1
|
Neal M, Brakewood W, Betenbaugh M, Zengler K. Pan-genome-scale metabolic modeling of Bacillus subtilis reveals functionally distinct groups. mSystems 2024; 9:e0092324. [PMID: 39365060 PMCID: PMC11575223 DOI: 10.1128/msystems.00923-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Bacillus subtilis is an important industrial and environmental microorganism known to occupy many niches and produce many compounds of interest. Although it is one of the best-studied organisms, much of this focus including the reconstruction of genome-scale metabolic models has been placed on a few key laboratory strains. Here, we substantially expand these prior models to pan-genome-scale, representing 481 genomes of B. subtilis with 2,315 orthologous gene clusters, 1,874 metabolites, and 2,239 reactions. Furthermore, we incorporate data from carbon utilization experiments for eight strains to refine and validate its metabolic predictions. This comprehensive pan-genome model enables the assessment of strain-to-strain differences related to nutrient utilization, fermentation outputs, robustness, and other metabolic aspects. Using the model and phenotypic predictions, we divide B. subtilis strains into five groups with distinct patterns of behavior that correlate across these features. The pan-genome model offers deep insights into B. subtilis' metabolism as it varies across environments and provides an understanding as to how different strains have adapted to dynamic habitats. IMPORTANCE As the volume of genomic data and computational power have increased, so has the number of genome-scale metabolic models. These models encapsulate the totality of metabolic functions for a given organism. Bacillus subtilis strain 168 is one of the first bacteria for which a metabolic network was reconstructed. Since then, several updated reconstructions have been generated for this model microorganism. Here, we expand the metabolic model for a single strain into a pan-genome-scale model, which consists of individual models for 481 B. subtilis strains. By evaluating differences between these strains, we identified five distinct groups of strains, allowing for the rapid classification of any particular strain. Furthermore, this classification into five groups aids the rapid identification of suitable strains for any application.
Collapse
Affiliation(s)
- Maxwell Neal
- Department of Bioengineering, University of California, San Diego, California, USA
| | - William Brakewood
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, California, USA
- Department of Pediatrics, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Ren K, Wang Q, Chen J, Zhang H, Guo Z, Xu M, Rao Z, Zhang X. Design-build-test of recombinant Bacillus subtilis chassis cell by lifespan engineering for robust bioprocesses. Synth Syst Biotechnol 2024; 9:470-480. [PMID: 38634000 PMCID: PMC11021899 DOI: 10.1016/j.synbio.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/03/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Microbial cell factories utilize renewable raw materials for industrial chemical production, providing a promising path for sustainable development. Bacillus subtilis is widely used in industry for its food safety properties, but challenges remain in the limitations of microbial fermentation. This study proposes a novel strategy based on lifespan engineering to design robust B. subtilis chassis cells to supplement traditional metabolic modification strategies that can alleviate cell autolysis, tolerate toxic substrates, and get a higher mass transfer efficiency. The modified chassis cells could produce high levels of l-glutaminase, and tolerate hydroquinone to produce α-arbutin efficiently. In a 5 L bioreactor, the l-glutaminase enzyme activity of the final strain CRE15TG was increased to 2817.4 ± 21.7 U mL-1, about 1.98-fold compared with that of the wild type. The α-arbutin yield of strain CRE15A was increased to 134.7 g L-1, about 1.34-fold compared with that of the WT. To our knowledge, both of the products in this study performed the highest yields reported so far. The chassis modification strategy described in this study can Improve the utilization efficiency of chassis cells, mitigate the possible adverse effects caused by excessive metabolic modification of engineered strains, and provide a new idea for the future design of microbial cell factories.
