1
|
Caglak A, Sari-Erkan H, Onkal Engin G. Chemical oxygen demand and tannin/lignin removal from paper mill wastewater by electrocoagulation combined with peroxide and hypochlorite treatments. ENVIRONMENTAL TECHNOLOGY 2024; 45:3076-3094. [PMID: 37105959 DOI: 10.1080/09593330.2023.2206529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The present investigation sought to assess the practicality of utilizing a combined pre-treatment approach comprising electrocoagulation, peroxide, and hypochlorite treatments for the removal of chemical oxygen demand (COD) and tannin/lignin from paper mill wastewater. The study aimed to optimize the operating parameters with a view to maximizing the removal efficiencies while minimizing energy consumption. A pair of iron electrodes were used as anode and cathode in the study, and the main operating parameters were determined as initial pH, applied current, treatment time and oxidant dosage/COD ratio. Response surface methodology (RSM) was used to evaluate the effect of these parameters on COD and tannin/lignin removals. The primary findings of the investigation indicated that the integration of electrocoagulation with peroxide and hypochlorite treatments exhibited efficacy in removing COD, tannin/lignin, colour, phenol, and turbidity from paper mill wastewater. The optimized conditions resulted in COD removal efficiencies of 48.13 ± 2.2% and 29.53 ± 1.4% for EC with H2O2 and Ca(OCl)2, respectively. Tannin/lignin removal efficiencies were 92.59 ± 3.6% and 94.09 ± 1.8% for EC-H2O2 and EC-Ca(OCl)2, respectively. The specific energy consumption (SEC) values showed that EC-Ca(OCl)2 required 7 times more energy than EC-H2O2 for removing 1 kg COD. The principal deduction drawn from the study was that EC-H2O2 pre-treatment demonstrated superior COD removal efficiency and lower energy consumption, while EC-Ca(OCl)2 pre-treatment exhibited greater efficiency in removing toxic and recalcitrant pollutants. In future studies, it would be useful to conduct research to increase COD removal efficiency in addition to tannin/lignin removal in EC-Ca(OCl)2 process.
Collapse
Affiliation(s)
- Abdulkadir Caglak
- Civil Engineering Faculty, Environmental Engineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Hanife Sari-Erkan
- Civil Engineering Faculty, Environmental Engineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Guleda Onkal Engin
- Civil Engineering Faculty, Environmental Engineering Department, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Bendjeffal H, Mamine H, Boukachabia M, Aloui A, Metidji T, Djebli A, Bouhedja Y. A Box-Behnken design-based chemometric approach to optimize the sono-photodegradation of hydroxychloroquine in water media using the Fe(0)/S 2O 82-/UV system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22453-22470. [PMID: 38407707 DOI: 10.1007/s11356-024-32596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The huge utilization of hydroxychloroquine in autoimmune infections led to an abnormal increment in its concentration in wastewater, which can pose a real risk to the environment, necessitating the development of a pretreatment technique. To do this, we are interested in researching how hydroxychloroquine degrades in contaminated water. The main goal of this investigation is to optimize the operating conditions for the sono-photodegradation of hydroxychloroquine in water using an ultrasound-assisted Fe(0)/S 2 O 8 2 - /UV system. To get adequate removal of HCQ, a chemometric method based on the Box-Behnken design was applied to optimize the influence of the empirical parameters selected, including Fe(0) dose,S 2 O 8 2 - concentration, pH, and initial HCQ concentration. The quadratic regression model representing the HCQ removal rate (η(%)) was evolved and validated by ANOVA. The optimal conditions as a result of the above-mentioned trade-off between the four input variables, with η(%) as the dependent output variable, were captured using RSM methodology and the composite desirability function approach. For HCQ full decomposition, the optimal values of the operating factors are as follows:S 2 O 8 2 - dose, 194.309 mg/L; Fe(0) quantity, 198.83 mg/L; pH = 2.017, and HCQ initial dose of 296.406 mg/L. Under these conditions, the HCQ removal rate, achieved after 60 min of reaction, attained 98.95%.
Collapse
Affiliation(s)
- Hacene Bendjeffal
- Laboratory of Physical Chemistry and Biology of Materials, Ecole Normale Superieure d'Enseignement Technologique de Skikda, Azzaba, Algeria.
| | - Hadjer Mamine
- Laboratory of Physical Chemistry and Biology of Materials, Ecole Normale Superieure d'Enseignement Technologique de Skikda, Azzaba, Algeria
| | - Mourad Boukachabia
- Ecocompatible Asymmetric Catalysis Laboratory, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Amel Aloui
- Laboratory of Physical Chemistry and Biology of Materials, Ecole Normale Superieure d'Enseignement Technologique de Skikda, Azzaba, Algeria
| | - Toufek Metidji
- LTEVI Laboratry, Badji Mokhtar-Annaba University, Annaba, Algeria
| | | | - Yacine Bouhedja
- Ecocompatible Asymmetric Catalysis Laboratory, Badji Mokhtar-Annaba University, Annaba, Algeria
| |
Collapse
|
3
|
Tajik A, Samadlouie HR, Salek Farrokhi A, Ghasemi A. Optimization of chemical conditions for metabolites production by Ganoderma lucidum using response surface methodology and investigation of antimicrobial as well as anticancer activities. Front Microbiol 2024; 14:1280405. [PMID: 38318131 PMCID: PMC10839005 DOI: 10.3389/fmicb.2023.1280405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Ganoderma lucidum (G. lucidum) is a medicinal mushroom that is known for its ability to produce compounds with physiological effects on human health. This research was undertaken to amplify the production of bioactive components of G. lucidum under optimal cultivation conditions, obtained in a submerged state and utilized in solid state fermentation, with the purpose of enhancing antimicrobial and anticancer activities. The results indicated that titanium dioxide (TiO2 NPs), magnesium oxide nanoparticles (MgO2 NPs), and B6, along with glucose syrup and CLS syrups, were the most effective for producing GA, while wheat starch and whey protein, along with MgO2 NPs and B6 vitamin, stimulated polysaccharide production using the One Factor at a Time (OFAT) method. After screening, the response surface method (RSM) statistically indicated that the media containing 42.11 g/L wheat starch with 22 g/L whey protein and 50 g/L glucose syrup with 30 g/L CSL were found to be the best conditions for polysaccharide (21.47% of dry weight biomass) and GA (20.35 mg/g dry weight biomass) production, respectively. The moss of the fruit body of G. lucidum produced under optimal GA conditions had the highest diversity in flavonoids and phenolic acids and significant antimicrobial activity against Esherichia coli (E. coli) and Bacillus subtilis (B. subtilis). In addition, the IC50 levels of shell and stem of G. lucidum were 465.3 and 485.7 μg/mL, respectively, while the moss did not reach 50% inhibition. In the end, the statistical approaches utilized in this research to elevate the levels of bioactive components in the fruiting body of G. lucidum produced a promising natural source of antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Alireza Tajik
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Hamid Reza Samadlouie
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | | | - Amir Ghasemi
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
4
|
Moon S, Saboe A, Smanski MJ. Using design of experiments to guide genetic optimization of engineered metabolic pathways. J Ind Microbiol Biotechnol 2024; 51:kuae010. [PMID: 38490746 PMCID: PMC10981448 DOI: 10.1093/jimb/kuae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/14/2024] [Indexed: 03/17/2024]
Abstract
Design of experiments (DoE) is a term used to describe the application of statistical approaches to interrogate the impact of many variables on the performance of a multivariate system. It is commonly used for process optimization in fields such as chemical engineering and material science. Recent advances in the ability to quantitatively control the expression of genes in biological systems open up the possibility to apply DoE for genetic optimization. In this review targeted to genetic and metabolic engineers, we introduce several approaches in DoE at a high level and describe instances wherein these were applied to interrogate or optimize engineered genetic systems. We discuss the challenges of applying DoE and propose strategies to mitigate these challenges. ONE-SENTENCE SUMMARY This is a review of literature related to applying Design of Experiments for genetic optimization.
