1
|
Xu YY, Li QY, Yi DH, Chen Y, Zhai JW, Zhang T, Sun LY, Yang YF. Dynamic Treatment Strategy of Chinese Medicine for Metastatic Colorectal Cancer Based on Machine Learning Algorithm. Chin J Integr Med 2024; 30:993-1000. [PMID: 38532153 DOI: 10.1007/s11655-024-3718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 03/28/2024]
Abstract
OBJECTIVE To establish the dynamic treatment strategy of Chinese medicine (CM) for metastatic colorectal cancer (mCRC) by machine learning algorithm, in order to provide a reference for the selection of CM treatment strategies for mCRC. METHODS From the outpatient cases of mCRC in the Department of Oncology at Xiyuan Hospital, China Academy of Chinese Medical Sciences, 197 cases that met the inclusion criteria were screened. According to different CM intervention strategies, the patients were divided into 3 groups: CM treatment alone, equal emphasis on Chinese and Western medicine treatment (CM combined with local treatment of tumors, oral chemotherapy, or targeted drugs), and CM assisted Western medicine treatment (CM combined with intravenous regimen of Western medicine). The survival time of patients undergoing CM intervention was taken as the final evaluation index. Factors affecting the choice of CM intervention scheme were screened as decision variables. The dynamic CM intervention and treatment strategy for mCRC was explored based on the cost-sensitive classification learning algorithm for survival (CSCLSurv). Patients' survival was estimated using the Kaplan-Meier method, and the survival time of patients who received the model-recommended treatment plan were compared with those who received actual treatment plan. RESULTS Using the survival time of patients undergoing CM intervention as the evaluation index, a dynamic CM intervention therapy strategy for mCRC was established based on CSCLSurv. Different CM intervention strategies for mCRC can be selected according to dynamic decision variables, such as gender, age, Eastern Cooperative Oncology Group score, tumor site, metastatic site, genotyping, and the stage of Western medicine treatment at the patient's first visit. The median survival time of patients who received the model-recommended treatment plan was 35 months, while those who receive the actual treatment plan was 26.0 months (P=0.06). CONCLUSIONS The dynamic treatment strategy of CM, based on CSCLSurv for mCRC, plays a certain role in providing clinical hints in CM. It can be further improved in future prospective studies with larger sample sizes.
Collapse
Affiliation(s)
- Yu-Ying Xu
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Qiu-Yan Li
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Dan-Hui Yi
- School of Statistics, Renmin University of China, Beijing, 100872, China
| | - Yue Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia-Wei Zhai
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tong Zhang
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ling-Yun Sun
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yu-Fei Yang
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
2
|
Zeng H, Zeng X, Wang C, Wang G, Tian Q, Zhao J, Zhao L, Li R, Luo Y, Peng H, Zhang Z, Li X, Wu X. Combination therapy using Cel-CSO/Taxol NPs for reversing drug resistance in breast cancer through inhibiting PI3K/AKT/NF-κB/HIF-1α pathway. Drug Deliv Transl Res 2024:10.1007/s13346-024-01653-3. [PMID: 38922561 DOI: 10.1007/s13346-024-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
The resistance of malignant tumors to multiple drugs is a significant obstacle in cancer treatment and prognosis. Accordingly, we synthesized a celastrol (Cel) prodrug (Cel-CSO) by conjugating chitosan oligosaccharides (CSO) to Cel for reversing Taxol resistance in chemotherapy, followed by self-assembly with Taxol into a novel nanoplatform of Cel-CSO/Taxol nanoparticles (termed NPs). NPs showed a suitable size (about 153 nm), excellent stability and prolonged release of Cel and Taxol in a manner that depended on both pH and time. NPs effectively inhibited the overexpression of multidrug resistance-related protein P-gp, hypoxia inducible factor-1α (HIF-1α), and triggered the MCF-7/Taxol cell apoptosis through inhibiting the PI3K/AKT/NF-κB/HIF-1α pathway. In tumor-bearing mice, NPs exhibited significant curative effects in inducing apoptosis of MCF-7/Taxol tumors which showed a low expression level of P-gp, microtubule-related proteins TUBB3 and Tau. The results indicated that NPs may be a promising strategy to overcome drug resistance caused by P-gp, which improve the antitumor effects in drug-resistant breast cancer.
Collapse
Affiliation(s)
- Huahui Zeng
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China
| | - Xiaohu Zeng
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Can Wang
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China
| | - Guoqiang Wang
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qikang Tian
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Junwei Zhao
- Department of Clinical Laboratory, Core Unit of National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450046, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ruiqin Li
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying Luo
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China
| | - Haotian Peng
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Xiaofang Li
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Xiangxiang Wu
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Ye X, Yang C, Xu H, He Q, Sheng L, Lin J, Wang X. Exploring the therapeutic mechanisms of Coptidis Rhizoma in gastric precancerous lesions: a network pharmacology approach. Discov Oncol 2024; 15:211. [PMID: 38837097 PMCID: PMC11153449 DOI: 10.1007/s12672-024-01070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Gastric precancerous lesions are a critical stage in the development of gastric cancer or gastric adenocarcinoma, and their outcome plays an important role in the malignant progression of gastric cancer. Coptidis Rhizoma has a good effect on Gastric precancerous lesions. However, the specific mechanisms of its action remain incompletely elucidated. METHODS Network pharmacology and molecular docking techniques were used to explore the active ingredients and molecular mechanism of Coptidis Rhizoma in treating gastric precancerous lesions. The active compounds of Coptidis Rhizoma and their potential gastric precancerous lesions related targets were obtained from TCMSP, GeneCards, and OMIM databases. An interaction network based on protein-protein interactions (PPIs) was constructed to visualize the interactions between hub genes. Analysis of GO enrichment and KEGG pathway were conducted using the DAVID database. An investigation of interactions between active compounds and potential targets was carried out by molecular docking. Finally, animal experiments were conducted to verify the effect and mechanism of Coptidis Rhizoma in treating precancerous lesions of gastric cancer. RESULTS A total of 11 active compounds and 95 anti-gastric precancerous lesions targets of Coptidis Rhizoma were screened for analysis. GO enrichment analysis showed that the mechanism of Coptidis Rhizoma acting on gastric precancerous lesions involves gene expression regulation and apoptosis regulation. KEGG pathway enrichment analysis showed that Coptidis Rhizoma against gastric precancerous lesions involving the AKT /HIF-1α/VEGF signalling pathway. Molecular docking simulations indicated potential interactions between these compounds and core targets involved in anti-gastric precancerous lesions activity. In addition, it was confirmed in vivo that Berberine and Coptidis Rhizoma may reverse atrophy and potential intestinal metaplasia by inhibiting the expression of p-AKT, HIFA, and VEGF. CONCLUSION Bioactive compounds in Coptidis Rhizoma have the potential to prevent atrophy and intestinal metaplasia. These compounds function by regulating the proteins implicated in AKT /HIF-1α/VEGF signalling pathways that are crucial in gastric epithelial cell differentiation, proliferation and maturation.
Collapse
Affiliation(s)
- Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China
| | - Chao Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310000, China
| | - Hanzhi Xu
- Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qin He
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China
| | - Lin Sheng
- Department of Pulmonary and Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China.
| | - Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310000, China.
| |
Collapse
|
4
|
Hashemi M, Esbati N, Rashidi M, Gholami S, Raesi R, Bidoki SS, Goharrizi MASB, Motlagh YSM, Khorrami R, Tavakolpournegari A, Nabavi N, Zou R, Mohammadnahal L, Entezari M, Taheriazam A, Hushmandi K. Biological landscape and nanostructural view in development and reversal of oxaliplatin resistance in colorectal cancer. Transl Oncol 2024; 40:101846. [PMID: 38042134 PMCID: PMC10716031 DOI: 10.1016/j.tranon.2023.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
The treatment of cancer patients has been mainly followed using chemotherapy and it is a gold standard in improving prognosis and survival rate of patients. Oxaliplatin (OXA) is a third-platinum anti-cancer agent that reduces DNA synthesis in cancer cells to interfere with their growth and cell cycle progression. In spite of promising results of using OXA in cancer chemotherapy, the process of drug resistance has made some challenges. OXA is commonly applied in treatment of colorectal cancer (CRC) as a malignancy of gastrointestinal tract and when CRC cells increase their proliferation and metastasis, they can obtain resistance to OXA chemotherapy. A number of molecular factors such as CHK2, SIRT1, c-Myc, LATS2 and FOXC1 have been considered as regulators of OXA response in CRC cells. The non-coding RNAs are able to function as master regulator of other molecular pathways in modulating OXA resistance. There is a close association between molecular mechanisms such as apoptosis, autophagy, glycolysis and EMT with OXA resistance, so that apoptosis inhibition, pro-survival autophagy induction and stimulation of EMT and glycolysis can induce OXA resistance in CRC cells. A number of anti-tumor compounds including astragaloside IV, resveratrol and nobiletin are able to enhance OXA sensitivity in CRC cells. Nanoparticles for increasing potential of OXA in CRC suppression and reversing OXA resistance have been employed in cancer chemotherapy. These subjects are covered in this review article to shed light on molecular factors resulting in OXA resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Esbati
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Leila Mohammadnahal
- Department of Health Services Management, School of Health, Tehran University of Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Adhikari R, Shiwakoti S, Kim E, Choi IJ, Park SH, Ko JY, Chang K, Oak MH. Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway. Biomol Ther (Seoul) 2023; 31:515-525. [PMID: 37366053 PMCID: PMC10468423 DOI: 10.4062/biomolther.2022.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.
