1
|
Seku K, Bhagavanth Reddy G, Osman AI, Hussaini SS, Kumar NS, Al-Abri M, Pejjai B, Alreshaidan SB, Al-Fatesh AS, Kadimpati KK. Modified frankincense resin stabilized gold nanoparticles for enhanced antioxidant and synergetic activity in in-vitro anticancer studies. Int J Biol Macromol 2024; 278:134935. [PMID: 39179088 DOI: 10.1016/j.ijbiomac.2024.134935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
For the first time, Frankincense resin (FR) has been carboxymethylated to produce CMFR - AuNPs and the conjugate was utilized for the Doxorubicin drug loading. The carboxymethylation of the carboxylic, phenolic, and hydroxyl functional groups of FR has been developed into carboxymethylated Frankincense resin (CMFR). A novel CMFR-AuNPs was synthesized using the developed CMFR as a stabilizing and reducing agent. The antibacterial, antioxidant, and in-vitro anticancer activities were investigated by using CMFR-AuNPs and CMFR - AuNPs@DOX. CMFR-AuNPs demonstrated antioxidative properties by quenching DPPH radicals effectively. CMFR-AuNPs and DOX@CMFR-AuNPs demonstrated strong antibacterial activity against K. pneumoniae, S. aureus, B. subtilis, and E. coli. The cell viability was tested for CMFR -AuNPs at various concentrations of Dox-loaded CMFR -AuNPs (CMFR-AuNPs + Dox1, CMFR-AuNPs + Dox 2, & CMFR-AuNPs + Dox 3). The highest inhibition was observed on MCF-7 and HeLa cell lines using CMFR-AuNPs + Dox 3, respectively. Various techniques such as UV, FTIR, TGA, XRD, SEM, EDAX and TEM were used to characterize the designed CMFR and CMFR-AuNPs. After carboxy methylation, the amorphous nature of FR changed to crystallinity, as reflected in the XRD spectra. The XRD spectrum of the CMFR- AuNPs showed FCC structure due to the involvement of hydroxyl and carboxylic functional groups of CMFR strongly bound with the AuNPs. TGA results revealed that the CMFR is thermally more stable than FR. TEM revealed that CMFR - AuNPs were well dispersed, spherical, and hexagonal with an average diameter of 7 to 10 nm, while the size of doxorubicin loaded (DOX@CMFR-AuNPs) AuNPs was 11 to 13 nm. Green CMFR-AuNPs have the potential to enhance the drug loading and anticancer efficacy of drugs.
Collapse
Affiliation(s)
- Kondaiah Seku
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences -, Shinas, Sultanate of Oman.
| | - G Bhagavanth Reddy
- Department of Chemistry, Palamuru University PG Center, Wanaparthy, Telangana State, India
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom of Great Britain and Northern Ireland.
| | - Syed Sulaiman Hussaini
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences -, Shinas, Sultanate of Oman
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Muscat, Oman; Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Babu Pejjai
- Department of Physics, Sri Venkateshwara College of Engineering, Karakambadi Road, Tirupati 517507, India
| | - Salwa B Alreshaidan
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 800, Riyadh 11451, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Power and Environmental Engineering, Akademicka 2, Silesian University of Technology, 44 - 100 Gliwice, Poland.
| |
Collapse
|
2
|
Yu Q, Xu C, Song J, Jin Y, Gao X. Mechanisms of Traditional Chinese medicine/natural medicine in HR-positive Breast Cancer: A comprehensive Literature Review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117322. [PMID: 37866466 DOI: 10.1016/j.jep.2023.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the emergence of endocrine resistance, the survival and good prognosis of HR-positive breast cancer (HR + BC) patients are threatened. As a common complementary and alternative therapy in cancer treatment, traditional Chinese medicine (TCM) has been widely used, and its internal mechanisms have been increasingly explored. AIM OF THE REVIEW In this review, the development status and achievements in understanding of the mechanisms related to the anti-invasion and anti-metastasis effects of TCM against HR + BC and the reversal of endocrine drug resistance by TCM in recent years have been summarized to provide ideas for antitumour research on the active components of TCM/natural medicine. METHODS We searched the electronic databases PubMed, Web of Science, and China National Knowledge Infrastructure database (CNKI) (from inception to July 2023) with the key words "HR-positive breast cancer" or "HR-positive breast carcinoma", "HR + BC" and "traditional Chinese medicine", "TCM", or "natural plant", "herb", etc., with the aim of elucidating the intrinsic mechanisms of traditional Chinese medicine and natural medicine in the treatment of HR + BC. RESULTS TCM/natural medicine monomers and formulas can regulate the expression of related genes and proteins through the PI3K/AKT, JAK2/STAT3, MAPK, Wnt and other signalling pathways, inhibit the proliferation and metastasis of HR + BC tumours, play a synergistic role in combination with endocrine drugs, and reverse endocrine drug resistance. CONCLUSION The wide variety of TCM/natural medicine components makes the research and development of new methods of TCM for BC treatments more selective and innovative. Although progress has been made on research on TCM/natural medicine, there are still many problems in clinical and basic experimental designs, and more in-depth scientific explorations and research are still needed.
Collapse
Affiliation(s)
- Qinghong Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Chuchu Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaqing Song
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Ying Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Xiufei Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
3
|
Abdullah FO, Muhammed HH, Yilmaz MA, Cakir O, Tarhan A. LC-ESI-MS/MS analysis of phenolic compounds and in vitro cytotoxicity and apoptosis-inducing effects of Nonea pulmonarioides extracts. Nat Prod Res 2024:1-8. [PMID: 38263864 DOI: 10.1080/14786419.2024.2306914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The chemical composition of Nonea pulmonarioides extracts were investigated for the first time. The phytoconstituents of the methanol extracts were screened by using LC/MS-MS technique. The anticancer activity of the acetone and methanol extracts were measured against four cancer cell lines; MCF-7, PC3, HT-29, and U-87 MG. Thirty phenolic compounds were identified, rosmarinic (90.06 mg analyte/g extract) and fumaric acids (39.737 mg analyte/g extract) were major compounds of the studied species. Moreover, both methanol and acetone extracts were found to have strong anticancer activities. The acetone extract HT-29 (with IC50 of 10.17 ± 0.25 µg/mL) compared with standard cis-platin (with IC50 of 22.20 ± 0.72 µg/mL) with apoptotic mediated programmed cell death. These findings identified N. pulmonarioides as a potential species exhibiting anticancer properties. In conclusion, the compelling results show that the methanol extract contains possible bioactive compounds with anticancer properties that require isolation and further characterisation.
Collapse
Affiliation(s)
- Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Haval H Muhammed
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Pharmacy, Gasha Technical Institute, Erbil, Kurdistan Region, Iraq
| | - Mustafa Abdullah Yilmaz
- Dicle University Science and Technology Application and Research Center, Diyarbakir, Turkey
- Department of Analytical Chemistry, Dicle University, Diyarbakir, Turkey
| | - Oguz Cakir
- Dicle University Science and Technology Application and Research Center, Diyarbakir, Turkey
- Department of Nutrition and Dietetics, Dicle University, Diyarbakir, Turkey
| | - Abbas Tarhan
- Dicle University Science and Technology Application and Research Center, Diyarbakir, Turkey
| |
Collapse
|
4
|
Sarkar S, Kar A, Shaw P, DasGupta B, Keithellakpam OS, Mukherjee PK, Bhardwaj PK, Sharma N, Haldar PK, Sinha S. Hydroalcoholic root extracts of Houttuynia cordata (Thunb.) standardized by UPLC-Q-TOF-MS/MS promotes apoptosis in human hepatocarcinoma cell HepG2 via GSK-3β/β-catenin/PDL-1 axis. Fitoterapia 2023; 171:105684. [PMID: 37751799 DOI: 10.1016/j.fitote.2023.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Houttuynia cordata (Thunb.), an important medicinal plant of Northeast India, Korea, and China, is used to treat various ailments and for anticancer research. Knowing its traditional practices, we are interested in the mode-of-action of HCT on HepG2 to co-relate the traditional practice with modern drug therapeutics. UPLC-Q-ToF-Ms analysis of HCT reveals identification of 14 metabolites. Network pharmacology analysis of the 14 compounds showed interaction with 232 different targets with their potential involvement in hepatocellular carcinoma. Whole extracts impart cytotoxicity on variety of cell lines including HepG2. There was a significant morphological alteration in treated HepG2 cells due to impairment of cytoskeletal components like β and γ- tubulin. Arrest at G1-S checkpoint was clearly indicated downregulation of Cyclin D1. The root extracts actuated apoptosis in HepG2 as evident from altered mitochondrial membrane potential, Annexin V- FITC, BrdU-PI, AO/EtBr assays, and modulations of apoptotic protein expression but without ROS generation. Whole extracts caused abrogation of epithelial to mesenchymal transition with repression of Snail, N-Cadherin, Vimentin, MMP-9, and upregulation of Pan-Cadherin. Pathway analysis found GSK-3β in Wnt/β-Catenin signaling cascade to be involved through Hepatocellular carcinoma (hsa05225) pathway. The GSK-3β/β-Catenin/PDL-1 signaling was found to be inhibited with the downregulation of pathway components. This was further confirmed by application of EGF, an inducer of the GSK-3β/β-Catenin pathway that neutralized the effect of Houttuynia cordata (Thunb.) root extract on the said pathway. Network pharmacology analysis also confirms the synergy network with botanical-bioactive-target-disease which showed Kaempferol to have the highest degree of association with the said pathway.
