1
|
Almuqbil M, Alobaid RAM, Alhamad AAM, Eddin NH, Yahya NA, Alsanie WF, Alamri AS, Alhomrani M, Alshammary AF, Gilkaramenthi R, Asdaq SMB. Awareness of Contraindications Among Cancer Patients in Riyadh, Saudi Arabia: A Cross-Sectional Study. Cancer Control 2025; 32:10732748251313498. [PMID: 39825865 PMCID: PMC11742164 DOI: 10.1177/10732748251313498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/20/2025] Open
Abstract
INTRODUCTION Cancer patients often face challenges in managing their disease, particularly with regard to contraindications related to medications, foods, and physical activity, which can negatively affect treatment outcomes. This study aimed to evaluate cancer patients' awareness of these contraindications and to explore the influence of sociodemographic factors, support systems, comorbidities, and medication use on their knowledge. METHODS A cross-sectional prospective study was conducted with 125 cancer patients in Saudi Arabia between December 2022 and February 2023. Participants were selected using purposive sampling, and data were collected through a validated questionnaire. Multinomial regression analysis was employed to identify the predictors of awareness of contraindicated medications, foods, and other environmental factors. RESULTS Nationality, co-morbidities, and cancer duration were significant predictors of awareness regarding contraindicated drugs. Saudi patients were more likely to be aware of contraindicated medications (P = 0.010), and those without chronic diseases were 15 times more likely to know about drug contraindications (OR = 15.076, 95% CI: 3.442-66.042). Cancer diagnosis (P = 0.033) and cancer duration (P = 0.022) were also significant for food contraindications. Over 58% were unaware of the need to regulate body temperature during treatment. Location influenced exercise awareness (P = 0.064) and complementary and alternative medicine (CAM) awareness, with rural participants showing higher CAM knowledge (P = 0.001). CONCLUSION This study emphasizes the need to improve cancer patients' awareness of contraindications, particularly regarding medications and foods. Key factors influencing awareness include nationality, co-morbidities, and cancer duration. While family support is beneficial, it doesn't directly enhance knowledge, highlighting the importance of targeted educational interventions to improve patient outcomes and safety.
Collapse
Affiliation(s)
- Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Noor Hussam Eddin
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh, Saudi Arabia
| | - Nora Al Yahya
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh, Saudi Arabia
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research center for health sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research center for health sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research center for health sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rafiulla Gilkaramenthi
- Department of Emergency Medical Services, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Gupta A, Joshi R, Dewangan L, Shah K, Soni D, Patil UK, Chauhan NS. Capsaicin: pharmacological applications and prospects for drug designing. J Pharm Pharmacol 2024:rgae150. [PMID: 39657966 DOI: 10.1093/jpp/rgae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES A primary objective of this review is to summarize the evidence-based pharmacological applications of capsaicin, particularly its use to manage pain and treat various health conditions. A second goal of the review is to research how recent technological advances are improving the bioavailability and therapeutic index of capsaicin, as well as the development of novel capsaicin-mimetics that are able to enhance therapeutic responses in various human diseases. METHODS In the review, numerous human clinical trials and preclinical studies are examined to determine how effective, safe, and optimal dosages of capsaicin can be used in pain management and therapeutic applications. Furthermore, it discusses capsaicin's mechanisms of action, specifically its interactions with the transient receptor potential vanilloid 1 (TRPV1) channel. As a result of this review, the potential of nanotechnology systems for bypassing the limits of capsaicin's pungency is discussed. The review takes into account individual factors such as pain tolerance and skin sensitivity. KEY FINDINGS For topical applications, capsaicin is typically used in concentrations ranging from 0.025% to 0.1%, with higher concentrations being used under medical supervision for neuropathic pain. The formulation can come in the form of creams, gels, or patches, which provide sustained release over the course of time. A condition such as arthritis or neuropathy can be relieved with capsaicin as it depletes substance P from nerves. Neuropathy and osteoarthritis as well as musculoskeletal disorders have been treated successfully with this herbal medicine. A major mechanism through which capsaicin relieves pain is through activating TRPV1 channels, which induce calcium influx and neurotransmitter release. Additionally, it affects the transcription of genes related to pain modulation and inflammation, particularly when disease conditions or stress are present. There have been recent developments in technology to reduce capsaicin's pungency and improve its bioavailability, including nanotechnology. CONCLUSIONS It is proven that capsaicin is effective in pain management as well as a variety of therapeutic conditions because of its ability to deplete substance P and desensitize nerve endings. Although capsaicin is highly pungent and associated with discomfort, advancements in delivery technologies and the development of capsaicin-mimetics promise improved therapeutic outcomes. There is a great deal of complexity in the pharmacological action of capsaicin due to its interaction with TRPV1 channels and its ability to affect gene transcription. There is a need for further research and development in order to optimize capsaicin's clinical applications and to enhance its therapeutic index in a variety of human diseases.
Collapse
Affiliation(s)
- Anshita Gupta
- Rungta College of Pharmaceutical Sciences and Research, Raipur, 492009, C.G., India
| | - Renjil Joshi
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490024, C.G., India
| | - Lokkanya Dewangan
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research (SSIPSR), Bhilai, 490020, C.G., India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Deependra Soni
- Faculty of Pharmacy, MATS University, Aarang, 493441, Chhattisgarh, India
| | - Umesh K Patil
- Phytomedicine and Natural Product Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, M.P., 470003 India
| | | |
Collapse
|
3
|
Diaz-Vidal T, Armenta-Pérez VP, Rosales-Rivera LC, Basulto-Padilla GC, Martínez-Pérez RB, Mateos-Díaz JC, Gutiérrez-Mercado YK, Canales-Aguirre AA, Rodríguez JA. Long chain capsaicin analogues synthetized by CALB-CLEAs show cytotoxicity on glioblastoma cell lines. Appl Microbiol Biotechnol 2024; 108:106. [PMID: 38217255 PMCID: PMC10786984 DOI: 10.1007/s00253-023-12856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 01/15/2024]
Abstract
Glioblastoma is one of the most lethal tumors, displaying striking cellular heterogeneity and drug resistance. The prognosis of patients suffering from glioblastoma after 5 years is only 5%. In the present work, capsaicin analogues bearing modifications on the acyl chain with long-chain fatty acids showed promising anti-tumoral activity by its cytotoxicity on U-87 and U-138 glioblastoma multiforme cells. The capsaicin analogues were enzymatically synthetized with cross-linked enzyme aggregates of lipase B from Candida antarctica (CALB). The catalytic performance of recombinant CALB-CLEAs was compared to their immobilized form on a hydrophobic support. After 72 h of reaction, the synthesis of capsaicin analogues from linoleic acid, docosahexaenoic acid, and punicic acid achieved a maximum conversion of 69.7, 8.3 and 30.3% with CALB-CLEAs, respectively. Similar values were obtained with commercial CALB, with conversion yields of 58.3, 24.2 and 22% for capsaicin analogues from linoleic acid, DHA and punicic acid, respectively. Olvanil and dohevanil had a significant cytotoxic effect on both U-87 and U-138 glioblastoma cells. Irrespective of the immobilization form, CALB is an efficient biocatalyst for the synthesis of anti-tumoral capsaicin derivatives. KEY POINTS: • This is the first report concerning the enzymatic synthesis of capsaicin analogues from docosahexaenoic acid and punicic acid with CALB-CLEAs. • The viability U-87 and U-138 glioblastoma cells was significantly affected after incubation with olvanil and dohevanil. • Capsaicin analogues from fatty acids obtained by CALB-CLEAs are promising candidates for therapeutic use as cytotoxic agents in glioblastoma cancer cells.
Collapse
Affiliation(s)
- Tania Diaz-Vidal
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ, 45019, Zapopan, Mexico
| | - Vicente Paúl Armenta-Pérez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ, 45019, Zapopan, Mexico
| | | | - Georgina Cristina Basulto-Padilla
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ, 45019, Zapopan, Mexico
| | - Raúl Balam Martínez-Pérez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ, 45019, Zapopan, Mexico
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85137, Ciudad Obregón, Mexico
| | - Juan Carlos Mateos-Díaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ, 45019, Zapopan, Mexico
| | - Yanet K Gutiérrez-Mercado
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ, 44270, Guadalajara, Mexico
- Laboratorio Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ, 44270, Guadalajara, Mexico
| | - Jorge A Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ, 45019, Zapopan, Mexico.
| |
Collapse
|
4
|
Andretta E, Costa A, Ventura E, Quintiliani M, Damiano S, Giordano A, Morrione A, Ciarcia R. Capsaicin Exerts Antitumor Activity in Mesothelioma Cells. Nutrients 2024; 16:3758. [PMID: 39519591 PMCID: PMC11547426 DOI: 10.3390/nu16213758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Mesothelioma is an aggressive cancer with limited treatment options. Mesothelioma therapy often involves a multimodal approach including surgery, radiotherapy and chemotherapy. However, the prognosis for patients remains poor. Difficult diagnosis, late symptoms when the tumor is in an advanced stage and the onset of chemotherapy resistance make mesothelioma difficult to treat. For this reason, it is essential to discover new pharmacological approaches. Capsaicin (CAPS) is the active compound of chili peppers. Based on CAPS's anticancer properties on various tumor lines and its chemo-sensitizing action on resistant cells, in this study, we evaluated the effects of CAPS on mesothelioma cells to assess its potential use in mesothelioma therapy. METHODS To evaluate antiproliferative effects of CAPS, we performed MTS assays on various mesothelioma cells, representative of all major mesothelioma subtypes. Transwell migration and wound-healing assays were used to examine the effect of CAPS on mesothelioma cell migration. We also determined the effects of CAPS on oncogenic signaling pathways by assessing the levels of AKT and MAPK activation. RESULTS In this study, we show that CAPS significantly reduces proliferation of both parental and cisplatin-resistant mesothelioma cells. CAPS promotes S-phase cell cycle arrest and inhibits lateral motility and migration of mesothelioma cells. Accordingly, CAPS suppresses AKT and ERK1/2 activation in MSTO-211H and NCI-H2052 cells. Our results support an antitumor effect of CAPS on cisplatin-resistant mesothelioma cells, suggesting that it may reduce resistance to cisplatin. CONCLUSIONS Our results could pave the way for further studies to evaluate the use of CAPS for mesothelioma treatment.