Collapse
Affiliation(s)
- Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Eunmin Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ik Jun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Hee Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| |
Collapse
|
6
|
Tao W, Su K, Huang Y, Lu Z, Wang Y, Yang L, Zhang G, Liu W. Zuojinwan ameliorates CUMS-induced depressive-like behavior through inducing ubiquitination of MyD88 via SPOP/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116487. [PMID: 37059253 DOI: 10.1016/j.jep.2023.116487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojinwan (ZJW) is a traditional Chinese medicine compound, which is often used clinically to treat gastritis and has anti-inflammatory activity. It was found that ZJW is involved in suppressing the expression of inflammatory factors, and neuroinflammation is thought to be associated with the development of depression. AIM OF THE STUDY In this study, we investigated whether ZJW could exert antidepressant effects by regulating MyD88 ubiquitination in depressed mice and attempted to elucidate the possible mechanisms. MATERIALS AND METHODS Six active compounds of Zuojinwan (ZJW) were identified by HPLC. Then, the effects of ZJW on depression-like behavior in mice were investigated by constructing a chronic unpredictable mild stimulation (CUMS) mouse model. Meanwhile, the effect of ZJW on hippocampal neurons was investigated by Nissl staining. In addition, western blotting, PCR, ELISA, co-immunoprecipitation and immunostaining were used to explore whether ZJW could inhibit neuroinflammation through SPOP/MyD88/NF-κB pathway and thus produce antidepressant effects. Finally, we constructed the AAV-Sh-SPOP virus vector to silence SPOP and verify the mechanism of ZJW's antidepressant action. RESULTS ZJW could dramatically ameliorate the depressive behavior induced by CUMS stimulation and alleviate hippocampal neuronal damage. CUMS stimulation resulted in decreased SPOP expression, impaired MyD88 ubiquitination, and activation of downstream NF-κB signaling, which could be reversed by ZJW. In addition, ZJW could significantly ameliorate the abnormal activation of microglia, and the excessive levels of pro-inflammatory factors were inhibited. By blocking the expression of SPOP, we found that ZJW exerted anti-inflammatory and antidepressant effects mainly by promoting the ubiquitination of MyD88 and inhibiting the activation of downstream inflammatory signals. CONCLUSION In conclusion, ZJW possesses alleviating effects on depression induced by CUMS stimulation. ZJW can inhibit neuroinflammation and improve neuroinflammation-induced depression-like behaviors through SPOP/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Weiwei Tao
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kunhan Su
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Yuzhen Huang
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Zihan Lu
- China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Wang
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China; Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lu Yang
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China; Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guoying Zhang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wanli Liu
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China.
| |
Collapse
|
7
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Exosomes derived from MDR cells induce cetuximab resistance in CRC via PI3K/AKT signaling‑mediated Sox2 and PD‑L1 expression. Exp Ther Med 2023; 25:86. [PMID: 36741914 PMCID: PMC9852420 DOI: 10.3892/etm.2023.11785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023] Open
Abstract
The anti-EGFR antibody cetuximab is used as a first-line targeted therapeutic drug in colorectal cancer. It has previously been reported that the efficacy of the EGFR antibody cetuximab is limited by the emergence of acquired drug resistance. In our previous study the transmissibility effect of exosomes from drug resistant tumor cells to sensitive tumor cells was identified. It can therefore be hypothesized that drug resistant cells might affect neighboring and distant cells via regulation of exosome composition and behavior. However, the mechanism of exosomes in KRAS-wild-type colorectal cancer (CRC) remains unknown. In the present study, functional analysis of overall survival post-diagnosis in patients with KRAS wild-type and those with mutant CRC was performed using human CRC specimens. Furthermore, it was demonstrated that multidrug resistance (MDR) cancer cell-derived exosomes were potentially a key factor, which promoted cetuximab-resistance in CRC cells and reduced the inhibitory effect of cetuximab in CRC xenograft models. The Cell Counting Kit-8 and colony formation assays were performed to assess the effects of exosomes derived from CRC/MDR cells on cetuximab resistance. Sphere formation assay results demonstrated that exosomes derived from CRC/MDR cells altered the self-renewal and multipotential ability of stem-cell-associated markers and facilitated resistance to cetuximab in cetuximab-sensitive cells. Furthermore, exosomes derived from CRC/MDR cells decreased sensitivity to cetuximab via the activation of PI3K/AKT signaling, which promoted Sox2 and programmed death-ligand 1 (PD-L1) mRNA and protein expression according to reverse transcription-quantitative PCR, western blotting and immunohistochemistry analyses, as well as apoptosis resistance both in vitro and in vivo according to a TUNEL assay. In conclusion, the results of the present study demonstrated that exosomes derived from CRC/MDR cells may promote cetuximab resistance in KRAS wild-type cells via activation of the PI3K/AKT signaling pathway-mediated expression of Sox2 and PD-L1, which will be useful for investigating a potential clinical target in predicting cetuximab resistance.
Collapse
|
9
|
Lin X, Xu L, Tan H, Zhang X, Shao H, Yao L, Huang X. The potential effects and mechanisms of Gegen Qinlian Decoction in oxaliplatin-resistant colorectal cancer based on network pharmacology. Heliyon 2022; 8:e11305. [DOI: 10.1016/j.heliyon.2022.e11305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
|
10
|
Zheng S, Pan L, Hou J, Liao A, Hou Y, Yu G, Li X, Yuan Y, Dong Y, Zhao P, Zhang J, Hu Z, Hui M, Cao J, Huang JH. The role of wheat embryo globulin nutrients in improving cognitive dysfunction in AD rats. Food Funct 2022; 13:9856-9867. [PMID: 36047913 DOI: 10.1039/d2fo00815g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuroinflammation and intestinal microbiota cause pathological progression of Alzheimer's disease (AD), leading to neurodegeneration and cognitive decline. This study investigates the effects of wheat embryo globulin nutrient (WEGN) on depression, neuroinflammation, and intestinal microbial disorder caused by AD and its protective mechanism on cognitive impairment. Results demonstrated that rats in the WEGN group have lower feed intake but higher body weight than those in the control group. Notably, rats in the WEGN group have a higher number of cross grids and uprights and a smaller amount of fecal particles than those in the control group. Biochemical examinations revealed that rats in the WEGN group had lower expression of interleukin-1β, interleukin-6, and tumor necrosis factor α in hippocampus tissue and the expression of genes and proteins related to the TLR4/MyD88/NF-κB signaling pathway in AD rats was down-regulated compared to those in the control group. The 16S rRNA gene sequencing results demonstrated that WEGN treatment inhibits the increase of Erysipelotrichaceae, Erysipelatoclostridium, Erysipelotrichaceae, Corynebacterium, and Frisingicoccus, and the reduction of Lactobacillus in AD rats. WEGN has potential value as a practical food in alleviating neuroinflammation-related diseases such as AD.
