1
|
Zwies C, Vargas Rodríguez ÁM, Naumann M, Seifert F, Pietzsch M. Alternative strategies for the recombinant synthesis, DOPA modification and analysis of mussel foot proteins - A case study for Mefp-3 from Mytilus edulis. Protein Expr Purif 2024; 219:106483. [PMID: 38609025 DOI: 10.1016/j.pep.2024.106483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Mussel foot proteins (Mfps) possess unique binding properties to various surfaces due to the presence of L-3,4-dihydroxyphenylalanine (DOPA). Mytilus edulis foot protein-3 (Mefp-3) is one of several proteins in the byssal adhesive plaque. Its localization at the plaque-substrate interface approved that Mefp-3 plays a key role in adhesion. Therefore, the protein is suitable for the development of innovative bio-based binders. However, recombinant Mfp-3s are mainly purified from inclusion bodies under denaturing conditions. Here, we describe a robust and reproducible protocol for obtaining soluble and tag-free Mefp-3 using the SUMO-fusion technology. Additionally, a microbial tyrosinase from Verrucomicrobium spinosum was used for the in vitro hydroxylation of peptide-bound tyrosines in Mefp-3 for the first time. The highly hydroxylated Mefp-3, confirmed by MALDI-TOF-MS, exhibited excellent adhesive properties comparable to a commercial glue. These results demonstrate a concerted and simplified high yield production process for recombinant soluble and tag-free Mfp3-based proteins with on demand DOPA modification.
Collapse
Affiliation(s)
- Constanze Zwies
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Weinbergweg 22, 06120, Halle (Saale), Germany.
| | | | - Marcel Naumann
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Franziska Seifert
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Markus Pietzsch
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Weinbergweg 22, 06120, Halle (Saale), Germany
| |
Collapse
|
2
|
Lee J, Kim E, Kim KJ, Rhie JW, Joo KI, Cha HJ. Protective Topical Dual-Sided Nanofibrous Hemostatic Dressing Using Mussel and Silk Proteins with Multifunctionality of Hemostasis and Anti-Bacterial Infiltration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308833. [PMID: 38185768 DOI: 10.1002/smll.202308833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Topical hemostatic agents are preferred for application to sensitive bleeding sites because of their immediate locoregional effects with less tissue damage. However, the majority of commercial hemostatic agents fail to provide stable tissue adhesion to bleeding wounds or act as physical barriers against contaminants. Hence, it has become necessary to investigate biologically favorable materials that can be applied and left within the body post-surgery. In this study, a dual-sided nanofibrous dressing for topical hemostasis is electrospun using a combination of two protein materials: bioengineered mussel adhesive protein (MAP) and silk fibroin (SF). The wound-adhesive inner layer is fabricated using dihydroxyphenylalanine (DOPA)-containing MAP, which promotes blood clotting by aggregation of hemocytes and activation of platelets. The anti-adhesive outer layer is composed of alcohol-treated hydrophobic SF, which has excellent spinnability and mechanical strength for fabrication. Because both proteins are fully biodegradable in vivo and biocompatible, the dressing would be suitable to be left in the body. Through in vivo evaluation using a rat liver damage model, significantly reduced clotting time and blood loss are confirmed, successfully demonstrating that the proposed dual-sided nanofibrous dressing has the right properties and characteristics as a topical hemostatic agent having dual functionality of hemostasis and physical protection.
Collapse
Affiliation(s)
- Jaeyun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Eunjin Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ki-Joo Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jong Won Rhie
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Kye Il Joo
- Department of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
3
|
Zhu P, You T, Wang Y, Ma M, Ye S, Liu S. A Cysteine-Maleimide-Based Design for Hemostatic, Antibacterial, and Biodegradable Wound Dressing. Bioconjug Chem 2024; 35:203-213. [PMID: 38343092 DOI: 10.1021/acs.bioconjchem.3c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The field of clinical surgery frequently encounters challenges related to atypical wound tissue healing, resulting in the development of persistent chronic wounds or aesthetically displeasing scar tissue. The use of wound dressings crafted from mussel adhesive proteins and hyaluronic acid has demonstrated the potential in mitigating these undesirable outcomes. However, the synergistic effects of these two biomaterials remain underexplored. In this study, we have engineered a versatile, degradable, and biocompatible dressing that comprises recombinant 3,4-dihydroxyphenylalanine (DOPA)-modified mussel adhesive proteins and maleimide-functionalized hyaluronic acid. We have successfully fabricated this biocompatible dressing and conducted comprehensive experimental assessments to confirm its hemostatic, antibacterial, and biocompatible characteristics. Importantly, this dressing exclusively incorporates biologically derived materials characterized by low toxicity and minimal immunogenicity, thus holding immense promise for clinical applications in the field of wound healing.