Collapse
Affiliation(s)
- Emanuela Andretta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, 80126 Naples, Italy
| | - Aurora Costa
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
| | | | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
| |
Collapse
|
5
|
Khonglim K, Chuenjitkuntaworn B, Tamura Y, Fuangtharnthip P. Effects of Capsaicin on Migration and Alkaline Phosphatase Activity of Dental Pulp Cells. Eur J Dent 2024; 18:1157-1163. [PMID: 38698615 PMCID: PMC11479730 DOI: 10.1055/s-0044-1782191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES Dental pulp, a specialized mesenchymal tissue within teeth, is pivotal in dental health and tissue repair. Capsaicin, the primary pungent component of chili peppers, is known for its diverse pharmacological properties. While capsaicin's effects on various cell types have been studied, its impact on dental pulp cells remains relatively unexplored. This study investigated the influence of pure capsaicin extract on dental pulp cell behavior, focusing on cell viability, proliferation, migration, and alkaline phosphatase (ALP) activity. MATERIALS AND METHODS Capsaicin solution was prepared and diluted to various concentrations (1 nM, 0.01 µM, 0.1 µM, 1 µM, 10 µM, and 100 µM), then was tested on rat dental pulp cells (RPC-C2A). Cell viability and proliferation were assessed using the MTT assay. Boyden chamber tests and wound healing were used for evaluating cell migration. The activity of ALP was determined to show cell function during dental pulp repair. STATISTICAL ANALYSIS The data were analyzed using a one-way analysis of variance or an independent-sample Kruskal-Wallis, followed by multiple comparison tests. RESULTS Capsaicin of 100 µM exhibited cytotoxicity, whereas those with lower concentrations stimulated cell proliferation. Wound healing assays revealed increased cell migration, particularly when cultured with 1 nM capsaicin (p = 0.002). Boyden chamber assays demonstrated enhanced cell invasion without statistical significance. ALP activity of dental pulp cells increased significantly at 1 nM (p < 0.001) and 1 µM (p = 0.021) capsaicin concentrations, indicating potential dentinogenesis and pulp repair. CONCLUSION Capsaicin of lower concentrations, less than 10 µM, is likely to promote proliferation, migration, and ALP activity of dental pulp cells. Our findings offer potential applications for capsaicin as a medication for dental pulp repair.
Collapse
Affiliation(s)
- Kittipot Khonglim
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | | - Yukihiko Tamura
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Pornpoj Fuangtharnthip
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Ratchathewi, Bangkok, Thailand
| |
Collapse
|
6
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
7
|
Petran EM, Periferakis A, Troumpata L, Periferakis AT, Scheau AE, Badarau IA, Periferakis K, Caruntu A, Savulescu-Fiedler I, Sima RM, Calina D, Constantin C, Neagu M, Caruntu C, Scheau C. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Curr Issues Mol Biol 2024; 46:7895-7943. [PMID: 39194685 DOI: 10.3390/cimb46080468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Capsaicin, the most prominent pungent compound of chilli peppers, has been used in traditional medicine systems for centuries; it already has a number of established clinical and industrial applications. Capsaicin is known to act through the TRPV1 receptor, which exists in various tissues; capsaicin is hepatically metabolised, having a half-life correlated with the method of application. Research on various applications of capsaicin in different formulations is still ongoing. Thus, local capsaicin applications have a pronounced anti-inflammatory effect, while systemic applications have a multitude of different effects because their increased lipophilic character ensures their augmented bioavailability. Furthermore, various teams have documented capsaicin's anti-cancer effects, proven both in vivo and in vitro designs. A notable constraint in the therapeutic effects of capsaicin is its increased toxicity, especially in sensitive tissues. Regarding the traditional applications of capsaicin, apart from all the effects recorded as medicinal effects, the application of capsaicin in acupuncture points has been demonstrated to be effective and the combination of acupuncture and capsaicin warrants further research. Finally, capsaicin has demonstrated antimicrobial effects, which can supplement its anti-inflammatory and anti-carcinogenic actions.
Collapse
Affiliation(s)
- Elena Madalina Petran
- Department of Biochemistry, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children's Hospital, 011743 Bucharest, Romania
| | - Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Romina-Marina Sima
- Department of Obstetrics and Gynecology, The "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- The "Bucur" Maternity, "Saint John" Hospital, 040294 Bucharest, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
8
|
Allani M, Akhilesh, Tiwari V. Caspase-driven cancer therapies: Navigating the bridge between lab discoveries and clinical applications. Cell Biochem Funct 2024; 42:e3944. [PMID: 38348642 DOI: 10.1002/cbf.3944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Apoptosis is the cell's natural intrinsic regulatory mechanism of normal cells for programmed cell death, which plays an important role in cancer as a classical mechanism of tumor cell death causing minimal inflammation without causing damage to other cells in the vicinity. Induction of apoptosis by activation of caspases is one of the primary targets for cancer treatment. Over the years, a diverse range of natural, synthetic, and semisynthetic compounds and their derivatives have been investigated for their caspase-mediated apoptosis-induced anticancer activities. The review aims to compile the preclinical evidence and highlight the critical mechanistic pathways related to caspase-induced cell apoptosis in cancer treatment. The focus is placed on the key components of the mechanisms, including their chemical nature, and specific attention is given to phytochemicals derived from natural sources and synthetic and semisynthetic compounds. 180+ compounds from the past two decades with potential as anticancer agents are discussed in this review article. By summarizing the current knowledge and advancements in this field, this review provides a comprehensive overview of potential therapeutic strategies targeting apoptosis in cancer cells. The findings presented herein contribute to the ongoing efforts to combat cancer and stimulate further research into the development of effective and targeted anticancer therapies.
Collapse
Affiliation(s)
- Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Mondal A, Banerjee S, Terang W, Bishayee A, Zhang J, Ren L, da Silva MN, Bishayee A. Capsaicin: A chili pepper bioactive phytocompound with a potential role in suppressing cancer development and progression. Phytother Res 2024; 38:1191-1223. [PMID: 38176910 DOI: 10.1002/ptr.8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Cancer profoundly influences morbidity and fatality rates worldwide. Patients often have dismal prognoses despite recent improvements in cancer therapy regimens. However, potent biomolecules derived from natural sources, including medicinal and dietary plants, contain biological and pharmacological properties to prevent and treat various human malignancies. Capsaicin is a bioactive phytocompound present in red hot chili peppers. Capsaicin has demonstrated many biological effects, including antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic capabilities. This review highlights the cellular and molecular pathways through which capsaicin exhibits antineoplastic activities. Our work also depicts the synergistic anticancer properties of capsaicin in conjunction with other natural bioactive components and approved anticancer drugs. Capsaicin inhibits proliferation in various cancerous cells, and its antineoplastic actions in numerous in vitro and in vivo carcinoma models impact oncogenesis, tumor-promoting and suppressor genes, and associated signaling pathways. Capsaicin alone or combined with other phytocompounds or approved antineoplastic drugs triggers cell cycle progression arrest, generating reactive oxygen species and disrupting mitochondrial membrane integrity, ultimately stimulating caspases and promoting death. Furthermore, capsaicin alone or in combination can promote apoptosis in carcinoma cells by enhancing the p53 and c-Myc gene expressions. In conclusion, capsaicin alone or in combination can have enormous potential for cancer prevention and intervention, but further high-quality studies are needed to firmly establish the clinical efficacy of this phytocompound.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Wearank Terang
- Department of Pharmacology, Rahman Institute of Pharmaceutical Sciences and Research, Kamrup, India
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, New York, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Milton Nascimento da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
10
|
Singhirunnusorn P, Moolmuang B, Ruchirawat M. Capsaicin suppresses the migration and invasion of human nasopharyngeal carcinoma cells through the modulation of mTOR signaling pathway. Food Sci Biotechnol 2023; 32:1913-1924. [PMID: 37781054 PMCID: PMC10541384 DOI: 10.1007/s10068-023-01297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 10/03/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC), a malignancy of the nasopharynx, is prevalent in Southeast Asia and Southern China. The prognosis of NPC is poor and local recurrence and metastasis often occur. Capsaicin (tran-8-methyl-N-vanillyl-6-nonenamide), a pungent constituent of hot chili peppers, shows anti-cancer activities such as anti-proliferation and anti-metastasis. Currently, the role of capsaicin in cell metastasis of NPC is not well understood. We tested whether capsaicin has anti-metastatic activity in NPC cell lines. Capsaicin suppressed cell proliferation in dose-dependent manner. Moreover, capsaicin inhibited cell metastasis as shown by wound healing assay and decreased the expressions of MMP-2 and MMP-9. In addition, the phosphorylation of mTOR was downregulated by capsaicin. Combination of capsaicin and rapamycin (mTOR inhibitor) treatments led to increasing of anti-growth and anti-metastatic activities. Therefore, capsaicin has potential to be used as an optional therapeutic drug for treatment of NPC.
Collapse
Affiliation(s)
- Pattama Singhirunnusorn
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210 Thailand
| | - Benchamart Moolmuang
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210 Thailand
| | - Mathuros Ruchirawat
- Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Bangkok, 10400 Thailand
| |
Collapse
|
11
|
Zhang L, Wu D, Zhang W, Shu H, Sun P, Huang C, Deng Q, Wang Z, Cheng S. Genome-Wide Identification of WRKY Gene Family and Functional Characterization of CcWRKY25 in Capsicum chinense. Int J Mol Sci 2023; 24:11389. [PMID: 37511147 PMCID: PMC10379288 DOI: 10.3390/ijms241411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Pepper is renowned worldwide for its distinctive spicy flavor. While the gene expression characteristics of the capsaicinoid biosynthesis pathway have been extensively studied, there are already a few reports regarding transcriptional regulation in capsaicin biosynthesis. In this study, 73 WRKYs were identified in the genome of Capsicum chinense, and their physicochemical traits, DNA, and protein sequence characteristics were found to be complex. Combining RNA-seq and qRT-PCR data, the WRKY transcription factor CA06g13580, which was associated with the accumulation tendency of capsaicinoid, was screened and named CcWRKY25. CcWRKY25 was highly expressed in the placenta of spicy peppers. The heterologous expression of CcWRKY25 in Arabidopsis promoted the expression of genes PAL, 4CL1, 4CL2, 4CL3, CCR, and CCoAOMT and led to the accumulation of lignin and flavonoids. Furthermore, the expression of the capsaicinoid biosynthesis pathway genes (CBGs) pAMT, AT3, and KAS was significantly reduced in CcWRKY25-silenced pepper plants, resulting in a decrease in the amount of capsaicin. However, there was no noticeable difference in lignin accumulation. The findings suggested that CcWRKY25 could be involved in regulating capsaicinoid synthesis by promoting the expression of genes upstream of the phenylpropanoid pathway and inhibiting CBGs' expression. Moreover, the results highlighted the role of CcWRKY25 in controlling the pungency of pepper and suggested that the competitive relationship between lignin and capsaicin could also regulate the spiciness of the pepper.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Dan Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
| | - Wei Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
| | - Peixia Sun
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Chuang Huang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Qin Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572000, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Sachdeva A, Dhawan D, Jain GK, Yerer MB, Collignon TE, Tewari D, Bishayee A. Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer. Cancers (Basel) 2022; 15:cancers15010268. [PMID: 36612264 PMCID: PMC9818473 DOI: 10.3390/cancers15010268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Oral cancer is emerging as a major cause of mortality globally. Oral cancer occupies a significant proportion of the head and neck, including the cheeks, tongue, and oral cavity. Conventional methods in the treatment of cancer involve surgery, radiotherapy, and immunotherapy, and these have not proven to completely eradicate cancerous cells, may lead to the reoccurrence of oral cancer, and possess numerous adverse side effects. Advancements in novel drug delivery approaches have gained popularity in cancer management with an increase in the number of cases associated with oral cancer. Natural products are potent sources for drug discovery, especially for anticancer drugs. Natural product delivery has major challenges due to its low solubility, poor absorption, inappropriate size, instability, poor permeation, and first-pass metabolism. Therefore, it is of prime importance to investigate novel treatment approaches for the delivery of bioactive natural products. Nanotechnology is an advanced method of delivering cancer therapy with minimal damage to normal cells while targeting cancer cells. Therefore, the present review elaborates on the advancements in novel strategies for natural product delivery that lead to the significant enhancement of bioavailability, in vivo activity, and fewer adverse events for the prevention and treatment of oral cancer. Various approaches to accomplish the desired results involve size reduction, surface property modification, and polymer attachment, which collectively result in the higher stability of the formulation.