Collapse
Affiliation(s)
- Seonyun Moon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St Paul, MN 55108, USA
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Anna Saboe
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St Paul, MN 55108, USA
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
5
|
Ebu SM, Adem MA, Dekebo A, Olani A. Isolation and Identification of Endophytic Bacterial Isolates from the Leaves, Roots, and Stems Parts of Artemisia annua, Moringa oleifera, and Ocimum lamiifolium Plants. Curr Microbiol 2023; 80:405. [PMID: 37930451 DOI: 10.1007/s00284-023-03513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Medicinal plants are known to harbor diverse species of endophytic bacteria which are known for secretion of beneficial secondary metabolites, like enzymes and antimicrobial compounds. The present study aimed to isolate, characterize, and identify the endophytic bacteria isolates from Artemisia annua, Moringa oleifera, and Ocimum lamiifolium plants. Certain endophytic bacterial isolates were screened. Phosphate and Zinc solubilization were performed for newly obtained isolates. The 16S rRNA gene sequencing was performed for RPAAI-8 isolate. Data were analyzed. Our study showed that endophytic bacterial isolates were recognized to be Bacillus cereus, B. subtilis, Citrobacter freundii, Enterobacter asburiae, E. cloacae, E. kobei, E. ludwigii, Enterococcus faecium, and Pseudomonas monteilli. From among these differentiated endophytic bacterial isolates, Enterobacter species are the most frequently obtained isolates. These bacterial isolates were shown 99.77% sequence similarity to Enterobacter ludwigii EN-119T (JTLO01000001) using 16S rRNA gene sequencing. This isolate was designated as Enterobacter sp. RPAAI-8. This isolate was able to employ selected cheap and cost-effective agro wastes as a carbon source. This cheap agro waste utilization by these Enterobacter species could be the first report. In conclusion, the present isolates are found to be employed for plant growth promotion and solubilizing insoluble phosphate and zinc. Before this time, most of the recent isolates were not identified from these medicinal plants. The ethyl acetate extract of the isolates also showed inhibitory activity against selected test pathogens.
Collapse
Affiliation(s)
- Seid Mohammed Ebu
- Department of Applied Biology, Adama Science and Technology University, Adama, Oromia, Ethiopia.
| | - Muktar Ahmed Adem
- Department of Applied Biology, Adama Science and Technology University, Adama, Oromia, Ethiopia
| | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Oromia, Ethiopia
| | - Ababe Olani
- Istitute of Biotechnology, Sebeta, Oromia, Ethiopia
| |
Collapse
|
6
|
Bendjeffal H, Mamine H, Metidji T, Djebli A, Diaf R, Bouhedja Y. A Box-Behnken design-based chemometric approach to optimize the removal of phosphate ions from water using Punica granatum shells. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2174542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- H. Bendjeffal
- Laboratoire de chimie physique et biologie de matériaux, École normale supérieure d‘enseignement technologique de skikda, Azzaba, Algeria
| | - H. Mamine
- Laboratoire de chimie physique et biologie de matériaux, École normale supérieure d‘enseignement technologique de skikda, Azzaba, Algeria
| | - T. Metidji
- Laboratoire De Traitement Des eaux et Valorisation Des déchets Industriels, Université Badji Mokhtar Annaba, Annaba, Algeria
| | - A. Djebli
- Centre de Recherche Scientifique Et Technique en Analyses Physico-Chimiques, Tipaza, Algeria
| | - R. Diaf
- Laboratoire De Traitement Des eaux et Valorisation Des déchets Industriels, Université Badji Mokhtar Annaba, Annaba, Algeria
| | - Y. Bouhedja
- Laboratoire De Traitement Des eaux et Valorisation Des déchets Industriels, Université Badji Mokhtar Annaba, Annaba, Algeria
| |
Collapse
|
7
|
Melini F, Luziatelli F, Bonini P, Ficca AG, Melini V, Ruzzi M. Optimization of the growth conditions through response surface methodology and metabolomics for maximizing the auxin production by Pantoea agglomerans C1. Front Microbiol 2023; 14:1022248. [PMID: 36970660 PMCID: PMC10030972 DOI: 10.3389/fmicb.2023.1022248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction The fermentative production of auxin/indole 3-acetate (IAA) using selected Pantoea agglomerans strains can be a promising approach to developing novel plant biostimulants for agriculture use. Methods By integrating metabolomics and fermentation technologies, this study aimed to define the optimal culture conditions to obtain auxin/IAA-enriched plant postbiotics using P. agglomerans strain C1. Metabolomics analysis allowed us to demonstrate that the production of a selected. Results and discussion Array of compounds with plant growth-promoting- (IAA and hypoxanthine) and biocontrol activity (NS-5, cyclohexanone, homo-L-arginine, methyl hexadecenoic acid, and indole-3-carbinol) can be stimulated by cultivating this strain on minimal saline medium amended with sucrose as a carbon source. We applied a three-level-two-factor central composite design (CCD) based response surface methodology (RSM) to explore the impact of the independent variables (rotation speed and medium liquid-to-flask volume ratio) on the production of IAA and IAA precursors. The ANOVA component of the CCD indicated that all the process-independent variables investigated significantly impacted the auxin/IAA production by P. agglomerans strain C1. The optimum values of variables were a rotation speed of 180 rpm and a medium liquid-to-flask volume ratio of 1:10. Using the CCD-RSM method, we obtained a maximum indole auxin production of 208.3 ± 0.4 mg IAAequ/L, which was a 40% increase compared to the growth conditions used in previous studies. Targeted metabolomics allowed us to demonstrate that the IAA product selectivity and the accumulation of the IAA precursor indole-3-pyruvic acid were significantly affected by the increase in the rotation speed and the aeration efficiency.
Collapse
Affiliation(s)
- Francesca Melini
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
- CREA Research Centre for Food and Nutrition, Rome, Italy
| | - Francesca Luziatelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
- *Correspondence: Francesca Luziatelli, ; Maurizio Ruzzi,
| | | | - Anna Grazia Ficca
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | | | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
- *Correspondence: Francesca Luziatelli, ; Maurizio Ruzzi,
| |
Collapse
|
8
|
Tang J, Lin B, Jiang W, Li Q, Zhu L, Zhang G, Chen Q, Yang Q, Yang S, Chen S. Screening of β -damascenone-producing strains in light-flavor Baijiu and its production optimization via response surface methodology. Front Microbiol 2022; 13:1067671. [PMID: 36523831 PMCID: PMC9745179 DOI: 10.3389/fmicb.2022.1067671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 08/27/2024] Open
Abstract
As a C13-norisoprenoid aroma substance, β-damascenone is a highly important aromatic compound and an active constituent. The purpose of this study was to investigate the change law of β-damascenone during the light-flavor Baijiu brewing process, and screen the indigenous microbial strains that produce this compound and optimize fermentation parameters for improving β-damascenone production using a statistical approach. In this project, Wickerhamomyces anomalus YWB-1 exhibited the highest producing activity of β-damascenone. Fermentation conditions were optimized for β-damascenone production using a one-factor-at-a-time (OFAT) approach. A Plackett-Burman design was subsequently adopted to assess the effects of initial pH, incubation temperature, inoculum size, fermentation period, and original Brix degree. Analysis of variance (ANOVA) showed that the correlation coefficient (R 2) of the executive model was 0.9795, and this value was significant (p < 0.05). Three significant variables were optimized at three different coded levels using a Box-Behnken design (BBD) of response surface methodology (RSM). Here, 7.25 μg/L β-damascenone was obtained under the following optimum conditions: initial pH of 3.31, original Brix degree of 10.53%, and fermentation period of 52.13 h. The yield was increased 3.02-fold compared with that obtained under unoptimized conditions. This information is conducive to the control of flavor production by regulating variable parameters in Baijiu fermentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shenxi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co., Ltd., Daye, China