Collapse
Affiliation(s)
- Kexin Ren
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jianghua Chen
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Zhoule Guo
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| |
Collapse
|
3
|
Millgaard M, Bidart GN, Pogrebnyakov I, Nielsen AT, Welner DH. An improved integrative GFP-based vector for genetic engineering of Parageobacillus thermoglucosidasius facilitates the identification of a key sporulation regulator. AMB Express 2023; 13:44. [PMID: 37154828 PMCID: PMC10167077 DOI: 10.1186/s13568-023-01544-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Parageobacillus thermoglucosidasius is a thermophilic Gram-positive bacterium, which is a promising host organism for sustainable bio-based production processes. However, to take full advantage of the potential of P. thermoglucosidasius, more efficient tools for genetic engineering are required. The present study describes an improved shuttle vector, which speeds up recombination-based genomic modification by incorporating a thermostable sfGFP variant into the vector backbone. This additional selection marker allows for easier identification of recombinants, thereby removing the need for several culturing steps. The novel GFP-based shuttle is therefore capable of facilitating faster metabolic engineering of P. thermoglucosidasius through genomic deletion, integration, or exchange. To demonstrate the efficiency of the new system, the GFP-based vector was utilised for deletion of the spo0A gene in P. thermoglucosidasius DSM2542. This gene is known to be a key regulator of sporulation in Bacillus subtilis, and it was therefore hypothesised that the deletion of spo0A in P. thermoglucosiadius would produce an analogous sporulation-inhibited phenotype. Subsequent analyses of cell morphology and culture heat resistance suggests that the P. thermoglucosidasius ∆spo0A strain is sporulation-deficient. This strain may be an excellent starting point for future cell factory engineering of P. thermoglucosidasius, as the formation of endospores is normally not a desired trait in large-scale production.
Collapse
Affiliation(s)
- Marie Millgaard
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Gonzalo Nahuel Bidart
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| | - Ditte Hededam Welner
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Blázquez B, San León D, Rojas A, Tortajada M, Nogales J. New Insights on Metabolic Features of Bacillus subtilis Based on Multistrain Genome-Scale Metabolic Modeling. Int J Mol Sci 2023; 24:ijms24087091. [PMID: 37108252 PMCID: PMC10138676 DOI: 10.3390/ijms24087091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Bacillus subtilis is an effective workhorse for the production of many industrial products. The high interest aroused by B. subtilis has guided a large metabolic modeling effort of this species. Genome-scale metabolic models (GEMs) are powerful tools for predicting the metabolic capabilities of a given organism. However, high-quality GEMs are required in order to provide accurate predictions. In this work, we construct a high-quality, mostly manually curated genome-scale model for B. subtilis (iBB1018). The model was validated by means of growth performance and carbon flux distribution and provided significantly more accurate predictions than previous models. iBB1018 was able to predict carbon source utilization with great accuracy while identifying up to 28 metabolites as potential novel carbon sources. The constructed model was further used as a tool for the construction of the panphenome of B. subtilis as a species, by means of multistrain genome-scale reconstruction. The panphenome space was defined in the context of 183 GEMs representative of 183 B. subtilis strains and the array of carbon sources sustaining growth. Our analysis highlights the large metabolic versatility of the species and the important role of the accessory metabolism as a driver of the panphenome, at a species level.
Collapse
Affiliation(s)
- Blas Blázquez
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain
| | - David San León
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain
| | - Antonia Rojas
- Archer Daniels Midland, Nutrition, Biopolis S.L. Parc Científic Universitat de València, Carrer del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Marta Tortajada
- Archer Daniels Midland, Nutrition, Biopolis S.L. Parc Científic Universitat de València, Carrer del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain
| |
Collapse
|
5
|
Maumela P, Rose S, van Rensburg E, Chimphango AFA, Görgens JF. Bioprocess Optimisation for High Cell Density Endoinulinase Production from Recombinant Aspergillus niger. Appl Biochem Biotechnol 2021; 193:3271-3286. [PMID: 34117627 DOI: 10.1007/s12010-021-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Endoinulinase gene was expressed in recombinant Aspergillus niger for selective and high-level expression using an exponential fed-batch fermentation. The effects of the growth rate (μ), glucose feed concentration, nitrogen concentration and fungal morphology on enzyme production were evaluated. A recombinant endoinulinase with a molecular weight of 66 kDa was secreted. Endoinulinase production was growth associated at μ> 0.04 h-1, which is characteristic of the constitutive gpd promoter used for the enzyme production. The highest volumetric activity (670 U/ml) was achieved at a growth rate of 93% of μmax (0.07 h-1), while enzyme activity (506 U/ml) and biomass substrate yield (0.043 gbiomassDW/gglucose) significantly decreased at low μ (0.04 h-1). Increasing the feed concentration resulted in high biomass concentrations and viscosity, which necessitated high agitation to enhance the mixing efficiency and oxygen. However, the high agitation and low DO levels (ca. 8% of saturation) led to pellet disruption and growth in dispersed morphology. Enzyme production profiles, product (Yp/s) and biomass (Yx/s) yield coefficients were not affected by feed concentration and morphological change. The gradual increase in the concentration of nitrogen sources showed that, a nitrogen limited culture was not suitable for endoinulinase production in recombinant A. niger. Moreover, the increase in enzyme volumetric activity was still directly related to an increase in biomass concentration. An increase in nitrogen concentration, from 3.8 to 12 g/L, resulted in volumetric activity increase from 393 to 670 U/ml, but the Yp/s (10053 U/gglucose) and Yx/s (0.049 gbiomasDWs/gglucose) did not significantly change. The data demonstrated the potential of recombinant A. niger and high cell density fermentation for the development of large-scale endoinulinase production system.