Collapse
Affiliation(s)
- Sudipta Sarkar
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pallab Shaw
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India
| | - Barun DasGupta
- School of Natural Product Studies, Jadavpur University, Kolkata 700032, INDIA
| | - Ojit Singh Keithellakpam
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India.
| | - Pardeep K Bhardwaj
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pallab K Haldar
- School of Natural Product Studies, Jadavpur University, Kolkata 700032, INDIA
| | - Surajit Sinha
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India.
| |
Collapse
|
5
|
Bhuia MS, Chowdhury R, Sonia FA, Kamli H, Shaikh A, El-Nashar HAS, El-Shazly M, Islam MT. Anticancer Potential of the Plant-Derived Saponin Gracillin: A Comprehensive Review of Mechanistic Approaches. Chem Biodivers 2023; 20:e202300847. [PMID: 37547969 DOI: 10.1002/cbdv.202300847] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
With the increasing prevalence of cancer and the toxic side effects of synthetic drugs, natural products are being developed as promising therapeutic approaches. Gracillin is a naturally occurring triterpenoid steroidal saponin with several therapeutic activities. It is obtained as a major compound from different Dioscorea species. This review was designated to summarize the research progress on the anti-cancer activities of gracillin focusing on the underlying cellular and molecular mechanisms, as well as its pharmacokinetic features. The data were collected (up to date as of May 1, 2023) from various reliable and authentic literatures comprising PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings demonstrated that gracillin displays promising anticancer effects through various molecular mechanisms, including anti-inflammatory effects, apoptotic cell death, induction of oxidative stress, cytotoxicity, induction of genotoxicity, cell cycle arrest, anti-proliferative effect, autophagy, inhibition of glycolysis, and blocking of cancer cell migration. Additionally, this review highlighted the pharmacokinetic features of gracillin, indicating its lower oral bioavailability. As a conclusion, it can be proposed that gracillin could serve as a hopeful chemotherapeutic agent. However, further extensive clinical research is recommended to establish its safety, efficacy, and therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
6
|
Qanash H, Bazaid AS, Binsaleh NK, Patel M, Althomali OW, Sheeha BB. In Vitro Antiproliferative Apoptosis Induction and Cell Cycle Arrest Potential of Saudi Sidr Honey against Colorectal Cancer. Nutrients 2023; 15:3448. [PMID: 37571386 PMCID: PMC10421499 DOI: 10.3390/nu15153448] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
A range of natural products have been extensively studied for their chemopreventive potential for cancer, including those that inhibit growth and induce apoptosis. Sidr honey derived from the Ziziphus or Lote tree (Ziziphus spina-christi, Ziziphus lotus, or Ziziphus jujuba) is used in a wide range of traditional medicine practices. In the current study, the Saudi Sidr honey was analyzed by means of a GC-MS chromatogram and investigated for its antiproliferative effects on colorectal cancer cells (HCT-116), breast cancer cells (MCF-7), and lung cancer cells (A-549), as well as its apoptosis induction and cell cycle arrest potentials against human colorectal cancer cells (HCT-116). The effects of Saudi Sidr honey on cells were determined using the MTT assay and the clonogenic assay. The induction of apoptosis was studied using Annexin V-FITC flow cytometry analysis. The propidium iodide staining method was used to detect cell cycle arrest via flow cytometry. By means of performing GS-MS and HR-LCMS analysis, 23 different chemical components were identified from Saudi Sidr honey. A dose-response analysis showed that Saudi Sidr honey was more effective against HCT-116 (IC50 = 61.89 ± 1.89 µg/mL) than against MCF-7 (IC50 = 78.79 ± 1.37 µg/mL) and A-549 (IC50 = 94.99 ± 1.44 µg/mL). The antiproliferation activity of Saudi Sidr honey has been found to be linked to the aggregation of cells during the G1 phase, an increase in early and late apoptosis, and necrotic cell death in HCT-116 cells. Considering these promising findings that highlight the potential use of Saudi Sidr honey as an antitumor agent, further research should be carried out with the aim of isolating, characterizing, and evaluating the bioactive compounds involved in Sidr honey's antiproliferative activity to better understand the mechanism of their action.
Collapse
Affiliation(s)
- Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Abdulrahman S. Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Naif K. Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India;
| | - Omar W. Althomali
- Department of Physiotherapy, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Bodor Bin Sheeha
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
7
|
Banna BU, Mia R, Hasan MM, Ahmed B, Hasan Shibly MA. Ultrasonic-assisted sustainable extraction and dyeing of organic cotton fabric using natural dyes from Dillenia indica leaf. Heliyon 2023; 9:e18702. [PMID: 37560636 PMCID: PMC10407738 DOI: 10.1016/j.heliyon.2023.e18702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
As a means of preventing environmental damage caused by synthetic dyes, eco-friendly textile dyeing with natural dyes is gaining popularity worldwide. This study focused on the extraction of dyes from the leaf of Dillenia indica (D. indica) tree using an ultrasonic extraction technique and applied on the organic cotton fabrics. The ultrasonic method was used for both extractions of D. indica dyes and dyeing of organic cotton fabrics. Here, the amount of D. indica powder used were 5% and 6.67% for producing light and dark shade, respectively. The investigation of the color fastness to washing, rubbing, and light for the dyed organic cotton fabrics indicated an excellent rating. The spectrophotometric analysis revealed the L* (lightness or darkness), a* (redness or greenness), b* (yellowness or blueness), C* (chroma), h* (hue), R% (reflectance), and K/S (color strength) values, which accurately represented the shade of the dyed organic cotton fabric. To understand the interaction between D. indica dye and organic cotton fabrics, different characterization including, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were performed. The characterization outcomes confirmed the successful deposition of D. indica dyes on the organic cotton fabrics. The other comparable testing results such as bursting strength, air permeability, and thermogravimetric analysis (TGA) of dyed and undyed organic cotton fabrics were in the acceptable range. One of the important findings of this research was no chemicals were utilized during the extraction and dyeing of organic cotton fabrics. This process can be referred to as completely chemical-free and advantageous for the environment because no chemicals were needed during extraction or dyeing. Therefore, the natural dye extracted from D. indica is extremely promising and could be a viable option for the sustainable dyeing of cotton fabrics in the textile dyeing industry.
Collapse
Affiliation(s)
- Burhan Uddin Banna
- National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | - Rony Mia
- National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | - Md. Mahabub Hasan
- National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | - Bulbul Ahmed
- National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | | |
Collapse
|
8
|
De D, Panda SK, Ghosh U. Induction of apoptosis by ethanolic extract of leaf of Dillenia pentagyna Roxb. in A549 cells via NF-κB pathway. PHYTOMEDICINE PLUS 2023; 3:100368. [DOI: 10.1016/j.phyplu.2022.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
|
9
|
Kumar S, Mulchandani V, Das Sarma J. Methanolic neem (Azadirachta indica) stem bark extract induces cell cycle arrest, apoptosis and inhibits the migration of cervical cancer cells in vitro. BMC Complement Med Ther 2022; 22:239. [PMID: 36088372 PMCID: PMC9463741 DOI: 10.1186/s12906-022-03718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Cervical cancer remains one of the significant causes of mortality in women due to the limitations of current treatment strategies and their associated side effects. Investigation of alternative medicine, including phytomedicine, has shown effective anti-cancer potential with fewer side effects. Azadirachta indica (commonly known as neem) is known for its medicinal properties. The present study investigated the anti-cancer potential of methanolic neem stem bark extract (MNBE) against cervical cancer using HeLa, SiHa, and ME-180 cell lines. Methods Cytotoxic effect of MNBE on cultured cell lines was evaluated by MTT and clonogenic assay. The growth-inhibiting effect of MNBE was further confirmed by performing cell cycle analysis and apoptosis assay using flow cytometry. The anti-migratory effect of MNBE was evaluated by using wound healing and Boyden chamber assay. Real-time PCR was used to determine the mRNA expression, and western blot and flow cytometry was used to determine the protein levels of growth and migration-related genes. Results MNBE significantly suppressed the growth and survival of cervical cancer cells in a dose-dependent manner by inducing cell cycle arrest and apoptosis. In addition, the growth inhibitory effect of MNBE was specific to cervical cancer cells than normal cells. Cell cycle arrest was correlated to transcriptional downregulation of cyclin dependent kinase 1 (CDK1), cyclin A, and cyclin B. Additionally, MNBE treatment resulted in the upregulation of active caspase-3 protein and downregulation of prosurvival genes, Bcl2, and survivin at mRNA level and NFkB-p65 at the protein level. Furthermore, MNBE inhibited the migration of cervical cancer cells accompanied by modulation of migration-related genes, including zona occludens-1 (ZO-1), matrix metalloproteinase 2 (MMP2), focal adhesion kinase (FAK), N-cadherin, snail, and E-cadherin. Conclusion In summary, the present study provides the first evidence of MNBE in restricting cervical cancer cell growth and migration, which warrants further investigation for developing novel anti-cancer drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03718-7.
Collapse
|
10
|
Khan MI, Bouyahya A, Hachlafi NEL, Menyiy NE, Akram M, Sultana S, Zengin G, Ponomareva L, Shariati MA, Ojo OA, Dall'Acqua S, Elebiyo TC. Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: a review on recent investigations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24411-24444. [PMID: 35064485 DOI: 10.1007/s11356-021-17795-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 05/05/2023]
Abstract
Breast cancer (BC) is one of the most common and recurring diseases and the second leading cause of death in women. Despite prevention, diagnostics, and therapeutic options such as radiation therapy and chemotherapy, the number of occurrences increases every year. Therefore, novel therapeutic drugs targeting specifically different checkpoints should be developed against breast cancer. Among drugs that can be developed to treat breast cancer, natural products, such as plant-derived compounds, showed significant anti-breast cancer properties. These substances belong to different chemical classes such as flavonoids, terpenoids, phenolic acids, and alkaloids. They exert their in vitro and in vivo cytotoxic activities against breast cancer cell lines via different mechanisms, including the inhibition of extrinsic and intrinsic apoptotic pathways, the arrest of the cell cycle, and the activation of autophagy. Moreover, they also exhibit anti-angiogenesis and antimetastatic action. Moreover, chemoprevention effects of these bioactive compounds were signaled only for certain drugs. Therefore, the aim of this review is to highlight the pharmacological actions of medicinal plants and their bioactive compounds on breast cancer. Moreover, the role of these substances in breast cancer chemoprevention was also discussed.