Collapse
Affiliation(s)
- Shuainan Zheng
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jianguang Hou
- Workstation of Zhongyuan Scholars of Henan Province, Henan Yangshao Liquor Co., Ltd., Mianchi Xian, 472400, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Xiaoxiao Li
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yongjian Yuan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yuqi Dong
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Penghui Zhao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jie Zhang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Zheyuan Hu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Ming Hui
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jian Cao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Ji-Hong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China. .,School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.,State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
11
|
Effects of Integrated Chinese Traditional Medicine and Conventional Western Medicine on the Quality of Life of Breast Cancer Patients: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3123878. [PMID: 35035500 PMCID: PMC8759913 DOI: 10.1155/2022/3123878] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Traditional Chinese medicine has been widely used, in conjunction with conventional Western medicine, in clinical practice around the world to treat breast cancer. The study systematically reviewed and summarized the quality of life of breast cancer patients treated with integrated treatment method vs. conventional Western medicine. METHODS Eight databases including PubMed, EMBASE, Web of Science, the Cochrane Library, Chinese National Knowledge Infrastructure, China Biology Medicine Disc, Chinese Scientific Journal Database, and Wanfang Data knowledge service platform were searched in this study. The retrieval period was set from January 1, 2005, to December 31, 2020. RESULTS Twenty-two high-quality publications were included in this study. The total sample size was 1689 patients including 844 in the intervention group receiving traditional Chinese medicine combined with conventional Western medicine and 845 patients in the control group receiving conventional Western medicine only. Compared with the single-used conventional Western medicine treatment, an integrated approach to treat breast cancer can increase quality of life measured by rating scales (SMD = 1.29, 95% CI (1.07, 1.52) and P=0.01) and ranking scales (RR = 1.53, 95% CI (1.39 1.68) and P=0.02) and also decrease adverse reactions measured by rating scales (Z = 10.89, P < 0.05; Group 1: I 2 = 9.0%, P=0.258, SMD = 1.03; and Group 2: I 2 = 31.6%, P=0.199, SMD = 1.56). For further analysis, chemotherapy with epirubicin exhibited higher quality of life than the chemotherapy without epirubicin among breast cancer patients [Z = 19.80, P < 0.05; Group 1: I 2 = 62.4%, P=0.070, SMD = 1.61; and Group 2: I 2 = 9.0%, P=0.359, SMD = 1.04]. Despite the heterogeneity, which was due to a portion of relative low-quality literature or other factors, the results were satisfactory. In terms of secondary results, the patients with lower tumor markers (CEA and CA153) had better efficiency in quality of life with a statistically significant difference (SMD = 1.39, 95% CI: 1.10,1.67) for rating scales. In addition, secondary results related to high incidence of gastrointestinal adverse reactions (RR = 1.33, 95% CI (1.20, 1.48)) and the traditional Chinese medicine syndrome (RR = 1.50, 95% CI (1.28, 1.80))showed lower quality of life in the intervention group than the control group for ranking scales. CONCLUSION Traditional Chinese medicine, when used in conjunction with the conventional Western medicine, could be an effective way in improving the quality of life and alleviating incidence of associated adverse symptoms such as gastrointestinal adverse reactions, value of tumor markers, and the incidence of traditional Chinese medicine syndrome. Further investigation of larger and methodologically sound trials with longer follow-up periods and appropriate comparison groups is needed.
Collapse
|
12
|
Zhang R, Huang L, Pan D, Zhang W. Sunitinib induced resistance of endothelial cells by up-regulating P-glycoprotein and PI3K/Akt pathway. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Limin Huang
- People’s Hospital of Guizhou Province, China
| | - Di Pan
- Guizhou Medical University, China
| | | |
Collapse
|
13
|
Sankarasubramanian S, Pfohl U, Regenbrecht CRA, Reinhard C, Wedeken L. Context Matters-Why We Need to Change From a One Size Fits all Approach to Made-to-Measure Therapies for Individual Patients With Pancreatic Cancer. Front Cell Dev Biol 2021; 9:760705. [PMID: 34805167 PMCID: PMC8599957 DOI: 10.3389/fcell.2021.760705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the deadliest cancers and remains a major unsolved health problem. While pancreatic ductal adenocarcinoma (PDAC) is associated with driver mutations in only four major genes (KRAS, TP53, SMAD4, and CDKN2A), every tumor differs in its molecular landscape, histology, and prognosis. It is crucial to understand and consider these differences to be able to tailor treatment regimens specific to the vulnerabilities of the individual tumor to enhance patient outcome. This review focuses on the heterogeneity of pancreatic tumor cells and how in addition to genetic alterations, the subsequent dysregulation of multiple signaling cascades at various levels, epigenetic and metabolic factors contribute to the oncogenesis of PDAC and compensate for each other in driving cancer progression if one is tackled by a therapeutic approach. This implicates that besides the need for new combinatorial therapies for PDAC, a personalized approach for treating this highly complex cancer is required. A strategy that combines both a target-based and phenotypic approach to identify an effective treatment, like Reverse Clinical Engineering® using patient-derived organoids, is discussed as a promising way forward in the field of personalized medicine to tackle this deadly disease.
Collapse
Affiliation(s)
| | - Ulrike Pfohl
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt Am Main, Frankfurt, Germany
| | - Christian R. A. Regenbrecht
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Pathology, Universitätsklinikum Göttingen, Göttingen, Germany
| | | | - Lena Wedeken
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
| |
Collapse
|
14
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Wang T, Qi D, Hu X, Li N, Zhang X, Liu H, Zhong C, Zhang J. A novel evodiamine amino derivative as a PI3K/AKT signaling pathway modulator that induces apoptosis in small cell lung cancer cells. Eur J Pharmacol 2021; 906:174215. [PMID: 34081902 DOI: 10.1016/j.ejphar.2021.174215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Evodiamine (EVO) was derivatized to a C10-amino derivative (EVA) using a two-step method suitable for industrializing production. This method has advantages such as a short reaction time, high yield, few byproducts and simple purification. The AUC and Cmax values of EVA were 7.02- and 4.62-fold, while the Tmax and Cl values were one-half and one-eighth that of EVO, respectively. EVA markedly improved the bioavailability, which might be ascribed to the serum albumin deposit effect. EVA was bound to albumin in the same hydrophobic pocket as EVO, but one more hydrogen bond was formed between Asp323 and the amino group at the C10 position. The amino derivative of natural alkaloids showed a substantial increase in antitumor activity on small cell lung cancer (SCLC) cells. The role of the PI3K/AKT signaling pathway in alkaloid/derivative-induced apoptosis in tumor cells was thoroughly described. p-AKT, its downstream effectors Bcl-2, Bax, caspase-3 and its upstream regulator PTEN were regulated by EVA. The interaction between EVO/EVA and the upstream protein PI3K p110 was first investigated with molecular docking. The apoptosis induced by EVA was abrogated after the PI3K/AKT signaling pathway was reactivated by IGF-1. The interaction between EVO/EVA and P-gp was also first studied using docking method. Their binding forces were weak. But EVA might reduce much expression of P-gp than EVO, and ultimately led to reduction of EVA efflux. Our study provides novel insights into a feasible and productive amino derivative of natural alkaloids for SCLC therapy.
Collapse
Affiliation(s)
- Tingting Wang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China; Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 401331, China.
| | - Di Qi
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, PLA, Chongqing 400042, China.
| | - Xueyuan Hu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Na Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Xue Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Hongming Liu
- Department of Pharmacy, Nanchuan People's Hospital, Chongqing Medical University, Chongqing 408400, China.
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
16
|
Fan Y, Ma Z, Zhao L, Wang W, Gao M, Jia X, Ouyang H, He J. Anti-tumor activities and mechanisms of Traditional Chinese medicines formulas: A review. Biomed Pharmacother 2020; 132:110820. [DOI: 10.1016/j.biopha.2020.110820] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
|
17
|
PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 2020; 11:797. [PMID: 32973135 PMCID: PMC7515865 DOI: 10.1038/s41419-020-02998-6] [Citation(s) in RCA: 411] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is the dominant challenge in the failure of chemotherapy in cancers. Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that spreads intracellular signal cascades and regulates a variety of cellular processes. PI3Ks are considered significant causes of chemoresistance in cancer therapy. Protein kinase B (AKT) is also a significant downstream effecter of PI3K signaling, and it modulates several pathways, including inhibition of apoptosis, stimulation of cell growth, and modulation of cellular metabolism. This review highlights the aberrant activation of PI3K/AKT as a key link that modulates MDR. We summarize the regulation of numerous major targets correlated with the PI3K/AKT pathway, which is further related to MDR, including the expression of apoptosis-related protein, ABC transport and glycogen synthase kinase-3 beta (GSK-3β), synergism with nuclear factor kappa beta (NF-κB) and mammalian target of rapamycin (mTOR), and the regulation of glycolysis.