Collapse
Affiliation(s)
- Alisha Sachdeva
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Dimple Dhawan
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Gaurav K. Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
- Center for Advanced Formulation Development, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Mükerrem Betül Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Taylor E. Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
- Correspondence: or (D.T.); or (A.B.)
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: or (D.T.); or (A.B.)
| |
Collapse
|
13
|
Zhou J, Zhang R, Lv P, Zhang S, Zhang Y, Yang J, Yang B. Acyclic cucurbit[n]urils-based supramolecular encapsulation for enhancing the protective effect of capsaicin on gastric mucosa and reducing irritation. Int J Pharm 2022; 626:122190. [PMID: 36100146 DOI: 10.1016/j.ijpharm.2022.122190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Capsaicin (CAP) is an alkaloid isolated from pepper fruit, which possesses various pharmacological activities including antioxidant, anti-inflammatory, antibacterial and gastric mucosa protection. However, its inherent poor aqueous solubility and strong irritation impede the further clinical application. In our study, acyclic cucurbit[n]urils (ACBs, M1, M2 and M3) were rationally utilized to prepare a series of CAP inclusion complexes to improve the bioavailability and reduce stimulation. Their properties and inclusion behaviors were further investigated by multiple characterization methods, the data indicated that the inclusion complexes of ACBs/CAP were formed by a stoichiometric ratio of 2:1 with strong binding interaction. After complexation, the solubility of CAP was significantly increased by 12,076 times and its antioxidant activity also increased. Moreover, the anti-inflammatory activity and the ability to prevent gastric mucosal injury were both significantly improved, and the inhibition rate of nitric oxide (NO) and interleukin-1β (IL-1β) has been effectively improved while cytotoxicity against human normal hepatocytes cell (LO2), human lung fibroblasts cell (HLF) and the human gastric mucosal cell (GES-1) was greatly attenuated. Confocal laser scanning microscope (CLSM) images indicated that the complexes could be efficiently internalized by GES-1 cells and primarily located in cytoplasm. In vivo model of mouse, our complexes exhibited excellent biosafety. In summary, our study may provide a promising new strategy for the further clinical application of CAP.
Collapse
Affiliation(s)
- Jiawei Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ruihao Zhang
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, PR China
| | - Pin Lv
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, PR China
| | - Shuqing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yazhou Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
14
|
Bal S, Sharangi AB, Upadhyay TK, Khan F, Pandey P, Siddiqui S, Saeed M, Lee HJ, Yadav DK. Biomedical and Antioxidant Potentialities in Chilli: Perspectives and Way Forward. Molecules 2022; 27:6380. [PMID: 36234927 PMCID: PMC9570844 DOI: 10.3390/molecules27196380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide, since ages and nowadays, traditional medicine is well known, owing to its biodiversity, which immensely contributed to the advancement and development of complementary and alternative medicines. There is a wide range of spices, herbs, and trees known for their medicinal uses. Chilli peppers, a vegetable cum spice crop, are bestowed with natural bioactive compounds, flavonoids, capsaicinoids, phytochemicals, phytonutrients, and pharmacologically active compounds with potential health benefits. Such compounds manifest their functionality over solo-treatment by operating in synergy and consortium. Co-action of these compounds and nutrients make them potentially effective against coagulation, obesity, diabetes, inflammation, dreadful diseases, such as cancer, and microbial diseases, alongside having good anti-oxidants with scavenging ability to free radicals and oxygen. In recent times, capsaicinoids especially capsaicin can ameliorate important viral diseases, such as SARS-CoV-2. In addition, capsaicin provides an ability to chilli peppers to ramify as topical agents in pain-relief and also benefitting man as a potential effective anesthetic agent. Such phytochemicals involved not only make them useful and a much economical substitute to wonder/artificial drugs but can be exploited as obscene drugs for the production of novel stuffs. The responsibility of the TRPV1 receptor in association with capsaicin in mitigating chronic diseases has also been justified in this study. Nonetheless, medicinal studies pertaining to consumption of chilli peppers are limited and demand confirmation of the findings from animal studies. In this artifact, an effort has been made to address in an accessible format the nutritional and biomedical perspectives of chilli pepper, which could precisely upgrade and enrich our pharmaceutical industries towards human well-being.
Collapse
Affiliation(s)
- Solanki Bal
- Department of Vegetable Science, BCKV-Agricultural University, Mohanpur 741252, India
| | - Amit Baran Sharangi
- Department of Plantation, Spices, Medicinal & Aromatic Crops, BCKV-Agricultural University, Mohanpur 741252, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
| | - Samra Siddiqui
- Department Health Services Management, College of Public Health and Health Informatics, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Hae-Jeung Lee
- Department of Food & Nutrition, College of Bionano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Korea
| | - Dharmendra K. Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Hambakmoeiro 191, Gachon University, Incheon 21924, Korea
| |
Collapse
|
15
|
Azimirad M, Noori M, Azimirad F, Gholami F, Naseri K, Yadegar A, Asadzadeh Aghdaei H, Zali MR. Curcumin and capsaicin regulate apoptosis and alleviate intestinal inflammation induced by Clostridioides difficile in vitro. Ann Clin Microbiol Antimicrob 2022; 21:41. [PMID: 36155114 PMCID: PMC9511736 DOI: 10.1186/s12941-022-00533-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background The dramatic upsurge of Clostridioides difficile infection (CDI) by hypervirulent isolates along with the paucity of effective conventional treatment call for the development of new alternative medicines against CDI. The inhibitory effects of curcumin (CCM) and capsaicin (CAP) were investigated on the activity of toxigenic cell-free supernatants (Tox-S) of C. difficile RT 001, RT 126 and RT 084, and culture-filtrate of C. difficile ATCC 700057. Methods Cell viability of HT-29 cells exposed to varying concentrations of CCM, CAP, C. difficile Tox-S and culture-filtrate was assessed by MTT assay. Anti-inflammatory and anti-apoptotic effects of CCM and CAP were examined by treatment of HT-29 cells with C. difficile Tox-S and culture-filtrate. Expression of BCL-2, SMAD3, NF-κB, TGF-β and TNF-α genes in stimulated HT-29 cells was measured using RT-qPCR. Results C. difficile Tox-S significantly (P < 0.05) reduced the cell viability of HT-29 cells in comparison with untreated cells. Both CAP and CCM significantly (P < 0.05) downregulated the gene expression level of BCL-2, SMAD3, NF-κB and TNF-α in Tox-S treated HT-29 cells. Moreover, the gene expression of TGF-β decreased in Tox-S stimulated HT-29 cells by both CAP and CCM, although these reductions were not significantly different (P > 0.05). Conclusion The results of the present study highlighted that CCM and CAP can modulate the inflammatory response and apoptotic effects induced by Tox-S from different clinical C. difficile strains in vitro. Further studies are required to accurately explore the anti-toxin activity of natural components, and their probable adverse risks in clinical practice.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholami
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Naseri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Adetunji TL, Olawale F, Olisah C, Adetunji AE, Aremu AO. Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer. Front Oncol 2022; 12:908487. [PMID: 35912207 PMCID: PMC9326111 DOI: 10.3389/fonc.2022.908487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022] Open
Abstract
Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is one of the most important natural products in the genus Capsicum. Due to its numerous biological effects, there has been extensive and increasing research interest in capsaicin, resulting in increased scientific publications in recent years. Therefore, an in-depth bibliometric analysis of published literature on capsaicin from 2001 to 2021 was performed to assess the global research status, thematic and emerging areas, and potential insights into future research. Furthermore, recent research advances of capsaicin and its combination therapy on human cancer as well as their potential mechanisms of action were described. In the last two decades, research outputs on capsaicin have increased by an estimated 18% per year and were dominated by research articles at 93% of the 3753 assessed literature. In addition, anti-cancer/pharmacokinetics, cytotoxicity, in vivo neurological and pain research studies were the keyword clusters generated and designated as thematic domains for capsaicin research. It was evident that the United States, China, and Japan accounted for about 42% of 3753 publications that met the inclusion criteria. Also, visibly dominant collaboration nodes and networks with most of the other identified countries were established. Assessment of the eligible literature revealed that the potential of capsaicin for mitigating cancer mainly entailed its chemo-preventive effects, which were often linked to its ability to exert multi-biological effects such as anti-mutagenic, antioxidant and anti-inflammatory activities. However, clinical studies were limited, which may be related to some of the inherent challenges associated with capsaicin in the limited clinical trials. This review presents a novel approach to visualizing information about capsaicin research and a comprehensive perspective on the therapeutic significance and applications of capsaicin in the treatment of human cancer.
Collapse
Affiliation(s)
- Tomi Lois Adetunji
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Femi Olawale
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Chijioke Olisah
- Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | | | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Panpetch W, Visitchanakun P, Saisorn W, Sawatpanich A, Chatthanathon P, Somboonna N, Tumwasorn S, Leelahavanichkul A. Lactobacillus rhamnosus attenuates Thai chili extracts induced gut inflammation and dysbiosis despite capsaicin bactericidal effect against the probiotics, a possible toxicity of high dose capsaicin. PLoS One 2021; 16:e0261189. [PMID: 34941893 PMCID: PMC8699716 DOI: 10.1371/journal.pone.0261189] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Because of a possible impact of capsaicin in the high concentrations on enterocyte injury (cytotoxicity) and bactericidal activity on probiotics, Lactobacillus rhamnosus L34 (L34) and Lactobacillus rhamnosus GG (LGG), the probiotics derived from Thai and Caucasian population, respectively, were tested in the chili-extract administered C57BL/6 mice and in vitro experiments. In comparison with placebo, 2 weeks administration of the extract from Thai chili in mice caused loose feces and induced intestinal permeability defect as indicated by FITC-dextran assay and the reduction in tight junction molecules (occludin and zona occludens-1) using fluorescent staining and gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the chili extracts also induced the translocation of gut pathogen molecules; lipopolysaccharide (LPS) and (1→3)-β-d-glucan (BG) and fecal dysbiosis (microbiome analysis), including reduced Firmicutes, increased Bacteroides, and enhanced total Gram-negative bacteria in feces. Both L34 and LGG attenuated gut barrier defect (FITC-dextran, the fluorescent staining and gene expression of tight junction molecules) but not improved fecal consistency. Additionally, high concentrations of capsaicin (0.02-2 mM) damage enterocytes (Caco-2 and HT-29) as indicated by cell viability test, supernatant cytokine (IL-8), transepithelial electrical resistance (TEER) and transepithelial FITC-dextran (4.4 kDa) but were attenuated by Lactobacillus condition media (LCM) from both probiotic-strains. The 24 h incubation with 2 mM capsaicin (but not the lower concentrations) reduced the abundance of LGG (but not L34) implying a higher capsaicin tolerance of L34. However, Lactobacillus rhamnosus fecal abundance, using qRT-PCR, of L34 or LGG after 3, 7, and 20 days of the administration in the Thai healthy volunteers demonstrated the similarity between both strains. In conclusion, high dose chili extracts impaired gut permeability and induced gut dysbiosis but were attenuated by probiotics. Despite a better capsaicin tolerance of L34 compared with LGG in vitro, L34 abundance in feces was not different to LGG in the healthy volunteers. More studies on probiotics with a higher intake of chili in human are interesting.