Collapse
Affiliation(s)
- Pfariso Maumela
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Shaunita Rose
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | | | - Johann Ferdinand Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
6
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Bifunctional Malic/Malolactic Enzyme Provides a Novel Mechanism for NADPH-Balancing in Bacillus subtilis. mBio 2021; 12:mBio.03438-20. [PMID: 33824210 PMCID: PMC8092299 DOI: 10.1128/mbio.03438-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new mechanism for NADPH balancing was discovered in Bacillus subtilis. It pivots on the bifunctional enzyme YtsJ, which is known to catalyze NADP-dependent malate decarboxylation. We found that in the presence of excessive NADPH, the same enzyme switches to malolactic activity and creates a transhydrogenation cycle that ultimately converts NADPH to NADH. This provides a regulated mechanism to immediately adjust NADPH/NADP+ in response to instantaneous needs. The redox cofactor NADPH is required as a reducing equivalent in about 100 anabolic reactions throughout metabolism. To ensure fitness under all conditions, the demand is fulfilled by a few dehydrogenases in central carbon metabolism that reduce NADP+ with electrons derived from the catabolism of nutrients. In the case of Bacillus subtilis growing on glucose, quantitative flux analyses indicate that NADPH production largely exceeds biosynthetic needs, suggesting a hitherto unknown mechanism for NADPH balancing. We investigated the role of the four malic enzymes present in B. subtilis that could bring about a metabolic cycle for transhydrogenation of NADPH into NADH. Using quantitative 13C metabolic flux analysis, we found that isoform YtsJ alone contributes to NADPH balancing in vivo and demonstrated relevant NADPH-oxidizing activity by YtsJ in vitro. To our surprise, we discovered that depending on NADPH, YtsJ switches activity from a pyruvate-producing malic enzyme to a lactate-generating malolactic enzyme. This switch in activity allows YtsJ to adaptively compensate for cellular NADPH over- and underproduction upon demand. Finally, NADPH-dependent bifunctional activity was also detected in the YtsJ homolog in Escherichia coli MaeB. Overall, our study extends the known redox cofactor balancing mechanisms by providing first-time evidence that the type of catalyzed reaction by an enzyme depends on metabolite abundance.