Collapse
|
18
|
Zhang Z, Li B, Huang J, Huang S, He D, Peng W, Zhang S. A Network Pharmacology Analysis of the Active Components of the Traditional Chinese Medicine Zuojinwan in Patients with Gastric Cancer. Med Sci Monit 2020; 26:e923327. [PMID: 32866138 PMCID: PMC7482508 DOI: 10.12659/msm.923327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Zuojinwan (ZJW) is a traditional Chinese prescription normally used for gastritis. Several studies indicated that it could fight against gastric cancer. This study was designed to determine the potential pharmacological mechanism of ZJW in the treatment of gastric cancer. MATERIAL AND METHODS Bioactive compounds and potential targets of ZJW and related genes of gastric cancer were retrieved from public databases. Pharmacological mechanisms including crucial ingredients, potential targets, and signaling pathways were determined using protein-protein interaction (PPI) and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Virtual docking was performed to validate the findings. RESULTS Network analysis identified 47 active ZJW compounds, and 48 potential ZJW target genes linked to gastric cancer. Quercetin, beta-sitosterol, isorhamnetin, wogonin, and baicalein were identified as potential candidate agents. Our PPI analysis results combined with previously published results indicated that matrix metalloproteinases family members MMP9, MMP1, and MMP3 may play key roles in the anti-gastric cancer effect of ZJW. Molecular docking analysis showed that these crucial targets had good affinity for the representative components in ZJW. GO and KEGG enrichment analysis showed that ZJW target genes functioned in multiple pathways for treating gastric cancer, including interleukin-17 signaling and platinum drug resistance. CONCLUSIONS Our results illuminate the active ingredients, associated targets, biological processes, and signaling pathways of ZJW in the treatment of gastric cancer. This study enhances our understanding of the potential effects of ZJW in gastric cancer and demonstrates a feasible method for discovering potential drugs from Chinese medicinal formulas.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Bin Li
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China (mainland)
| | - Siqi Huang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Dan He
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China (mainland)
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Sifang Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
19
|
Sui H, Zhang L, Gu K, Chai N, Ji Q, Zhou L, Wang Y, Ren J, Yang L, Zhang B, Hu J, Li Q. YYFZBJS ameliorates colorectal cancer progression in Apc Min/+ mice by remodeling gut microbiota and inhibiting regulatory T-cell generation. Cell Commun Signal 2020; 18:113. [PMID: 32677955 PMCID: PMC7367414 DOI: 10.1186/s12964-020-00596-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Progression of Colorectal cancer (CRC) is influenced by single or compounded environmental factors. Accumulating evidence shows that microbiota can influence the outcome of cancer immunotherapy. T cell, one of the main populations of effector immune cells in antitumor immunity, has been considered as a double-edged sword during the progression of CRC. Our previous studies indicate that traditional Chinese herbs (TCM) have potential anticancer effects in improving quality of life and therapeutic effect. However, little is known about the mechanism of TCM formula in cancer prevention. METHODS Here, we used C57BL/6 J ApcMin/+ mice, an animal model of human intestinal tumorigenesis, to investigate the gut bacterial diversity and their mechanisms of action in gastrointestinal adenomas, and to evaluate the effects of Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) on of colon carcinogenesis in vivo and in vitro. Through human-into-mice fecal microbiota transplantation (FMT) experiments from YYFZBJS volunteers or control donors, we were able to differentially modulate the tumor microbiome and affect tumor growth as well as tumor immune infiltration. RESULTS We report herein, YYFZBJS treatment blocked tumor initiation and progression in ApcMin/+ mice with less change of body weight and increased immune function. Moreover, diversity analysis of fecal samples demonstrated that YYFZBJS regulated animal's natural gut flora, including Bacteroides fragilis, Lachnospiraceae and so on. Intestinal tumors from conventional and germ-free mice fed with stool from YYFZBJS volunteers had been decreased. Some inflammation' expression also have been regulated by the gut microbiota mediated immune cells. Intestinal lymphatic, and mesenteric lymph nodes (MLN), accumulated CD4+ CD25+ Foxp3 positive Treg cells were reduced by YYFZBJS treatment in ApcMin/+ mice. Although YYFZBJS had no inhibition on CRC cell proliferation by itself, the altered Tregs mediated by YYFZBJS repressed CRC cancer cell growth, along with reduction of the phosphorylation of β-catenin. CONCLUSIONS In conclusion, we demonstrated that gut microbiota and Treg were involved in CRC development and progression, and we propose YYFZBJS as a new potential drug option for the treatment of CRC. Video abstract.
Collapse
Affiliation(s)
- Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Lu Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Kaijuan Gu
- Preclinical Medicine College of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd, Shanghai, 201203, P.R. China
| | - Ni Chai
- Yueyang Hospital of Integrated of Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Junze Ren
- Changhai Hospital of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, P.R. China
| | - Limei Yang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Rd, Hongkou District, Shanghai, 200080, P.R. China.
| | - Jing Hu
- Preclinical Medicine College of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd, Shanghai, 201203, P.R. China.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.
| |
Collapse
|
20
|
Huang S, Zhang Z, Li W, Kong F, Yi P, Huang J, Mao D, Peng W, Zhang S. Network Pharmacology-Based Prediction and Verification of the Active Ingredients and Potential Targets of Zuojinwan for Treating Colorectal Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2725-2740. [PMID: 32764874 PMCID: PMC7369379 DOI: 10.2147/dddt.s250991] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
Background Zuojinwan (ZJW), a famous Chinese medicine formula, has been widely used to treat colorectal cancer (CRC). However, its bioactive compounds, potential targets, and molecular mechanism remain largely elusive. Aim A network pharmacology-based strategy combined with molecular docking studies and in vitro validation were employed to investigate bioactive compounds, potential targets, and molecular mechanism of ZJW against CRC. Materials and Methods Bioactive compounds and potential targets of ZJW, as well as related genes of CRC, were acquired from public databases. Important ingredients, potential targets, and signaling pathways were determined through bioinformatics analysis, including protein-protein interaction (PPI), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking and cell experiments were performed to further verify the findings. Results A total of 36 bioactive ingredients of ZJW and 163 gene targets of ZJW were identified. The network analysis revealed that quercetin, baicalein, wogonin, beta-sitosterol, and isorhamnetin may be candidate agents. The AKT1, JUN, CDKN1A, BCL2L1, and NCOA1 could become potential drug targets. The KEGG indicated that PI3K-AKT signaling pathway may play an important role in the effect of ZJW against CRC. Molecular docking suggested that quercetin, baicalein, and wogonin combined well with AKT1 and JUN. The in vitro experiment showed that quercetin, the most important ingredient of ZJW, could induce apoptosis of HCT116 cells through PI3K-Akt signaling pathway. This finding was congruent with the prediction obtained through the network pharmacology approach. Conclusion This study comprehensively illuminated the active ingredients, potential targets, and molecular mechanism of ZJW against CRC. It also provided a promising approach to uncover the scientific basis and therapeutic mechanism of traditional Chinese medicine (TCM) formula treating for disease.
Collapse
Affiliation(s)
- Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Fanhua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Pengji Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Dan Mao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
21
|
Huang YW, Lin CY, Tsai HC, Fong YC, Han CK, Huang YL, Wu WT, Cheng SP, Chang HC, Liao KW, Wang SW, Tang CH. Amphiregulin promotes cisplatin chemoresistance by upregulating ABCB1 expression in human chondrosarcoma. Aging (Albany NY) 2020; 12:9475-9488. [PMID: 32428872 PMCID: PMC7288968 DOI: 10.18632/aging.103220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Chondrosarcomas are well known for their resistance to chemotherapeutic agents, including cisplatin, which is commonly used in chondrosarcomas. Amphiregulin (AR), a ligand of epidermal growth factor receptor (EGFR), plays an important role in drug resistance. We therefore sought to determine the role of AR in cisplatin chemoresistance. We found that AR inhibits cisplatin-induced cell apoptosis and promotes ATP-binding cassette subfamily B member 1 (ABCB1) expression, while knockdown of ABCB1 by small interfering RNA (siRNA) reverses these effects. High phosphoinositide 3-kinase (PI3K), Akt and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation levels were observed in cisplatin-resistant cells. Pretreating chondrosarcoma cells with PI3K, Akt and NF-κB inhibitors or transfecting the cells with p85, Akt and p65 siRNAs potentiated cisplatin-induced cytotoxicity. In a mouse xenograft model, knockdown of AR expression in chondrosarcoma cells increased the cytotoxic effects of cisplatin and also decreased tumor volume and weight. These results indicate that AR upregulates ABCB1 expression through the PI3K/Akt/NF-κB signaling pathway and thus contributes to cisplatin resistance in chondrosarcoma.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsiao-Chi Tsai
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Wen-Tung Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Shih-Ping Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hao-Chiun Chang
- Department of Orthopaedics, MacKey Memorial Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuang-Wen Liao
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu City, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Li M, Meng F, Lu Q. Expression Profile Screening and Bioinformatics Analysis of circRNA, LncRNA, and mRNA in Acute Myeloid Leukemia Drug-Resistant Cells. Turk J Haematol 2019; 37:104-110. [PMID: 31818729 PMCID: PMC7236419 DOI: 10.4274/tjh.galenos.2019.2019.0312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy, and drug resistance and relapse are key factors in the failure of leukemia treatment. Studies have increasingly shown that circRNA and LncRNA play important roles in the development of tumors, but their roles remain unclear in the mechanism of AML resistance. Materials and Methods: Resistant AML cell line HL-60/ADM (adriamycin, ADM) was constructed and circRNA, LncRNA, and mRNA expression profiles were screened followed by high-throughput sequencing. Bioinformatics analysis was then carried out, and the circRNA-miRNA ceRNA network was constructed and confirmed using qRT-PCR analysis. Results: A total of 1824 circRNAs, 2414 LncRNAs, and 5346 mRNAs were screened for differentially expressed genes. Enrichment analysis was performed utilizing Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes, which mainly involved protein domain specific binding, transforming growth factor-β (TGF-β) receptor, and cellular metabolism. The mTOR signaling pathway, MAPK signaling pathway, RAP1 signaling pathway, and Akt signaling pathway were closely related to drug resistance. Conclusion: Our study provides a systematic outlook on the potential function of ncRNA in the molecular mechanisms of resistant AML cells. Hsa-circ-0000978 and hsa-circ-0000483 might serve as potential prognostic biomarkers and therapeutic targets of AML resistance.