Collapse
Affiliation(s)
- Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
| | - Ajcharaporn Sawatpanich
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piraya Chatthanathon
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (AL); (ST)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (AL); (ST)
| |
Collapse
|
18
|
Chakraborty R, Vickery K, Darido C, Ranganathan S, Hu H. Bacterial Antigens Reduced the Inhibition Effect of Capsaicin on Cal 27 Oral Cancer Cell Proliferation. Int J Mol Sci 2021; 22:ijms22168686. [PMID: 34445392 PMCID: PMC8395464 DOI: 10.3390/ijms22168686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
Oral cancer is a major global health problem with high incidence and low survival rates. The oral cavity contains biofilms as dental plaques that harbour both Gram-negative and Gram-positive bacterial antigens, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), respectively. LPS and LTA are known to stimulate cancer cell growth, and the bioactive phytochemical capsaicin has been reported to reverse this effect. Here, we tested the efficacy of oral cancer chemotherapy treatment with capsaicin in the presence of LPS, LTA or the combination of both antigens. LPS and LTA were administered to Cal 27 oral cancer cells prior to and/or concurrently with capsaicin, and the treatment efficacy was evaluated by measuring cell proliferation and apoptotic cell death. We found that while capsaicin inhibits oral cancer cell proliferation and metabolism (MT Glo assay) and increases cell death (Trypan blue exclusion assay and Caspase 3/7 expression), its anti-cancer effect was significantly reduced on cells that are either primed or exposed to the bacterial antigens. Capsaicin treatment significantly increased oral cancer cells’ suppressor of cytokine signalling 3 gene expression. This increase was reversed in the presence of bacterial antigens during treatment. Our data establish a rationale for clinical consideration of bacterial antigens that may interfere with the treatment efficacy of oral cancer.
Collapse
Affiliation(s)
- Rajdeep Chakraborty
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.C.); (K.V.)
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Karen Vickery
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.C.); (K.V.)
| | - Charbel Darido
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Shoba Ranganathan
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Honghua Hu
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.C.); (K.V.)
- Correspondence:
| |
Collapse
|
19
|
Djamgoz MBA, Jentzsch V. Integrative Management of Pancreatic Cancer (PDAC): Emerging Complementary Agents and Modalities. Nutr Cancer 2021; 74:1139-1162. [PMID: 34085871 DOI: 10.1080/01635581.2021.1934043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. The standard first-line treatment for PDAC is gemcitabine chemotherapy which, unfortunately, offers only limited chance of a lasting cure. This review further evaluates the hypothesis that the effectiveness of gemcitabine can be improved by combining it with evidence-based complementary measures. Previously, supported by clinical trial data, we suggested that a number of dietary factors and nutraceuticals can be integrated with gemcitabine therapy. Here, we evaluate a further 10 agents for which no clinical trials have (yet) been carried out but there are promising data from in vivo and/or in vitro studies including experiments involving combined treatments with gemcitabine. Two groups of complementary agents are considered: Dietary factors (resveratrol, epigallocatechin gallate, vitamin B9, capsaicin, quercetin and sulforaphane) and nutraceutical agents (artemisinin, garcinol, thymoquinone and emodin). In addition, we identified seven promising agents for which there is currently only basic (mostly in vitro) data. Finally, as a special case of combination therapy, we highlighted synergistic drug combinations involving gemcitabine with "repurposed" aspirin or metformin. We conclude overall that integrated management of PDAC currently is likely to produce the best outcome for patients and for this a wide range of complementary measures is available.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Nicosia, Cyprus
| | - Valerie Jentzsch
- Department of Life Sciences, Imperial College London, London, UK
- Department of Health Policy, London School of Economics and Political Science, London, UK
| |
Collapse
|
20
|
Nishimura Y. [Development of Efficient Synthetic Method for Tautomeric Dihydropyrimidines and Analysis of Their Functionality]. YAKUGAKU ZASSHI 2021; 141:151-161. [PMID: 33518632 DOI: 10.1248/yakushi.20-00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
I here present the results of our studies on the synthesis and functional analysis of tautomeric dihydropyrimidines (DPs) and related compounds in two sections. In the first section, we describe our experimental and theoretical studies on the thermodynamics and properties of 2-substituted 1,4- and 1,6-dihydropyrimidine-5-carboxylates by 1H NMR measurements and density functional theory (DFT) calculations, respectively. The concentration ratios of tautomers a/b of DPs 1, 2, and 3 were determined under various conditions to determine the effects of temperature, solvent, and concentration on thermodynamics data. The obtained free energy differences (ΔG), enthalpy differences (ΔH), and entropy differences (ΔS) are discussed in terms of the molecular structures, dipole moments (DM), and electrostatic potential maps obtained by DFT calculations to clarify the nature of DPs 4-8. In the second section, an efficient synthetic method developed for 6-unsubstituted 3,4-dihydropyrimidin-2(1H)-thiones 9 and 2-ones 10 is described. The novelties of the synthesis protocol are as follows: 1) the use of Lewis acid-mediated reaction, 2) good to high yields, and 3) its broad scope of applicability to aldehydes and ureas. Hitherto unavailable 6-unsubstituted 2-amino DP 11 and 2-aryl DP 12 were obtained from 9 by a substitution reaction with the amine and the Liebeskind-Srogl reaction, respectively. The compounds 9, 10, and related 6-methyl derivatives 19-21 were assessed for their antiproliferative effect on the human promyelocytic leukemia cell line HL-60. 4,4-Dipropyl derivative 20 showed relatively strong activity with an IC50 value of 341 nM.
Collapse
|
21
|
Kunjiappan S, Sankaranarayanan M, Karan Kumar B, Pavadai P, Babkiewicz E, Maszczyk P, Glodkowska-Mrowka E, Arunachalam S, Ram Kumar Pandian S, Ravishankar V, Baskararaj S, Vellaichamy S, Arulmani L, Panneerselvam T. Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation. NANOTECHNOLOGY 2021; 32:095101. [PMID: 33113518 DOI: 10.1088/1361-6528/abc57e] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 μg × ml-1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.
Collapse
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | - Murugesan Sankaranarayanan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani-333031, India
| | - Banoth Karan Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani-333031, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru-560054, India
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-089 Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-089 Warsaw, Poland
| | - Eliza Glodkowska-Mrowka
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Indira Gandhi St. 14, 02-776 Warsaw, Poland
| | - Sankarganesh Arunachalam
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | | | | | - Suraj Baskararaj
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil-626126, India
| | - Lalitha Arulmani
- Senior Scientist, Virtis Biolabs, Pvt., Ltd, Kannankurichi, Salem-636008, India
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal-637205, India
| |
Collapse
|
22
|
Wu D, Jia H, Zhang Z, Li S. Capsaicin suppresses breast cancer cell viability by regulating the CDK8/PI3K/Akt/Wnt/β‑catenin signaling pathway. Mol Med Rep 2020; 22:4868-4876. [PMID: 33173974 PMCID: PMC7646934 DOI: 10.3892/mmr.2020.11585] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer displays high morbidity and mortality. Despite exerting certain effects, traditional treatments cannot eliminate every cancer cell and may kill normal cells due to inaccurate targeting. However, as a traditional Chinese medicine, capsaicin, an active compound extracted from chili peppers, has displayed potent anticarcinogenic activities in vitro and in vivo, but the underlying mechanism is not completely understood. The pharmacological effects of capsaicin on tumors was evaluated in MDA MB 231 breast cancer cells. The MTT, cell scratch assay, cell cycle analysis, cell transfection, reverse transcription‑quantitative PCR and western blotting were performed to investigate the potential antitumor mechanisms of capsaicin. In the present study, the potential anticancer mechanism underlying capsaicin in MDA‑MB‑231 cells in vitro was investigated. Capsaicin significantly inhibited MDA‑MB‑231 breast cancer cell viability and migration compared with the control group. The flow cytometry results indicated that capsaicin induced G2/M cell cycle arrest in MDA‑MB‑231 cells. In addition, capsaicin significantly reduced the expression of cyclin‑dependent kinase 8 (CDK8) in breast cancer cells compared with the control group. Moreover, LV‑CDK8 small interfering RNA‑transduced MDA‑MB‑231 cells displayed lower CDK8 mRNA and protein expression levels compared with LV‑negative control‑shRNA‑transduced cells. Furthermore, capsaicin significantly reduced the expression levels of phosphorylated (p)‑PI3K, p‑Akt, Wnt and β‑catenin in vitro compared with the control group. Collectively, the results of the present study suggested that capsaicin inhibited breast cancer cell viability, induced G2/M cell cycle arrest, reduced CDK8 expression levels, decreased the phosphorylation of PI3K and Akt and downregulated Wnt and β‑catenin expression levels in MDA‑MB‑231 cells.
Collapse
Affiliation(s)
- Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhiru Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
23
|
Perrone L, Sampaolo S, Melone MAB. Bioactive Phenolic Compounds in the Modulation of Central and Peripheral Nervous System Cancers: Facts and Misdeeds. Cancers (Basel) 2020; 12:cancers12020454. [PMID: 32075265 PMCID: PMC7072310 DOI: 10.3390/cancers12020454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Efficacious therapies are not available for the cure of both gliomas and glioneuronal tumors, which represent the most numerous and heterogeneous primary cancers of the central nervous system (CNS), and for neoplasms of the peripheral nervous system (PNS), which can be divided into benign tumors, mainly represented by schwannomas and neurofibromas, and malignant tumors of the peripheral nerve sheath (MPNST). Increased cellular oxidative stress and other metabolic aspects have been reported as potential etiologies in the nervous system tumors. Thus polyphenols have been tested as effective natural compounds likely useful for the prevention and therapy of this group of neoplasms, because of their antioxidant and anti-inflammatory activity. However, polyphenols show poor intestinal absorption due to individual intestinal microbiota content, poor bioavailability, and difficulty in passing the blood-brain barrier (BBB). Recently, polymeric nanoparticle-based polyphenol delivery improved their gastrointestinal absorption, their bioavailability, and entry into defined target organs. Herein, we summarize recent findings about the primary polyphenols employed for nervous system tumor prevention and treatment. We describe the limitations of their application in clinical practice and the new strategies aimed at enhancing their bioavailability and targeted delivery.
Collapse
Affiliation(s)
- Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, Via Sergio Pansini, 5 80131 Naples, Italy; (L.P.); (S.S.)