Collapse
Affiliation(s)
- Muhammad Idrees Khan
- Department of Eastern Medicine, Faculty of Medical Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Naoufal E L Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box-2002, Fez, Morocco
| | - Naoual El Menyiy
- Laboratory of Physiology, Faculty of Science, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Pharmacology & Environmental Health, Fez, Morocco
| | - Muhammad Akram
- Department of Eastern Medicine, Faculty of Medical Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sabira Sultana
- Department of Eastern Medicine, Faculty of Medical Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Gokhan Zengin
- Biochemistry and Physiology Laboratory, Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | - Lilya Ponomareva
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation
| | | | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | | |
Collapse
|
11
|
De D, Chowdhury P, Panda SK, Ghosh U. Leaf Extract and Active Fractions of Dillenia pentagyna Roxb. Reduce In Vitro Human Cancer Cell Migration Via NF-κB Pathway. Integr Cancer Ther 2022; 21:15347354221128832. [PMID: 36419372 DOI: 10.1177/15347354221128832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Different parts of Dillenia pentagyna have long been used in traditional medicines to cure several diseases including cancer. However, the mechanism(s) of anti-cancer effects are still unknown. We aimed to elucidate the anti-metastatic potential of ethanolic extracts of leaves of D. pentagyna (EELDP) and active fractions of it in highly metastatic human cancer cells. Methods: We screened different HPLC fractions of EELDP based on their anti-metastatic effect. We used TLC and ESI-MS for determining the presence of various phytochemicals in EELDP and fractions. We monitored in vitro anti-metastasis effect of EELDP (0-0.6 mg/ml) and active fractions (0-0.050 mg/ml) on various human cancer cells like A549, HeLa, and U2OS. Results: EELDP significantly reduced cell viability and cell migration in A549, HeLa, and U2OS cells. However, higher sensitivity was observed in A549 cells. We screened 2 active HPLC fractions F6 and F8 having anti-MMPs activity. EELDP and active fractions reduced metastasis via the NF-κB pathway, decreased the expression of Vimentin, N-cadherin, and increased the expression of Claudin-1. Conclusion: Significant reduction of metastasis by EELDP at a dose of 0.1 mg/ml or by active fractions at 0.050 mg/ml implicates that the active compound(s) present in crude or fractions are extremely potent to control highly metastatic cancer.
Collapse
Affiliation(s)
- Debapriya De
- University of Kalyani, Kalyani, West Bengal, India
| | | | | | - Utpal Ghosh
- University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
12
|
Kameyanda Poonacha S, Harishkumar M, Radha M, Varadarajan R, Nalilu SK, Shetty SS, Shetty PK, Chandrashekharappa RB, Sreenivas MG, Bhandary Bavabeedu SK. Insight into OroxylinA-7- O-β-d-Glucuronide-Enriched Oroxylum indicum Bark Extract in Oral Cancer HSC-3 Cell Apoptotic Mechanism: Role of Mitochondrial Microenvironment. Molecules 2021; 26:7430. [PMID: 34946511 PMCID: PMC8704017 DOI: 10.3390/molecules26247430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023] Open
Abstract
Oroxylum indicum, of the Bignoniaceae family, has various ethnomedical uses such as an astringent, anti-inflammatory, anti-bronchitis, anti-helminthic and anti-microbial, including anticancer properties. The druggability of OI stem bark extract was determined by its molecular docking interactions with PARP and Caspase-3, two proteins involved in cell survival and death. Note that 50 µg/mL of Oroxylum indicum extract (OIE) showed a significant (p < 0.05%) toxicity to HSC-3 cells. MTT aided cell viability and proliferation assay demonstrated that 50 µg/mL of OIE displayed significant (p < 0.5%) reduction in cell number at 4 h of incubation time. Cell elongation and spindle formation was noticed when HSC-3 cells were treated with 50 µg/mL of OIE. OIE initiated DNA breakage and apoptosis in HSC-3 cells, as evident from DNA ladder assay and calcein/EB staining. Apoptosis potential of OIE is confirmed by flow cytometer and triple-staining (live cell/apoptosis/necrosis) assay. Caspase-3/7 fluorescence quenching (LANCE) assay demonstrated that 50 µg/mL of OIE significantly enhanced the RFU of caspases-3/7, indicating that the apoptosis potential of OIE is probably through the activation of caspases. Immuno-cytochemistry of HSC-3 cells treated with 50 µg/mL of OIE showed a significant reduction in mitochondrial bodies as well as a reduction in RFU in 60 min of incubation time. Immunoblotting studies clearly showed that treatment of HSC-3 cells with OI extract caused caspase-3 activation and PARP deactivation, resulting in apoptotic cell death. Overall, our data indicate that OIE is an effective apoptotic agent for human squamous carcinoma cells and it could be a future cancer chemotherapeutic target.
Collapse
Affiliation(s)
- Sharmila Kameyanda Poonacha
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to Be) University, Mangaluru 575018, India; (S.K.P.); (R.V.); (S.K.N.); (S.S.S.); (P.K.S.)
| | - Madhyastha Harishkumar
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to Be) University, Mangaluru 575018, India; (S.K.P.); (R.V.); (S.K.N.); (S.S.S.); (P.K.S.)
- Department of Cardio-Vascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan;
| | - Madhyastha Radha
- Department of Cardio-Vascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan;
| | - Remya Varadarajan
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to Be) University, Mangaluru 575018, India; (S.K.P.); (R.V.); (S.K.N.); (S.S.S.); (P.K.S.)
| | - Suchetha Kumari Nalilu
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to Be) University, Mangaluru 575018, India; (S.K.P.); (R.V.); (S.K.N.); (S.S.S.); (P.K.S.)
- Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to Be) University, Mangaluru 575018, India
| | - Shilpa Sharathraj Shetty
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to Be) University, Mangaluru 575018, India; (S.K.P.); (R.V.); (S.K.N.); (S.S.S.); (P.K.S.)
| | - Praveen Kumar Shetty
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to Be) University, Mangaluru 575018, India; (S.K.P.); (R.V.); (S.K.N.); (S.S.S.); (P.K.S.)
- Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to Be) University, Mangaluru 575018, India
| | | | - Mahendra Gowdru Sreenivas
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be) University, Mangaluru 575018, India; (R.B.C.); (M.G.S.)
| | - Satheesh Kumar Bhandary Bavabeedu
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to Be) University, Mangaluru 575018, India; (S.K.P.); (R.V.); (S.K.N.); (S.S.S.); (P.K.S.)
- Department of Otorhinolarynology, K.S. Hegde Medical Academy, Nitte (Deemed to Be) University, Mangaluru 575018, India
| |
Collapse
|
13
|
Curcumin Loaded Chitosan-Protamine Nanoparticles Revealed Antitumor Activity Via Suppression of NF-κB, Proinflammatory Cytokines and Bcl-2 Gene Expression in the Breast Cancer Cells. J Pharm Sci 2021; 110:3298-3305. [PMID: 34097977 DOI: 10.1016/j.xphs.2021.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Nano drug delivery has been recently used to enhance the stability and bioavailability of chemotherapeutic agents. In this study, Chitosan/protamine nanocarrier was synthesized and used to encapsulate curcumin (CUR). The physicochemical properties of the empty carrier (CHPNPs) and curcumin-containing carrier (CU-CHPNPs) were characterized by TEM imaging, Zetasizer, and FT-IR spectroscopy. The antitumor activity of the prepared nanoparticles was assessed by determination of cell count, cell viability, the level of NF-κB, IL-6, and TNF-α and Bcl-2 gene expression in breast cancer cells (MCF-7). The results revealed that the obtained CU-CHPNPs had an average hydrodynamic size of 200 nm, zeta potential of +26.66 mv, and showed a drug encapsulation efficiency of 67%, and drug loading capacity of 40.20%. The cell-based assay showed a significant reduction in the cell viability, and NF-κB, TNF-α, and IL-6 levels upon treatment with CU-CHPNPs as compared to free CUR. Finally, the (CU-CHPNPs) downregulated the expression of the Bcl-2 anti-apoptotic gene more effectively than CUR and the CHPNPs comparing with the β Actin housekeeping gene. This study concluded that the nano-encapsulation of CUR significantly enhances its antitumor efficacy via inhibition of NF-κB, IL-6, and TNF-α and downregulation of Bcl-2.
Collapse
|
14
|
Rhododendron molle G. Don Extract Induces Apoptosis and Inhibits Migration in Human Colorectal Cancer Cells and Potential Anticancer Components Analysis. Molecules 2021; 26:molecules26102990. [PMID: 34069900 PMCID: PMC8157555 DOI: 10.3390/molecules26102990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
Rhododendron molle G. Don is one example of traditional Chinese medicine with important medicinal value. In this study, the effects of methanol extract of R. molle leaves (RLE) on colorectal cancer HT-29 cells and its potential molecular mechanism were investigated. MTT analysis showed that RLE could significantly inhibit the cell viability and migration of HT-29 cells in a concentration-dependent manner. Cell cycle analyses via flow cytometer suggested that RLE induced DNA fragmentation, indicative of apoptosis, and arrest at the S phase in HT-29 cells. Quantitative real-time PCR (qRT-PCR) analysis showed that RLE could upregulate the mRNA expression of p53 and p21 in HT-29 cells, which would result in HT-29 cells being blocked in S phase. Meanwhile, RLE could upregulate the expression of Bax, and downregulate the expression of Bcl-2, which would induce cell apoptosis. Further western blot analysis showed that the protein expression changes of Bax and P53 were basically consistent with the results of qRT-PCR. In addition, GC-MS analysis detected 17 potential anticancer components in R. molle. These results indicate that R. molle has significant anticancer activity, which provides some useful information for further study and clinical application for R. molle.