Collapse
Affiliation(s)
- Meiling Li
- Zhongshan Hospital Affiliated to Xiamen University, Department of Hematology, Xiamen, China,The Third Affiliated Hospital of Guizhou Medical University, Department of Hematology and Rheumatology, Duyun, China
| | - Fuxue Meng
- The Third Affiliated Hospital of Guizhou Medical University, Department of Hematology and Rheumatology, Duyun, China
| | - Quanyi Lu
- Zhongshan Hospital Affiliated to Xiamen University, Department of Hematology, Xiamen, China
| |
Collapse
|
23
|
Huang S, Peng W, Mao D, Zhang S, Xu P, Yi P, Zhang S. Kangai Injection, a Traditional Chinese Medicine, Improves Efficacy and Reduces Toxicity of Chemotherapy in Advanced Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:8423037. [PMID: 31379968 PMCID: PMC6662435 DOI: 10.1155/2019/8423037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/01/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To systematically review whether the Kangai injection (KAI), which is commonly used traditional Chinese medicine, can improve the clinical efficacy of chemotherapy and relieve adverse reactions of chemotherapy in advanced colorectal cancer (CRC) patients. METHODS A comprehensive literature search was performed in three English and three Chinese electronic databases until March 2019. The literature was screened by EndNote X8 and data were analysed by RevMan5 and Stata12.0. RESULTS This meta-analysis consisted of twenty-eight studies, of which 2310 cases were reported. Among the 2310 cases, 1207 cases were treated with KAI combined with chemotherapy and 1103 cases were treated with chemotherapy alone. The results showed that KAI combined with chemotherapy significantly improved tumor response (Risk Ratio (RR) =1.32; 95% confidence interval (CI): 1.22-1.43; p<0.00001); Karnofsky performance status (KPS score) (Risk Ratio (RR) =1.48; 95% CI: 1.36-1.60; p<0.00001); reduced adverse drug reactions (ADRs) such as nausea and vomiting (OR =0.31; 95% CI: 0.24-0.41; p <0.00001), diarrhea (OR =0.36; 95% CI: 0.25-0.52; p<0.00001), leukopenia (OR =2.97; 95% CI:2.27-3.88; p<0.00001), thrombocytopenia (OR =0.53; 95% CI: 0.38-0.74; p<0.0002), liver dysfunction (OR =0.29; 95% CI: 0.20-0.44; p<0.00001), neurotoxicity (OR =0.51; 95% CI: 0.36-0.71; p = 0.0004); increased immune function (CD3+: MD=6.34; 95% CI: 5.52-7.16; p < 0.00001, CD4+: MD=-5.99; 95% CI: 5.20-6.78; p < 0.00001; and CD4+/CD8+: MD=0.34; 95% CI: 0.14-0.54; p < 0.0009), and prolonged survival time (OR =1.77; 95% CI: 1.25-2.50; p = 0.001). Renal dysfunction caused by chemotherapy was not affected by KAI treatment (Odds Ratio (OR) =0.53; 95%IC: 0.25-1.12; p = 0.10). CONCLUSION KAI can increase clinical effectiveness, improve quality of life, alleviate ADRs, and prolong survival time in advanced colorectal (CRC) patients receiving chemotherapy.
Collapse
Affiliation(s)
- Siqi Huang
- Department of Integrated Traditional Chinese and Western Internal Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Internal Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Dan Mao
- Department of Integrated Traditional Chinese and Western Internal Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Shaofan Zhang
- Department of Oncology, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, Hunan 414000, China
| | - PanPan Xu
- Department of Integrated Traditional Chinese and Western Internal Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - PengJi Yi
- Department of Integrated Traditional Chinese and Western Internal Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese and Western Internal Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| |
Collapse
|
24
|
Guo Q, Liu Y, Zhao J, Wang J, Li Y, Pang Y, Chen J, Wang J. Evodiamine inactivates NF-κB and potentiates the antitumor effects of gemcitabine on tongue cancer both in vitro and in vivo. Onco Targets Ther 2018; 12:257-267. [PMID: 30643424 PMCID: PMC6312051 DOI: 10.2147/ott.s181062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective The aim of this study was to investigate whether evodiamine (EVO) could potentiate the antitumor activity of gemcitabine (GEM) in tongue cancer cells and determine its potential underlying mechanisms. Materials and methods Human Tca8113 and CAL-27 tongue squamous carcinoma cell lines were treated with EVO and GEM in different sequences and doses, after which cell proliferation was measured. Drug interactions were analyzed using the Chou–Talalay method with CompuSyn software. Clonality, apoptosis, and migration were measured using the plate clone formation assay, annexin V/propidium iodide (PI) staining, Hoechst 33342 staining, and the wound-healing test. The activity of the nuclear factor kappa light-chain enhancer of activated B cell (NF-κB) p65 subunit and its downstream proteins was quantified by Western blotting. The effects of the drug combination in vivo were assessed using a CAL-27 heterotopic xenograft model. Results EVO and GEM had synergistic effects on CAL-27 and Tca8113 cell lines in time- and concentration-dependent manners. Combination of drugs inhibited cell proliferation and migration and reduced the expression of NF-κB p65, B cell lymphoma 2 (Bcl-2), and B cell lymphoma extra large (Bcl-xl) compared with the control and either drug alone. In vivo, combination treatment of the xenograft model with EVO and GEM led to a significant reduction in tumor volume growth and inhibited the activation of NF-κB p65 with no obvious adverse reactions. Conclusion The results of this study showed that EVO may inhibit cancer cells by suppressing NF-κB activity, and in combination with GEM, it may increase the chemosensitivity of tongue squamous cancer cells, thereby improving the treatment response.
Collapse
Affiliation(s)
- Qi Guo
- Department of Periodontology, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China,
| | - Yanmei Liu
- Department of Periodontology, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China,
| | - Jiayuan Zhao
- Department of Periodontology, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China,
| | - Jing Wang
- Department of Periodontology, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China,
| | - Yue Li
- Department of Periodontology, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China,
| | - Yunqing Pang
- Department of Periodontology, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China,
| | - Jian Chen
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China,
| | - Jing Wang
- Department of Periodontology, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China,
| |
Collapse
|
25
|
Zuo Jin Wan Reverses DDP Resistance in Gastric Cancer through ROCK/PTEN/PI3K Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4278568. [PMID: 30622602 PMCID: PMC6304623 DOI: 10.1155/2018/4278568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death. Chemotherapy resistance remains the major reason for GC treatment failure and poor overall survival of patients. Our previous studies have proved that Zuo Jin Wan (ZJW), a traditional Chinese medicine (TCM) formula, could significantly enhance the sensitivity of cisplatin (DDP)-resistant gastric cancer cells to DDP by inducing apoptosis via mitochondrial translocation of cofilin-1. However, the underlying mechanism remains poorly understood. This study aimed to evaluate the effects of ROCK/PTEN/PI3K on ZJW-induced apoptosis in vitro and in vivo. We found that ZJW could significantly activate the ROCK/PTEN pathway, inhibit PI3K/Akt, and promote the apoptosis of SGC-7901/DDP cells. Inhibition of ROCK obviously attenuated ZJW-induced apoptosis as well as cofilin-1 mitochondrial translocation, while inhibition of PI3K had the opposite effects. In vivo, combination treatment of DDP and ZJW (2000 mg/kg) significantly reduced tumor growth compared with DDP alone. Moreover, the combined administration of ZJW and DDP increased the expression of cleaved ROCK and p-PTEN while it decreased p-PI3K and p-cofilin-1, which was consistent with our in vitro results. These findings indicated that ZJW could effectively inhibit DDP resistance in GC by regulating ROCK/PTEN/PI3K signaling and provide a promising treatment strategy for gastric cancer.
Collapse
|
26
|
Yu G, Wang W, Wang X, Xu M, Zhang L, Ding L, Guo R, Shi Y. Network pharmacology-based strategy to investigate pharmacological mechanisms of Zuojinwan for treatment of gastritis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:292. [PMID: 30382864 PMCID: PMC6211468 DOI: 10.1186/s12906-018-2356-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Zuojinwan (ZJW), a classic herbal formula, has been extensively used to treat gastric symptoms in clinical practice in China for centuries. However, the pharmacological mechanisms of ZJW still remain vague to date. METHODS In the present work, a network pharmacology-based strategy was proposed to elucidate its underlying multi-component, multi-target, and multi-pathway mode of action against gastritis. First we collected putative targets of ZJW based on TCMSP and STITCH databases, and a network containing the interactions between the putative targets of ZJW and known therapeutic targets of gastritis was built. Then four topological parameters, "degree", "betweenness", "closeness", and "coreness" were calculated to identify the major targets in the network. Furthermore, the major hubs were imported to the Metacore database to perform a pathway enrichment analysis. RESULTS A total of 118 nodes including 59 putative targets of ZJW were picked out as major hubs in terms of their topological importance. The results of pathway enrichment analysis indicated that putative targets of ZJW mostly participated in various pathways associated with anti-inflammation response, growth and development promotion and G-protein-coupled receptor signaling. More importantly, five putative targets of ZJW (EGFR, IL-6, IL-1β, TNF-α and MCP-1) and two known therapeutic targets of gastritis (CCKBR and IL-12β) and a link target NF-κB were recognized as active factors involved in the main biological functions of treatment, implying the underlying mechanisms of ZJW acting on gastritis. CONCLUSION ZJW could alleviate gastritis through the molecular mechanisms predicted by network pharmacology, and this research demonstrates that the network pharmacology approach can be an effective tool to reveal the mechanisms of traditional Chinese medicine (TCM) from a holistic perspective.