- Department of Chemistry and Biology, University Grenoble Alpes, 38400 Saint-Martin-d’Hères, France
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, Via Sergio Pansini, 5 80131 Naples, Italy; (L.P.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, Via Sergio Pansini, 5 80131 Naples, Italy; (L.P.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00)1900 North 12th Street, Philadelphia, PA 19122-6078, USA
- Correspondence:
| |
Collapse
|
24
|
Capsaicin Targets tNOX (ENOX2) to Inhibit G1 Cyclin/CDK Complex, as Assessed by the Cellular Thermal Shift Assay (CETSA). Cells 2019; 8:cells8101275. [PMID: 31635402 PMCID: PMC6830080 DOI: 10.3390/cells8101275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Capsaicin (8-methyl-N-vanillyl-6-noneamide), which is an active component in red chili peppers, is used as a chemopreventive agent that shows favorable cytotoxicity against cancer cells. Accumulating evidence indicates that capsaicin preferentially inhibits a tumor-associated NADH oxidase (tNOX, ENOX2) that is ubiquitously expressed in cancer but not in non-transformed cells. This attenuates cancer cell growth by inducing apoptosis. The capsaicin-mediated inhibition of tNOX was recently shown to prolong the cell cycle. However, the molecular events underlying this regulation have not yet been investigated. In the present study, we used a cellular thermal shift assay (CETSA) to detect “target engagement” of capsaicin and its consequent impact on cell cycle progression. Our results indicated that capsaicin engaged with tNOX and triggered the proteasomal degradation of tNOX, which leads to the inhibition of NAD+-dependent SIRT1 deacetylase. Ultimately, the acetylation levels of c-Myc and p53 were enhanced, which suppressed the activation of G1 cyclin/Cyclin-dependent kinase complexes and triggered cell cycle arrest in cancer cells. The results obtained when tNOX was overexpressed in non-cancer cells validated its importance in cell cycle progression. These findings provide the first molecular insights into the regulatory role of tNOX and the anti-proliferative property of capsaicin in regulating the cell cycle of bladder cancer cells.
Collapse
|
25
|
Bujak JK, Kosmala D, Szopa IM, Majchrzak K, Bednarczyk P. Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Front Oncol 2019; 9:1087. [PMID: 31681615 PMCID: PMC6805766 DOI: 10.3389/fonc.2019.01087] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Process of inflammation and complex interactions between immune and cancer cells within tumor microenvironment are known to drive and shape the outcome of the neoplastic disease. Recent studies increasingly show that ion channels can be used as potential targets to modulate immune response and to treat inflammatory disorders and cancer. The action of both innate and adaptive immune cells is tightly regulated by ionic signals provided by a network of distinct ion channels. TRPV1 channel, known as a capsaicin receptor, was recently documented to be expressed on the cells of the immune system but also aberrantly expressed in the several tumor types. It is activated by heat, protons, proinflammatory cytokines, and associated with pain and inflammation. TRPV1 channel is not only involved in calcium signaling fundamental for many cellular processes but also takes part in cell-environment crosstalk influencing cell behavior. Furthermore, in several studies, activation of TRPV1 by capsaicin was associated with anti-cancer effects. Therefore, TRPV1 provides a potential link between the process of inflammation, cancer and immunity, and offers new treatment possibilities. Nevertheless, in many cases, results regarding TRPV1 are contradictory and need further refinement. In this review we present the summary of the data related to the role of TRPV1 channel in the process of inflammation, cancer and immunity, limitations of the studies, and directions for future research.
Collapse
Affiliation(s)
- Joanna Katarzyna Bujak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Daria Kosmala
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iwona Monika Szopa
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kinga Majchrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Maruca A, Catalano R, Bagetta D, Mesiti F, Ambrosio FA, Romeo I, Moraca F, Rocca R, Ortuso F, Artese A, Costa G, Alcaro S, Lupia A. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. Eur J Med Chem 2019; 181:111579. [PMID: 31398616 DOI: 10.1016/j.ejmech.2019.111579] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Many bioactive agents have been extracted from plants or belong to functional foods and have been considered in the treatment of serious and multifactorial diseases, such as cancer. In particular, this review is focused on the anti-cancer properties owned by several natural products typically from the Mediterranean area. In some regions of the South of Italy, a lower cancer incidence has been observed. There is increasing evidence that adherence to a Mediterranean dietary pattern correlates with reduced risk of several cancer types. This could be mainly attributed to the typical lifestyle aspects of the Mediterranean diet, such as high consumption of fruit and vegetables. In this review, the main natural products of the Mediterranean area are discussed, with particular attention on their anti-cancer properties endowed with multi-target profiles.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Isabella Romeo
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Chemistry and Chemical Technology, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Federica Moraca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Roberta Rocca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Experimental and Clinical Medicine "Magna Græcia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
27
|
Kamaruddin MF, Hossain MZ, Mohamed Alabsi A, Mohd Bakri M. The Antiproliferative and Apoptotic Effects of Capsaicin on an Oral Squamous Cancer Cell Line of Asian Origin, ORL-48. ACTA ACUST UNITED AC 2019; 55:medicina55070322. [PMID: 31261824 PMCID: PMC6681303 DOI: 10.3390/medicina55070322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Background and Objectives: The antitumor activities of capsaicin on various types of cancer cell lines have been reported but the effect of capsaicin on oral cancer, which is prevalent among Asians, are very limited. Thus, this study aimed to investigate the effects of capsaicin on ORL-48, an oral cancer cell line of Asian origin. Materials and Methods: Morphological changes of the ORL-48 cells treated with capsaicin were analyzed using fluorescence microscopy. The apoptotic-inducing activity of capsaicin was further confirmed by Annexin V-Fluorescein isothiocyanate / Propidium iodide (V-FITC/PI) staining using flow cytometry. In order to establish the pathway of apoptosis triggered by the compound on ORL-48 cells, caspase activity was determined and the mitochondrial pathway was verified by mitochondrial membrane potential (MMP) assay. Cell cycle analysis was also performed to identify the cell cycle phase of ORL-48 cells being inhibited by the capsaicin compound. Results: Fluorescence microscopy exhibited the presence of apoptotic features in capsaicin-treated ORL-48 cells. Apoptosis of capsaicin-treated ORL-48 cells revealed disruption of the mitochondrial-membrane potential, activation of caspase-3, -7 and -9 through an intrinsic apoptotic pathway and subsequently, apoptotic DNA fragmentation. The cell cycle arrest occurred in the G1-phase, confirming antiproliferative effect of capsaicin in a time-dependent manner. Conclusion: This study demonstrated that capsaicin is cytotoxic against ORL-48 cells and induces apoptosis in ORL-48 cells possibly through mitochondria mediated intrinsic pathway resulting in cell cycle arrest.
Collapse
Affiliation(s)
- Mohammad Firdaus Kamaruddin
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammad Zakir Hossain
- Department of Oral Physiology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Aied Mohamed Alabsi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, Mahsa University, Jenjarom 42610, Selangor, Malaysia
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
28
|
Pereira GJV, Tavares MT, Azevedo RA, Martins BB, Cunha MR, Bhardwaj R, Cury Y, Zambelli VO, Barbosa EG, Hediger MA, Parise-Filho R. Capsaicin-like analogue induced selective apoptosis in A2058 melanoma cells: Design, synthesis and molecular modeling. Bioorg Med Chem 2019; 27:2893-2904. [PMID: 31104785 DOI: 10.1016/j.bmc.2019.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/13/2019] [Accepted: 05/12/2019] [Indexed: 01/19/2023]
Abstract
The use of molecules inspired by natural scaffolds has proven to be a very promising and efficient method of drug discovery. In this work, capsaicin, a natural product from Capsicum peppers with antitumor properties, was used as a prototype to obtain urea and thiourea analogues. Among the most promising compounds, the thiourea compound 6g exhibited significant cytotoxic activity against human melanoma A2058 cells that was twice as high as that of capsaicin. Compound 6g induced significant and dose-dependent G0/G1 cell cycle arrest in A2058 cells triggering cell death by apoptosis. Our results suggest that 6g modulates the RAF/MEK/ERK pathway, inducing important morphological changes, such as formation of apoptotic bodies and increased levels of cleaved caspase-3. Compared to capsaicin, 6g had no significant TRPV1/6 agonist effect or irritant effects on mice. Molecular modeling studies corroborate the biological findings and suggest that 6g, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. Inverse virtual screening strategy found MEK1 as a possible biological target for 6g. Consistent with these findings, our observations suggested that 6g could be developed as a potential anticancer agent.
Collapse
Affiliation(s)
- Gustavo José Vasco Pereira
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício Temotheo Tavares
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Alexandre Azevedo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Micael Rodrigues Cunha
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rajesh Bhardwaj
- Institute of Biochemistry and Molecular Medicine, National Center for Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Yara Cury
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | | | | | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, National Center for Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Roberto Parise-Filho
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
29
|
ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9051542. [PMID: 31217841 PMCID: PMC6536988 DOI: 10.1155/2019/9051542] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) promote carcinogenesis by inducing genetic mutations, activating oncogenes, and raising oxidative stress, which all influence cell proliferation, survival, and apoptosis. Cancer cells display redox imbalance due to increased ROS level compared to normal cells. This unique feature in cancer cells may, therefore, be exploited for targeted therapy. Over the past few decades, natural compounds have attracted attention as potential cancer therapies because of their ability to maintain cellular redox homeostasis with minimal toxicity. Preclinical studies show that bioactive dietary polyphenols exert antitumor effects by inducing ROS-mediated cytotoxicity in cancer cells. These bioactive compounds also regulate cell proliferation, survival, and apoptotic and antiapoptotic signalling pathways. In this review, we discuss (i) how ROS is generated and (ii) regulated and (iii) the cell signalling pathways affected by ROS. We also discuss (iv) the various dietary phytochemicals that have been implicated to have cancer therapeutic effects through their ROS-related functions.
Collapse
|
30
|
Chu H, Li M, Wang X. Capsaicin induces apoptosis and autophagy in human melanoma cells. Oncol Lett 2019; 17:4827-4834. [PMID: 31186689 PMCID: PMC6507355 DOI: 10.3892/ol.2019.10206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the most lethal type of skin cancer; rapid metastasis and resistance to conventional radio- and chemotherapy make melanoma the most aggressive type of skin cancer. In addition, there is a high recurrence rate within 1 year among patients with melanoma following traditional treatment by chemotherapy or immunotherapy, and these treatment options are only useful in advanced stages. As the efficiency of treatment options for melanoma is not ideal, the present study aimed to confirm that capsaicin has inhibitory effects on the human melanoma A375 and C8161 cell lines in vitro. Capsaicin, the active component of peppers, has been reported to possess substantial anticarcinogenic and antimutagenic activities. Additionally, capsaicin exhibits an inhibitory effect on tumor growth in numerous malignant cell lines. In the present study, flow cytometry, fluorescent puncta detection and western blotting were performed. The experimental results indicated that capsaicin activated apoptosis, and that apoptosis induction was associated with poly(ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3. Additionally, the formation of autophagosomes and accumulation of microtubule-associated proteins 1A/1B light chain 3B-II and beclin 1 suggested that capsaicin induced autophagy in human melanoma cells. Furthermore, inhibiting capsaicin-induced autophagy promoted the activation of cleaved caspase-3 and PARP proteins, which are associated with apoptosis. In addition, inhibition of autophagy using 3-MA enhanced capsaicin-induced cell death, indicating that capsaicin-induced autophagy is a pro-survival process in cells. In conclusion, the results of the present study revealed that capsaicin induced cell apoptosis and autophagy in human melanoma cells and capsaicin may be considered as a novel candidate drug for melanoma treatment.