| |
Collapse
|
9
|
Chen J, Lan X, Jia R, Hu L, Wang Y. Response Surface Methodology (RSM) Mediated Optimization of Medium Components for Mycelial Growth and Metabolites Production of Streptomyces alfalfae XN-04. Microorganisms 2022; 10:microorganisms10091854. [PMID: 36144456 PMCID: PMC9501596 DOI: 10.3390/microorganisms10091854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces alfalfae XN-04 has been reported for the production of antifungal metabolites effectively to control Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum (Fov). In this study, we used integrated statistical experimental design methods to investigate the optimized liquid fermentation medium components of XN-04, which can significantly increase the antifungal activity and biomass of XN-04. Seven variables, including soluble starch, KNO3, soybean cake powder, K2HPO4, MgSO4·7H2O, CaCO3 and FeSO4·7H2O, were identified as the best ingredients based on one-factor-at-a-time (OFAT) method. The results of Plackett–Burman Design (PBD) showed that soluble starch, soybean cake powder and K2HPO4 were the most significant variables among the seven variables. The steepest climbing experiment and response surface methodology (RSM) were performed to determine the interactions among these three variables and fine-tune the concentrations. The optimal compositions of medium were as follows: soluble starch (26.26 g/L), KNO3 (1.00 g/L), soybean cake powder (23.54 g/L), K2HPO4 (0.27 g/L), MgSO4·7H2O (0.50 g/L), CaCO3 (1.00 g/L) and FeSO4·7H2O (0.10 g/L). A verification experiment was then carried out under the optimized conditions, and the results revealed the mycelial dry weight of S. alfalfae XN-04 reaching 6.61 g/L. Compared with the initial medium, a 7.47-fold increase in the biomass was achieved using the optimized medium. Moreover, the active ingredient was purified from the methanol extract of S. alfalfae XN-04 mycelium and then identified as roflamycoin (a polyene macrolide antibiotic). The results may provide new insights into the development of S. alfalfae XN-04 fermentation process and the control of the Fusarium wilt of cotton and other plant diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yang Wang
- Correspondence: ; Tel.: +86-187-9280-9011
| |
Collapse
|
10
|
Alahmad Aljammas H, Yazji S, Azizieh A. Optimization of protease production from Rhizomucor miehei Rm4 isolate under solid-state fermentation. J Genet Eng Biotechnol 2022; 20:82. [PMID: 35635657 PMCID: PMC9151939 DOI: 10.1186/s43141-022-00358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Protease is one of the most important industrial enzymes. The importance of protease bioproduction comes from meeting the increasing demand for this enzyme especially in the cheese industry. Rhizomucor miehei protease is the preferred substitute for the traditional rennet. Solid-state fermentation (SSF) shows promising results in enzyme production. An optimization strategy was applied to optimize the production of Rhizomucor miehei protease in a solid medium. The components of the fermentation medium were screened by using the one-factor-at-a-time (OFAT) approach. The optimization process then was performed by using the response surface methodology (RSM) approach based on five factors (fermentation time, temperature, pH, moisture content, nitrogen concentration) at five levels. Specific milk clotting activity and milk clotting activity/proteolytic activity ratio were considered as response variables in the optimization process. RESULTS Among several combinations, wheat bran was selected as the best substrate. Casein was selected based on preliminary screening of nitrogen sources. The optimal conditions identified by RSM analysis were found to be 81.21 h, 41.11°C, 6.31, 80%, and 1.33% for fermentation time, temperature, pH, moisture content, and casein concentration, respectively. The performed fermentation process under the optimized conditions gave an enzymatic extract with the values of 5.11 mg/mL, 2258.13 Soxhlet unit/mL, 441.90 Soxhlet unit/mg, 1.14 protease unit/mg, and 388.66 for protein content, milk clotting activity, specific clotting activity, specific proteolytic activity, and milk clotting activity/proteolytic activity ratio, respectively. The aforementioned values were close to the predicted values. CONCLUSION The high milk clotting activity and the relatively low proteolytic activity signify higher specificity of the produced enzyme, which is favorable in cheese making. The observed results reveal the efficiency of the applied statistical approaches in obtaining desired values of response variables and minimizing experimental runs, as well as achieving good predictions for response variables.
Collapse
Affiliation(s)
- Houthail Alahmad Aljammas
- Department of Food Sciences, Faculty of Agricultural Engineering, Damascus University, Damascus, Syria
| | - Sabah Yazji
- Department of Food Sciences, Faculty of Agricultural Engineering, Damascus University, Damascus, Syria
| | - Abdulhakim Azizieh
- Department of Food Sciences, Faculty of Agricultural Engineering, Damascus University, Damascus, Syria
| |
Collapse
|
11
|
John R, Rajan AP. Bioreactor level optimization of chromium(VI) reduction through Pseudomonas putida APRRJVITS11 and sustainable remediation of pathogenic DNA in water. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-021-00183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bioremediation is one of the indispensable features of Pseudomonas putida. The use of Pseudomonas has been proved to be an effective treatment of tannery released chromium (VI). The current study is the first attempt for the optimization of chromate reduction by Pseudomonas putida strain APRRJVITS11 in an optimized bench-scale bioreactor with successful thermo-pressure elimination of the strain thereby eliminating the health risk caused by antibiotic resistant genes (ARGs).
Results
The growth media, modified with optimized 1.0% nitrogen, 0.5% yeast extract and 0.3% sodium, showed enhanced bacterial growth for 72 h of incubation. The optimization of aeration (1.0 vvm) and agitation (150 rpm) rates enhanced the chromate reduction by about 40% at 72 h fermentation. Thermo-pressure pathogenic DNA degradation was achieved at 90 °C and 5868 Pa for 10 min.
Conclusions
Successful chromium reduction and total elimination of ARGs from effluent. A two-step treatment train was proposed for chromium reduction in the environment, which should be incorporated by the existing leather industries running on conventional treatment units.
Graphical Abstract
Collapse
|
12
|
An Updated review on production of food derived bioactive peptides; focus on the psychrotrophic bacterial proteases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Gonabadi E, Samadlouie HR, Shafafi Zenoozian M. Optimization of culture conditions for enhanced Dunaliella salina productions in mixotrophic culture. Prep Biochem Biotechnol 2021; 52:154-162. [PMID: 34057884 DOI: 10.1080/10826068.2021.1922917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dunaliella salina (D. salina) is a green microalga known for its tendency to produce lipid and β-carotene. Fatty acid profile, lipid and β-carotene productions of the microalga D. salina cultivated under different mixotrophic conditions were assayed. Notably, in spite of a broad spectrum of substrates served, mixotrophic cultivations slightly affected the fatty acid composition, and as a result C16:0 and C18:0, C18:1, C18:2 and C18:3 were identified as main fatty acids. Lipid in dry weight biomass (DWB) hit a high of 24.3% at 5% of NaCL and linolenic acid in lipid reached a peak of 9.15% at 15% of NaCL in medium containing glucose and equal amounts of yeast extract and soy bean powder. One-factor-at-a-time was applied to elucidate the substrates which had noticeable impacts on β-carotene production. Glucose, meat peptone, titanium dioxide nanoparticles (TiO2 NPs), pH 7.5 and 5% NaCL were identified as key process parameters impacting β-carotene production. Following, the concentration of glucose, meat peptone and TiO2 NPs were optimized by using response surface method. The highest content of β-carotene, 25.23 mg/g DWB, was obtained in medium composed of (g/L); 22.92 glucose, 5 meat peptone and 0.002 TiO2 NPs.