Collapse
Affiliation(s)
- Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029 China
| | - Wubin Wang
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029 China
| | - Xu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029 China
| | - Meng Xu
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029 China
| | - Lili Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029 China
| | - Lei Ding
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029 China
| | - Rui Guo
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029 China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029 China
- Shenzhen Hospital, Beijing University of Chinese Medicine, No. 1 Dayun road, Sports New City Road, Shenzhen, 518172 China
| |
Collapse
|
27
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
28
|
Pien Tze Huang (片仔癀) Overcomes Doxorubicin Resistance and Inhibits Epithelial-Mesenchymal Transition in MCF-7/ADR Cells. Chin J Integr Med 2018; 25:598-603. [DOI: 10.1007/s11655-018-2992-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 01/13/2023]
|
29
|
Zhou Q, Chen Y, Zhang L, Zhong Y, Zhang Z, Wang R, Jin M, Gong M, Qiu Y, Kong D. Antiproliferative effect of ZSTK474 alone or in combination with chemotherapeutic drugs on HL60 and HL60/ADR cells. Oncotarget 2018; 8:39064-39076. [PMID: 28388564 PMCID: PMC5503595 DOI: 10.18632/oncotarget.16589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy remains to be one of the main approaches in the clinical treatment of acute myeloid leukemia (AML), multidrug resistance (MDR) has become a serious problem which limits the therapeutic efficacy. The important roles of the PI3K/Akt pathway in modulating cell proliferation and MDR suggest that PI3K inhibitor might be effective for treatment of AML. In the present study, the antiproliferative effects of PI3K inhibitor ZSTK474 on AML cell HL60 and the adriamycin (ADR)-resistant HL60/ADR cells were investigated. Our data indicated that ZSTK474 exhibited potent antiproliferative activity, induced G1 cell cycle arrest, but no obvious apoptosis in both cell lines. Moreover, ZSTK474 affected the protein levels of cell-cycle-related molecules including increased p27, decreased cyclin D1 and phosphorylated Rb in dose-dependent manner. The proteins downstream of PI3K including phosphorylated PDK1, Akt and GSK-3β were reduced in a dose-dependent manner after ZSTK474 treatment. ZSTK474 reversed ADR resistance, increased the intracellular accumulation of ADR, and reduced the expression and function of multidrug resistance (MDR) proteins including both P-gp and MRP1 in HL60/ADR cells. The combination of ZSTK474 and chemotherapeutic drugs cytarabine or vincristine led to a synergistic effect in HL60 and HL60/ADR cells. In conclusion, ZSTK474 showed potent antiproliferative effect on HL60 and HL60/ADR cells; combination with cytarabine or vincristine resulted in synergistic effect. Our results suggest ZSTK474 has the potential to be applied in the treatment of AML patients, while further evidences particularly those about in vivo efficacy are needed.
Collapse
Affiliation(s)
- Qianxiang Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yali Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Min Gong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
30
|
Deng X, Xu G, He L, Xu M. p75NTR promotes survival of breast cancer resistant cells by regulating Bcl-2/Bax and MAPK pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11685-11694. [PMID: 31966528 PMCID: PMC6966053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/29/2017] [Indexed: 06/10/2023]
Abstract
In breast cancer, the neurotrophin receptor p75NTR is a critical factor that promotes resistance to the drug, however, its mechanism of action remains unclear. In our study, the 10 cases of positive expressions of p75NTR were detected in 86 cases of breast cancer tissues, accounting for 11.6% of cases detected. The immunohistochemistry detection of p75NTR was in the cytoplasm and cell membrane. The expression of p75NTR was significantly associated with histological grade (P<0.01), however, not with the menopause, tumor size and lymph node metastasis. Western blot result showed that p75NTR protein was induced by overexpression in the multidrug-resistant breast cancer cell lines. After transfection of pcDNA3.1-p75NTR, MDA-MB-231/ADR-p75NTR cell cycle was arrested in G0/G1 phase. However, the number of cells in G0/G1 phase increased and decreased in S phase cells (P<0.05). Additionally, apoptosis rate decreased (P<0.05). The p75NTR overexpression increased the expression of MDR related protein and activated MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiaofang Deng
- Department of Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou 510095, China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou 510095, China
| | - Lizhen He
- Department of Pathology, Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou 510095, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
| |
Collapse
|
31
|
Pan J, Xu Y, Song H, Zhou X, Yao Z, Ji G. Extracts of Zuo Jin Wan, a traditional Chinese medicine, phenocopies 5-HTR1D antagonist in attenuating Wnt/β-catenin signaling in colorectal cancer cells. Altern Ther Health Med 2017; 17:506. [PMID: 29183322 PMCID: PMC5706385 DOI: 10.1186/s12906-017-2006-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023]
Abstract
Background In vitro and in vivo studies have shown that Zuo Jin Wan (ZJW), a herbal formula of traditional Chinese medicine (TCM), possessed anticancer properties. However, the underlying mechanism for the action of ZJW remains unclear. Various subtypes of 5-Hydroxytryptamine receptor (5-HTR) have been shown to play a role in carcinogenesis and cancer metastasis. 5-HTR1D, among the subtypes, is highly expressed in colorectal cancer (CRC) cell lines and tissues. The present study aimed at investigating effect of ZJW extracts on the biological function of CRC cells, the expression of 5-HTR1D, and molecules of Wnt/β-catenin signaling pathway. Methods In this study, the effect of ZJW extracts on 5-HTR1D expression and Wnt/β-catenin signaling pathway were investigated and contrasted with GR127935 (GR), a known 5-HTR1D antagonist, using the CRC cell line SW403. The cells were respectively treated with GR127935 and different doses of ZJW extracts. Proliferation, apoptosis, migration, and invasion of SW403 cells were compared between ZJW and GR127935 treatments. The expression of 5-HTR1D and signaling molecules involved in the canonic Wnt/β-catenin pathway were determined by Western blot analysis. Results After ZJW extracts treatment and GR127935 treatment, G1 arrest in cell cycle of SW403 was increased. Cell apoptosis was pronounced, and cell migration and invasion were suppressed. SW403 cells showed a dose-dependently decreased expression of 5-HTR1D, meanwhile, β-catenin level was significantly decreased in nucleus of cells cultured with GR127935. Treatment of ZJW extracts dose-dependently resulted in decreased 5-HTR1D and a concomitant reduction in the Wnt/β-catenin signal transduction, an effect indistinguishable from GR127935 treatment. Conclusion The anticancer activity of ZJW extracts may be partially achieved through attenuation of the 5-HTR1D-Wnt/β-catenin signaling pathway.
Collapse
|
32
|
Muthiah D, Callaghan R. Dual effects of the PI3K inhibitor ZSTK474 on multidrug efflux pumps in resistant cancer cells. Eur J Pharmacol 2017; 815:127-137. [PMID: 28912036 DOI: 10.1016/j.ejphar.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022]
Abstract
ZSTK474 is a potent phosphoinositide 3-kinase (PI3K) inhibitor that reduces cell proliferation via G1-arrest. However, there is little information on the susceptibility of this anticancer drug to resistance conferred by the multidrug pumps P-glycoprotein (ABCB1) and ABCG2. We have demonstrated that ZSTK474 generated cytotoxicity in cells over-expressing either pump with potency similar to that in drug sensitive cells. In addition, the co-administration of ZSTK474 with the cytotoxic anti-cancer drugs vinblastine and mitoxantrone caused a potentiated cytotoxic effect in both drug sensitive and efflux pump expressing cells. These observations suggest that ZSTK474 is unaffected by the presence of multidrug efflux pumps and may circumvent their activities. Indeed, ZSTK474 increased the cellular accumulation of calcein-AM and mitoxantrone in cells expressing ABCB1 and ABCG2, respectively. ZSTK474 treatment also resulted in reduced expression of both efflux pumps in multidrug resistant cancer cells. Measurement of ABCB1 or ABCG2 mRNA levels demonstrated that the reduction was not due to altered transcription. Similarly, inhibitor studies showed that the proteasomal degradation pathway for ABCB1 and the lysosomal route for ABCG2 degradation were unaffected by ZSTK474. Thus the mechanism underlying reduced ABCB1 and ABCG2 levels caused by ZSTK474 was due to a reduction in overall protein synthesis; a process influenced by the PI3K pathway. In summary, ZSTK474 is not susceptible to efflux by the resistance mediators ABCB1 and ABCG2. Moreover, it inhibits the drug transport function of the pumps and leads to a reduction in their cellular expression levels. Our observations demonstrate that ZSTK474 is a powerful anticancer drug.