Collapse
|
8
|
Wang M, Yu H, Li X, Shen Z. Single-gene regulated non-spore-forming Bacillus subtilis: Construction, transcriptome responses, and applications for producing enzymes and surfactin. Metab Eng 2020; 62:235-248. [DOI: 10.1016/j.ymben.2020.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
|
9
|
Rousset L, Alpha-Bazin B, Château A, Armengaud J, Clavel T, Berge O, Duport C. Groundwater promotes emergence of asporogenic mutants of emetic Bacillus cereus. Environ Microbiol 2020; 22:5248-5264. [PMID: 32815215 DOI: 10.1111/1462-2920.15203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023]
Abstract
Bacillus cereus is a ubiquitous endospore-forming bacterium, which mainly affects humans as a food-borne pathogen. Bacillus cereus can contaminate groundwater used to irrigate food crops. Here, we examined the ability of the emetic strain B. cereus F4810/72 to survive abiotic conditions encountered in groundwater. Our results showed that vegetative B. cereus cells rapidly evolved in a mixed population composed of endospores and asporogenic variants bearing spo0A mutations. One asporogenic variant, VAR-F48, was isolated and characterized. VAR-F48 can survive in sterilized groundwater over a long period in a vegetative form and has a competitive advantage compared to its parental strain. Proteomics analysis allowed us to quantify changes to cellular and exoproteins after 24 and 72 h incubation in groundwater, for VAR-F48 compared to its parental strain. The results revealed a significant re-routing of the metabolism in the absence of Spo0A. We concluded that VAR-F48 maximizes its energy use to deal with oligotrophy, and the emergence of spo0A-mutated variants may contribute to the persistence of emetic B. cereus in natural oligotrophic environments.
Collapse
Affiliation(s)
- Ludivine Rousset
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France.,INRAE, Pathologie Végétale, Montfavet, F-84140, France
| | - Béatrice Alpha-Bazin
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, 30200, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, 30200, France
| | - Thierry Clavel
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France
| | - Odile Berge
- INRAE, Pathologie Végétale, Montfavet, F-84140, France
| | | |
Collapse
|
10
|
Habicher T, Rauls EKA, Egidi F, Keil T, Klein T, Daub A, Büchs J. Establishing a Fed-Batch Process for Protease Expression with Bacillus licheniformis in Polymer-Based Controlled-Release Microtiter Plates. Biotechnol J 2019; 15:e1900088. [PMID: 31471944 DOI: 10.1002/biot.201900088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Introducing fed-batch mode in early stages of development projects is crucial for establishing comparable conditions to industrial fed-batch fermentation processes. Therefore, cost efficient and easy to use small-scale fed-batch systems that can be integrated into existing laboratory equipment and workflows are required. Recently, a novel polymer-based controlled-release fed-batch microtiter plate is described. In this work, the polymer-based controlled-release fed-batch microtiter plate is used to investigate fed-batch cultivations of a protease producing Bacillus licheniformis culture. Therefore, the oxygen transfer rate (OTR) is online-monitored within each well of the polymer-based controlled-release fed-batch microtiter plate using a µRAMOS device. Cultivations in five individual polymer-based controlled-release fed-batch microtiter plates of two production lots show good reproducibility with a mean coefficient of variation of 9.2%. Decreasing initial biomass concentrations prolongs batch phase while simultaneously postponing the fed-batch phase. The initial liquid filling volume affects the volumetric release rate, which is directly translated in different OTR levels of the fed-batch phase. An increasing initial osmotic pressure within the mineral medium decreases both glucose release and protease yield. With the volumetric glucose release rate as scale-up criterion, microtiter plate- and shake flask-based fed-batch cultivations are highly comparable. On basis of the small-scale fed-batch cultivations, a mechanistic model is established and validated. Model-based simulations coincide well with the experimentally acquired data.