Collapse
Affiliation(s)
- Haihan Chu
- Department of Burn and Plastic Surgery, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Meng Li
- Department of Burn and Plastic Surgery, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xiuchun Wang
- Department of Burn and Plastic Surgery, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
31
|
Wang H, Yuan X, Huang HM, Zou SH, Li B, Feng XQ, Zhao HP. Swertia mussotii extracts induce mitochondria-dependent apoptosis in gastric cancer cells. Biomed Pharmacother 2018; 104:603-612. [DOI: 10.1016/j.biopha.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022] Open
|
32
|
Effects of CB2 and TRPV1 receptors' stimulation in pediatric acute T-lymphoblastic leukemia. Oncotarget 2018; 9:21244-21258. [PMID: 29765535 PMCID: PMC5940388 DOI: 10.18632/oncotarget.25052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/21/2018] [Indexed: 01/17/2023] Open
Abstract
T-Acute Lymphoblastic Leukemia (T-ALL) is less frequent than B-ALL, but it has poorer outcome. For this reason new therapeutic approaches are needed to treat this malignancy. The Endocannabinoid/Endovanilloid (EC/EV) system has been proposed as possible target to treat several malignancies, including lymphoblastic diseases. The EC/EV system is composed of two G-Protein Coupled Receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel, their endogenous and exogenous ligands and enzymes. CB1 is expressed mainly in central nervous system while CB2 predominantly on immune and peripheral cells, therefore we chose to selectively stimulate CB2 and TRPV1. We treated T-ALL lymphoblasts derived from 4 patients and Jurkat cells with a selective agonist at CB2 receptor: JWH-133 [100 nM] and an agonist at TRPV1 calcium channel: RTX [5 uM] at 6, 12 and 24 hours. We analyzed the effect on apoptosis and Cell Cycle Progression by a cytofluorimetric assays and evaluated the expression level of several target genes (Caspase 3, Bax, Bcl-2, AKT, ERK, PTEN, Notch-1, CDK2, p53) involved in cell survival and apoptosis, by Real-Time PCR and Western Blotting. We observed a pro-apoptotic, anti-proliferative effect of these compounds in both primary lymphoblasts obtained from patients with T-ALL and in Jurkat cell line. Our results show that both CB2 stimulation and TRPV1 activation, can increase the apoptosis in vitro, interfere with cell cycle progression and reduce cell proliferation, indicating that a new therapeutic approach to T-cell ALL might be possible by modulating CB2 and TRPV1 receptors.
Collapse
|
33
|
Koneru M, Sahu BD, Mir SM, Ravuri HG, Kuncha M, Mahesh Kumar J, Kilari EK, Sistla R. Capsaicin, the pungent principle of peppers, ameliorates alcohol-induced acute liver injury in mice via modulation of matrix metalloproteinases. Can J Physiol Pharmacol 2018; 96:419-427. [DOI: 10.1139/cjpp-2017-0473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alcohol, the most common cause for hepatic injury, may further deteriorate the hepatic tissue when left unattended. Capsaicin, the pungent principle of chilli peppers, possesses antioxidant and anti-inflammatory properties and is a proven dietary antioxidant in various ailments. However, its role in alcohol-induced hepatic injury is unclear. In this study, we investigated the effects of capsaicin on the hepatic tissue of mice treated with alcohol. Acute liver injury was induced in mice by oral gavage of 5 doses of 10 mL/kg of 50% ethyl alcohol at an interval of 12 h. The tissue antioxidant levels along with the mitochondrial functional parameters and matrix metalloproteinase levels were evaluated in the hepatic tissues of mice following alcohol challenge. The results showed that alcohol intake significantly attenuated the hepatic antioxidant levels and mitochondrial function. These changes were accompanied by enhanced serum hepatic injury markers and matrix metalloproteinases. However, capsaicin treatment (10 and 20 mg/kg, oral) throughout the experimental period caused a drastic improvement in the hepatic tissue of the alcohol-treated mice, reflected by the normalization of hepatic enzyme and protein levels along with restored histological alterations. These results indicate that capsaicin, as a dietary intervention, may prevent alcohol-induced acute liver injury.
Collapse
Affiliation(s)
- Meghana Koneru
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Bidya Dhar Sahu
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Salma Mukhtar Mir
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Halley Gora Ravuri
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Madhusudana Kuncha
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Jerald Mahesh Kumar
- Animal House Facility, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Eswar Kumar Kilari
- Department of Pharmacology, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, India
| | - Ramakrishna Sistla
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
34
|
Supra-pharmacological concentration of capsaicin stimulates brown adipogenesis through induction of endoplasmic reticulum stress. Sci Rep 2018; 8:845. [PMID: 29339762 PMCID: PMC5770457 DOI: 10.1038/s41598-018-19223-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/18/2017] [Indexed: 01/12/2023] Open
Abstract
We previously showed that brown (pre)adipocytes express Trpv1, a capsaicin receptor, and that capsaicin stimulates differentiation of brown preadipocytes in the late stages of brown adipogenesis. The present study revealed that treatment with 100 μM capsaicin stimulates brown adipogenesis by inducing endoplasmic reticulum (ER) stress. Treatment with capsaicin (100 μM) during brown adipogenesis enhanced lipid accumulation and the expression of Ucp1, a gene selectively expressed in brown adipocytes. Capsaicin treatment also caused an increase in the cytosolic calcium concentration even when extracellular calcium was removed. I-RTX, a Trpv1 inhibitor, did not modulate the increase in cytosolic calcium concentration, lipid accumulation or Ucp1 expression. Previous studies revealed that the release of calcium from the ER induces ER stress, leading to the conversion of X-box binding protein 1 (Xbp1) pre-mRNA to spliced Xbp1 (sXbp1) as well as the up-regulation of Chop expression. Capsaicin treatment increased the expression of sXbp1 and Chop in brown preadipocytes and did not enhance lipid accumulation or Ucp1 expression in Xbp1 knockdown cells. The present results describe a novel mechanism of brown adipogenesis regulation via ER stress that is induced by a supra-pharmacological concentration of capsaicin.
Collapse
|
35
|
Wang C, Xia W, Jiang Q, Xu Y, Yu P. Lipid Extracts from the Brains of Silver Carp (Hypophthalmichthys molitrix) Induce Apoptosis in MCF-7 Cells through the Generation of Reactive Oxygen Species and the Mitochondrial Pathway. Nutr Cancer 2017; 69:1053-1061. [PMID: 28937788 DOI: 10.1080/01635581.2017.1359312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Previous studies have verified the protective role of n3 polyunsaturated fatty acids (PUFAs) in cancer. Fish brain lipids are rich in n3 PUFAs. However, the action and mechanism of their potent anticancer activities remain unclear. In this study, polar lipids (PLs) and neutral lipids (NLs) were isolated from the total lipids (TLs) of the silver carp brain, and the anticancer effects of the lipid fractions (LFs) were examined in a human breast cancer cell line (MCF-7). The LFs effectively inhibited the cell proliferation of MCF-7 cells in a time- and concentration-dependent manner by cell cycle arrest at the S stage and induction of apoptosis. Further analyses showed that the apoptotic effect of the LFs on MCF-7 cells was associated with the accumulation of elevated levels of reactive oxygen species and the loss of mitochondrial membrane potential. Among the TLs, PLs were more effective at causing breast cancer cell death than NLs. Our study showed that the LFs from silver carp brains may aid the prevention and treatment of human breast cancer.
Collapse
Affiliation(s)
- Caixia Wang
- a College of Food Science , Sichuan Agricultural University , Yaan , China.,b School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Wenshui Xia
- b School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Qixing Jiang
- b School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Yanshun Xu
- b School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Peipei Yu
- b School of Food Science and Technology , Jiangnan University , Wuxi , China
| |
Collapse
|
36
|
Zhang Y, Deng X, Lei T, Yu C, Wang Y, Zhao G, Luo X, Tang K, Quan Z, Jiang D. Capsaicin inhibits proliferation and induces apoptosis in osteosarcoma cell lines via the mitogen‑activated protein kinase pathway. Oncol Rep 2017; 38:2685-2696. [PMID: 29048662 PMCID: PMC5780021 DOI: 10.3892/or.2017.5960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022] Open
Abstract
Capsaicin, a pungent molecular compound present in many hot peppers, exerts anticancer activities against various human cancer cell lines by inducing apoptosis. However, the effects of capsaicin on human osteosarcoma (OS) as well as the related mechanisms remain to be fully elucidated. In the present study, the anticancer effects of capsaicin on 3 human OS cell lines (MG63, 143B and HOS) were investigated. Various concentrations of capsaicin (50-300 µM) effectively decreased cell viability in all 3 OS cell lines in a dose-dependent manner. Notably, capsaicin-induced apoptosis was observed when OS cells were treated with relatively high concentrations of capsaicin (starting at 250 µM). In addition, the mitochondrial apoptotic pathway was involved in the capsaicin-induced apoptosis in the OS cells. Meanwhile, our results also indicated that at relatively low concentrations (e.g., 100 µM), capsaicin could inhibit the proliferation, decrease the colony forming ability and induce G0/G1 phase cell cycle arrest of OS cells in a dose-dependent manner. Moreover, our results revealed that the anticancer effects induced by capsaicin on OS cell lines involved multiple MAPK signaling pathways as indicated by inactivation of the ERK1/2 and p38 pathways and activation of the JNK pathway. Furthermore, the results of animal experiments showed that capsaicin inhibited tumor growth in a xenograft model of human OS. In conclusion, these results indicate that capsaicin may exert therapeutic benefits as an adjunct to current cancer therapies but not as an independent anticancer agent.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xu Deng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Lei
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chang Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guosheng Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoji Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ke Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhengxue Quan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dianming Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
37
|
Polyalthia longifolia Methanolic Leaf Extracts (PLME) induce apoptosis, cell cycle arrest and mitochondrial potential depolarization by possibly modulating the redox status in hela cells. Biomed Pharmacother 2017; 89:499-514. [DOI: 10.1016/j.biopha.2017.02.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
|
38
|
Sivalingam KS, Paramasivan P, Weng CF, Viswanadha VP. Neferine Potentiates the Antitumor Effect of Cisplatin in Human Lung Adenocarcinoma Cells Via a Mitochondria-Mediated Apoptosis Pathway. J Cell Biochem 2017; 118:2865-2876. [DOI: 10.1002/jcb.25937] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Kalai Selvi Sivalingam
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore Tamil Nadu India
| | - Poornima Paramasivan
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore Tamil Nadu India
| | - Ching Feng Weng
- Laboratory of Molecular Physiology, Department of Life Sciences, Institute of Biotechnology; National Dong Hwa University; Hualien 974 Taiwan
| | - Vijaya padma Viswanadha
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore Tamil Nadu India
- Basic Medical Science; China Medical University; Taichung Taiwan
- Departments of Biotechnology; Asia University; Taichung Taiwan
| |
Collapse
|
39
|
Punzo F, Tortora C, Di Pinto D, Manzo I, Bellini G, Casale F, Rossi F. Anti-proliferative, pro-apoptotic and anti-invasive effect of EC/EV system in human osteosarcoma. Oncotarget 2017; 8:54459-54471. [PMID: 28903355 PMCID: PMC5589594 DOI: 10.18632/oncotarget.17089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma is the most common and aggressive bone tumor in children. The Endocannabinoid/Endovanilloid system has been proposed as anticancer target in tumor of different origins. This system is composed of two receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel and their ligands and enzymes. CB1 is expressed mainly in central nervous system while CB2 predominantly on immune and peripheral cells. We investigated the effects of JWH-133 (CB2 agonist) and RTX (TRPV1 agonist) in six human Osteosarcoma cell lines: MG-63, U-2OS, MNNG/HOS, Saos-2, KHOS/NP, Hs888Lu, by Apoptosis and Migration-Assay. We also compared the effects of these compounds on Caspase-3, AKT, MMP-2 and Notch-1 regulation by Q-PCR and Western Blotting. We observed an anti-proliferative, pro-apoptotic, anti-invasive effect. Our results show that both CB2 stimulation and TRPV1 activation, in different Osteosarcoma cell lines, can act on the same pathways to obtain the same effect, indicating the Endocannabinoid/Endovanilloid system as a new therapeutic target in Osteosarcoma.