Collapse
Affiliation(s)
- Divya Muthiah
- Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Building 134, Linnaeus Way, Canberra, ACT 2601, Australia
| | - Richard Callaghan
- Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Building 134, Linnaeus Way, Canberra, ACT 2601, Australia.
| |
Collapse
|
33
|
Irisin stimulates cell proliferation and invasion by targeting the PI3K/AKT pathway in human hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 493:585-591. [PMID: 28867187 DOI: 10.1016/j.bbrc.2017.08.148] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
Irisin is a newly identified myokine that may be cancer-associated, and its impact on liver cancer is unclear. To understand the roles of irisin in liver cancer, we investigated its effect in HepG2 and SMCC7721 hepatocellular carcinoma cells, and the underlying mechanisms. We determined irisin levels in liver tissues and serum samples obtained from patients by using real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Irisin levels in cancerous livers were significantly upregulated compared with those in control livers, but serum irisin levels remained unchanged. Additionally, we evaluated the effects of different concentrations of human recombinant modified and active (glycosylated) irisin (IM) or human recombinant nonmodified irisin (INM) on cell migration, proliferation, viability, and invasiveness. CCK8, transwell, and scratching assays demonstrated that irisin significantly increased cell proliferation, invasion, and migration through activation of the PI3K/AKT pathway. Irisin-induced cell proliferation, migration, and invasion were blocked by a PI3K inhibitor (LY294002). Irisin also decreased the cytotoxicity of doxorubicin in HepG2 cells. These data indicate that increased irisin levels may have protective roles in liver cancer cells through partial activation of the PI3K/AKT pathway, which may facilitate liver cancer progression and decrease the sensitivity to chemotherapy.
Collapse
|
34
|
Liver X receptors agonist GW3965 re-sensitizes gefitinib-resistant human non-small cell lung cancer cell to gefitinib treatment by inhibiting NF-κB in vitro. Oncotarget 2017; 8:15802-15814. [PMID: 28178657 PMCID: PMC5362524 DOI: 10.18632/oncotarget.15007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/06/2017] [Indexed: 01/16/2023] Open
Abstract
The recent research shows that the inhibition of the nuclear factor-κB (NF-κB) pathway is a promising therapeutic option for patients who progress after treatment with the novel mutant-selective EGFR-TKIs. For propose to find a nontoxic drug to reverse the acquired gefitinib resistance, we examined whether the Liver X Receptors agonist GW3965 affect gefitinib resistance of HCC827/GR-8-2 cells. Cell viability was measured by CCK-8 assay. Levels of NF-κB, p-AKT and caspases were detected by Western blot analysis. Immunocytochemical analysis was used to detect the expression of NF-κB, p-AKT intracellularly. Induction of apoptosis and cell cycle arrest was measured by Flow cytometry assay. And results revealed that more than 90% of HCC827/GR-8-2 cells lived upon treatment with gefitinib at a dose of 5μM for 48h. However, when under the combine treatment of GW3965 (5μM) & gefitinib(5μM), cell death rate was increased observably. Co-administration of gefitinib & GW3965 induced cell apoptosis and cell cycle arrest. Additionally, we observed a dose-dependent- down-regulation of NF-κB in HCC827/GR-8-2 cells treated with gefitinib & GW3965. GW3965 and gefitinib synergistically decreased cell proliferation and induced apoptosis by inhibiting NF-κB signaling pathway in gefitinib resistant cells. These findings support our hypothesis that GW3965 could act as a useful drug to reverse the gefitinib resistance.
Collapse
|
35
|
Sui H, Duan P, Guo P, Hao L, Liu X, Zhang J, Zhu H, Zhao M, Wang H, Li Q, Wang S. Zhi Zhen Fang formula reverses Hedgehog pathway mediated multidrug resistance in colorectal cancer. Oncol Rep 2017; 38:2087-2095. [PMID: 28849164 PMCID: PMC5652964 DOI: 10.3892/or.2017.5917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022] Open
Abstract
Zhi-Zhen-Fang (ZZR), a Traditional Chinese Medicine (TCM) formula, has been clinically used in China to treat drug-resistant colorectal cancer (CRC) patients as an adjuvant. In this study, the efficacy of ZZR in suppressing multidrug resistance (MDR) on CRC was evaluated in vitro and in vivo. We observed that ZZR enhanced the sensitivity of chemotherapeutic drugs and induced apoptosis in a dose- and time-dependent mannner in CRC MDR cells. Interestingly, signaling of Hedgehog pathway, particularly Gli1, was also inhibited by ZZR. This effect of ZZR in reversing drug resistance and suppressing Gli1 was attenuated by a Hedgehog activator (SAG). Furthermore, ZZR inhibited MDR CRC tumor growth in a xenograft mouse model as well as downregulated Gli1 levels. This study provided the first direct evidence demonstrating ZZR can attenuate MDR by repressing Hedgehog signaling in human CRC.
Collapse
Affiliation(s)
- Hua Sui
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Peiwen Duan
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Piaoting Guo
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Lishuang Hao
- Department of Gynecology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jinhua Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Huirong Zhu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Miaomiao Zhao
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Hao Wang
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Songpo Wang
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| |
Collapse
|
36
|
Visfatin mediates doxorubicin resistance in human colorectal cancer cells via up regulation of multidrug resistance 1 (MDR1). Cancer Chemother Pharmacol 2017; 80:395-403. [PMID: 28667355 DOI: 10.1007/s00280-017-3365-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
Abstract
Colorectal cancer (CRC) is one of the prevalent and deadly cancers worldwide. Chemotherapy resistance is one of the most challenging problems for CRC and other cancer treatments. Recent studies indicated that increasing levels of visfatin are correlated with worse clinical prognosis of CRC patients, while the effects and mechanisms of visfatin on progression of CRC remain unclear. Our present study established doxorubicin (Dox)-resistant CRC HCT-116 and SW480 cells (named HCT-116 Dox/R and SW480 Dox/R). The expression of visfatin, while not IL-6, IL-8, or TGF-β, in CRC Dox-resistant cells was significantly greater than that in their parental cells, while knockdown of visfatin by its specific siRNAs can elevate Dox sensitivity of CRC-resistant cells. In addition, si-visfatin can significantly down regulate the expression of multidrug resistance 1 (MDR1), while not multidrug resistance-associated protein 1 or lung resistance-related protein, in both HCT-116 Dox/R and SW480 Dox/R cells. Visfatin can regulate the transcription of MDR1 via modulating its promoter activities. Si-visfatin can also decrease the activation and nuclear localization of p65, one of the most important transcription factors for the expression of MDR1. Chromatin immunoprecipitation (ChIP) indicated that si-visfatin can suppress the binding between p65 and MDR1 promoter. Collectively, our present study revealed that visfatin mediates the Dox resistance of CRC cells via up regulation of MDR1. It indicated that targeted inhibition of visfatin might be helpful for overcoming Dox resistance of CRC therapy.
Collapse
|
37
|
Cellular and Molecular Targets of Resveratrol on Lymphoma and Leukemia Cells. Molecules 2017; 22:molecules22060885. [PMID: 28555002 PMCID: PMC6152792 DOI: 10.3390/molecules22060885] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (RSV) is a well known chemopreventive molecule featuring anti-cancer properties. Our paper describes the main molecular targets of RSV linked to its antiproliferative activity on lymphoma and leukemia experimental models. It discusses further the most recent and most promising among these molecular targets for a translational application.
Collapse
|
38
|
Chou ST, Hsiang CY, Lo HY, Huang HF, Lai MT, Hsieh CL, Chiang SY, Ho TY. Exploration of anti-cancer effects and mechanisms of Zuo-Jin-Wan and its alkaloid components in vitro and in orthotopic HepG2 xenograft immunocompetent mice. Altern Ther Health Med 2017; 17:121. [PMID: 28219365 PMCID: PMC5319192 DOI: 10.1186/s12906-017-1586-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/14/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Zuo-Jin-Wan (ZJW), a two-herb formula consisting of Coptis chinensis (CC) and Evodia rutaecarpa (ER), is commonly used in traditional Chinese medicine for the treatment of cancers. However, the efficacies and mechanisms of ZJW and its alkaloid components on cancers are still unclear. METHODS Here we investigated the anti-cancer effects and mechanisms of ZJW, CC, ER, berberine, and evodiamine in cells and in intrahepatic xenograft mice. RESULTS Treatment of HepG2 cells with ZJW, CC, ER, berberine, and evodiamine significantly displayed cytotoxic effects in a dose- and time-dependent manner. Hierarchical cluster analysis of gene expression profiles showed that CC and ZJW shared a similar mechanism for the cytotoxic effects, suggesting that CC was the active ingredient of ZJW for anti-cancer activity. Network analysis further showed that c-myc was the likely key molecule involved in the regulation of ZJW-affected gene expression. A human hepatoma xenograft model was established by intrahepatic injection of HepG2 cells containing nuclear factor-κB-driven luciferase genes in immunocompetent mice. In vivo bioluminescence imaging showed that cells had been successfully transplanted in mouse liver. Oral administration of ZJW for 28 consecutive days led to a significant decrease in the accumulation of ascites, the ratio of tumor-to-liver, and the number of transplanted cells in livers. CONCLUSIONS In conclusion, our findings suggested for the first time that ZJW significantly suppressed human cancer cell growth in orthotopic HepG2 xenograft-bearing immunocompetent mice. Moreover, c-myc might play a potent role in the cytotoxic mechanisms of ZJW, CC, ER, berberine, and evodiamine.
