conclusion.Centratherum anthelminticum and Ocimum sanctumseed oils exhibited strong antifungal activity against six different species of Candida and this may be attributed to various active components in the oil and their synergistic activity.
Collapse
Affiliation(s)
- Aparna H Gopalkrishna
- Reader, Department of Oral Pathology, Coorg Institute of Dental Sciences, Virajpet, Karnataka, India
| | - Seshagiri M
- Professor and Head, Department of Biochemistry, Coorg Institute of Dental Sciences, Virajpet, Karnataka, India
| | - Sunil Muddaiah
- Professor and Head, Department of Orthodontics, Coorg Institute of Dental Sciences, Virajpet, Karnataka, India
| | - Shashidara R
- Professor and Head, Department of Oral Pathology, Coorg Institute of Dental Sciences, Virajpet, Karnataka, India
| |
Collapse
|