Collapse
|
15
|
Secondary Metabolites, Antioxidant, and Antiproliferative Activities of Dioscorea bulbifera Leaf Collected from Endau Rompin, Johor, Malaysia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8826986. [PMID: 33505506 PMCID: PMC7814937 DOI: 10.1155/2021/8826986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Breast cancer is among the most commonly diagnosed cancer and the leading cause of cancer-related death among women globally. Malaysia is a country that is rich in medicinal plant species. Hence, this research aims to explore the secondary metabolites, antioxidant, and antiproliferative activities of Dioscorea bulbifera leaf collected from Endau Rompin, Johor, Malaysia. Antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays, while the cytotoxicity of D. bulbifera on MDA-MB-231 and MCF-7 breast cancer cell lines was tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell cycle analysis and apoptosis were assessed using flow cytometry analysis. Phytochemical profiling was conducted using gas chromatography-mass spectrometry (GC-MS). Results showed that methanol extract had the highest antioxidant activity in DPPH, FRAP, and ABTS assays, followed by ethyl acetate and hexane extracts. D. bulbifera tested against MDA-MB-231 and MCF-7 cell lines showed a pronounced cytotoxic effect with IC50 values of 8.96 μg/mL, 6.88 μg/mL, and 3.27 μg/mL in MCF-7 and 14.29 μg/mL, 11.86 μg/mL, and 7.23 μg/mL in MDA-MB-231, respectively. Cell cycle analysis also indicated that D. bulbifera prompted apoptosis at various stages, and a significant decrease in viable cells was detected within 24 h and substantially improved after 48 h and 72 h of treatment. Phytochemical profiling of methanol extract revealed the presence of 39 metabolites such as acetic acid, n-hexadecanoic acid, acetin, hexadecanoate, 7-tetradecenal, phytol, octadecanoic acid, cholesterol, palmitic acid, and linolenate. Hence, these findings concluded that D. bulbifera extract has promising anticancer and natural antioxidant agents. However, further study is needed to isolate the bioactive compounds and validate the effectiveness of this extract in the In in vivo model.
Collapse
|
16
|
Oxidative stress and TGF-β1 induction by metformin in MCF-7 and MDA-MB-231 human breast cancer cells are accompanied with the downregulation of genes related to cell proliferation, invasion and metastasis. Pathol Res Pract 2020; 216:153135. [PMID: 32853957 DOI: 10.1016/j.prp.2020.153135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
High doses of metformin induces oxidative stress (OS) and transforming growth factor β1 (TGF-β1) in breast cancer cells, which was associated with increased cancer stem cell population, local invasion, liver metastasis and treatment resistance. Considering the impact of TGF- β1 and OS in breast cancer and the interrelation between these two pathways, the objective of this work was to investigate the effects of consecutive metformin treatments, at a non-cytotoxic dosage, in TGF- β1 targets in MCF-7 and MDA-MB-231 cells. Cells were exposed to 6 μM of metformin for seven consecutive passages. Samples were collected to immunocytochemistry (evaluation of p53, Nf-кB, NRF2 and TGF-β1), biochemical (determination of lipoperoxidation, total thiols and nitric oxide/peroxynitrite levels) and molecular biology analyzes (microarray and Real-time quantitative array PCR). Microarray analysis confirmed alterations in genes related to OS and TGF-β1. Treatment interfered in several TGF-β1 target-genes. Metformin upregulated genes involved in OS generation and apoptosis, and downregulated genes associated with metastasis and epithelial mesenchymal transition in MCF-7 cells. In MDA-MB-231 cells, metformin downregulated genes involved with cell invasion, viability and proliferation. The results shows that even a non-cytotoxic dosage of metformin can promote a less aggressive profile of gene expression in breast cancer cells.
Collapse
|
17
|
Lee JJ, Saiful Yazan L, Kassim NK, Che Abdullah CA, Esa N, Lim PC, Tan DC. Cytotoxic Activity of Christia vespertilionis Root and Leaf Extracts and Fractions against Breast Cancer Cell Lines. Molecules 2020; 25:molecules25112610. [PMID: 32512700 PMCID: PMC7321190 DOI: 10.3390/molecules25112610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Christia vespertilionis, commonly known as 'Daun Rerama', has recently garnered attention from numerous sources in Malaysia as an alternative treatment. Its herbal decoction was believed to show anti-inflammatory and anti-cancer effects. The present study investigated the cytotoxicity of the extract of root and leaf of C. vespertilionis. The plant parts were successively extracted using the solvent maceration method. The most active extract was further fractionated to afford F1-F8. The cytotoxic effects were determined using MTT assay against human breast carcinoma cell lines (MCF-7 and MDA-MB-231). The total phenolic content (TPC) of the extracts were determined. The antioxidant properties of the extract were also studied using DPPH and β-carotene bleaching assays. The ethyl acetate root extract demonstrated selective cytotoxicity especially against MDA-MB-231 with the highest TPC and antioxidant properties compared to others (p < 0.05). The TPC and antioxidant results suggest the contribution of phenolic compounds toward its antioxidant strength leading to significant cytotoxicity. F3 showed potent cytotoxic effects while F4 showed better antioxidative strength compared to others (p < 0.05). Qualitative phytochemical screening of the most active fraction, F3, suggested the presence of flavonoids, coumarins and quinones to be responsible toward the cytotoxicity. The study showed the root extracts of C. vespertilionis to possess notable anti-breast cancer effects.
Collapse
Affiliation(s)
- Joanna Jinling Lee
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43300, Malaysia; (J.J.L.); (N.E.)
| | - Latifah Saiful Yazan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43300, Malaysia; (J.J.L.); (N.E.)
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
- Correspondence: ; Tel.: +603-8947-2308; Fax: +603-8943-6178
| | - Nur Kartinee Kassim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia; (N.K.K.); (P.C.L.); (D.C.T.)
| | | | - Nurulaidah Esa
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43300, Malaysia; (J.J.L.); (N.E.)
| | - Pei Cee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia; (N.K.K.); (P.C.L.); (D.C.T.)
| | - Dai Chuan Tan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia; (N.K.K.); (P.C.L.); (D.C.T.)
| |
Collapse
|
18
|
Roy S, Singh M, Rawat A, Kumar D, Kaithwas G. Mitochondrial apoptosis and curtailment of hypoxia-inducible factor-1α/fatty acid synthase: A dual edge perspective of gamma linolenic acid in ER+ mammary gland cancer. Cell Biochem Funct 2020; 38:591-603. [PMID: 32207176 DOI: 10.1002/cbf.3513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Gamma linolenic acid is a polyunsaturated fatty acid having selective anti-tumour properties with negligible systemic toxicity. In the present study, the anti-cancer potential of gamma linolenic acid and its effects on mitochondrial as well as hypoxia-associated marker was evaluated. The effect of gamma linolenic acid was scrutinised against ER + MCF-7 cells by using fluorescence microscopy, JC-1 staining, dot plot assay and cell cycle analysis. The in vitro results were also confirmed using carcinogen (n-methyl-n-nitrosourea) induced in vivo model. The early and late apoptotic signals in the conjugation with mitochondrial depolarisation were found once scrutinised through mitochondrial membrane potential and life death staining after gamma linolenic acid treatment. Gamma linolenic acid arrested the cell cycle in G0/G1 phase with the majority of cell populations in the early apoptotic stage. The translocation of phosphatidylserine was studied through annexin-V FITC dot plot assay. The markers of cellular proliferation (decreased alveolar bud count, histopathological architecture restoration and loss of tumour micro-vessels) were diminished after gamma linolenic acid treatment. Gamma linolenic acid ameliorates the biological effects of n-methyl-n-nitrosourea persuading the mitochondrial mediated death pathway and impeding the hypoxic microenvironment to make a halt in palmitic acid synthesis. SIGNIFICANCE: The present study elaborates the effect of gamma linolenic acid on mammary gland cancer by following mitochondrial-mediated death apoptosis pathway. Gamma linolenic acid also inhibits cell-wall synthesis by the curtailment of HIF-1α and FASN level in mammary gland cancer.
Collapse
Affiliation(s)
- Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Atul Rawat
- Centre for Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre for Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Hari R, Priyadurairaj, Kumar Reddy P, Thiruvanavukkarasu P, Rajesh S, Karunakaran S. Effect of ethanolic extract of Carica papaya Leaves and their cytotoxicity and apoptotic potential in human ovarian cancer cell lines- PA-1. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_117_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Fouda AM, Okasha RM, Alblewi FF, Mora A, Afifi TH, El-Agrody AM. A proficient microwave synthesis with structure elucidation and the exploitation of the biological behavior of the newly halogenated 3-amino-1H-benzo[f]chromene molecules, targeting dual inhibition of topoisomerase II and microtubules. Bioorg Chem 2019; 95:103549. [PMID: 31887476 DOI: 10.1016/j.bioorg.2019.103549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 11/17/2022]
Abstract
In our endeavors to develop novel and powerful agents with antiproliferative activities, a series of β-enamionitriles, linked to the 8-bromo-1H-benzo[f]chromene moieties (4a-m), was designed and synthesized under microwave irradiation conditions. The structures of the target compounds were established on the basis of their spectral data: IR, 1H NMR, 13C NMR, 13C NMR-DEPT/APT, 19F NMR and MS. Furthermore, the antiproliferative properties were evaluated against the human cancer cell lines MCF-7, HCT-116, and HepG-2 in comparison to the positive controls Vinblastine and Doxorubicin, employing the viability assay. The obtained results confirmed that most of the tested molecules revealed strong and selective cytotoxic activities against the three cancer cell lines. The most potent cytotoxic compounds 4b, 4d, 4e, 4i, and 4k were elected for further examination, such as the cell cycle analysis, the apoptosis assay, the Caspase production, and the DNA fragmentation. This study also revealed that the desired compounds stimulate cell cycle arrest at the G2/M phases, increase the production of Caspases 3, 8, and 9, and finally cause intrinsic and extrinsic apoptotic cell death. Moreover, these compounds suppress the action of the topoisomerase II enzyme and also disrupt the microtubule functions. The SAR study of the synthesized compounds verified that the substitution on the phenyl ring of the 1H-benzo[f]chromene nucleus, accompanied with the presence of the bromine atom at the 8-position, increases the ability of these molecules against different cell lines.
Collapse
Affiliation(s)
- Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Rawda M Okasha
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Fawzia F Alblewi
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Ahmed Mora
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Tarek H Afifi
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| |
Collapse
|
21
|
Barnawi IO, Ali I. Anticancer Potential of Pulicaria crispa Extract on Human Breast Cancer MDA-MB-231 Cells. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666190712110224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background:
Breast cancer is the common cause of deaths among women globally with
15% mortality globally.
Introduction:
Today, about 80% of the rural population depends on natural products as primary
health care. Pulicaria crispa (L., family Compositae) is utilized in traditional medicine for curing
colds, coughs, colic, and excessive sweating and as a carminative.