Collapse
Affiliation(s)
- Francesca Punzo
- Department of Women, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy.,Department of Experimental Medicine, Division of Pharmacology "Leonardo Donatelli", The Second University of Naples, 80138 Naples, Italy
| | - Chiara Tortora
- Department of Women, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy.,Department of Experimental Medicine, Division of Pharmacology "Leonardo Donatelli", The Second University of Naples, 80138 Naples, Italy
| | - Daniela Di Pinto
- Department of Women, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy
| | - Iolanda Manzo
- Department of Experimental Medicine, Division of Pharmacology "Leonardo Donatelli", The Second University of Naples, 80138 Naples, Italy
| | - Giulia Bellini
- Department of Experimental Medicine, Division of Pharmacology "Leonardo Donatelli", The Second University of Naples, 80138 Naples, Italy
| | - Fiorina Casale
- Department of Women, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy
| | - Francesca Rossi
- Department of Women, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy
| |
Collapse
|
40
|
Chen X, Wu X, Ouyang W, Gu M, Gao Z, Song M, Chen Y, Lin Y, Cao Y, Xiao H. Novel ent-Kaurane Diterpenoid from Rubus corchorifolius L. f. Inhibits Human Colon Cancer Cell Growth via Inducing Cell Cycle Arrest and Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1566-1573. [PMID: 28169543 DOI: 10.1021/acs.jafc.6b05376] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The tender leaves of Rubus corchorifolius L. f. have been consumed as tea for drinking in China since ancient times. In this study, a novel ent-kaurane diterpenoid was isolated and identified from R. corchorifolius L. f. leaves as ent-kaur-2-one-16β,17-dihydroxy-acetone-ketal (DEK). DEK suppressed the growth of HCT116 human colon cancer cells with an IC50 value of 40 ± 0.21 μM, while it did not cause significant growth inhibition on CCD-18Co human colonic myofibroblasts at up to100 μM. Moreover, DEK induced extensive apoptosis and S phase cell cycle arrest in the colon cancer cells. Accordingly, DEK caused profound effects on multiple signaling proteins associated with cell proliferation, cell death, and inflammation. DEK significantly upregulated the expression levels of pro-apoptotic proteins such as cleaved caspase-3, cleaved caspase-9, cleaved PARP, p53, Bax, and tumor suppressor p21Cip1/Waf1, downregulated the levels of cell cycle regulating proteins such as cyclinD1, CDK2, and CDK4 and carcinogenic proteins such as EGFR and COX-2, and suppressed the activation of Akt. Overall, our results provide a basis for using DEK as a potential chemopreventive agent against colon carcinogenesis.
Collapse
Affiliation(s)
- Xuexiang Chen
- College of Food Science, South China Agricultural University , Guangzhou 510642, People's Republic of China
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
- College of Public Health, Guangzhou Medical University , Guangzhou 511436, People's Republic of China
| | - Xian Wu
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Wen Ouyang
- Pharmacy College, Hunan University of Traditional Chinese Medicine , Changsha 410007, People's Republic of China
| | - Min Gu
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Zili Gao
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Mingyue Song
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Yunjiao Chen
- College of Food Science, South China Agricultural University , Guangzhou 510642, People's Republic of China
- Guangdong Province Engineering Research Center for Bioactive Natural Products , Guangzhou 510642, People's Republic of China
| | - Yanyin Lin
- College of Food Science, South China Agricultural University , Guangzhou 510642, People's Republic of China
- Guangdong Province Engineering Research Center for Bioactive Natural Products , Guangzhou 510642, People's Republic of China
| | - Yong Cao
- College of Food Science, South China Agricultural University , Guangzhou 510642, People's Republic of China
- Guangdong Province Engineering Research Center for Bioactive Natural Products , Guangzhou 510642, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
41
|
An updated review on molecular mechanisms underlying the anticancer effects of capsaicin. Food Sci Biotechnol 2017; 26:1-13. [PMID: 30263503 DOI: 10.1007/s10068-017-0001-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
The quest for developing anticancer principles from natural sources has a long historical track record and remarkable success stories. The pungent principle of hot chili pepper, capsaicin, has been a subject of research for anticancer drug discovery for more than three decades. However, the majority of research has revealed that capsaicin interferes with various hallmarks of cancer, such as increased cell proliferation, evasion from apoptosis, inflammation, tumor angiogenesis and metastasis, and tumor immune escape. Moreover, the compound has been reported to inhibit carcinogen activation and chemically induced experimental tumor growth. Capsaicin has also been reported to inhibit the activation of various kinases and transcription that are involved in tumor promotion and progression. The compound activated mitochondria-dependent and death receptor-mediated tumor cell apoptosis. Considering the growing interest in capsaicin, this review provides an update on the molecular targets of capsaicin in modulating oncogenic signaling.
Collapse
|
42
|
Shamsi S, Tran H, Tan RSJ, Tan ZJ, Lim LY. Curcumin, Piperine, and Capsaicin: A Comparative Study of Spice-Mediated Inhibition of Human Cytochrome P450 Isozyme Activities. Drug Metab Dispos 2017; 45:49-55. [PMID: 27821437 DOI: 10.1124/dmd.116.073213] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022] Open
Abstract
Inhibition of cytochrome P450 (P450) enzymes (CYP) has been shown to lower the metabolism of drugs that are P450 substrates and to consequently alter their pharmacokinetic profiles. Curcumin (CUR), piperine (PIP), and capsaicin (CAP) are spice components (SC) that inhibit the activities of a range of P450 enzymes, but the selection of which SC to be prioritized for further development as an adjuvant will depend on the ranking order of the inhibitory potential of the SCs on specific P450 isozymes. We used common human recombinant enzyme platforms to provide a comparative evaluation of the inhibitory activities of CUR, PIP, and CAP on the principal drug-metabolizing P450 enzymes. SC-mediated inhibition of CYP3A4 was found to rank in the order of CAP (IC50 1.84 ± 0.71 µM) ∼ PIP (2.12 ± 0.45 µM) > CUR (11.93 ± 3.49 µM), while CYP2C9 inhibition was in the order of CAP (11.95 ± 4.24 µM) ∼ CUR (14.58 ± 4.57 µM) > PIP (89.62 ± 9.17 µM). CAP and PIP were significantly more potent inhibitors of CYP1A2 (IC50 2.14 ± 0.22 µM and 14.19 ± 4.15 µM, respectively) than CUR (IC50 > 100 µM), while all three SCs exhibited weak activity toward CYP2D6 (IC50 95.42 ± 12.09 µM for CUR, 99.99 ± 5.88 µM for CAP, and 110.40 ± 3.23 µM for PIP). Of the three SCs, CAP thus has the strongest potential for further development into an inhibitor of multiple CYPs for use in the clinic. Data from this study are also useful for managing potential drug-SC interactions.
Collapse
Affiliation(s)
- Suhaili Shamsi
- Laboratory for Drug Delivery, Centre for Optimization of Medicines, Pharmacy, School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia (S.S., H.T., R.S.J.T., Z.J.T., L.Y.L.); Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia (S.S.)
| | - Huong Tran
- Laboratory for Drug Delivery, Centre for Optimization of Medicines, Pharmacy, School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia (S.S., H.T., R.S.J.T., Z.J.T., L.Y.L.); Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia (S.S.)
| | - Renee Seok Jin Tan
- Laboratory for Drug Delivery, Centre for Optimization of Medicines, Pharmacy, School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia (S.S., H.T., R.S.J.T., Z.J.T., L.Y.L.); Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia (S.S.)
| | - Zee Jian Tan
- Laboratory for Drug Delivery, Centre for Optimization of Medicines, Pharmacy, School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia (S.S., H.T., R.S.J.T., Z.J.T., L.Y.L.); Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia (S.S.)
| | - Lee Yong Lim
- Laboratory for Drug Delivery, Centre for Optimization of Medicines, Pharmacy, School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia (S.S., H.T., R.S.J.T., Z.J.T., L.Y.L.); Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia (S.S.)
| |
Collapse
|
43
|
Silva-Oliveira RJ, Lopes GF, Camargos LF, Ribeiro AM, Santos FVD, Severino RP, Severino VGP, Terezan AP, Thomé RG, Santos HBD, Reis RM, Ribeiro RIMDA. Tapirira guianensis Aubl. Extracts Inhibit Proliferation and Migration of Oral Cancer Cells Lines. Int J Mol Sci 2016; 17:E1839. [PMID: 27834805 PMCID: PMC5133839 DOI: 10.3390/ijms17111839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022] Open
Abstract
Cancer of the head and neck is a group of upper aerodigestive tract neoplasms in which aggressive treatments may cause harmful side effects to the patient. In the last decade, investigations on natural compounds have been particularly successful in the field of anticancer drug research. Our aim is to evaluate the antitumor effect of Tapirira guianensis Aubl. extracts on a panel of head and neck squamous cell carcinoma (HNSCC) cell lines. Analysis of secondary metabolites classes in fractions of T. guianensis was performed using Nuclear Magnetic Resonance (NMR). Mutagenicity effect was evaluated by Ames mutagenicity assay. The cytotoxic effect, and migration and invasion inhibition were measured. Additionally, the expression level of apoptosis-related molecules (PARP, Caspases 3, and Fas) and MMP-2 was detected using Western blot. Heterogeneous cytotoxicity response was observed for all fractions, which showed migration inhibition, reduced matrix degradation, and decreased cell invasion ability. Expression levels of MMP-2 decreased in all fractions, and particularly in the hexane fraction. Furthermore, overexpression of FAS and caspase-3, and increase of cleaved PARP indicates possible apoptosis extrinsic pathway activation. Antiproliferative activity of T. guianensis extract in HNSCC cells lines suggests the possibility of developing an anticancer agent or an additive with synergic activities associated with conventional anticancer therapy.