Collapse
Affiliation(s)
- Pei Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Tianjie You
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Ying Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Mingxue Ma
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Si Liu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Anand PP, Shibu Vardhanan Y. Molecular cloning, expression, mRNA secondary structure and immunological characterization of mussel foot proteins (Mfps) (Mollusca: Bivalvia). J Biomol Struct Dyn 2023; 41:12242-12266. [PMID: 36688334 DOI: 10.1080/07391102.2023.2166996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/01/2023] [Indexed: 01/24/2023]
Abstract
The macroscale production of mussel foot proteins (Mfps) in the expression system has not succeeded to date. The principal reasons for this are low levels of expression and yield of Mfps, lack of post-translational modifications (PTMs), and immunological toxic effects on the host system. Identification of post-translational modification sites, suitable expression hosts, and immunological responses through an experimental approach is very costly and time-consuming. However, in the present study, in silico post-translation modification, antigenicity, allergenicity, and the immunological reaction of all available Mfps were characterized. Furthermore, all Mfps were codon optimized in three different expression systems to determine the best expression host. Finally, we performed the in-silico cloning of all codon-optimized Mfps in a suitable host (E. coli K12, pET28a(+) vector) and analyzed the secondary structure of mRNA and its structural stability. Among the 78 Mfps, six fps are considered potential allergenic proteins, six fps are considered non-allergenic proteins, and all other fps are probably allergenic. High antigenicity was observed in bacterial cells as compared to yeast and tumor cells. Nevertheless, the predicted expression of Mfps in a bacterial host is higher than in other expression hosts. Important to note that all Mfps showed significant immunological activity in the human system, and we concluded that these antigenic, allergenic, and immunological properties are directly correlated with their amino acid composition. The study's major goal is to provide a comprehensive understanding of Mfps and aid in the future genetic engineering and expression of Mfps and its diverse applications in different fields.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P P Anand
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Thenhipalam, Kerala, India
| | - Y Shibu Vardhanan
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Thenhipalam, Kerala, India
| |
Collapse
|
5
|
Wang X, Feng X, Xue R, Xu H, Wang R, Zhang L, Li S. Promoting soluble expression of hybrid mussel foot proteins by SUMO-TrxA tags for production of mussel glue. Int J Biol Macromol 2023; 225:840-847. [PMID: 36402391 DOI: 10.1016/j.ijbiomac.2022.11.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Mussel foot proteins (Mfps) display application potential with strong adhesion, enabling mussels to adhere firmly to various surfaces. Mytilus galloprovincialis foot protein 3B (Mgfp-3B) exhibits this characteristic remarkably. However, it remains a challenge for further research due to the low soluble expression of heterologous production. In this study, a small ubiquitin-related modifier (SUMO) and thioredoxin A (TrxA), which catalyzed the proper folding of disulfide bridges, were selected to increase the soluble expression of mfps. An additional ribosome binding site was introduced between the molecular chaperones and Mgfp-3B (fp-3) to form a bicistronic translation-coupled expression vector for co-expression. The results revealed that the combination of SUMO-TrxA increased the soluble expression of fp-3 by 18.07 %. Furthermore, the SUMO-TrxA also boosted the soluble expression of hybrid mfps Mgfp-3B-Mfp-1 (fp-3-1) by 11.29 %, Mgfp-3B-Mgfp-3B (fp-3-3) by 19.91 %, and Mgfp-3B-Mgfp-5 (fp-3-5) by 14.03 %. Ultimately, by high cell density cultivation in a 5 L bioreactor, the yields of fp-3, fp-3-3, and fp-3-5 co-expressed with SUMO-TrxA reached 217.75 mg/L, 127.2 mg/L, and 97.28 mg/L, respectively. Consequently, soluble production of mfps holds great potential for the sustainable supply of protein adhesive materials.
Collapse
Affiliation(s)
- Xinyi Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xinxin Feng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lujia Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
6
|
Janeena A, Nagabalaji V, Suresh P, Ramudu KN, Srinivasan SV, Shanmugam G, Ayyadurai N. Engineering microbial cells with metal chelating hydroxylated unnatural amino acids for removable of synthetic pollutants from water. CHEMOSPHERE 2023; 311:136756. [PMID: 36228731 DOI: 10.1016/j.chemosphere.2022.136756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Lead (Pb2+) is a well-known heavy metal and toxic synthetic industrial pollutant in the ecosystem and causes severe threats to living organisms. It is paramount to develop a sustainable microbial engineering approach to remove synthetic pollutants from the environment. Genetic code engineering is emerging as an important microbial engineering tool in biosciences to biosynthesis congener protein production beyond the canonical set of natural molecules and expand the chemistries of living cells. Here, we prepare cells expressing unnatural amino acid encoded congener proteins for effectively removable toxic synthetic industrial pollutants (Pb2+) with high binding efficiency. Native and the developed congener proteins expressing cells adapted the Langmuir and Sips adsorption model that recommends uniform adsorption with Pb2+ ions. This could be due to a more significant number of functional groups on the protein surface. Fluorescence spectroscopic, field emission scanning electron microscope, X-ray photoelectron spectroscopic analysis, and protein-metal molecular stimulation coordination allowed us to explore the role of hydroxylation on Pb2+ adsorption. The bioreactor filled with immobilized protein-containing active granules showed >90% of lead removal in the contaminated water samples. The desorption of bound Pb2+ from GFP and its variants were studied by varying the pH to reuse the proteins for subsequent usage. We observed that about 70% of the GFP and its variants could be recycled and >75% of fluorescence efficiency could be recovered. Among all the variants, GFPHPDP exhibits high affinity and maintains the reusability efficiency in 7 consecutive cycles. These results suggest that genetic code engineering of cells encoding unnatural amino acids could be a next-generation microbial engineering tool for manipulating and developing the microbial strain's selective and effective removal of synthetic pollutants from the environment.