Collapse
Affiliation(s)
- Ebrahim Gonabadi
- Department of Food Science and Technology, Islamic Azad University, Sabzevar Branch, Sabzevar, Iran
| | - Hamid Reza Samadlouie
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Masoud Shafafi Zenoozian
- Department of Food Science and Technology, Islamic Azad University, Sabzevar Branch, Sabzevar, Iran
| |
Collapse
|
14
|
Olalere OA, Gan C, Adedeji PA, Olalere ME, Aljbour N. Multi‐objective
Deng's
grey incidence analysis, orthogonal optimization, and artificial neural network modelling in hot‐maceration‐assisted extraction of
African
cucumber leaves (
Momordica balsamina
). CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Olusegun Abayomi Olalere
- Analytical Biochemistry Research Centre (ABrC), sains@usm Campus, Universiti Sains Malaysia, University Innovation Incubator Building Bayan Lepas Malaysia
| | - Chee‐Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), sains@usm Campus, Universiti Sains Malaysia, University Innovation Incubator Building Bayan Lepas Malaysia
| | - Paul Adeola Adedeji
- Department of Mechanical Engineering Science University of Johannesburg Johannesburg South Africa
| | | | - Nawzat Aljbour
- Faculty of Pharmacy Middle East University Amman Amman Governorate Jordan
| |
Collapse
|
15
|
OVAT Analysis and Response Surface Methodology Based on Nutrient Sources for Optimization of Pigment Production in the Marine-Derived Fungus Talaromyces albobiverticillius 30548 Submerged Fermentation. Mar Drugs 2021; 19:md19050248. [PMID: 33925595 PMCID: PMC8146719 DOI: 10.3390/md19050248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pigment production from filamentous fungi is gaining interest due to the diversity of fungal species, the variety of compounds synthesized, and the possibility of controlled massive productions. The Talaromyces species produce a large panel of metabolites, including Monascus-like azaphilone pigments, with potential use as natural colorants in industrial applications. Optimizing pigment production from fungal strains grown on different carbon and nitrogen sources, using statistical methods, is widespread nowadays. The present work is the first in an attempt to optimize pigments production in a culture of the marine-derived T. albobiverticillius 30548, under the influence of several nutrients sources. Nutrient combinations were screened through the one-variable-at-a-time (OVAT) analysis. Sucrose combined with yeast extract provided a maximum yield of orange pigments (OPY) and red pigments (RPY) (respectively, 1.39 g/L quinizarin equivalent and 2.44 g/L Red Yeast pigment equivalent), as well as higher dry biomass (DBW) (6.60 g/L). Significant medium components (yeast extract, K2HPO4 and MgSO4·7H2O) were also identified from one-variable-at-a-time (OVAT) analysis for pigment and biomass production. A five-level central composite design (CCD) and a response surface methodology (RSM) were applied to evaluate the optimal concentrations and interactive effects between selected nutrients. The experimental results were well fitted with the chosen statistical model. The predicted maximum response for OPY (1.43 g/L), RPY (2.59 g/L), and DBW (15.98 g/L) were obtained at 3 g/L yeast extract, 1 g/L K2HPO4, and 0.2 g/L MgSO4·7H2O. Such optimization is of great significance for the selection of key nutrients and their concentrations in order to increase the pigment production at a pilot or industrial scale.
Collapse
|
16
|
Growth optimization and identification of an ω-transaminase by a novel native PAGE activity staining method in a Bacillus sp. strain BaH isolated from Iranian soil. AMB Express 2021; 11:46. [PMID: 33759017 PMCID: PMC7988029 DOI: 10.1186/s13568-021-01207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
ω-Transaminases’ (ω-TAs) importance for synthesizing chiral amines led to the development of different methods to quickly identify and characterize new sources of these enzymes. Here we describe the optimization of growth and induction of such an enzyme in a wild type strain of Bacillus sp. strain BaH (IBRC-M 11337) isolated from Iranian soil in shaking flasks by the response surface methodology (RSM). Optimum conditions were set in a multiplexed bench-top bioreactor system (Sixfors). ω-TA activity of obtained biomass was checked by an innovative efficient colorimetric assay for localizing ω-TAs in crude extracts on acrylamide gel by using ortho-xylylenediamine (OXD) as amino donor. The application of the established OXD assay is thereby expanded from high-throughput activity screenings and colony-based screenings of heterologously expressed mutants to a direct identification of ω-TAs in wild-type strains: This assay can be used to detect the protein band of the respective enzyme in crude extracts of novel isolates by visual inspection of native PAGEs without any upstream protein purification, thus enabling subsequent further investigations of a newly discovered enzyme directly from the crude extract.
Collapse
|
17
|
Use of response surface methodology to enhance carotenoid pigment production from Cellulosimicrobium strain AZ. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Statistical optimization of anticandida metabolite production process using Streptomyces hydrogenans strain from mangrove soils. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
Augmentation of protease production from psychrotrophic Acinetobacter sp. IHB B 5011(MN12) from Western Himalayas. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Effect of Addition of PVA/PG to Oil-in-Water Nanoemulsion Kojic Monooleate Formulation on Droplet Size: Three-Factors Response Surface Optimization and Characterization. COSMETICS 2020. [DOI: 10.3390/cosmetics7040073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An oil in water (O/W) nanoemulsion formulation containing kojic monooleate (KMO) in thin film system was developed. Response surface methodology (RSM) was used to optimize and analyzed the effect of three variables, namely concentration of polyvinyl alcohol (PVA) (20–30% w/w), concentration of propylene glycol (PG) (1–10% w/w), and shear rate of high shear homogenizer (3000–9000 rpm) on droplet size as a response, while other compositions remained constant such as KMO (10.0% w/w), Tween 80 (3.19% w/w), castor oil (3.74% w/w), xanthan gum (0.70% w/w), and germall plus (0.7% w/w, PG (and) diazolidinyl urea (and) iodopropynyl butylcarbamate). The optimized KMO nanoemulsion formulation with desirable criteria was PVA (27.61% w/w) and PG (1.05% w/w), and shear rate (8656.17 rpm) with a predicted droplet size (110.21 nm) and actual droplet size (105.93 nm) with a residual standard error (RSE) of less than 2.0% was obtained. Analysis of variance (ANOVA) showed that the fitness of the quadratic polynomial fit the experimental data with a F-value of 65.30, p–value of p < 0.0001, and a non-significant lack-of-fit. The optimized KMO formulation shows the desired criteria of the thin film system and the physicochemical properties (Zeta potential −37.37 mV, PDI 0.13, pH 4.74) and stability at four different conditions indicate its suitability for cosmeceutical applications.
Collapse
|
21
|
Samadlouie HR, Jahanbin K, jalali P. Production, medium optimization, and structural characterization of an extracellular polysaccharide produced by Rhodotorula minuta ATCC 10658. Food Sci Nutr 2020; 8:4957-4964. [PMID: 32994957 PMCID: PMC7500799 DOI: 10.1002/fsn3.1792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/11/2022] Open
Abstract
Several strains of microorganism are capable of converting carbohydrates into extracellular polysaccharide. The preset research is a first effort made to optimize extracellular polysaccharide (CRMEP) by Rhodotorula minuta ATCC 10658 using one factor at time and response surface methods. One factor at time was applied in the initial screening of substrates prior to optimization study. Of all the substrates examined, starch as carbon source and defatted soy bean powder as protein source were discovered to be best for CRMEP production. Response surface analysis revealed that 15 g/L starch and 30g/L defatted soy bean powder were the optimal chemical conditions. The model predicted 13.22 g/L for CRMEP, which went along with the experimentally observed result. Purification of CRMEP by anion-exchange column of DEAE-cellulose yielded RMEP. Structural investigation indicated that the main chain of RMEP was composed of (1 → 3) and (1 → 4)-linked mannopyranosyl residues, with branches attached to O-6 of some (1 → 3)-linked mannopyranosyl residues. The branches were composed of Glcp-(1 → residues.
Collapse
Affiliation(s)
- Hamid Reza Samadlouie
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Kambiz Jahanbin
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Parisa jalali
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| |
Collapse
|
22
|
Mohamed WSED, Hamad MTMH, Kamel MZ. Application of statistical response surface methodology for optimization of fluoride removal efficiency by Padina sp. alga. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1080-1088. [PMID: 32012380 DOI: 10.1002/wer.1305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Human exposure to fluoride in drink water at a level above 1.5 mg/L causes a lot of health problems. The present study was carried out to assess the fluoride biosorption capability of Padina sp. alga as biosorbent material using conventional one-factor-at-a-time (OFAT) and Box-Behnken design to optimize the process. By OFAT, fluoride uptake was significantly affected by pH, time, fluoride concentration, and biosorbent dose (p-value < 0.05) and the highest fluoride biosorption (85.95%) was recorded at pH 7, time 60 min, fluoride concentration 2 g/L, and an adsorbent dose 30 g/L. Based on the Box-Behnken design, the quadratic model was developed to correlate the variables to the response. By Analysis of Variance (ANOVA), the model was statistically significant (p-value < 0.05). It was suggested that optimal values of pH, time, fluoride concentration, and biosorbent dose were 5, 90 min, 3 mg/L, and 30 g/L, respectively, and fluoride removal at these optimum conditions was 94.57%. For application, Padina sp. was removed from 67.79% to 78.78% of fluoride in collected groundwater samples. It was concluded that the Padina sp. could be used as eco-friendly biosorbent for fluoride and response surface methodology was more applicable and effective in optimization to obtain the highest removal efficiency of fluoride by Padina sp. PRACTITIONER POINTS: The fluoride biosorption was studied using Padina sp. alga as an eco-friendly biosorbent. By one-factor-at-a-time (OFAT), the highest fluoride biosorption rate was 85.95%. Response surface methodology was suggested that maximum Fluoride removal at optimum condition was 94.57%. Statistical response surface methodology was more applicable, effective in optimization and considered the interaction between factors.