Methods:
The extracts of Pulicaria crispa; grown in Saudi Arabia; were assessed to measure the
cytotoxicity with MDA-MB-231 breast cancer cell lines. Soxhlet extraction was utilized for stem,
leaves and flower with 70% ethanol. The cytotoxicity of the extracts with MDA-MB-231 breast cancer
cells was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)
and lactate dehydrogenase (LDH) assays.
Results:
The apoptotic cellular morphological alterations were detected by fluorescence microscopes.
The results indicated that Pulicaria crispa exhibited a strong anticancer activity with a halfmaximal
inhibitory concentration (IC50) of 180 µg/mL against breast cancer cells. The loss in cell
integrity, shrinkage of cytoplasm, and cell detachment were seen in the extract treated with MDAMB-
231 cells. The cell death was due to membrane destruction.
Conclusion:
Pulicaria crispa extracts indicated significant cytotoxicity against human breast cancer
cells (MDA-MB-231 cells). The extract of this plant may be given to the patients having breast
cancer.
Collapse
Affiliation(s)
- Ibrahim Omar Barnawi
- Department of Biology, College of Sciences, Taibah University, Al-Medina Al-Munawara - 41477, India
| | - Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara - 41477, Saudi Arabia
| |
Collapse
|
22
|
Pleurotus highking Mushroom Induces Apoptosis by Altering the Balance of Proapoptotic and Antiapoptotic Genes in Breast Cancer Cells and Inhibits Tumor Sphere Formation. ACTA ACUST UNITED AC 2019; 55:medicina55110716. [PMID: 31661925 PMCID: PMC6915458 DOI: 10.3390/medicina55110716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
Background and objectives: Mushrooms that have medicinal properties are part of many traditional diets. The aim of the present study was to use the human breast cancer cell line MCF-7 to investigate the anticancer activity of Pleurotus highking mushroom purified extract fraction-III (PEF-III) and to elucidate the possible mechanism of that activity. Materials and Methods: The effects of PEF-III on cell proliferation and viability were evaluated by a colony formation assay and an MTT assay, respectively. Cell morphological changes, annexin-V phycoerythrin and propidium iodide (PI) staining, DNA fragmentation, and caspase 3/7 activity assays were performed to determine the induction of apoptosis by PEF-III. The genes responsible for regulation of apoptosis were analyzed by means of Western blot analysis. In vitro tumor sphere formation assay was performed using a 3D sphere culture system. Results: PEF-III significantly reduced the proliferation and viability of MCF-7 cells. Cell shrinkage and rounding, and annexin-V phycoerythrin and PI staining followed by flow cytometry indicated that the cell death was due to apoptosis. Additionally, a laddering DNA pattern and increased levels of caspase-3/7 enzyme also corroborated the notion of apoptosis-mediated cell death. This incidence was further confirmed by upregulation of proapoptotic genes (p53 and its target gene, Bax) and downregulation of the expression of an antiapoptotic gene (Bcl-2). PEF-III also reduced the size and number of the tumor spheres in 3D culture conditions. Conclusions: The anticancer activity of PEF-III is due to induction of apoptosis by a shift in the balance of proapoptotic and antiapoptotic genes. Therefore, the findings of the present study may open a path to exploring potential drug candidates from the P.highking mushroom for combating breast cancer.
Collapse
|
23
|
Fouda AM, Assiri MA, Mora A, Ali TE, Afifi TH, El-Agrody AM. Microwave synthesis of novel halogenated β-enaminonitriles linked 9-bromo-1H-benzo[f]chromene moieties: Induces cell cycle arrest and apoptosis in human cancer cells via dual inhibition of topoisomerase I and II. Bioorg Chem 2019; 93:103289. [PMID: 31586716 DOI: 10.1016/j.bioorg.2019.103289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
A novel series of halogenated β-enaminonitriles (4a-m), linked 9-bromo-1H-benzo[f]-hromene moieties, were synthesized via microwave irradiation and were predestined for their cytotoxic activity versus three cancer cell lines, namely: MCF-7, HCT-116, and HepG-2. Several of the tested compounds showed high growth inhibitory activities versus the tumor cell lines. Particularly, compounds 4c, 4d, 4f, 4h, 4j, 4l, and 4m demonstrated superior antitumor activities against the aforementioned cell lines. Moreover, the apoptosis process in all the tested cells was induced by compounds 4c, 4d, 4h, 4l, and 4m, as observed by the Annexin V/PI double staining flow cytometric assay. The DNA flow, cytometric analysis revealed that these compounds prompted cell cycle arrest at the G2/M phases. Furthermore, the topoisomerase catalytic activity assays indicated that these compounds inhibited both the topoisomerase I and II enzymes.
Collapse
Affiliation(s)
- Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ahmed Mora
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Tarik E Ali
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
| | - Tarek H Afifi
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
24
|
De D, Chowdhury P, Panda SK, Ghosh U. Ethanolic extract of leaf of Dillenia pentagyna reduces in-vitro cell migration and induces intrinsic pathway of apoptosis via downregulation of NF-κβ in human NSCLC A549 cells. J Cell Biochem 2019; 120:19841-19857. [PMID: 31318086 DOI: 10.1002/jcb.29289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Despite the advancement of the pharmaceutical industry, medicinal plants are still a reliable source of traditional medicines to cure a number of diseases. Various parts of Dillenia pentagyna are used in traditional medicine in India for treatment of various disorders including cancers, but detailed mechanisms are still unknown. Dried leaves of D. pentagyna were extracted with ethanol and termed as an ethanolic extract of leaves of D. pentagyna (EELDP). Our aim was to elucidate the role of EELDP in in-vitro cell migration and apoptosis in highly metastatic human lung adenocarcinoma A549 cells. We measured cell viability and in-vitro cell migration in three different human cancer cells A549, HeLa and U2OS treated with EELDP (0-0.6 mg/mL). However, A549 cells showed higher sensitivity to EELDP treatment. Hence we studied several key markers of metastasis and apoptosis pathway in A549 cells treated with EELDP. EELDP treatment significantly reduced in-vitro cell migration, wound healing, expression and activity of MMP-2, MMP-9 via reduction of nuclear factor kappa Beta (NF-κβ). EELDP also reduced vimentin, N-cadherin and increased claudin-1. The intrinsic pathway of apoptosis was triggered by EELDP via the NF-κβ pathway through the increase of the Bax to Bcl2 ratio, leading to the fall of mitochondrial membrane potential and subsequently induced release of cytochrome c, activation of caspase-3 followed by nuclear fragmentation in A549 cells. Furthermore, we observed change of a few markers of metastasis and apoptosis in other two cell types HeLa and U2OS treated with EELDP. These data implicate that the effect of EELDP is not cell-specific. Since only 0.1 mg/mL EELDP significantly reduces in-vitro cell migration and increases apoptosis, the active compound(s) present in EELDP is very much potent to control highly metastatic cancer.
Collapse
Affiliation(s)
- Debapriya De
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Priyanka Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Sujogya K Panda
- Department of Zoology, North Orissa University, Baripada, Odisha, India.,Department of Biology, KU Leuven, Leuven, Belgium
| | - Utpal Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
25
|
Wang L, Xu ML, Xin L, Ma C, Yu G, Saravanakumar K, Wang MH. Oxidative stress induced apoptosis mediated anticancer activity of Rhus typhina fruits extract in human colon cancer. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02347-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Yu Z, Yu Z, Chen Z, Yang L, Ma M, Lu S, Wang C, Teng C, Nie Y. Zinc chelator TPEN induces pancreatic cancer cell death through causing oxidative stress and inhibiting cell autophagy. J Cell Physiol 2019; 234:20648-20661. [PMID: 31054150 DOI: 10.1002/jcp.28670] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
The essential trace element zinc (Zn) is widely required in cellular functions, and abnormal Zn homeostasis causes a variety of health problems including immunodeficiency and sensory dysfunctions. Previous studies had shown that Zn availability was also important for tumor growth and progression. The aim of the present study was to investigate the potential mechanisms of N,N,N,N-Tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN) (a membrane permeable zinc chelator) induced pancreatic cancer cell death. The text of inductively coupled plasma-mass spectrometry (ICP-MS) showed in human pancreatic cancer samples that the zinc content in cancer was higher than that in adjacent tissues. The pancreatic cancer cell lines Panc-1, 8988T, BxPc-3, and L3.6 were used in this study. Our results indicated that TPEN markedly induced cell death, via increasing reactive oxygen species (ROS) and restraining autophagy. Our data also indicated that TPEN-stimulated mitochondrial metabolism produced much ROS. Meanwhile, TPEN reduced the levels of glutathione (GSH) and triggered ROS outbreak, which were the main causes of cell death. In addition, cell autophagy was significantly depressed in Panc-1 cells treated by TPEN, which was due to the ability of disrupting lysosomal by TPEN. Thus, we thought zinc depletion by TPEN was a potential therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Zhen Yu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ze Yu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - ZhenBao Chen
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lin Yang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - MingJun Ma
- College of Life Science, Northeast Forestry University, Harbin, China
| | - ShouNan Lu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - ChunSheng Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - ChunBo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - YuZhe Nie
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
27
|
Oyenihi AB, Smith C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:54-72. [PMID: 30287197 DOI: 10.1016/j.jep.2018.09.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Given the severe side effects associated with most of the conventional cancer medications, as well as the expanding body of evidence indicating secondary toxicity of these drugs, individuals with cancer are increasingly turning to natural alternatives. Similarly, the pharmaceutical industry is in search of natural products to treat cancer. An understanding of the specific active components in plant products with which anti-cancer efficacy is achieved is required for this research to move forward. AIM OF THE STUDY To integrate data from cancer-relatestudies on plant-derived products or extracts, to elucidate whether these products may have similar active ingredients and/or mechanisms of action, that can explain their efficacy. This review also includes a discussion of the methodological complexities and important considerations involved in accurate isolation and characterisation of active substances from plant material. CONCLUSIONS From the literature reviewed, most plant products with consistently reported anti-cancer efficacy contains high levels of polyphenols or other potent antioxidants and their mechanisms of action correlate to that reported for isolated antioxidants in the context of cancer. This suggests that natural products may indeed become the panacea against this chronic disease - either as therapeutic medicine strategy or to serve as templates for the design of novel synthetic drugs. The recommendation is made that antioxidant activity of plant actives and especially polyphenols, should be the focus of anti-cancer drug discovery initiatives. Lastly, researchers are advised to exploit current techniques of chemical compound characterisation when investigating polyphenol-rich plants to enable the easy consolidation of research findings from different laboratories.