Collapse
Affiliation(s)
- Asuma Janeena
- Biochemistry and Biotechnology Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Velmurugan Nagabalaji
- Environmental Science and Engineering Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India
| | - Prem Suresh
- Biochemistry and Biotechnology Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India
| | - Kamini Numbi Ramudu
- Biochemistry and Biotechnology Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Shanmugam Venkatachalam Srinivasan
- Environmental Science and Engineering Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India
| | - Ganesh Shanmugam
- Organic and Bioorganic Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Niraikulam Ayyadurai
- Biochemistry and Biotechnology Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Gueta O, Amiram M. Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Adv Drug Deliv Rev 2022; 190:114460. [PMID: 36030987 DOI: 10.1016/j.addr.2022.114460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/24/2023]
Abstract
Expanding the chemical repertoire of natural and artificial protein-based polymers (PBPs) can enable the production of sequence-defined, yet chemically diverse, biopolymers with customized or new properties that cannot be accessed in PBPs composed of only natural amino acids. Various approaches can enable the expansion of the chemical repertoire of PBPs, including chemical and enzymatic treatments or the incorporation of unnatural amino acids. These techniques are employed to install a wide variety of chemical groups-such as bio-orthogonally reactive, cross-linkable, post-translation modifications, and environmentally responsive groups-which, in turn, can facilitate the design of customized PBP-based drug-delivery systems with modified, fine-tuned, or entirely new properties and functions. Here, we detail the existing and emerging technologies for expanding the chemical repertoire of PBPs and review several chemical groups that either demonstrate or are anticipated to show potential in the design of PBP-based drug delivery systems. Finally, we provide our perspective on the remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Osher Gueta
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
8
|
Sun M, Wang C, Lv M, Fan Z, Du J. Intracellular Self-Assembly of Peptides to Induce Apoptosis against Drug-Resistant Melanoma. J Am Chem Soc 2022; 144:7337-7345. [PMID: 35357824 DOI: 10.1021/jacs.2c00697] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biosynthesis has been a diverse toolbox to develop bioactive molecules and materials, especially for fabricating modified peptides and their assemblies induced by enzymes. Although desired chemical structures and nanoarchitectures have been achieved, the subsequent interferences of peptide assemblies with organelles and the cellular pathways still remain unsolved important challenges. Herein, we developed a new tripeptide, phenylalanine-phenylalanine-tyrosine (Phe-Phe-Tyr, or FFY), which can be intracellularly oxidized and in situ self-assemble into nanoparticles with excellent interference capability with microtubules and ultimately reverse the drug resistance of melanoma. With the catalysis of tyrosinase, FFY was first oxidized to a melanin-like FFY dimer (mFFY) with a diquinone structure for further self-assembling into mFFY assemblies, which could inhibit the self-polymerization of tubulin to induce severe G2/M arrest (13.9% higher than control). Afterward, mitochondrial dysfunction was also induced for overproduction of cleaved caspase 3 (3.1 times higher than control) and cleaved PARP (6.3 times higher), achieving a high level of resistant reversing without chemotherapeutic drugs. In vivo studies showed that the resistant melanoma tumor volumes were reduced by 87.4% compared to control groups after FFY treatment by peritumoral injections. Overall, this tyrosinase-induced tripeptide assembly has been demonstrated with effective intrinsic apoptosis against drug-resistant melanoma, providing a new insight into utilizing biomolecules to interfere with organelles to activate certain apoptosis pathways for treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Min Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Congyu Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.,Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Institute for Advanced Study, Tongji University, Shanghai 200092, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.,Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
9
|
Han H, Lee K. Systematic Approach to Mimic Phenolic Natural Polymers for Biofabrication. Polymers (Basel) 2022; 14:1282. [PMID: 35406154 PMCID: PMC9003098 DOI: 10.3390/polym14071282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022] Open
Abstract
In nature, phenolic biopolymers are utilized as functional tools and molecular crosslinkers to control the mechanical properties of biomaterials. Of particular interest are phenolic proteins/polysaccharides from living organisms, which are rich in catechol and/or gallol groups. Their strong underwater adhesion is attributed to the representative phenolic molecule, catechol, which stimulates intermolecular and intramolecular crosslinking induced by oxidative polymerization. Significant efforts have been made to understand the underlying chemistries, and researchers have developed functional biomaterials by mimicking the systems. Owing to their unique biocompatibility and ability to transform their mechanical properties, phenolic polymers have revolutionized biotechnologies. In this review, we highlight the bottom-up approaches for mimicking polyphenolic materials in nature and recent advances in related biomedical applications. We expect that this review will contribute to the rational design and synthesis of polyphenolic functional biomaterials and facilitate the production of related applications.
Collapse
Affiliation(s)
| | - Kyueui Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| |
Collapse
|
10
|
Yao L, Wang X, Xue R, Xu H, Wang R, Zhang L, Li S. Comparative analysis of mussel foot protein 3B co-expressed with tyrosinases provides a potential adhesive biomaterial. Int J Biol Macromol 2022; 195:229-236. [PMID: 34896153 DOI: 10.1016/j.ijbiomac.2021.11.208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
Mussel foot proteins (Mfps), which help mussels attach to various surfaces, are considered to be promising biomaterials due to their outstanding adhesive properties. However, limited production and lack of post-translational modifications of tyrosine residues into 3,4-dihydroxyphenylalanine (Dopa) in bacterial expression systems have hampered their applications. In the present study, for the first time we established the expression of recombinant Mytilus galloprovincialis foot protein type 3 variant B (fp-3B) in Escherichia coli; and achieved its viable production (~51 mg/L). Additionally, the Dopa content and adhesive properties of fp-3B co-expressed using various types of tyrosinases were compared. Consequently, the co-expression of fp-3B construct together with tyrosinase from Verrucomicrobium spinosum (TyrVs) yielded up to 87 mg/L of modified fp-3B; hydroxylation of tyrosine residues accounted for 57.18% by acid-borate difference spectroscopy. The modified fp-3B also showed significant coating and adhesive ability, and its bulk-scale adhesive strength was 2.9-fold higher than that of unmodified fp-3B. Compared with other type 3 mussel foot proteins, the high-yield expression and extensive hydroxylation level of the recombinant protein indicate that fp-3B co-expressed with TyrVs (3B-Vs) has the potential to be widely used as bioglues.