Collapse
Affiliation(s)
- Walaa Salah El-Din Mohamed
- Microbiology Department, Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| | | | - Mahmoud Zaky Kamel
- Inorganic Chemistry Department, Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| |
Collapse
|
23
|
Ram S, Tirkey SR, Kumar MA, Mishra S. Ameliorating process parameters for zeaxanthin yield in Arthrobacter gandavensis MTCC 25325. AMB Express 2020; 10:69. [PMID: 32297021 PMCID: PMC7158978 DOI: 10.1186/s13568-020-01008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aims to escalate the production of prophylactic agent zeaxanthin using a screened potential bacterial isolate. For this purpose, a freshwater bacterium capable of producing zeaxanthin was isolated from Bor Talav, Bhavnagar. The 16S rRNA sequence confirmed the isolate as Arthrobacter gandavensis. The bacterium was also submitted to Microbial Type Culture Collection, CSIR-Institute of Microbial Technology, Chandigarh, India, with the accession number MTCC 25325. The chemo-metric tools were employed to optimise the influencing factors such as pH, temperature, inoculum size, agitation speed, carbon source and harvest time on zeaxanthin yield. Thereafter, six parameters were narrowed down to three factors and were optimised using the central composite design (CCD) matrix. Maximum zeaxanthin (1.51 mg/g) was derived when A. gandavensis MTCC 25325 was grown under pH 6.0, 1.5% (w/v) glucose and 10% (v/v) inoculum size. A high regression coefficient (R2= 0.92) of the developed model indicated the accurateness of the tested parameters. To the best of our knowledge, this is the first report on tailoring the process parameters using chemo-metric optimisation for escalating the zeaxanthin production by A. gandavensis MTCC 25325.
Collapse
|
24
|
Hammami A, Bayoudh A, Hadrich B, Abdelhedi O, Jridi M, Nasri M. Response‐surface methodology for the production and the purification of a new H
2
O
2
‐tolerant alkaline protease from
Bacillus invictae
AH1 strain. Biotechnol Prog 2020; 36:e2965. [DOI: 10.1002/btpr.2965] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Amal Hammami
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| | - Ahmed Bayoudh
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| | - Bilel Hadrich
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of SfaxUniversity of Sfax Sfax Tunisia
| | - Ola Abdelhedi
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| | - Mourad Jridi
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
- Higher Institute of Biotechnology of BejaUniversity of Jendouba Beja Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| |
Collapse
|
25
|
Wu N, Tian F, Moodley O, Song B, Jia C, Ye J, Lv R, Qin Z, Li C. Optimization of agro-residues as substrates for Pleurotus pulmonarius production. AMB Express 2019; 9:184. [PMID: 31728657 PMCID: PMC6856248 DOI: 10.1186/s13568-019-0907-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/30/2019] [Indexed: 11/15/2022] Open
Abstract
The "replacing wood by grass" project can partially resolve the conflict between mushroom production and balancing the ecosystem, while promoting agricultural economic sustainability. Pleurotus pulmonarius is an economically important edible and medicinal mushroom, which is traditionally produced using a substrate consisting of sawdust and cottonseed hulls, supplemented with wheat bran. A simplex lattice design was applied to systemically optimize the cultivation of P. pulmonarius using agro-residues as the main substrate to replace sawdust and cottonseed hulls. The effects of differing amounts of wheat straw, corn straw, and soybean straw on the variables of yield, mycelial growth rate, stipe length, pileus length, pileus width, and time to harvest were demonstrated. Results indicated that a mix of wheat straw, corn straw, and soybean straw may have significantly positive effects on each of these variables. The high yield comprehensive formula was then optimized to include 40.4% wheat straw, 20.3% corn straw, 18.3% soybean straw, combined with 20.0% wheat bran, and 1.0% light CaCO3 (C/N = 42.50). The biological efficiency was 15.2% greater than that of the control. Most encouraging was the indication that the high yield comprehensive formula may shorten the time to reach the reproductive stage by 6 days, compared with the control. Based on the results of this study, agro-residues may be used as a suitable substitution for sawdust and cottonseed hulls as the main cultivation substrates of P. pulmonarius. These results provide a theoretical basis for the "replacing wood by grass" project on edible mushroom cultivation.
Collapse
Affiliation(s)
- Nan Wu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fenghua Tian
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Odeshnee Moodley
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Bing Song
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chuanwen Jia
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jianqiang Ye
- Institute of Microbiology Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Ruina Lv
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zhi Qin
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Changtian Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
26
|
Removal of Pollutants in Mine Wastewater by a Non-Cytotoxic Polymeric Bioflocculant from Alcaligenes faecalis HCB2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16204001. [PMID: 31635051 PMCID: PMC6843956 DOI: 10.3390/ijerph16204001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 01/12/2023]
Abstract
Bioflocculation is a physicochemical technique often employed to efficiently remove colloidal water pollutants. Consequently, in this study, a bioflocculant was produced, characterised and applied to remove pollutants in mine wastewater. The maximum flocculation activity of 92% was recorded at 30 °C, pH 9.0 when maltose and urea were used as energy sources and 72 h of fermentation at the inoculum size of 1% (v/v). K+ proved to be a favourable cation. The bioflocculant yield of 4 g/L was obtained. Scanning electron microscopy illustrated a hexagonal-like structure of the bioflocculant. It is composed of carbohydrates and proteins in mass proportion of 88.6 and 9.5%, respectively. The Fourier transform infrared spectrum revealed the presence of hydroxyl, amide and amino functional groups. More than 73% of the bioflocculant was obtained after exposure to 600 °C using the thermogravimetric analyser. Human embryonic kidney 293 (HEK 293) cells exhibited 95% viability after being treated with 200 µg/µL of the bioflocculant. The flocculation mechanisms were proposed to be as a result of a double layer compression by K+, chemical reactions and bridging mechanism. The removal efficiencies of 59, 72, and 75% on biological oxygen demand, chemical oxygen demand and sulphur, were obtained respectively. Thus, the bioflocculant have potential use in wastewater treatment.
Collapse
|
27
|
Sattar H, Bibi Z, Kamran A, Aman A, Ul Qader SA. Degradation of complex casein polymer: Production and optimization of a novel serine metalloprotease from Aspergillus niger KIBGE-IB36. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Borhani MS, Etemadifar Z, Emtiazi G, Jorjani E. A Statistical Approach for Production Improvement of a Neutral Protease From a Newly Isolated Strain of Aeromonas Hydrophila. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2018; 42:1771-1778. [DOI: 10.1007/s40995-017-0444-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
|
29
|
Geoffry K, Achur RN. Optimization of novel halophilic lipase production by Fusarium solani strain NFCCL 4084 using palm oil mill effluent. J Genet Eng Biotechnol 2018; 16:327-334. [PMID: 30733742 PMCID: PMC6353730 DOI: 10.1016/j.jgeb.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 11/19/2022]
Abstract
Among different sources of lipases, fungal lipases have continued to attract a wide range of applications. Further, halophilic lipases are highly desirable for biodiesel production due to the need to mitigate environmental pollution caused as result of extensive use of fossil fuels. However, currently, the high production cost limits the industrial application of lipases. In order to address this issue, we have attempted to optimize lipase production by Fusarium solani NFCCL 4084 and using palm oil mill effluent (POME) based medium. The production was optimized using a combinatory approach of Plackett-Burman (PB) design, one factor at a time (OFAT) design and face centred central composite design (FCCCD). The variables (malt extract, (NH4)2SO4, CaCl2, MgSO4, olive oil, peptone, K2HPO4, NaNO3, Tween-80, POME and pH) were analyzed using PB design and the variables with positive contrast coefficient were found to be K2HPO4, NaNO3, Tween-80, POME and pH. The significant variables selected were further analyzed for possible optimum range by using OFAT approach and the findings revealed that K2HPO4, NaNO3, and Tween-80 as the most significant medium components, and thus were further optimized by using FCCCD. The optimum medium yielded a lipase with an activity of 7.8 U/ml, a significant 3.2-fold increase compared to un-optimized medium. The present findings revealed that POME is an alternative and suitable substrate for halophilic lipase production at low cost. Also, it is clearly evident that the combinatory approach employed here proved to be very effective in producing high activity halophilic lipases, in general.