Collapse
|
39
|
The Zuo Jin Wan Formula Induces Mitochondrial Apoptosis of Cisplatin-Resistant Gastric Cancer Cells via Cofilin-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8203789. [PMID: 27872653 PMCID: PMC5107242 DOI: 10.1155/2016/8203789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 11/18/2022]
Abstract
Despite the status of cisplatin (DDP) as a classical chemotherapeutic agent in the treatment of cancer, the development of multidrug resistance often leads to a failure of DDP therapy. Here we found that phosphorylated cofilin-1 (p-cofilin-1) was overexpressed in the DDP-resistant human gastric cancer cell lines SGC7901/DDP and BGC823/DDP, relative to the respective parent cell lines (SGC7901 and BGC823), and that DDP induced the dephosphorylation of p-cofilin-1 in both parent lines but not in the DDP-resistant lines. However, we noted that the traditional Chinese medicine formula Zuo Jin Wan (ZJW) could induce the dephosphorylation of p-cofilin-1 and promote cofilin-1 translocation from the cytoplasm into the mitochondria in both SGC7901/DDP and BGC823/DDP cells. This mitochondrial translocation of cofilin-1 was found to induce the conversion of filamentous actin to globular-actin, activate mitochondrial damage and calcium overloading, and induce the mitochondrial apoptosis pathway. We further observed that these effects of ZJW on DDP-resistant human gastric cancer cell lines could be reversed via transfection with cofilin-1-specific siRNA, or treatment with a PP1 and PP2A inhibitor. These results suggest that ZJW is an effective drug therapy for patients with DDP-resistant gastric cancer.
Collapse
|
40
|
Chen Y, Zhou Q, Zhang L, Wang R, Jin M, Qiu Y, Kong D. Idelalisib induces G1 arrest and apoptosis in chronic myeloid leukemia K562 cells. Oncol Rep 2016; 36:3643-3650. [DOI: 10.3892/or.2016.5176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/11/2016] [Indexed: 11/06/2022] Open
|
41
|
Sui H, Xu H, Ji Q, Liu X, Zhou L, Song H, Zhou X, Xu Y, Chen Z, Cai J, Ji G, Li Q. 5-hydroxytryptamine receptor (5-HT1DR) promotes colorectal cancer metastasis by regulating Axin1/β-catenin/MMP-7 signaling pathway. Oncotarget 2016. [PMID: 26214021 PMCID: PMC4694879 DOI: 10.18632/oncotarget.4543] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Overexpression of 5-hydroxytryptamine (5-HT) in human cancer contributes to tumor metastasis, but the role of 5-HT receptor family in cancer has not been thoroughly explored. Here, we report overexpression of 5-HT1D receptor (5-HT1DR) was associated with Wnt signaling pathway and advanced tumor stage. The underlying mechanism of 5-HT1DR-promoted tumor invasion was through its activation on the Axin1/β-catenin/MMP-7 pathway. In an orthotopic colorectal cancer mouse model, we demonstrated that a 5-HT1DR antagonist (GR127935) effectively inhibited tumor metastasis through targeting Axin1. Furthermore, in intestinal epithelium cells, we observed that 5-HT1DR played an important role in cell invasion via Axin1/β-catenin/MMP-7 pathway. Together, our findings reveal an essential role of the physiologic level of 5-HT1DR in pulmonary metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Chinese Medicine, Shanghai 200032, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Chinese Medicine, Shanghai 200032, China
| | - Xiqiu Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Chinese Medicine, Shanghai 200032, China
| | - Yangxian Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Chinese Medicine, Shanghai 200032, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Chinese Medicine, Shanghai 200032, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
42
|
Zhou Q, Chen Y, Chen X, Zhao W, Zhong Y, Wang R, Jin M, Qiu Y, Kong D. In Vitro Antileukemia Activity of ZSTK474 on K562 and Multidrug Resistant K562/A02 Cells. Int J Biol Sci 2016; 12:631-8. [PMID: 27194941 PMCID: PMC4870707 DOI: 10.7150/ijbs.14878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/29/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a malignant hematological disorder mainly caused by the Bcr-Abl tyrosine kinase. While Bcr-Abl inhibitors including Imatinib showed antitumor efficacy on many CML patients, resistance was frequently reported in recent years. Therefore, novel drugs for CML are still expected. ZSTK474 is a specific phosphatidylinositol 3-kinase (PI3K) inhibitor that we identified. In the present study, the efficacy of ZSTK474, alone or in combination with Imatinib, on K562 CML cells as well as on its multidrug resistance counterpart K562/A02 cells, was investigated. ZSTK474 inhibited the cell proliferation with an IC50 of 4.69 μM for K562 and 7.57 μM for K562/A02 cells, respectively. Treatment by ZSTK474 resulted in cell cycle arrest in G1 phase, which might be associated with upregulation of p27, and downregulation of cyclin D1. ZSTK474 also inhibited phosphorylation of Akt and GSK-3β, which might be involved in the effect on the above cell cycle-related proteins. Moreover, combination of ZSTK474 and Imatinib indicated synergistic effect on both cell lines. In conclusion, ZSTK474 exhibited antileukemia activity alone, and showed synergistic effect when combined with Imatinib, on CML K562 cells as well as the multidrug resistant ones, providing a potential therapeutic approach for CML patients.
Collapse
Affiliation(s)
- Qianxiang Zhou
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;; 2. Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yali Chen
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;; 2. Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xi Chen
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;; 2. Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wennan Zhao
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;; 2. Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuxu Zhong
- 3. State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ran Wang
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Meihua Jin
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuling Qiu
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Dexin Kong
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;; 2. Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
43
|
Sui H, Zhou L, Zhang Y, Huang J, Liu X, Ji Q, Fu X, Wen H, Chen Z, Deng W, Zhu H, Li Q. Evodiamine Suppresses ABCG2 Mediated Drug Resistance by Inhibiting p50/p65 NF‐κB Pathway in Colorectal Cancer. J Cell Biochem 2016; 117:1471-81. [DOI: 10.1002/jcb.25451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/19/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Hua Sui
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Li‐Hong Zhou
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Ya‐Li Zhang
- Department of NursingShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Jian‐Ping Huang
- Department of General SurgeryShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xuan Liu
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qing Ji
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xiao‐Ling Fu
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hao‐Tian Wen
- Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439
| | - Wan‐Li Deng
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hui‐Rong Zhu
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qi Li
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
44
|
Shao Y, Wang C, Hong Z, Chen Y. Inhibition of p38 mitogen-activated protein kinase signaling reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats. J Neurochem 2016; 136:1096-105. [PMID: 26677173 DOI: 10.1111/jnc.13498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Yiye Shao
- Department of Neurology; Jinshan Hospital; Fudan University; Shanghai China
- Department of Neurology; Shanghai Medical College; Fudan University; Shanghai China
| | - Cuicui Wang
- Department of Neurology; Jinshan Hospital; Fudan University; Shanghai China
- Department of Neurology; Shanghai Medical College; Fudan University; Shanghai China
| | - Zhen Hong
- Department of Neurology; Shanghai Medical College; Fudan University; Shanghai China
- Department of Neurology; Huashan Hospital; Fudan University; Shanghai China
| | - Yinghui Chen
- Department of Neurology; Jinshan Hospital; Fudan University; Shanghai China
- Department of Neurology; Shanghai Medical College; Fudan University; Shanghai China
| |
Collapse
|
45
|
Wang L, Wang C, Jia Y, Liu Z, Shu X, Liu K. Resveratrol Increases Anti-Proliferative Activity of Bestatin Through Downregulating P-Glycoprotein Expression Via Inhibiting PI3K/Akt/mTOR Pathway in K562/ADR Cells. J Cell Biochem 2015; 117:1233-9. [DOI: 10.1002/jcb.25407] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 10/09/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Li Wang
- Department of Clinical Pharmacology, College of Pharmacy; Dalian Medical University; China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning; Dalian Medical University; China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy; Dalian Medical University; China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning; Dalian Medical University; China
| | - Yongming Jia
- Department of Clinical Pharmacology, College of Pharmacy; Dalian Medical University; China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning; Dalian Medical University; China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy; Dalian Medical University; China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning; Dalian Medical University; China
| | - Xiaohong Shu
- Department of Clinical Pharmacology, College of Pharmacy; Dalian Medical University; China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning; Dalian Medical University; China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy; Dalian Medical University; China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning; Dalian Medical University; China
| |
Collapse
|