Collapse
Affiliation(s)
- Lin Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xinyi Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lujia Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Choi S, Ahn H, Kim S. Tyrosinase‐mediated hydrogel crosslinking for tissue engineering. J Appl Polym Sci 2021. [DOI: 10.1002/app.51887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumi Choi
- Department of Chemical Engineering (BK 21 FOUR) Dong‐A University Busan Republic of Korea
| | - Hyerin Ahn
- Department of Chemical Engineering (BK 21 FOUR) Dong‐A University Busan Republic of Korea
| | - Su‐Hwan Kim
- Department of Chemical Engineering (BK 21 FOUR) Dong‐A University Busan Republic of Korea
| |
Collapse
|
12
|
Kim S, Bae G, Shin M, Kang E, Park TY, Choi YS, Cha HJ. Oriented in situ immobilization of a functional tyrosinase on microcrystalline cellulose effectively incorporates DOPA residues in bioengineered mussel adhesive protein. Biotechnol J 2021; 16:e2100216. [PMID: 34536060 DOI: 10.1002/biot.202100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Catechol-containing polymers such as mussel adhesive proteins (MAPs) are attractive as biocompatible adhesive biomaterials, and the catecholic amino acid 3,4-dihydroxyphenyl-L-alanine (DOPA) is considered a key molecule in underwater mussel adhesion. Tyrosinases can specifically convert tyrosine to DOPA without any cofactors. However, their catalytic properties still need to be adjusted to minimize unwanted DOPA oxidation via their diphenolase activity and catechol instability at neutral and basic pH values in the reaction products. METHODS AND RESULTS In this work, we constructed a novel functional tyrosinase, mTyr-CNK_CBM, by fusion of mTyr-CNK with a cellulose-binding motif (CBM) for oriented in situ immobilization on microcrystalline cellulose via the C-terminal CBM without any additional purification steps. mTyr-CNK_CBM showed optimal catalytic activity at pH 4.5-6.5 and room temperature and had a high monophenolase/diphenolase activity ratio (Vmax mono/Vmax di = 2.08 at pH 6 and 25°C). mTyr-CNK_CBM exhibited 2.17-fold higher (as a unimmobilized free enzyme) and similarly high (upon immobilization) in vitro DOPA modification of a bioengineered MAP compared to a commercially available mushroom tyrosinase. Moreover, the immobilized mTyr-CNK_CBM showed long-term storability and improved reusability. CONCLUSIONS These results clearly demonstrate a strong potential for practical use of immobilized mTyr-CNK_CBM as a monophenol monooxygenase in preparing biocompatible DOPA-tethered biomaterials and other catechol-containing polymers.
Collapse
Affiliation(s)
- Suhyeok Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Gaeun Bae
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Mincheol Shin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eungsu Kang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoo Seong Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
13
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
14
|
Jeong YS, Yang B, Yang B, Shin M, Seong J, Cha HJ, Kwon I. Enhanced production of Dopa-incorporated mussel adhesive protein using engineered translational machineries. Biotechnol Bioeng 2020; 117:1961-1969. [PMID: 32196642 DOI: 10.1002/bit.27339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/05/2022]
Abstract
Mussel adhesive proteins (MAPs) have great potential as bioglues, particularly in wet conditions. Although in vivo residue-specific incorporation of 3,4-dihydroxyphenylalanine (Dopa) in tyrosine-auxotrophic Escherichia coli cells allows for production of Dopa-incorporated bioengineered MAPs (dMAPs), the low production yield hinders the practical application of dMAPs. This low production yield of dMAPs is due to low translational activity of a noncanonical amino acid, Dopa, in E. coli cells. Herein, to enhance the production yield of dMAPs, we investigated the coexpression of Dopa-recognizing tyrosyl-tRNA synthetases (TyrRSs). To use the Dopa-specific Methanococcus jannaschii TyrRS (MjTyrRS-Dopa), we altered the anticodon of tyrosyl-tRNA amber suppressor into AUA (MjtRNATyr AUA ) to recognize a tyrosine codon (AUA). Co-overexpression of MjTyrRS-Dopa and MjtRNATyr AUA increased the production yield of Dopa-incorporated MAP foot protein type 3 (dfp-3) by 57%. Similarly, overexpression of E. coli TyrRS (EcTyrRS) led to a 72% higher production yield of dfp-3. Even with coexpression of Dopa-recognizing TyrRSs, dfp-3 has a high Dopa incorporation yield (over 90%) compared to ones prepared without TyrRS coexpression.