Collapse
Affiliation(s)
- A B Oyenihi
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - C Smith
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|
28
|
Hari R, Kumar Reddy P, Durairaj P, Thiruvanavukkarasu P. Effect of ethanolic extract of Excoecaria agallocha leaves on the cytotoxic activity and cell cycle arrest of human breast cancer cell lines – MCF-7. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_237_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
30
|
Birjandian E, Motamed N, Yassa N. Crude Methanol Extract of Echinophora Platyloba Induces Apoptosis and Cell Cycle Arrest at S-Phase in Human Breast Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:307-316. [PMID: 29755561 PMCID: PMC5937100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to determine cytotoxic activity of crude methanolic extract of Echinophora platyloba on breast cancer MDA-MB-231 cell line. The free radical scavenging effects of methanolic extract of E. platyloba were tested using DPPH method. Crude methanolic extract exhibited potential antioxidant activity with an IC50 value of 234.28 ± 21.63 μg/mL when compared to the standard BHT with an IC50 value of the 19.5 ± 0.8 μg/mL. In addition, the in-vitro cytotoxic activity of this extract was studied against MDA-MB-231 and MCF-10a cells by MTT assay for 12, 24 and 36 h. Our data showed 534.6 ± 7.2 μg/mL of extract following 24 h of incubation was the most cytotoxic dose against MDA-MB-231 cells in comparison with other doses. This extract could induce apoptosis and promote cell-cycle arrest at S-phase in MDA-MB-231 cells after 24 h of incubation, as compared to the control group (p < 0.001) and could significantly up-regulate the expression of bax and p27 genes at the level of 2.8 and 2.2 folds, respectively. While, a significant amount of down-regulation was observed for bcl-2 gene expression, which was observed to be 0.4 fold. The present results prove the anticancer capacity of crude methanolic extract of E. platyloba to inhibit limit cell proliferation, and inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Elnaz Birjandian
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.,Corresponding author: E-mail:
| | - Narguess Yassa
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Liu JL, Pan YY, Chen O, Luan Y, Xue X, Zhao JJ, Liu L, Jia HY. Curcumin inhibits MCF-7 cells by modulating the NF-κB signaling pathway. Oncol Lett 2017; 14:5581-5584. [PMID: 29142607 DOI: 10.3892/ol.2017.6860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
The present study investigated the inhibitory effect of curcumin on human breast cancer MCF-7 cells and investigated the potential underlying molecular mechanisms. MCF-7 cells were cultured with curcumin at different concentrations and time points. The effects of curcumin treatment on breast cancer cell proliferation were studied using a MTT assay. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to assess the mRNA and protein expression levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax), nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κB) and inhibitor of NF-κB-α (IκBα). The proliferation of MCF-7 cells in the group treated with curcumin was markedly decreased compared with the control, with the greatest inhibitory effect at a concentration of 20 µM. The expression of Bax mRNA was increased and Bcl-2 mRNA expression was decreased compared with the control. Additionally, protein expression of NF-κB and IκB was increased. The data indicate that curcumin is able to inhibit breast cancer cell proliferation, possibly by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jun-Li Liu
- Clinical Molecular Biology Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yan-Yan Pan
- Department of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong 066600, P.R. China
| | - Ou Chen
- College of Nursing, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jing-Jie Zhao
- Clinical Molecular Biology Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ling Liu
- Clinical Molecular Biology Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Hong-Ying Jia
- Center of Evidence-Based Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
32
|
Sabandar CW, Jalil J, Ahmat N, Aladdin NA. Medicinal uses, chemistry and pharmacology of Dillenia species (Dilleniaceae). PHYTOCHEMISTRY 2017; 134:6-25. [PMID: 27889244 DOI: 10.1016/j.phytochem.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/12/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
The genus Dillenia is comprised of about 100 species of evergreen and deciduous trees or shrubs of disjunct distribution in the seasonal tropics of Madagascar through South and South East Asia, Malaysia, North Australia, and Fiji. Species from this genus have been widely used in medicinal folklore to treat cancers, wounds, jaundice, fever, cough, diabetes mellitus, and diarrhea as well as hair tonics. The plants of the genus also produce edible fruits and are cultivated as ornamental plants. Flavonoids, triterpenoids, and miscellaneous compounds have been identified in the genus. Their extracts and pure compounds have been reported for their antimicrobial, anti-inflammatory, cytotoxic, antidiabetes, antioxidant, antidiarrheal, and antiprotozoal activities. Mucilage from their fruits is used in drug formulations.
Collapse
Affiliation(s)
- Carla W Sabandar
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Norizan Ahmat
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Nor-Ashila Aladdin
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Changes in rats' breast tumor ultrastructure and immune and messenger RNA responses caused by dietary Seaweed ( Kappaphycus alvarezii) extract. J Microsc Ultrastruct 2016; 5:70-81. [PMID: 30023239 PMCID: PMC6025758 DOI: 10.1016/j.jmau.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 08/13/2016] [Indexed: 12/16/2022] Open
Abstract
The edible red seaweed Kappaphycus alvarezii or Eucheuma cottonii is commercially cultivated in the pristine tropical seas for carrageenan production. The systemic, cellular, and molecular effects of E. cottonii 50% alcohol extract [seaweed E. cottonii ethanol extract (SECE)] on breast cancer were investigated in a rat model. Mammary tumor was induced by subcutaneously injecting LA7 cells in female rat mammary pads. After 2 weeks of cancer growth, the rats received oral administration of either SECE [150 mg/kg body weight (BW) and 300 mg/kg BW] or tamoxifen. Electron microscopy imaging results confirmed macrophage activity and hematoxylin and eosin staining indicated that tumor histopathological alterations were restored toward normal structures by the seaweed extract. The extract suppressed tumor development and modulated the immune responses. This was evidenced by the microscopic observations, the increased spleen weight, size, spleen CD19 B cells, and blood immunoglobulin G (IgG) levels. The extract also increased the circulating total white blood cells, lymphocytes, segmented neutrophils count, T cells (CD3), T-helper cells (CD4), cytotoxic T cell (CD8), and nuclear factor-kappa beta expressions. The extract enhanced cancer cell death, by upregulating the Birc5, Chk1, and p53 levels and downregulating the tumor growth cellular Mdm2 (transformed mouse 3T3 cell double minute 2) messenger RNA (mRNA) expression. The extract showed no toxicity at 150 mg/kg BW in rats. The lectin-rich SECE showed tumor suppression by enhancing immune responses and upregulating the cancer cell apoptosis mRNA expressions.
Collapse
|
34
|
Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, Armania N, Cheah YK, Abdullah R. Dillenia suffruticosa dichloromethane root extract induced apoptosis towards MDA-MB-231 triple-negative breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:195-204. [PMID: 27131434 DOI: 10.1016/j.jep.2016.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dillenia suffruticosa is traditionally used for treatment of cancerous growth including breast cancer in Malaysia. AIM OF THE STUDY Dillenia suffruticosa is a well-known medicinal plant in Malaysia for the treatment of cancer. Nevertheless, no study has been reported the cytotoxicity of this plant towards MDA-MB-231 triple-negative breast cancer cells. The present study was designed to investigate the mode of cell death and signalling pathways of MDA-MB-231 cells treated with dichloromethane Dillenia suffruticosa root extract (DCM-DS). METHODS Extraction of Dillenia suffruticosa root was performed by the use of sequential solvent procedure. The cytotoxicity of DCM-DS was determined by using MTT assay. The mode of cell death was evaluated by using an inverted light microscope and flow cytometry analysis using Annexin-V/PI. Cell cycle analysis and measurement of reactive oxygen species level were performed by using flow cytometry. The cells were treated with DCM-DS and antioxidants α-tocopherol or ascorbic acid to evaluate the involvement of ROS in the cytotoxicity of DCM-DS. Effect of DCM-DS on the expression of antioxidant, apoptotic, growth, survival genes and proteins were analysed by using GeXP-based multiplex system and Western blot, respectively. The cytotoxicity of compounds isolated from DCM-DS was evaluated towards MDA-MB-231 cells using MTT assay. RESULTS DCM-DS induced apoptosis, G2/M phase cell cycle arrest and oxidative stress in MDA-MB-231 cells. The induction of apoptosis in MDA-MB-231 cells by DCM-DS is possibly due to the activation of pro-apoptotic JNK1 and down-regulation of anti-apoptotic ERK1, which in turn down-regulates anti-apoptotic BCL-2 to increase the BAX/BCL-2 ratio to initiate the mitochondrial apoptotic pathway. The cell cycle arrest in DCM-DS-treated MDA-MB-231 cells is possibly via p53-independent but p21-dependent pathway. A total of 3 triterpene compounds were isolated from DCM-DS. Betulinic acid appears to be the most major and most cytotoxic compound in DCM-DS. CONCLUSION The data suggest the potential application of DCM-DS in the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Latifah Saiful Yazan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Agustono Wibowo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norsharina Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurdin Armania
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Al-Oqail MM, Siddiqui MA, Al-Sheddi ES, Saquib Q, Musarrat J, Al-Khedhairy AA, Farshori NN. Verbesina encelioides: cytotoxicity, cell cycle arrest, and oxidative DNA damage in human liver cancer (HepG2) cell line. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:126. [PMID: 27161012 PMCID: PMC4862229 DOI: 10.1186/s12906-016-1106-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/30/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND Cancer is a major health problem and exploiting natural products have been one of the most successful methods to combat this disease. Verbesina encelioides is a notorious weed with various pharmacological properties. The aim of the present investigation was to screen the anticancer potential of V. encelioides extract against human lung cancer (A-549), breast cancer (MCF-7), and liver cancer (HepG2) cell lines. METHODS A-549, MCF-7, and HepG2 cells were exposed to various concentrations of (10-1000 μg/ml) of V. encelioides for 24 h. Further, cytotoxic concentrations (250, 500, and 1000 μg/ml) of V. encelioides induced oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage in HepG2 cells were studied. RESULTS The exposure of cells to 10-1000 μg/ml of extract for 24 h, revealed the concentrations 250-1000 μg/ml was cytotoxic against MCF-7 and HepG2 cells, but not against A-549 cells. Moreover, the extract showed higher decrease in the cell viability against HepG2 cells than MCF-7 cells. Therefore, HepG2 cells were selected for further studies viz. oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage. The results revealed differential anticancer activity of V. encelioides against A-549, MCF-7 and HepG2 cells. A significant induction of oxidative stress, ROS generation, and MMP levels was observed in HepG2 cells. The cell cycle analysis and comet assay showed that V. encelioides significantly induced G2/M arrests and DNA damage. CONCLUSION These results indicate that V. encelioides possess substantial cytotoxic potential and may warrant further investigation to develop potential anticancer agent.