Collapse
Affiliation(s)
| | - Gabriela Francine Lopes
- Laboratory of Experimental Pathology, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Luiz Fernando Camargos
- Laboratory of Mutagenesis, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Ana Maciel Ribeiro
- Medical School, Federal University of Minas Gerais-UFMG, Belo Horizonte 31270-901, Brazil.
| | - Fábio Vieira Dos Santos
- Laboratory of Mutagenesis, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Richele Priscila Severino
- Special Academic Unit of Physics and Chemistry, Federal University of Goiás, Catalão 75704-020, Brazil.
| | | | - Ana Paula Terezan
- Special Academic Unit of Physics and Chemistry, Federal University of Goiás, Catalão 75704-020, Brazil.
| | - Ralph Gruppi Thomé
- Laboratory of Tissue Processing, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Hélio Batista Dos Santos
- Laboratory of Tissue Processing, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil.
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga 4710-057, Portugal.
- 3ICVS/3B's-PT Government Associate Laboratory, Braga 4710-057, Portugal.
| | | |
Collapse
|
44
|
Wang F, Zhao J, Liu D, Zhao T, Lu Z, Zhu L, Cao L, Yang J, Jin J, Cai Y. Capsaicin reactivates hMOF in gastric cancer cells and induces cell growth inhibition. Cancer Biol Ther 2016; 17:1117-1125. [PMID: 27715462 DOI: 10.1080/15384047.2016.1235654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Capsaicin (CAP) is the major pungent component of chili pepper and is being evaluated for use against numerous types of tumors. Although CAP is indicated to target multiple signaling pathways, exact mechanisms of how it disturb cancer cell metablism remain obscure. Recent studies revealed Sirtuin 1 (SIRT1) serves as a potential target of CAP in cancer cells, indicating a direct regulation of cancer cell histone acetylation by capsaicin. The present study evaluated the effect of CAP on gastric cancer (GC) cell lines to understand the mechanism of cell growth inhibition. The results showed that CAP could significantly suppress cell growth, while altering histone acetylation in GC cell lines. Further studies found that hMOF, a major histone acetyltranferase for H4K16, is central to CAP-induced epigenetic changes. Reduced hMOF activity was detected in GC tissues, which could be restored by CAP both in vivo and in vitro. These findings revealed an important role of hMOF-mediated histone acetylation in CAP-directed anti-cancer processes, and suggested CAP as a potential drug for use in gastric cancer prevention and therapy.
Collapse
Affiliation(s)
- Fei Wang
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China
| | - Jiayao Zhao
- b School of Pharmacy , Changchun University of Traditional Chinese Medicine , Changchun, Jilin , P.R. China
| | - Da Liu
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China.,b School of Pharmacy , Changchun University of Traditional Chinese Medicine , Changchun, Jilin , P.R. China
| | - Tong Zhao
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China
| | - Zeming Lu
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China
| | - Lin Zhu
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China
| | - Lingling Cao
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China.,c The Bethune Institute of Epigenetic Medicine, The First Bethune Hospital of Jilin University , Changchun, Jilin , P.R. China
| | - Jiaxing Yang
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China.,d Department of Gastrointestinal Surgery , The First Bethune Hospital of Jilin University , Changchun, Jilin , P.R. China
| | - Jingji Jin
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China.,e National Engineering Laboratory for AIDS Vaccine , P.R. China.,f Key Laboratory for Molecular Enzymology and Engineering , The Ministry of Education, Jilin University , Changchun, Jilin , P.R. China
| | - Yong Cai
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China.,e National Engineering Laboratory for AIDS Vaccine , P.R. China.,f Key Laboratory for Molecular Enzymology and Engineering , The Ministry of Education, Jilin University , Changchun, Jilin , P.R. China
| |
Collapse
|
45
|
Geng S, Zheng Y, Meng M, Guo Z, Cao N, Ma X, Du Z, Li J, Duan Y, Du G. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6203-6211. [PMID: 27436516 DOI: 10.1021/acs.jafc.6b02480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Both gingerol and capsaicin are agonists of TRPV1, which can negatively control tumor progression. This study observed the long-term effects of oral administration of 6-gingerol alone or in combination with capsaicin for 20 weeks in a urethane-induced lung carcinogenic model. We showed that lung carcinoma incidence and multiplicity were 70% and 21.2 ± 3.6, respectively, in the control versus 100% and 35.6 ± 5.2 in the capsaicin group (P < 0.01) and 50% and 10.8 ± 3.1 in the 6-gingerol group (P < 0.01). The combination of 6-gingerol and capsaicin reversed the cancer-promoting effect of capsaicin (carcinoma incidence of 100% versus 20% and multiplicity of 35.6 ± 5.2 versus 4.7 ± 2.3; P < 0.001). The cancer-promoting effect of capsaicin was due to increased epidermal growth-factor receptor (EGFR) level by decreased transient receptor potential vanilloid type-1 (TRPV1) level (P < 0.01) . The capsaicin-decreased EGFR level subsequently reduced levels of nuclear factor-κB (NF-κB) and cyclin D1 that favored enhanced lung epithelial proliferation and epithelial-mesenchymal transition (EMT) during lung carcinogenesis (P < 0.01). In contrast, 6-gingerol promoted TRPV1 level and drastically decreased the levels of EGFR, NF-κB, and cyclin D1 that favored reduced lung epithelial proliferation and EMT (P < 0.01). This study provides valuable information for the long-term consumption of chili-pepper-rich diets to decrease the risk of cancer development.
Collapse
Affiliation(s)
- Shengnan Geng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Yaqiu Zheng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Mingjing Meng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Ning Cao
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Xiaofang Ma
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Zhenhua Du
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Jiahuan Li
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Yongjian Duan
- Department of Oncology, The First Hospital Affiliated to Henan University , Kaifeng, Henan 475001, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| |
Collapse
|
46
|
Kumar M, Kaur V, Kumar S, Kaur S. Phytoconstituents as apoptosis inducing agents: strategy to combat cancer. Cytotechnology 2016; 68:531-63. [PMID: 26239338 PMCID: PMC4960184 DOI: 10.1007/s10616-015-9897-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022] Open
Abstract
Advancement in the field of cancer molecular biology has aided researchers to develop various new chemopreventive agents which can target cancer cells exclusively. Cancer chemopreventive agents have proficiency to inhibit, reverse and delay process of carcinogenesis during its early and later course. Chemopreventive agents can act as antioxidative, antimutagenic/antigenotoxic, anti-inflammatory agents or via aiming various molecular targets in a cell to induce cell death. Apoptosis is a kind of cell death which shows various cellular morphological alterations such as cell shrinkage, blebbing of membrane, chromatin condensation, DNA fragmentation, formation of apoptotic bodies etc. Nowadays, apoptosis is being one of the new approaches for the identification and development of novel anticancer therapies. For centuries, plants are known to play part in daily routine from providing food to management of human health. In the last two decades, diverse phytochemicals and various botanical formulations have been characterized as agents that possess potential to execute cancer cells via inducing apoptosis. Data obtained from the research carried out globally pointed out that natural products are the potential candidates which have capability to combat cancer. In the present review, we surveyed literature on natural products which throws light on the mechanism through which these phytochemicals induce apoptosis in cancer cells.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Varinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Subodh Kumar
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
47
|
Capsaicin: From Plants to a Cancer-Suppressing Agent. Molecules 2016; 21:molecules21080931. [PMID: 27472308 PMCID: PMC6274000 DOI: 10.3390/molecules21080931] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 01/07/2023] Open
Abstract
Capsaicinoids are plant secondary metabolites, capsaicin being the principal responsible for the pungency of chili peppers. It is biosynthesized through two pathways involved in phenylpropanoid and fatty acid metabolism. Plant capsaicin concentration is mainly affected by genetic, environmental and crop management factors. However, its synthesis can be enhanced by the use of elicitors. Capsaicin is employed as food additive and in pharmaceutical applications. Additionally, it has been found that capsaicin can act as a cancer preventive agent and shows wide applications against various types of cancer. This review is an approach in contextualizing the use of controlled stress on the plant to increase the content of capsaicin, highlighting its synthesis and its potential use as anticancer agent.
Collapse
|
48
|
Basith S, Cui M, Hong S, Choi S. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases. Molecules 2016; 21:molecules21080966. [PMID: 27455231 PMCID: PMC6272969 DOI: 10.3390/molecules21080966] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/27/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
Capsaicin is the most predominant and naturally occurring alkamide found in Capsicum fruits. Since its discovery in the 19th century, the therapeutic roles of capsaicin have been well characterized. The potential applications of capsaicin range from food flavorings to therapeutics. Indeed, capsaicin and few of its analogues have featured in clinical research covered by more than a thousand patents. Previous records suggest pleiotropic pharmacological activities of capsaicin such as an analgesic, anti-obesity, anti-pruritic, anti-inflammatory, anti-apoptotic, anti-cancer, anti-oxidant, and neuro-protective functions. Moreover, emerging data indicate its clinical significance in treating vascular-related diseases, metabolic syndrome, and gastro-protective effects. The dearth of potent drugs for management of such disorders necessitates the urge for further research into the pharmacological aspects of capsaicin. This review summarizes the historical background, source, structure and analogues of capsaicin, and capsaicin-triggered TRPV1 signaling and desensitization processes. In particular, we will focus on the therapeutic roles of capsaicin and its analogues in both normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Shaherin Basith
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Minghua Cui
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Sunhye Hong
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Sun Choi
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
49
|
Mitupatum T, Aree K, Kittisenachai S, Roytrakul S, Puthong S, Kangsadalampai S, Rojpibulstit P. mRNA Expression of Bax, Bcl-2, p53, Cathepsin B, Caspase-3 and Caspase-9 in the HepG2 Cell Line Following Induction by a Novel Monoclonal Ab Hep88 mAb: Cross-Talk for Paraptosis and Apoptosis. Asian Pac J Cancer Prev 2016; 17:703-12. [DOI: 10.7314/apjcp.2016.17.2.703] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
50
|
Ko EY, Moon A. Natural Products for Chemoprevention of Breast Cancer. J Cancer Prev 2015; 20:223-31. [PMID: 26734584 PMCID: PMC4699749 DOI: 10.15430/jcp.2015.20.4.223] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is the primary cause of cancer death in women. Although current therapies have shown some promise against breast cancer, there is still no effective cure for the majority of patients in the advanced stages of breast cancer. Development of effective agents to slow, reduce, or reverse the incidence of breast cancer in high-risk women is necessary. Chemoprevention of breast cancer by natural products is advantageous, as these compounds have few side effects and low toxicity compared to synthetic compounds. In the present review, we summarize natural products which exert chemopreventive activities against breast cancer, such as curcumin, sauchinone, lycopene, denbinobin, genipin, capsaicin, and ursolic acid. This review examines the current knowledge about natural compounds and their mechanisms that underlie breast cancer chemopreventive activity both in vitro and in vivo. The present review may provide information on the use of these compounds for the prevention of breast cancer.
Collapse
Affiliation(s)
- Eun-Yi Ko
- College of Pharmacy, Duksung Women’s University, Seoul,
Korea
| | - Aree Moon
- College of Pharmacy, Duksung Women’s University, Seoul,
Korea
| |
Collapse
|