Collapse
Affiliation(s)
- Ye Seul Jeong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Byeongseon Yang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Byungseop Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Mincheol Shin
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jihyoun Seong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
15
|
Budisa N, Schneider T. Expanding the DOPA Universe with Genetically Encoded, Mussel-Inspired Bioadhesives for Material Sciences and Medicine. Chembiochem 2019; 20:2163-2190. [PMID: 30830997 DOI: 10.1002/cbic.201900030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Catechols are a biologically relevant group of aromatic diols that have attracted much attention as mediators of adhesion of "bio-glue" proteins in mussels of the genus Mytilus. These organisms use catechols in the form of the noncanonical amino acid l-3,4-dihydroxyphenylalanine (DOPA) as a building block for adhesion proteins. The DOPA is generated post-translationally from tyrosine. Herein, we review the properties, natural occurrence, and reactivity of catechols in the design of bioinspired materials. We also provide a basic description of the mussel's attachment apparatus, the interplay between its different molecules that play a crucial role in adhesion, and the role of post-translational modifications (PTMs) of these proteins. Our focus is on the microbial production of mussel foot proteins with the aid of orthogonal translation systems (OTSs) and the use of genetic code engineering to solve some fundamental problems in the bioproduction of these bioadhesives and to expand their chemical space. The major limitation of bacterial expression systems is their intrinsic inability to introduce PTMs. OTSs have the potential to overcome these challenges by replacing canonical amino acids with noncanonical ones. In this way, PTM steps are circumvented while the genetically programmed precision of protein sequences is preserved. In addition, OTSs should enable spatiotemporal control over the complex adhesion process, because the catechol function can be masked by suitable chemical protection. Such caged residues can then be noninvasively unmasked by, for example, UV irradiation or thermal treatment. All of these features make OTSs based on genetic code engineering in reprogrammed microbial strains new and promising tools in bioinspired materials science.
Collapse
Affiliation(s)
- Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany.,Chair of Chemical Synthetic Biology, Department of Chemistry, University of Manitoba, 144 Dysart Road, R3T 2N2, Winnipeg, MB, Canada
| | - Tobias Schneider
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany
| |
Collapse
|
16
|
Fritzsching KJ, Duan P, Alberts EM, Tibabuzo Perdomo AM, Kenny P, Wilker JJ, Schmidt-Rohr K. Silk-Like Protein with Persistent Radicals Identified in Oyster Adhesive by Solid-State NMR. ACS APPLIED BIO MATERIALS 2019; 2:2840-2852. [DOI: 10.1021/acsabm.9b00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Keith J. Fritzsching
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | | | | | - Paul Kenny
- Baruch Marine Field Laboratory, University of South Carolina, P.O. Box 1630, Georgetown, South Carolina 29442, United States
| | | | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
17
|
Qi H, Zheng W, Zhang C, Zhou X, Zhang L. Novel Mussel-Inspired Universal Surface Functionalization Strategy: Protein-Based Coating with Residue-Specific Post-Translational Modification in Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12846-12853. [PMID: 30843382 DOI: 10.1021/acsami.8b22551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface functionalization can effectively endow materials with desirable properties, promoting the performance between the material and environment, with extensive applications. However, a universal and straightforward surface functionalization method with biocompatibility is scarce. In this study, with synthetic biology strategy, recombinant mussel plaque protein with a zwitterionic peptide inspired by molecular chaperone was engineered through post-translational modification, in which 3,4-dihydroxyphenylalanine was residue-specifically obtained efficiently from tyrosine with tyrosinase coexpressed in vivo. The rational designed chimeric protein coating in this work could successfully anchor to various substrates and exhibit excellent antifouling performance in resisting protein adsorption, cell attachment, and bacterial adhesion with eminent biocompatibility.
Collapse
Affiliation(s)
- Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Weiwei Zheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Chen Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Xiao Zhou
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering , Tianjin University , Tianjin 300072 , China
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , P. R. China
| |
Collapse
|
18
|
Aksambayeva AS, Zhaparova LR, Shagyrova ZS, Zhiyenbay E, Nurgozhin TS, Ramankulov EM, Shustov AV. Recombinant Tyrosinase from Verrucomicrobium spinosum: Isolation, Characteristics, and Use for the Production of a Protein with Adhesive Properties. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818080021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Román JK, Wilker JJ. Cooking Chemistry Transforms Proteins into High-Strength Adhesives. J Am Chem Soc 2019; 141:1359-1365. [PMID: 30576593 DOI: 10.1021/jacs.8b12150] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In prior generations, proteins were taken from horses and other animals to make glues. Petroleum-derived polymers including epoxies and cyanoacrylates have since replaced proteins owing to improved performance. These modern materials come at a cost of toxicity as well as being derived from limited resources. Ideally, replacement adhesives will be made from benign, cheap, and renewable feedstocks. Such a transition to biobased materials, however, will not occur until similar or improved performance can be achieved. We have discovered that coupling of proteins and sugars gives rise to strong adhesives. An unexpected connection was made between adhesion and Maillard chemistry, known to be at the heart of cooking foods. Cross-linked proteins bonded metal and wood with high strengths, in some cases showing forces exceeding those withstood by the substrates themselves. Simple cooking chemistry may provide a route to future high-performance materials derived from low-cost, environmentally benign components.