Collapse
Affiliation(s)
- Mai M Al-Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Maqsood A Siddiqui
- Zoology Department, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Kingdom of Saudi Arabia
- Al-Jeraisy Chair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Ebtesam S Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Quaiser Saquib
- Zoology Department, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Kingdom of Saudi Arabia
- Al-Jeraisy Chair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Javed Musarrat
- Zoology Department, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Kingdom of Saudi Arabia
- Al-Jeraisy Chair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Nida N Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
36
|
Wang Y, Hu PC, Ma YB, Fan R, Gao FF, Zhang JW, Wei L. Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells. Ultrastruct Pathol 2016; 40:200-4. [PMID: 27158913 DOI: 10.3109/01913123.2016.1170083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigated the effects of sodium butyrate (NaB) on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and analyzed the relevant mechanism. Here, we demonstrated that a certain concentration of NaB effectively induced MCF-7 cell apoptosis. Cell counting kit-8 (CCK-8) assay was used to detect cell viability and the apoptosis rate. Western blotting was used to detect changes in the Bcl-2 expression level. We observed cell shape changes with microscopy. Immunofluorescence revealed some apoptotic nuclei. Electron microscopy revealed thick nucleoli, chromatin margination, reduced mitochondria, and dramatic vacuoles. Collectively, our findings elucidated the morphological mechanism by which NaB changed the ultrastructure of MCF-7 cells.
Collapse
Affiliation(s)
- Ying Wang
- a Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences , Wuhan University , Wuhan , Hubei , China
| | - Peng-Chao Hu
- a Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences , Wuhan University , Wuhan , Hubei , China
| | - Yan-Bin Ma
- a Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences , Wuhan University , Wuhan , Hubei , China
| | - Rong Fan
- a Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences , Wuhan University , Wuhan , Hubei , China
| | - Fang-Fang Gao
- a Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences , Wuhan University , Wuhan , Hubei , China
| | - Jing-Wei Zhang
- b Department of Oncology, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , Hubei , China
| | - Lei Wei
- a Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences , Wuhan University , Wuhan , Hubei , China
| |
Collapse
|
37
|
Song J, Wang Y, Teng M, Zhang S, Yin M, Lu J, Liu Y, Lee RJ, Wang D, Teng L. Cordyceps militaris induces tumor cell death via the caspase‑dependent mitochondrial pathway in HepG2 and MCF‑7 cells. Mol Med Rep 2016; 13:5132-40. [PMID: 27109250 PMCID: PMC4878560 DOI: 10.3892/mmr.2016.5175] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/30/2016] [Indexed: 01/07/2023] Open
Abstract
Cordyceps militaris (CM), an entomopathogenic fungus belonging to the class ascomycetes, possesses various pharmacological activities, including cytotoxic effects, on various types of human tumor cells. The present study investigated the anti-hepatocellular carcinoma (HCC) and anti-breast cancer effects of CM in in vitro and in vivo models. CM aqueous extract reduced cell viability, suppressed cell proliferation, inhibited cell migration ability, caused the over-release of lactate dehydrogenase, induced mitochondrial dysfunction and enhanced apoptotic rates in MCF-7 and HepG2 cells. The expression levels of cleaved poly (ADP ribose) polymerase and caspase-3, biomarkers of apoptosis, were increased following treatment with CM aqueous extract for 24 h. Furthermore, in the MCF-7 and HepG2 cells, enhanced levels of B cell-associated X protein and cleaved caspase-8 were observed in the CM-treated cells. Finally, the antitumor activities of CM in HCC and breast cancer were also confirmed in MCF-7- and HepG2-xengraft nude mice models. Collectively, the data obtained in the present study suggested that the cytotoxic effects of CM aqueous extract on HCC and breast cancer are associated with the caspase-dependent mitochondrial pathway.
Collapse
Affiliation(s)
- Jingjing Song
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yingwu Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Meiyu Teng
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Shiqiang Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Mengya Yin
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Jiahui Lu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yan Liu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
38
|
Wan Nor Hafiza WAG, Yazan LS, Tor YS, Foo JB, Armania N, Rahman HS. Endoplasmic reticulum stress-induced apoptotic pathway and mitochondrial dysregulation in HeLa cells treated with dichloromethane extract of Dillenia suffruticosa. Pharmacogn Mag 2016; 12:S86-95. [PMID: 27041866 PMCID: PMC4792007 DOI: 10.4103/0973-1296.176107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/18/2014] [Indexed: 01/21/2023] Open
Abstract
Ethyl acetate and dichloromethane extract of Dillenia suffruticosa (EADS and DCMDS, respectively) can be a potential anticancer agent. The effects of EADS and DCMDS on the growth of HeLa cervical cancer cells and the expression of apoptotic-related proteins had been investigated in vitro. Cytotoxicity of the extracts toward the cells was determined by 5-diphenyltetrazolium bromide assay, the effects on cell cycle progression and the mode of cell death were analyzed by flow cytometry technique, while the effects on apoptotic-related genes and proteins were evaluated by quantitative real-time polymerase chain reaction, and Western blot and enzyme-linked immunosorbent assay, respectively. Treatment with DCMDS inhibited (P < 0.05) proliferation and induced apoptosis in HeLa cells. The expression of cyclin B1 was downregulated that led to G2/M arrest in the cells after treatment with DCMDA. In summary, DCMDS induced apoptosis in HeLa cells via endoplasmic reticulum stress-induced apoptotic pathway and dysregulation of mitochondria. The data suggest the potential application of DCMDS in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Wan Abd Ghani Wan Nor Hafiza
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; College of Medical Laboratory Technology, Institute for Medical Research, Jin Pahang, 50588 Kuala Lumpur, Malaysia
| | - Latifah Saiful Yazan
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurdin Armania
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Microbiology and Pathology, Faculty of Veterinary Medicine, 43400 UPM Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
39
|
Yazan LS, Ong YS, Zaaba NE, Ali RM, Foo JB, Tor YS. Anti-breast cancer properties and toxicity of Dillenia suffruticosa root aqueous extract in BALB/c mice. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Seaweed (Eucheuma cottonii) reduced inflammation, mucin synthesis, eosinophil infiltration and MMP-9 expressions in asthma-induced rats compared to Loratadine. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Ravi M, Tentu S, Baskar G, Rohan Prasad S, Raghavan S, Jayaprakash P, Jeyakanthan J, Rayala SK, Venkatraman G. Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells. BMC Cancer 2015; 15:768. [PMID: 26499490 PMCID: PMC4619068 DOI: 10.1186/s12885-015-1784-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022] Open
Abstract
Background Triple-negative breast cancers represent an important clinical challenge, as these cancers do not respond to conventional endocrine therapies or other available targeted agents. Phycocyanin (PC), a natural, water soluble and non-toxic molecule is shown to have potent anti-cancer property. Methods In this study, we determined the efficacy of PC as an anti-neoplastic agent in vitro on a series of breast cancer cell lines. We studied effects of PC in inducing DNA damage and apoptosis through western blot and qPCR. Also, anti-metastatic and anti-angiogenic properties were studied by classic wound healing and vasculogenic mimicry assays. Results We found that triple negative MDA-MB-231 cells were most sensitive to PC (IC50 : 5.98 ± 0.95 μM) as compared to other cells. They also showed decreased cell proliferation and reduced colony formation ability upon treatment with PC. Profile of Cell cycle analysis showed that PC caused G1 arrest which could be attributed to decreased mRNA levels of Cyclin E and CDK-2 and increased p21 levels. Mechanistic studies revealed that PC induced apoptosis as evident by increase in percentage of annexin positive cells, increase in γ-H2AX levels, and by changing the Bcl-2/Bax ratio followed by release of cytochrome C and increased Caspase 9 levels. MDA MB 231 cells treated with PC resulted in decreased cell migration and increased cell adhesive property and also showed anti-angiogenic effects. We also observed that PC suppressed cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) production. All these biological effects of phycocyanin on MDA MB 231 cells could be attributed to decreased MAPK signaling pathway. We also observed that PC is non-toxic to non-malignant cells, platelets and RBC’s. Conclusion Taken together, these findings demonstrate, for the first time, that PC may be a promising anti-neoplastic agent for treatment of triple negative breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1784-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mathangi Ravi
- Department of Human Genetics, Sri Ramachandra University, Chennai, 600116, India.
| | - Shilpa Tentu
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, 600036, India.
| | - Ganga Baskar
- Department of Human Genetics, Sri Ramachandra University, Chennai, 600116, India.
| | - Surabhi Rohan Prasad
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, 600036, India.
| | - Swetha Raghavan
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, 600036, India.
| | | | | | - Suresh K Rayala
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, 600036, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra University, Chennai, 600116, India.
| |
Collapse
|
42
|
Adhikari M, Arora R. Nano-silymarin provides protection against γ-radiation-induced oxidative stress in cultured human embryonic kidney cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 792:1-11. [PMID: 26433256 DOI: 10.1016/j.mrgentox.2015.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/29/2015] [Accepted: 08/11/2015] [Indexed: 01/04/2023]
Abstract
Radiation can produce biological damage, mainly oxidative stress, via production of free radicals, including reactive oxygen species (ROS). Nanoparticles are of interest as radioprotective agents, particularly due to their high solubility and bioavailability. Silymarin is a hepatoprotective agent but has poor oral bioavailability. Silymarin was formulated as a nanoemulsion with the aim of improving its bioavailability and therapeutic efficacy. In the present study, we evaluated self-nanoemulsifying drug delivery systems (SNEDDS) formulated with surfactants and co-surfactants. Nano-silymarin was characterized by estimating % transmittance, globule size, and polydispersity index, and by transmission electron microscopy (TEM). The nano-silymarin obtained was in the range of 3-8nm diameter. With regard to DNA damage, measured by a plasmid relaxation assay, maximum protection was obtained at 10μg/mL. Cytotoxicity of nano-silymarin to human embryonic kidney (HEK) cells was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Protective efficacy against γ-radiation was assessed by reduction in micronucleus frequency and ROS generation, using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay. Radiation-induced apoptosis was estimated by microscopic analysis and cell-cycle estimation. Nano-silymarin was radioprotective, supporting the possibility of developing new approaches to radiation protection via nanotechnology.