Collapse
Affiliation(s)
- Tobias Habicher
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Edward K A Rauls
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Franziska Egidi
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Timm Keil
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Tobias Klein
- White Biotechnology Research Unit, BASF SE, Ludwigshafen am Rhein, 67063, Germany
| | - Andreas Daub
- Chemical Engineering Industrial Biotechnology, BASF SE, Ludwigshafen am Rhein, 67063, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
11
|
Jacobson TB, Adamczyk PA, Stevenson DM, Regner M, Ralph J, Reed JL, Amador-Noguez D. 2H and 13C metabolic flux analysis elucidates in vivo thermodynamics of the ED pathway in Zymomonas mobilis. Metab Eng 2019; 54:301-316. [DOI: 10.1016/j.ymben.2019.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022]
|
12
|
Sha Y, Sun T, Qiu Y, Zhu Y, Zhan Y, Zhang Y, Xu Z, Li S, Feng X, Xu H. Investigation of Glutamate Dependence Mechanism for Poly-γ-glutamic Acid Production in Bacillus subtilis on the Basis of Transcriptome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6263-6274. [PMID: 31088055 DOI: 10.1021/acs.jafc.9b01755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of commercial poly-γ-glutamic acid (γ-PGA) production by glutamate-dependent strains requires understanding the glutamate dependence mechanism in the strains. Here, we first systematically analyzed the response pattern of Bacillus subtilis to glutamate addition by comparative transcriptomics. Glutamate addition induced great changes in intracellular metabolite concentrations and significantly upregulated genes involved in the central metabolic pathways. Subsequent gene overexpression experiments revealed that only the enhancement of glutamate synthesis pathway successfully led to γ-PGA accumulation without glutamate addition, indicating the key role of intracellular glutamate for γ-PGA synthesis in glutamate-dependent strains. Finally, by a combination of metabolic engineering targets, the γ-PGA titer reached 10.21 ± 0.42 g/L without glutamate addition. Exogenous glutamate further enhanced the γ-PGA yield (35.52 ± 0.26 g/L) and productivity (0.74 g/(L h)) in shake-flask fermentation. This work provides insights into the glutamate dependence mechanism in B. subtilis and reveals potential molecular targets for increasing economical γ-PGA production.
Collapse
Affiliation(s)
- Yuanyuan Sha
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Yijing Zhan
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
- Nanjing Shineking Biotech Co., Ltd. , Nanjing 210061 , People's Republic of China
| | - Yatao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| |
Collapse
|
13
|
de Groot DH, van Boxtel C, Planqué R, Bruggeman FJ, Teusink B. The number of active metabolic pathways is bounded by the number of cellular constraints at maximal metabolic rates. PLoS Comput Biol 2019; 15:e1006858. [PMID: 30856167 PMCID: PMC6428345 DOI: 10.1371/journal.pcbi.1006858] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/21/2019] [Accepted: 02/07/2019] [Indexed: 11/18/2022] Open
Abstract
Growth rate is a near-universal selective pressure across microbial species. High growth rates require hundreds of metabolic enzymes, each with different nonlinear kinetics, to be precisely tuned within the bounds set by physicochemical constraints. Yet, the metabolic behaviour of many species is characterized by simple relations between growth rate, enzyme expression levels and metabolic rates. We asked if this simplicity could be the outcome of optimisation by evolution. Indeed, when the growth rate is maximized-in a static environment under mass-conservation and enzyme expression constraints-we prove mathematically that the resulting optimal metabolic flux distribution is described by a limited number of subnetworks, known as Elementary Flux Modes (EFMs). We show that, because EFMs are the minimal subnetworks leading to growth, a small active number automatically leads to the simple relations that are measured. We find that the maximal number of flux-carrying EFMs is determined only by the number of imposed constraints on enzyme expression, not by the size, kinetics or topology of the network. This minimal-EFM extremum principle is illustrated in a graphical framework, which explains qualitative changes in microbial behaviours, such as overflow metabolism and co-consumption, and provides a method for identification of the enzyme expression constraints that limit growth under the prevalent conditions. The extremum principle applies to all microorganisms that are selected for maximal growth rates under protein concentration constraints, for example the solvent capacities of cytosol, membrane or periplasmic space.