Collapse
Affiliation(s)
- Jessica K Román
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907-2084 , United States
| | - Jonathan J Wilker
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907-2084 , United States
- School of Materials Engineering , Purdue University , Neil Armstrong Hall of Engineering, 701 West Stadium Avenue , West Lafayette , Indiana 47907-2045 , United States
| |
Collapse
|
20
|
Park BM, Luo J, Sun F. Enzymatic assembly of adhesive molecular networks with sequence-dependent mechanical properties inspired by mussel foot proteins. Polym Chem 2019. [DOI: 10.1039/c8py01581c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By inserting short peptide motifs derived from Mfp-3 and Mfp-5 into elastin-like polypeptides (ELPs), we created several recombinant protein polymers that can form adhesive hydrogels upon enzymatic oxidation.
Collapse
Affiliation(s)
- Byung Min Park
- Department of Chemical and Biological Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
| | - Jiren Luo
- Department of Chemical and Biological Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
| | - Fei Sun
- Department of Chemical and Biological Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
- Center of Systems Biology and Human Health and Institute for Advanced Study
| |
Collapse
|
21
|
Luo J, Liu X, Yang Z, Sun F. Synthesis of Entirely Protein-Based Hydrogels by Enzymatic Oxidation Enabling Water-Resistant Bioadhesion and Stem Cell Encapsulation. ACS APPLIED BIO MATERIALS 2018; 1:1735-1740. [DOI: 10.1021/acsabm.8b00541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiren Luo
- Department of Chemical and Biological Engineering, Center of Systems Biology & Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xiaotian Liu
- Department of Chemical and Biological Engineering, Center of Systems Biology & Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhongguang Yang
- Department of Chemical and Biological Engineering, Center of Systems Biology & Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fei Sun
- Department of Chemical and Biological Engineering, Center of Systems Biology & Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
22
|
Wang J, Scheibel T. Recombinant Production of Mussel Byssus Inspired Proteins. Biotechnol J 2018; 13:e1800146. [DOI: 10.1002/biot.201800146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/28/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jia Wang
- Lehrstuhl BiomaterialienUniversität BayreuthUniversitätsstraße 3095440BayreuthGermany
| | - Thomas Scheibel
- Lehrstuhl BiomaterialienUniversität BayreuthUniversitätsstraße 3095440BayreuthGermany
- Forschungszentrum für Bio‐Makromoleküle (BIOmac)Universität BayreuthBayreuthGermany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG)Universität BayreuthBayreuthGermany
- Bayreuther Materialzentrum (BayMat)Universität BayreuthBayreuthGermany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB)Universität BayreuthBayreuthGermany
| |
Collapse
|
23
|
Axambayeva AS, Zhaparova LR, Shagyrova ZS, Ramankulov EM, Shustov AV. Unusual Stability of a Recombinant Verrucomicrobium spinosum Tyrosinase to Denaturing Agents and Its Use for a Production of a Protein with Adhesive Properties. Appl Biochem Biotechnol 2018; 185:736-754. [DOI: 10.1007/s12010-017-2686-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
|
24
|
Sousa MP, Mano JF, d’Ischia M, Ruiz-Molina D. Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering. Biomimetics (Basel) 2017; 2:19. [PMID: 30842970 PMCID: PMC6352653 DOI: 10.3390/biomimetics2040019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
Mussels are marine organisms that have been mimicked due to their exceptional adhesive properties to all kind of surfaces, including rocks, under wet conditions. The proteins present on the mussel's foot contain 3,4-dihydroxy-l-alanine (DOPA), an amino acid from the catechol family that has been reported by their adhesive character. Therefore, we synthesized a mussel-inspired conjugated polymer, modifying the backbone of hyaluronic acid with dopamine by carbodiimide chemistry. Ultraviolet-visible (UV-vis) spectroscopy and nuclear magnetic resonance (NMR) techniques confirmed the success of this modification. Different techniques have been reported to produce two-dimensional (2D) or three-dimensional (3D) systems capable to support cells and tissue regeneration; among others, multilayer systems allow the construction of hierarchical structures from nano- to macroscales. In this study, the layer-by-layer (LbL) technique was used to produce freestanding multilayer membranes made uniquely of chitosan and dopamine-modified hyaluronic acid (HA-DN). The electrostatic interactions were found to be the main forces involved in the film construction. The surface morphology, chemistry, and mechanical properties of the freestanding membranes were characterized, confirming the enhancement of the adhesive properties in the presence of HA-DN. The MC3T3-E1 cell line was cultured on the surface of the membranes, demonstrating the potential of these freestanding multilayer systems to be used for bone tissue engineering.