Collapse
Affiliation(s)
- Manish Adhikari
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Rajesh Arora
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig SK Mazumdar Marg, Delhi 110054, India; Office of the Director General-Life Sciences and Distinguished Scientist, DRDO Head Quarters, DRDO Bhawan, Rajaji Marg, New Delhi 110011, India.
| |
Collapse
|
43
|
Tor YS, Yazan LS, Foo JB, Wibowo A, Ismail N, Cheah YK, Abdullah R, Ismail M, Ismail IS, Yeap SK. Induction of Apoptosis in MCF-7 Cells via Oxidative Stress Generation, Mitochondria-Dependent and Caspase-Independent Pathway by Ethyl Acetate Extract of Dillenia suffruticosa and Its Chemical Profile. PLoS One 2015; 10:e0127441. [PMID: 26047480 PMCID: PMC4457850 DOI: 10.1371/journal.pone.0127441] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/14/2015] [Indexed: 01/10/2023] Open
Abstract
Dillenia suffruticosa, which is locally known as Simpoh air, has been traditionally used to treat cancerous growth. The ethyl acetate extract of D. suffruticosa (EADs) has been shown to induce apoptosis in MCF-7 breast cancer cells in our previous study. The present study aimed to elucidate the molecular mechanisms involved in EADs-induced apoptosis and to identify the major compounds in the extract. EADs was found to promote oxidative stress in MCF-7 cells that led to cell death because the pre-treatment with antioxidants α-tocopherol and ascorbic acid significantly reduced the cytotoxicity of the extract (P<0.05). DCFH-DA assay revealed that treatment with EADs attenuated the generation of intracellular ROS. Apoptosis induced by EADs was not inhibited by the use of caspase-inhibitor Z-VAD-FMK, suggesting that the cell death is caspase-independent. The use of JC-1 dye reflected that EADs caused disruption in the mitochondrial membrane potential. The related molecular pathways involved in EADs-induced apoptosis were determined by GeXP multiplex system and Western blot analysis. EADs is postulated to induce cell cycle arrest that is p53- and p21-dependent based on the upregulated expression of p53 and p21 (P<0.05). The expression of Bax was upregulated with downregulation of Bcl-2 following treatment with EADs. The elevated Bax/Bcl-2 ratio and the depolarization of mitochondrial membrane potential suggest that EADs-induced apoptosis is mitochondria-dependent. The expression of oxidative stress-related AKT, p-AKT, ERK, and p-ERK was downregulated with upregulation of JNK and p-JNK. The data indicate that induction of oxidative-stress related apoptosis by EADs was mediated by inhibition of AKT and ERK, and activation of JNK. The isolation of compounds in EADs was carried out using column chromatography and elucidated using the nuclear resonance magnetic analysis producing a total of six compounds including 3-epimaslinic acid, kaempferol, kaempferide, protocatechuic acid, gallic acid and β-sitosterol-3-O-β-D-glucopyranoside. The cytotoxicity of the isolated compounds was determined using MTT assay. Gallic acid was found to be most cytotoxic against MCF-7 cell line compared to others, with IC50 of 36 ± 1.7 μg/mL (P<0.05). In summary, EADs generated oxidative stress, induced cell cycle arrest and apoptosis in MCF-7 cells by regulating numerous genes and proteins that are involved in the apoptotic signal transduction pathway. Therefore, EADs has the potential to be developed as an anti-cancer agent against breast cancer.
Collapse
Affiliation(s)
- Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Latifah Saiful Yazan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Agustono Wibowo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Norsharina Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Maznah Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
44
|
Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, How CW, Armania N, Loh SP, Ismail IS, Cheah YK, Abdullah R. Induction of cell cycle arrest and apoptosis by betulinic acid-rich fraction from Dillenia suffruticosa root in MCF-7 cells involved p53/p21 and mitochondrial signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 166:270-278. [PMID: 25797115 DOI: 10.1016/j.jep.2015.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dillenia suffruticosa (Family: Dilleniaceae) or commonly known as "Simpoh air" in Malaysia, is traditionally used for treatment of cancerous growth including breast cancer. AIM OF THE STUDY D. suffruticosa root dichloromethane extract (DCM-DS) has been reported to induce G0/G1 phase cell cycle arrest and apoptosis in caspase-3 deficient MCF-7 breast cancer cells. The present study was designed to investigate the involvement of p53/p21 and mitochondrial pathway in DCM-DS-treated MCF-7 cells as well as to identify the bioactive compounds responsible for the cytotoxicity of DCM-DS. MATERIALS AND METHODS Extraction of D. suffruticosa root was performed by the use of sequential solvent procedure. GeXP-based multiplex system was employed to investigate the expression of p53, p21, Bax and Bcl-2 genes in MCF-7 cells treated with DCM-DS. The protein expression was then determined using Western blot analysis. The bioactive compounds present in DCM-DS were isolated by using column chromatography. The structure of the compounds was elucidated by using nuclear magnetic resonance spectroscopy. The cytotoxicity of the isolated compounds towards MCF-7 cells was evaluated by using MTT assay. The percentage of betulinic acid (BA) in DCM-DS was determined by HPLC analysis. RESULTS The expression of p53 was significantly up-regulated at protein level. The expression of p21 at both gene and protein levels was significantly up-regulated upon treatment with DCM-DS, suggesting that the induction of G0/G1 phase cell cycle arrest in MCF-7 cells was via p53/p21 pathway. Bcl-2 protein was down-regulated with no change at the mRNA level, postulating that post-translational modification has occurred resulting in the degradation of Bcl-2 protein. Overall, treatment with DCM-DS increased the ratio of Bax/Bcl-2 that drove the cells to undergo apoptosis. A total of 3 triterpene compounds were isolated from DCM-DS. Betulinic acid appears to be the most major and most cytotoxic compound in DCM-DS. CONCLUSION DCM-DS induced cell cycle arrest and apoptosis in MCF-7 cells via p53/p21 pathway. In addition, DCM-DS induced apoptosis by increasing the ratio of Bax/Bcl-2. Betulinic acid, which is one of the major compounds, is responsible for the cytotoxicity of the DCM-DS. Therefore, BA can be used as a marker for standardisation of herbal product from D. suffruticosa. DCM-DS can also be employed as BA-rich extract from roots of D. suffruticosa for the management of breast cancer.
Collapse
Affiliation(s)
- Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Latifah Saiful Yazan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Agustono Wibowo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norsharina Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chee Wun How
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurdin Armania
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Su Peng Loh
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Product, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
45
|
Antiproliferative and Apoptosis Induction Potential of the Methanolic Leaf Extract of Holarrhena floribunda (G. Don). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:756482. [PMID: 25861368 PMCID: PMC4377504 DOI: 10.1155/2015/756482] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Natural plant products with potent growth inhibition and apoptosis induction properties are extensively being investigated for their cancer chemopreventive potential. Holarrhena floribunda (HF) is used in a wide range of traditional medicine practices. The present study investigated the antiproliferative and apoptosis induction potential of methanolic leaf extracts of HF against breast (MCF-7), colorectal (HT-29), and cervical (HeLa) cancer cells relative to normal KMST-6 fibroblasts. The MTT assay in conjunction with the trypan blue dye exclusion and clonogenic assays were used to determine the effects of the extracts on the cells. Caspase activities were assayed with Caspase-Glo 3/7 and Caspase-9 kits. Apoptosis induction was monitored by flow cytometry using the APOPercentage and Annexin V-FITC kits. Reactive oxygen species (ROS) was measured using the fluorogenic molecular probe 5-(and-6)-chloromethyl-2′,7′-dichlorofluorescein diacetate acetyl ester and cell cycle arrest was detected with propidium iodide. Dose-response analyses of the extract showed greater sensitivity in cancer cell lines than in fibroblast controls. Induction of apoptosis, ROS, and cell cycle arrest were time- and dose-dependent for the cancer cell lines studied. These findings provide a basis for further studies on the isolation, characterization, and mechanistic evaluation of the bioactive compounds responsible for the antiproliferative activity of the plant extract.
Collapse
|
46
|
Kuang CC, Wang Y, Hu PC, Gao FF, Bu L, Wen XM, Xiang QM, Song H, Li Q, Wei L, Li K. Ritonavir-induced hepatotoxicity and ultrastructural changes of hepatocytes. Ultrastruct Pathol 2014; 38:329-34. [PMID: 25079492 DOI: 10.3109/01913123.2014.914114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the effect of ritonavir on hepatocyte proliferation, we detected the change of cleaved caspase-3 expression level in the hepatocytes. Furthermore, the morphological and ultrastructural changes of hepatocytes derived from RTV-treated mice have been observed. The results showed that ritonavir can evidently inhibit hepatocyte proliferation and increase cleaved caspase-3 expression level. Under the electron microscope, chromatin margination, mitochondrial cristae disappearance, karyopyknosis and cytoplasmic vacuolization can be observed in the hepatocytes of mice treated with ritonavir. In conclusion, the mechanism of ritonavir's hepatotoxicity is that it induces apoptosis of hepatocytes via the caspase-cascade system.
Collapse
Affiliation(s)
- Chang-Chun Kuang
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Medicine, Wuhan University , Wuhan, Hubei , PR China and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|