Collapse
Affiliation(s)
| | - Rajeshwara N. Achur
- Department of Biochemistry, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka, India
| |
Collapse
|
30
|
Zafar SB, Siddiqui NN, Shahid F, Qader SAU, Aman A. Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria. J Genet Eng Biotechnol 2018; 16:17-22. [PMID: 30647699 PMCID: PMC6296591 DOI: 10.1016/j.jgeb.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 10/26/2022]
Abstract
Exploration of biodiversity lead towards the discovery of novel exopolysaccharide (EPS) producing microbes that have multiple applications. The safety compatibility status of lactic acid bacteria (LAB) makes it an attractive candidate for the production of EPS in industries. Therefore, new bacterial isolates are continuously being identified from different habitats. Current research was conducted to explore indigenous biodiversity for the production of dextransucrase, which is involved in the synthesis of dextran. Dextran is an EPS which is used in different industries. In this study, thirty-nine LAB were isolated from different food samples. The isolates were identified as genus Leuconostoc, Weissella and Streptococcus based on genotypic and phenotypic characteristics. Screening revealed that only eight isolates can produce dextransucrase in high titres. Fermentation conditions of dextran producing LAB was optimized. The results indicated that Weissella confusa exhibited maximum specific activity (1.50 DSU mg-1) in 8 h at 25 °C with pH 7.5. Dextran produced from Weissella proved to be a useful alternative to commercially used dextran produced by Leuconostoc mesenteroides in industries for various applications.
Collapse
Affiliation(s)
- Syeda Bushra Zafar
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Nadir Naveed Siddiqui
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Faiza Shahid
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
31
|
Hakim A, Bhuiyan FR, Iqbal A, Emon TH, Ahmed J, Azad AK. Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon 2018; 4:e00646. [PMID: 30009270 PMCID: PMC6042311 DOI: 10.1016/j.heliyon.2018.e00646] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/02/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
Alkaline proteases have applications in numerous industries. In this study, we have isolated and screened proteolytic bacteria from poultry wastes mixed soil and identified two bacterial isolates as Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 based on 16S rDNA sequencing. Maximum level of protease production was achieved after 24 h of fermentation in a basal medium. The optimal temperature, initial pH of the media and agitation for alkaline protease production by these two isolates were 30 °C, pH 9.0 and 120 rpm, respectively. The both bacterial isolates produced maximum level of protease with 3.0% organic municipal solid wastes (OMSW) as the sole source of carbon and nitrogen under previously optimized fermentation conditions. In comparison with the shake flask, protease production increased about 2.5-fold in the bioreactor with reduction in fermentation period. The partial purification of protease resulted in a final 45.67 and 34.86-fold purified protease with a specific activity of 8335.34 and 9918.91 U/mg protein and a typical yield of 9.75 and 9.41% from B. subtilis and E. indicum, respectively. The optimum temperature and pH of the partially purified protease from the both sources was 40 °C and pH 9.0, respectively. Protease from the both isolates was stable at pH 7.0-12.0 and at temperatures up to 50 °C. The effects of protease inhibitors indicated that the protease from B. subtilis might be serine and cysteine type and from E. indicum might be cysteine type. Mg2+, K+ and Ca2+ stimulated but Zn2+, Hg2+, Co2+ and Fe3+ strongly inhibited the protease activity. The partially purified protease from B. subtilis substantially dehaired cow skin and decomposed gelatinous compound from X-ray film. Our study revealed that OMSW can be used as raw material for production of bacterial extracellular protease and alkaline protease from B. subtilis might be potential for industrial and biotechnological applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
32
|
Habib S, Ahmad SA, Johari WLW, Shukor MYA, Alias SA, Khalil KA, Yasid NA. Evaluation of conventional and response surface level optimisation of n-dodecane (n-C12) mineralisation by psychrotolerant strains isolated from pristine soil at Southern Victoria Island, Antarctica. Microb Cell Fact 2018; 17:44. [PMID: 29549881 PMCID: PMC5857080 DOI: 10.1186/s12934-018-0889-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/08/2018] [Indexed: 11/23/2022] Open
Abstract
Background Biodegradation of hydrocarbons in Antarctic soil has been reported to be achieved through the utilisation of indigenous cold-adapted microorganisms. Although numerous bacteria isolated from hydrocarbon-contaminated sites in Antarctica were able to demonstrate promising outcomes in utilising hydrocarbon components as their energy source, reports on the utilisation of hydrocarbons by strains isolated from pristine Antarctic soil are scarce. In the present work, two psychrotolerant strains isolated from Antarctic pristine soil with the competency to utilise diesel fuel as the sole carbon source were identified and optimised through conventional and response surface method. Results Two potent hydrocarbon-degraders (ADL15 and ADL36) were identified via partial 16S rRNA gene sequence analysis, and revealed to be closely related to the genus Pseudomonas and Rhodococcus sp., respectively. Factors affecting diesel degradation such as temperature, hydrocarbon concentration, pH and salt tolerance were studied. Although strain ADL36 was able to withstand a higher concentration of diesel than strain ADL15, both strains showed similar optimal condition for the cell’s growth at pH 7.0 and 1.0% (w/v) NaCl at the conventional ‘one-factor-at-a-time’ level. Both strains were observed to be psychrotrophs with optimal temperatures of 20 °C. Qualitative and quantitative analysis were performed with a gas chromatograph equipped with a flame ionisation detector to measure the reduction of n-alkane components in diesel. In the pre-screening medium, strain ADL36 showed 83.75% of n-dodecane mineralisation while the reduction of n-dodecane by strain ADL15 was merely at 22.39%. The optimised condition for n-dodecane mineralisation predicted through response surface methodology enhanced the reduction of n-dodecane to 99.89 and 38.32% for strain ADL36 and strain ADL15, respectively. Conclusions Strain ADL36 proves to be a better candidate for bioaugmentation operations on sites contaminated with aliphatic hydrocarbons especially in the Antarctic and other cold regions. The results obtained throughout strongly supports the use of RSM for medium optimisation.
Collapse
Affiliation(s)
- Syahir Habib
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wan Lutfi Wan Johari
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, C308 Institute of Postgraduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Khalilah Abdul Khalil
- Department of Biomolecular Sciences, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
33
|
Zhao A, Chen F, Ning C, Wu H, Song H, Wu Y, Chen R, Zhou K, Xu X, Lu Y, Gao J. Use of real-time cellular analysis and Plackett-Burman design to develop the serum-free media for PC-3 prostate cancer cells. PLoS One 2017; 12:e0185470. [PMID: 28945791 PMCID: PMC5612757 DOI: 10.1371/journal.pone.0185470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022] Open
Abstract
In this study, we developed a rapid strategy to screen a serum-free medium for culturing the anchorage-dependent PC-3 prostate cancer cells, which was going to be prepared in large scale to generate GM-CSF/TNFα-surface-modified whole cell prostate cancer vaccine. Automated real-time cellular analysis as a rapid and non-invasive technology was used to monitor the growth of PC-3 cells in 16-well plates. At the same time, Plackett-Burman design was employed to identify the most influential formulation by integrating relevant information statistically. The effects of the 16 selected factors were evaluated during exponential cell growth and three medium constituents (EGF, FGF and linoleic acid) were identified to have significant effects on the cell growth. Subsequently, the response surface methodology with central composite design was applied to determine the interactions among the three factors so that these factors were optimized to improve cell growth. Finally, the prediction of the best combination was made under the maximal response to optimize cell growth by Design-Expert software 7.0. A total of 20 experiments were conducted to construct a quadratic model and a second-order polynomial equation. With the optimized combination validated by the stability test of serial passaging PC-3 cells, the serum-free medium had similar cell density and cell viability to the original serum medium. In summary, this high-throughput scheme minimized the screening time and may thus provide a new platform to efficiently develop the serum-free media for adherent cells.