Collapse
Affiliation(s)
| | - João F. Mano
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | | | | |
Collapse
|
25
|
Hauf M, Richter F, Schneider T, Faidt T, Martins BM, Baumann T, Durkin P, Dobbek H, Jacobs K, Möglich A, Budisa N. Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code. Chembiochem 2017. [DOI: 10.1002/cbic.201700327] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthias Hauf
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Florian Richter
- Institut für Biologie; Biophysikalische Chemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Tobias Schneider
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Thomas Faidt
- Experimental Physics; Saarland University; Campus E2 9 66123 Saarbrücken Germany
| | - Berta M. Martins
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Tobias Baumann
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Patrick Durkin
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Karin Jacobs
- Experimental Physics; Saarland University; Campus E2 9 66123 Saarbrücken Germany
| | - Andreas Möglich
- Institut für Biologie; Biophysikalische Chemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
- Lehrstuhl für Biochemie; Universität Bayreuth; Universitätsstrasse 30 95440 Bayreuth Germany
| | - Nediljko Budisa
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
26
|
Affiliation(s)
- Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Angela L. Holmberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
27
|
Zhang X, Ruan Z, You X, Wang J, Chen J, Peng C, Shi Q. De novo assembly and comparative transcriptome analysis of the foot from Chinese green mussel (Perna viridis) in response to cadmium stimulation. PLoS One 2017; 12:e0176677. [PMID: 28520756 PMCID: PMC5435178 DOI: 10.1371/journal.pone.0176677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
The Chinese green mussel, Perna viridis, is a marine bivalve with important economic values as well as biomonitoring roles for aquatic pollution. Byssus, secreted by the foot gland, has been proved to bind heavy metals effectively. In this study, using the RNA sequencing technology, we performed comparative transcriptomic analysis on the mussel feet with or without inducing by cadmium (Cd). Our current work is aiming at providing insights into the molecular mechanisms of byssus binding to heavy metal ions. The transcriptome sequencing generated a total of 26.13-Gb raw data. After a careful assembly of clean data, we obtained a primary set of 105,127 unigenes, in which 32,268 unigenes were annotated. Based on the expression profiles, we identified 9,048 differentially expressed genes (DEGs) between Cd treatment (50 or 100 μg/L) at 48 h and the control, suggesting an extensive transcriptome response of the mussels during the Cd stimulation. Moreover, we observed that the expression levels of 54 byssus protein coding genes increased significantly after the 48-h Cd stimulation. In addition, 16 critical byssus protein coding genes were picked for profiling by quantitative real-time PCR (qRT-PCR). Finally, we reached a primary conclusion that high content of tyrosine (Tyr), cysteine (Cys), histidine (His) residues or the special motif plays an important role in the accumulation of heavy metals in byssus. We also proposed an interesting model for the confirmed byssal Cd accumulation, in which biosynthesis of byssus proteins may play simultaneously critical roles since their transcription levels were significantly elevated.
Collapse
Affiliation(s)
- Xinhui Zhang
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Fisheries, BGI, Shenzhen, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Fisheries, BGI, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Fisheries, BGI, Shenzhen, China
| | | | - Jieming Chen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Fisheries, BGI, Shenzhen, China
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Fisheries, BGI, Shenzhen, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Fisheries, BGI, Shenzhen, China
- * E-mail:
| |
Collapse
|
28
|
Zhang C, Miyatake H, Wang Y, Inaba T, Wang Y, Zhang P, Ito Y. A Bioorthogonal Approach for the Preparation of a Titanium-Binding Insulin-like Growth-Factor-1 Derivative by Using Tyrosinase. Angew Chem Int Ed Engl 2016; 55:11447-51. [PMID: 27383212 DOI: 10.1002/anie.201603155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 01/02/2023]
Abstract
The generation of metal surfaces with biological properties, such as cell-growth-enhancing and differentiation-inducing abilities, could be potentially exciting for the development of functional materials for use in humans, including artificial dental implants and joint replacements. However, currently the immobilization of proteins on the surfaces of the metals are limited. In this study, we have used a mussel-inspired bioorthogonal approach to design a 3,4-hydroxyphenalyalanine-containing recombinant insulin-like growth-factor-1 using a combination of recombinant DNA technology and tyrosinase treatment for the surface modification of titanium. The modified growth factor prepared in this study exhibited strong binding affinity to titanium, and significantly enhanced the growth of NIH3T3 cells on the surface of titanium.
Collapse
Affiliation(s)
- Chen Zhang
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | | | - Yi Wang
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
29
|
Zhang C, Miyatake H, Wang Y, Inaba T, Wang Y, Zhang P, Ito Y. A Bioorthogonal Approach for the Preparation of a Titanium-Binding Insulin-like Growth-Factor-1 Derivative by Using Tyrosinase. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Zhang
- Nano Medical Engineering Laboratory, RIKEN; 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- School of Pharmaceutical Sciences; Jilin University; No. 1266 Fujin Road Changchun Jilin 130021 P.R. China
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN; 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | | | - Yi Wang
- School of Pharmaceutical Sciences; Jilin University; No. 1266 Fujin Road Changchun Jilin 130021 P.R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN; 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Emergent Bioengineering Materials Research Team; RIKEN Center for Emergent Matter Science; 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| |
Collapse
|
30
|
Kim H, Yeon YJ, Choi YR, Song W, Pack SP, Choi YS. A cold-adapted tyrosinase with an abnormally high monophenolase/diphenolase activity ratio originating from the marine archaeon Candidatus Nitrosopumilus koreensis. Biotechnol Lett 2016; 38:1535-42. [DOI: 10.1007/s10529-016-2125-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 11/21/2022]