Collapse
Affiliation(s)
- Daan H. de Groot
- Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Coco van Boxtel
- Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Robert Planqué
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Habicher T, John A, Scholl N, Daub A, Klein T, Philip P, Büchs J. Introducing substrate limitations to overcome catabolite repression in a protease producing Bacillus licheniformis strain using membrane-based fed-batch shake flasks. Biotechnol Bioeng 2019; 116:1326-1340. [PMID: 30712275 DOI: 10.1002/bit.26948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 11/11/2022]
Abstract
To overcome catabolite repression, industrial fermentation processes are usually operated in substrate-limited fed-batch mode. Therefore, the implementation of such an operating mode at small scale is crucial to maintain comparable process conditions. In this study, Bacillus licheniformis, a well-known producer of proteases, was cultivated with carbon (glucose)- and nitrogen (ammonium)-limited fed-batch conditions using the previously introduced membrane-based fed-batch shake flasks. A repression of protease production by glucose and ammonium was thus avoided and yields increased 1.5- and 2.1-fold relative to batch, respectively. An elevated feeding rate of glucose caused depletion of ammonium, which was recognizable within the oxygen transfer rate (OTR) signal measured with the Respiration Activity MOnitoring System (RAMOS). Ammonium limitation was prevented by feeding ammonium simultaneously with glucose. The OTR signal clearly indicated the initiation of the fed-batch phase and gave direct feedback on the nutrient release kinetics. Increased feeding rates of glucose and ammonium led to an elevated protease activity without affecting the protease yield (YP/Glu ). In addition to YP/Glu , protease yields were determined based on the metabolized amount of oxygen ( Y P / O 2 ) . The results showed that the protease production correlated with the amount of consumed glucose as well as with the amount of consumed oxygen. The membrane-based fed-batch shake flask in combination with the RAMOS device is a powerful combination to investigate the effect of substrate-limited fed-batch conditions.
Collapse
Affiliation(s)
- Tobias Habicher
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Arian John
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Niklas Scholl
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andreas Daub
- Chemical Engineering Industrial Biotechnology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Tobias Klein
- White Biotechnology Research Unit, BASF SE, Ludwigshafen am Rhein, Germany
| | - Priya Philip
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Richter A, Wanek W. Growth explains microbial carbon use efficiency across soils differing in land use and geology. SOIL BIOLOGY & BIOCHEMISTRY 2019; 128:45-55. [PMID: 31579288 PMCID: PMC6774786 DOI: 10.1016/j.soilbio.2018.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ratio of carbon (C) that is invested into microbial growth to organic C taken up is known as microbial carbon use efficiency (CUE), which is influenced by environmental factors such as soil temperature and soil moisture. How microbes will physiologically react to short-term environmental changes is not well understood, primarily due to methodological restrictions. Here we report on two independent laboratory experiments to explore short-term temperature and soil moisture effects on soil microbial physiology (i.e. respiration, growth, CUE, and microbial biomass turnover): (i) a temperature experiment with 1-day pre-incubation at 5, 15 and 25 °C at 60% water holding capacity (WHC), and (ii) a soil moisture/oxygen (O2) experiment with 7-day pre-incubation at 20 °C at 30%, 60% WHC (both at 21% O2) and 90% WHC at 1% O2. Experiments were conducted with soils from arable, pasture and forest sites derived from both silicate and limestone bedrocks. We found that microbial CUE responded heterogeneously though overall positively to short-term temperature changes, and decreased significantly under high moisture level (90% WHC)/suboxic conditions due to strong decreases in microbial growth. Microbial biomass turnover time decreased dramatically with increasing temperature, and increased significantly at high moisture level (90% WHC)/suboxic conditions. Our findings reveal that the responses of microbial CUE and microbial biomass turnover to short-term temperature and moisture/O2 changes depended mainly on microbial growth responses and less on respiration responses to the environmental cues, which were consistent across soils differing in land use and geology.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Yuntao Hu
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Shasha Zhang
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Lisa Noll
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Theresa Böckle
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Andreas Richter
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
16
|
Shimizu K, Matsuoka Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnol Adv 2018; 37:284-305. [PMID: 30576718 DOI: 10.1016/j.biotechadv.2018.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022]
Abstract