Collapse
Affiliation(s)
- Ai Zhao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fahai Chen
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunhong Ning
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiming Wu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huanfang Song
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanqing Wu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Chen
- Hospital 212 of the Nuclear Industry, Wuwei, Gansu, China
| | - Kaihua Zhou
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoling Xu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinxiang Lu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
34
|
Mazzucotelli CA, Moreira MDR, Ansorena MR. Statistical optimization of medium components and physicochemical parameters to simultaneously enhance bacterial growth and esterase production by Bacillus thuringiensis. Can J Microbiol 2015; 62:24-34. [PMID: 26529589 DOI: 10.1139/cjm-2015-0463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus thuringiensis is a genus extensively studied because of its high potential for biotechnological application, principally in biocontrol techniques. However, the optimization of esterase production by this strain has been scarcely studied. The aim of this work was to select and optimize the physicochemical and nutritional parameters that significantly influence the growth and esterase production of B. thuringiensis. To this purpose, 6 nutritional factors and 2 physicochemical parameters were evaluated using a Plackett-Burman design. Significant variables were optimized using a Box-Behnken design and through the desirability function to select the levels of the variables that simultaneously maximize microbial growth and esterase production. The optimum conditions resulting from simultaneous optimization of the responses under study were found to be 1 g/L glucose, 15 g/L peptone, and 3.25 g/L NaCl. Under these optimal conditions, it was possible to achieve a 2.5 log CFU/mL increase in bacterial growth and a 113-fold increase in esterase productivity, compared with minimal medium without agitation.
Collapse
Affiliation(s)
- Cintia Anabela Mazzucotelli
- Grupo de Investigación en Ingeniería en Alimentos Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, CP B7608FDQ, Mar del Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Grupo de Investigación en Ingeniería en Alimentos Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, CP B7608FDQ, Mar del Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María del Rosario Moreira
- Grupo de Investigación en Ingeniería en Alimentos Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, CP B7608FDQ, Mar del Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Grupo de Investigación en Ingeniería en Alimentos Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, CP B7608FDQ, Mar del Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Roberta Ansorena
- Grupo de Investigación en Ingeniería en Alimentos Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, CP B7608FDQ, Mar del Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Grupo de Investigación en Ingeniería en Alimentos Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, CP B7608FDQ, Mar del Plata, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
35
|
Mazzucotelli CA, Agüero MV, del Rosario Moreira M, Ansorena MR. Optimization of medium components and physicochemical parameters to simultaneously enhance microbial growth and production of lypolitic enzymes byStenotrophomonassp. Biotechnol Appl Biochem 2015; 63:407-18. [DOI: 10.1002/bab.1378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/23/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Cintia Anabela Mazzucotelli
- Grupo de Investigación en Ingeniería en Alimentos; Departamento de Ingeniería Química y en Alimentos; Facultad de Ingeniería; Universidad Nacional de Mar del Plata; Mar del Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - María Victoria Agüero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
- Laboratorio de Microbiología Industrial: Tecnología de alimentos; Facultad de Ingeniería; Universidad de Buenos Aires; Argentina
| | - María del Rosario Moreira
- Grupo de Investigación en Ingeniería en Alimentos; Departamento de Ingeniería Química y en Alimentos; Facultad de Ingeniería; Universidad Nacional de Mar del Plata; Mar del Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - María Roberta Ansorena
- Grupo de Investigación en Ingeniería en Alimentos; Departamento de Ingeniería Química y en Alimentos; Facultad de Ingeniería; Universidad Nacional de Mar del Plata; Mar del Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| |
Collapse
|
36
|
Nasiri J, Naghavi MR, Alizadeh H, Moghadam MRF, Motamedi E, Mashouf A. Magnetic Solid Phase Extraction Coupled with HPLC Towards Removal of Pigments and Impurities from Leaf-derived Paclitaxel Extractions of Taxus baccata and Optimization via Response Surface Methodology. Chromatographia 2015. [DOI: 10.1007/s10337-015-2925-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Formulation and Statistical Optimization of Culture Medium for Improved Production of Antimicrobial Compound by Streptomyces sp. JAJ06. Int J Microbiol 2013; 2013:526260. [PMID: 24454383 PMCID: PMC3885193 DOI: 10.1155/2013/526260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/02/2013] [Indexed: 12/30/2022] Open
Abstract
Streptomyces sp. JAJ06 is a seawater-dependent antibiotic producer, previously isolated and characterised from an Indian coastal solar saltern. This paper reports replacement of seawater with a defined salt formulation in production medium and subsequent statistical media optimization to ensure consistent as well as improved antibiotic production by Streptomyces sp. JAJ06. This strain was observed to be proficient to produce antibiotic compound with incorporation of chemically defined sodium-chloride-based salt formulation instead of seawater into the production medium. Plackett-Burman design experiment was applied, and three media constituents, starch, KBr, and CaCO3, were recognised to have significant effect on the antibiotic production of Streptomyces JAJ06 at their individual levels. Subsequently, Response surface methodology with Box-Behnken design was employed to optimize these influencing medium constituents for the improved antibiotic production of Streptomyces sp. JAJ06. A total of 17 experiments were conducted towards the construction of a quadratic model and a second-order polynomial equation. Optimum levels of medium constituents were obtained by analysis of the model and numerical optimization method. When the strain JAJ06 was cultivated in the optimized medium, the antibiotic activity was increased to 173.3 U/mL, 26.8% increase as compared to the original (136.7 U/mL). This study found a useful way to cultivate Streptomyces sp. JAJ06 for enhanced production of antibiotic compound.
Collapse
|
38
|
Zhai YG, Han M, Zhang WG, Qian H. CAROTENE PRODUCTION FROM AGRO-INDUSTRIAL WASTES BYArthrobacter globiformisIN SHAKE-FLASK CULTURE. Prep Biochem Biotechnol 2013; 44:355-69. [DOI: 10.1080/10826068.2013.829498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Nasr S, Soudi MR, Hatef Salmanian A, Ghadam P. Partial Optimization of Endo-1, 4-Β-Xylanase Production by Aureobasidium pullulans Using Agro-Industrial Residues. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:1245-53. [PMID: 24570830 PMCID: PMC3933801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/04/2013] [Indexed: 12/02/2022]
Abstract
UNLABELLED Objective(s) : Although bacteria and molds are the pioneering microorganisms for production of many enzymes, yet yeasts provide safe and reliable sources of enzymes with applications in food and feed. MATERIALS AND METHODS Single xylanase producer yeast was isolated from plant residues based on formation of transparent halo zones on xylan agar plates. The isolate showed much greater endo-1, 4-β-xylanase activity of 2.73 IU/ml after optimization of the initial extrinsic conditions. It was shown that the strain was also able to produce β-xylosidase (0.179 IU/ml) and α-arabinofuranosidase (0.063 IU/ml). Identification of the isolate was carried out and the endo-1, 4-β-xylanaseproduction by feeding the yeast cells on agro-industrial residues was optimized using one factor at a time approach. RESULTS The enzyme producer strain was identified as Aureobasidiumpullulans. Based on the optimization approach, an incubation time of 48 hr at 27°C, inoculum size of 2% (v/v), initial pH value of 4 and agitation rate of 90 rpm were found to be the optimal conditions for achieving maximum yield of the enzyme. Xylan, containing agricultural residues, was evaluated as low-cost alternative carbon source for production of xylanolytic enzymes. The production of xylanase enzyme in media containing wheat bran as the sole carbon source was very similar to that of the medium containing pure beechwoodxylan. CONCLUSION This finding indicates the feasibility of growing of A. pullulans strain SN090 on wheat bran as an alternate economical substrate in order for reducing the costs of enzyme production and using this fortified agro-industrial byproduct in formulation of animal feed.