|
31
|
Mu Y, Wan X. Simple but Strong: A Mussel-Inspired Hot Curing Adhesive Based on Polyvinyl Alcohol Backbone. Macromol Rapid Commun 2016; 37:545-50. [DOI: 10.1002/marc.201500723] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/05/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Youbing Mu
- The Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; 189 Songling Road Qingdao P. R. China
- University of Chinese Academy of Sciences; 19A Yuquan Road Beijing 100049 P. R. China
| | - Xiaobo Wan
- The Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; 189 Songling Road Qingdao P. R. China
| |
Collapse
|
32
|
Chung H, Yang JE, Ha JY, Chae TU, Shin JH, Gustavsson M, Lee SY. Bio-based production of monomers and polymers by metabolically engineered microorganisms. Curr Opin Biotechnol 2015; 36:73-84. [DOI: 10.1016/j.copbio.2015.07.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
|
33
|
Krogsgaard M, Nue V, Birkedal H. Mussel-Inspired Materials: Self-Healing through Coordination Chemistry. Chemistry 2015; 22:844-57. [DOI: 10.1002/chem.201503380] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Marie Krogsgaard
- Department of Chemistry; iNANO; Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Vicki Nue
- Department of Chemistry; iNANO; Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Henrik Birkedal
- Department of Chemistry; iNANO; Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
34
|
Liang C, Li Y, Liu Z, Wu W, Hu B. Protein Aggregation Formed by Recombinant cp19k Homologue of Balanus albicostatus Combined with an 18 kDa N-Terminus Encoded by pET-32a(+) Plasmid Having Adhesion Strength Comparable to Several Commercial Glues. PLoS One 2015; 10:e0136493. [PMID: 26317205 PMCID: PMC4552757 DOI: 10.1371/journal.pone.0136493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
The barnacle is well known for its tenacious and permanent attachment to a wide variety of underwater substrates, which is accomplished by synthesizing, secreting and curing a mixture of adhesive proteins termed “barnacle cement”. In order to evaluate interfacial adhesion abilities of barnacle cement proteins, the cp19k homologous gene in Balanus albicostatus (Balcp19k) was cloned and expressed in Escherichia coli. Here, we report an intriguing discovery of a gel-like super adhesive aggregation produced by Trx-Balcp19k, a recombinant Balcp19k fusion protein. The Trx-Balcp19k consists of an 18 kDa fragment at the N-terminus, which is encoded by pET-32a(+) plasmid and mainly comprised of a thioredoxin (Trx) tag, and Balcp19k at the C-terminus. The sticky aggregation was designated as “Trx-Balcp19k gel”, and the bulk adhesion strength, biochemical composition, as well as formation conditions were all carefully investigated. The Trx-Balcp19k gel exhibited strong adhesion strength of 2.10 ± 0.67 MPa, which was approximately fifty folds higher than that of the disaggregated Trx-Balcp19k (40 ± 8 kPa) and rivaled those of commercial polyvinyl acetate (PVA) craft glue (Mont Marte, Australia) and UHU glue (UHU GmbH & Co. KG, Germany). Lipids were absent from the Trx-Balcp19k gel and only a trace amount of carbohydrates was detected. We postulate that the electrostatic interactions play a key role in the formation of Trx-Balcp19k gel, by mediating self-aggregation of Trx-Balcp19k based on its asymmetric distribution pattern of charged amino acids. Taken together, we believe that our discovery not only presents a promising biological adhesive with potential applications in both biomedical and technical fields, but also provides valuable paradigms for molecular design of bio-inspired peptide- or protein-based materials.
Collapse
Affiliation(s)
- Chao Liang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Yunqiu Li
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Zhiming Liu
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Wenjian Wu
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Biru Hu
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
35
|
Yang B, Ayyadurai N, Yun H, Choi YS, Hwang BH, Huang J, Lu Q, Zeng H, Cha HJ. In Vivo Residue-Specific Dopa-Incorporated Engineered Mussel Bioglue with Enhanced Adhesion and Water Resistance. Angew Chem Int Ed Engl 2014; 53:13360-4. [DOI: 10.1002/anie.201406099] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 01/17/2023]
|
36
|
Yang B, Ayyadurai N, Yun H, Choi YS, Hwang BH, Huang J, Lu Q, Zeng H, Cha HJ. In Vivo Residue-Specific Dopa-Incorporated Engineered Mussel Bioglue with Enhanced Adhesion and Water Resistance. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Yang YJ, Kwon Y, Choi BH, Jung D, Seo JH, Lee KH, Cha HJ. Multifunctional Adhesive Silk Fibroin with Blending of RGD-Bioconjugated Mussel Adhesive Protein. Biomacromolecules 2014; 15:1390-8. [DOI: 10.1021/bm500001n] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yun Jung Yang
- Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yunkyeoung Kwon
- Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Bong-Hyuk Choi
- Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dooyup Jung
- Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jeong Hyun Seo
- Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ki Hoon Lee
- Department
of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Korea
| | - Hyung Joon Cha
- Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
38
|
Hochkoeppler A. Expanding the landscape of recombinant protein production in Escherichia coli. Biotechnol Lett 2013; 35:1971-81. [DOI: 10.1007/s10529-013-1396-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/26/2013] [Indexed: 12/11/2022]
|
39
|
Bio-orthogonal and combinatorial approaches for the design of binding growth factors. Biomaterials 2013; 34:7565-74. [PMID: 23859658 DOI: 10.1016/j.biomaterials.2013.06.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/23/2013] [Indexed: 11/22/2022]
Abstract
Merrifield chemistry enables the convenient synthesis of oligonucleotides and peptides, while recombinant DNA technology has facilitated protein engineering. Recently, protein engineering has been extended into bio-orthogonal protein engineering by the development of specific chemical or enzymatic modification technologies. The combinatorial approach of molecular evolutionary engineering (or in vitro selection) has also provided a new design tool for functional peptides. These methodologies have enabled the development of various new proteinaceous materials for biological and medical applications. Here, we will discuss recent progress in the molecular design of proteins with respect to the preparation of binding growth factors, which are of increasing importance in the biomaterials field.
Collapse
|