Collapse
Affiliation(s)
- Shaghayegh Nasr
- National Laboratory of Industrial Microbiology,Department of Biology, Alzahra University, Tehran, Iran
| | - Mohammad Reza Soudi
- National Laboratory of Industrial Microbiology,Department of Biology, Alzahra University, Tehran, Iran,Corresponding author: Mohammad Reza Soudi. Alzahra University, Vanak, Tehran, Iran. Tel: +98-21-88044058-9 (2441); Fax: +98-21-88058912;
| | - Ali Hatef Salmanian
- Department of Plant Molecular Biology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biochemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
40
|
Zhou X, Xie JR, Tao L, Xin ZJ, Zhao FW, Lu XH, Zhao MR, Wang L, Liang JP. The effect of microdosimetric 12C6+ heavy ion irradiation and Mg2+ on canthaxanthin production in a novel strain of Dietzia natronolimnaea. BMC Microbiol 2013; 13:213. [PMID: 24074304 PMCID: PMC3849488 DOI: 10.1186/1471-2180-13-213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 09/25/2013] [Indexed: 12/01/2022] Open
Abstract
Background Dietzia natronolimnaea is one of the most important bacterial bioresources for high efficiency canthaxanthin production. It produces the robust and stable pigment canthaxanthin, which is of special interest for the development of integrated biorefineries. Mutagenesis employing 12C6+ irradiation is a novel technique commonly used to improve microorganism productivity. This study presents a promising route to obtaining the highest feasible levels of biomass dry weight (BDW), and total canthaxanthin by using a microdosimetric model of 12C6+ irradiation mutation in combination with the optimization of nutrient medium components. Results This work characterized the rate of both lethal and non-lethal dose mutations for 12C6+ irradiation and the microdosimetric kinetic model using the model organism, D. natronolimnaea svgcc1.2736. Irradiation with 12C6+ ions resulted in enhanced production of canthaxanthin, and is therefore an effective method for strain improvement of D. natronolimnaea svgcc1.2736. Based on these results an optimal dose of 0.5–4.5 Gy, Linear energy transfer (LET) of 80 keV μm-1and energy of 60 MeV u-1 for 12C6+ irradiation are ideal for optimum and specific production of canthaxanthin in the bacterium. Second-order empirical calculations displaying high R-squared (0.996) values between the responses and independent variables were derived from validation experiments using response surface methodology. The highest canthaxanthin yield (8.14 mg) was obtained with an optimized growth medium containing 21.5 g L-1 D-glucose, 23.5 g L-1 mannose and 25 ppm Mg2+ in 1 L with an irradiation dose of 4.5 Gy. Conclusions The microdosimetric 12C6+ irradiation model was an effective mutagenic technique for the strain improvement of D. natronolimnaea svgcc1.2736 specifically for enhanced canthaxanthin production. At the very least, random mutagenesis methods using 12C6+ions can be used as a first step in a combined approach with long-term continuous fermentation processes. Central composite design-response surface methodologies (CCD-RSM) were carried out to optimize the conditions for canthaxanthin yield. It was discovered D-glucose, Mg2+ and mannose have significant influence on canthaxanthin biosynthesis and growth of the mutant strain.
Collapse
Affiliation(s)
- Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, Gansu 730000, P,R, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Saini V, Bhattacharya A, Gupta A. Effectiveness of sal deoiled seed cake as an inducer for protease production from Aeromonas sp. S1 for its application in kitchen wastewater treatment. Appl Biochem Biotechnol 2013; 170:1896-908. [PMID: 23780343 DOI: 10.1007/s12010-013-0323-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
The present study is an attempt to demonstrate the feasibility of sal (Shorea robusta) deoiled cake--a forest-based industrial by-product--as a cheaper media supplement for augmented protease production from Aeromonas sp. S1 and application of protease in the treatment of kitchen wastewater. Under optimized conditions, protease production could successfully be enhanced to 5.13-fold (527.5 U mL(-1)) on using sal deoiled seed cake extract (SDOCE), as medium additive, compared to an initial production of 102.7 U mL(-1) in its absence. The culture parameters for optimum production of protease were determined to be incubation time (48 h), pH (7.0), SDOCE concentration (3 % (v/v)), inoculum size (0.3-0.6 % (v/v)), and agitation rate (100 rpm). The enzyme was found to have an optimum pH and temperature of 8.0 and 60 °C, respectively. The protease preparation was tested for treatment of organic-laden kitchen wastewater. After 96 h of wastewater treatment under static condition, enzyme preparation was able to reduce 74 % biological oxygen demand, 37 % total suspended solids, and 41 % oil and grease. The higher and improved level of protease obtained using sal deoiled seed cake-based media hence offers a new approach for value addition to this underutilized biomass through industrial enzyme production. The protease produced using this biomass could also be used as pretreatment tool for remediation of organic-rich food wastewater.
Collapse
Affiliation(s)
- Vandana Saini
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | | | | |
Collapse
|
42
|
Olajuyigbe FM. Optimized production and properties of thermostable alkaline protease from Bacillus subtilis SHS-04 grown on groundnut (Arachis hypogaea) meal. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aer.2013.14012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Singh SK, Singh SK, Tripathi VR, Garg SK, Khare SK. Downstream processing, characterization, and structure-function relationship of solvent-, detergent-, psychro-, thermo-, alkalistable metalloprotease from metal-, solvent-tolerant psychrotrophic Pseudomonas putida SKG-1 isolate. Biotechnol Prog 2012; 29:99-108. [PMID: 23125172 DOI: 10.1002/btpr.1654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/03/2012] [Indexed: 11/06/2022]
Abstract
The purification and characterization of psychro-thermoalkalistable protease from psychrotrophic Pseudomonas putida isolate is being reported for the first time. A ~53 kDa protease was purified 21.4-folds with 57.2% recovery by ultrafiltration and hydrophobic interaction chromatography. Kinetic analyses revealed the K(m) and V(max) to be 1.169 mg mL(-1) and 0.833 mg mL(-1) min(-1) , respectively. The k(cat) value of 3.05 × 10(2) s(-1) indicated high affinity and catalytic efficiency toward casein. The protease was most active at pH 9.5 and 40°C, with 100% stability in pH and temperature range of 6.0-11.0 and 10-40°C, respectively. Presence of Zn(2+) increased the thermostability of protease (at 70°C) by 433%. Ethylene diamine tetra acetic acid (EDTA) and 1,10-phenanthroline were inhibitory, whereas phenyl methyl sulfonyl fluoride (PMSF), p-chloro mercuric benzoate (PCMB), and β-mercaptoethanol were ineffective, revealing the enzyme to be a metalloprotease. Zinc, calcium, iron, nickel, and copper at 1 mM increased the enzyme activity (102-134%). Complete reversion of enzyme inhibition (caused by Ethylene diamine tetra acetic acid [EDTA]) by Zn(2+) affirmed this enzyme as zinc-dependent metalloprotease. At 0.1% concentration, Triton X-100 and Tween 80 slightly increased, while SDS and H(2) O(2) reduced the protease activity. In the presence of 0.1% commercial detergents, the enzyme was fairly stable (54-81%). In the presence of organic solvent, the protease was remarkably stable exhibiting 72-191% activities. In contrast, savinase exhibited good stability in the presence of hydrophilic solvents, while chymotrypsin showed elevated activities with benzene, toluene, and xylene only. Circular dichroism analysis revealed the protease as a β-rich protein, having large fraction (∼40%) of β-sheets. Presence of different environmental conditions altered the β-content, which accordingly affected the protease activity.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Center of Excellence, Dept. of Microbiology, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh 224001, India
| | | | | | | | | |
Collapse
|
44
|
Bhattacharya A, Saini V, Gupta A. Novel Application of Mahua (Madhuca sp.) Flowers for Augmented Protease Production from Aeromonas sp. S1. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200701028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study explored the utilization of Mahua ( Madhuca sp.) flowers, a major non-timber forest product (NTFP) of India, as a low-cost, natural substrate for protease production under submerged fermentation. Bacterial strain Aeromonas sp. S1, previously reported by us, was used as the protease producer. Using Mahua flower extract (MFE) as the medium additive, the protease production could successfully be enhanced by 5.6-fold (564.5 UmL−1) after 24 h of fermentation under optimized conditions compared with initial production of 99.9 UmL−1 in the absence of MFE. The cultural parameters for optimum production of protease were determined to be: incubation time-24 h; pH-7.0; MFE concentration-5% (v/v); inoculum size-0.3% (v/v) and agitation rate-200 rpm. The results obtained demonstrate the potential of cheaper and abundantly available Mahua flowers for induction of proteases, and thus offer a new approach for value addition to this biomass through industrial enzyme production.
Collapse
Affiliation(s)
- Amrik Bhattacharya
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi-110078, India
| | - Vandana Saini
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi-110078, India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi-110078, India
| |
Collapse
|
45
|
Cui D, Li A, Zhang S, Pang C, Yang J, Guo J, Ma F, Wang J, Ren N. Microbial community analysis of three municipal wastewater treatment plants in winter and spring using culture-dependent and culture-independent methods. World J Microbiol Biotechnol 2012; 28:2341-53. [DOI: 10.1007/s11274-012-1041-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/13/2012] [Indexed: 11/25/2022]
|
46
|
Raj A, Khess N, Pujari N, Bhattacharya S, Das A, Rajan SS. Enhancement of protease production by Pseudomonas aeruginosa isolated from dairy effluent sludge and determination of its fibrinolytic potential. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60506-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|