Overflow metabolism is a common phenomenon observed at higher glycolytic flux in many bacteria, yeast (known as Crabtree effect), and mammalian cells including cancer cells (known as Warburg effect). This phenomenon has recently been characterized as the trade-offs between protein costs and enzyme efficiencies based on coarse-graining approaches. Moreover, it has been recognized that the glycolytic flux increases as the source of energy generation changes from energetically efficient respiration to inefficient respiro-fermentative or fermentative metabolism causing overflow metabolism. It is highly desired to clarify the metabolic regulation mechanisms behind such phenomena. Metabolic fluxes are located on top of the hierarchical regulation systems, and represent the outcome of the integrated response of all levels of cellular regulation systems. In the present article, we discuss about the different levels of regulation systems for the modulation of fluxes depending on the growth rate, growth condition such as oxygen limitation that alters the metabolism towards fermentation, and genetic perturbation affecting the source of energy generation from respiration to respiro-fermentative metabolism in relation to overflow metabolism. The intracellular metabolite of the upper glycolysis such as fructose 1,6-bisphosphate (FBP) plays an important role not only for flux sensing, but also for the regulation of the respiratory activity either directly or indirectly (via transcription factors) at higher growth rate. The glycolytic flux regulation is backed up (enhanced) by unphosphorylated EIIA and HPr of the phosphotransferase system (PTS) components, together with the sugar-phosphate stress regulation, where the transcriptional regulation is further modulated by post-transcriptional regulation via the degradation of mRNA (stability of mRNA) in Escherichia coli. Moreover, the channeling may also play some role in modulating the glycolytic cascade reactions.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
17
|
Wushensky JA, Youngster T, Mendonca CM, Aristilde L. Flux Connections Between Gluconate Pathway, Glycolysis, and Pentose-Phosphate Pathway During Carbohydrate Metabolism in Bacillus megaterium QM B1551. Front Microbiol 2018; 9:2789. [PMID: 30524402 PMCID: PMC6262346 DOI: 10.3389/fmicb.2018.02789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022] Open
Abstract
Bacillus megaterium is a bacterium of great importance as a plant-beneficial bacterium in agricultural applications and in industrial bioproduction of proteins. Understanding intracellular processing of carbohydrates in this species is crucial to predicting natural carbon utilization as well as informing strategies in metabolic engineering. Here, we applied stable isotope-assisted metabolomics profiling and metabolic flux analysis to elucidate, at high resolution, the connections of the different catabolic routes for carbohydrate metabolism immediately following substrate uptake in B. megaterium QM B1551. We performed multiple 13C tracer experiments to obtain both kinetic and long-term 13C profiling of intracellular metabolites. In addition to the direct phosphorylation of glucose to glucose-6-phosphate (G6P) prior to oxidation to 6-phosphogluconate (6P-gluconate), the labeling data also captured glucose catabolism through the gluconate pathway involving glucose oxidation to gluconate followed by phosphorylation to 6P-gluconate. Our data further confirmed the absence of the Entner-Doudoroff pathway in B. megaterium and showed that subsequent catabolism of 6P-gluconate was instead through the oxidative pentose-phosphate (PP) pathway. Quantitative flux analysis of glucose-grown cells showed equal partition of consumed glucose from G6P to the Embden-Meyerhof-Parnas (EMP) pathway and from G6P to the PP pathway through 6P-gluconate. Growth on fructose alone or xylose alone was consistent with the ability of B. megaterium to use each substrate as a sole source of carbon. However, a detailed 13C mapping during simultaneous feeding of B. megaterium on glucose, fructose, and xylose indicated non-uniform intracellular investment of the different carbohydrate substrates. Flux of glucose-derived carbons dominated the gluconate pathway and the PP pathway, whereas carbon flux from both glucose and fructose populated the EMP pathway; there was no assimilatory flux of xylose-derived carbons. Collectively, our findings provide new quantitative insights on the contribution of the different catabolic routes involved in initiating carbohydrate catabolism in B. megaterium and related Bacillus species.
Collapse
Affiliation(s)
- Julie A. Wushensky
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Tracy Youngster
- Soil and Crop Sciences Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Caroll M. Mendonca
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
- Soil and Crop Sciences Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
18
|
Schwechheimer SK, Becker J, Peyriga L, Portais JC, Wittmann C. Metabolic flux analysis in Ashbya gossypii using 13C-labeled yeast extract: industrial riboflavin production under complex nutrient conditions. Microb Cell Fact 2018; 17:162. [PMID: 30326916 PMCID: PMC6190667 DOI: 10.1186/s12934-018-1003-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
Abstract
Background The fungus Ashbya gossypii is an important industrial producer of the vitamin riboflavin. Using this microbe, riboflavin is manufactured in a two-stage process based on a rich medium with vegetable oil, yeast extract and different precursors: an initial growth and a subsequent riboflavin production phase. So far, our knowledge on the intracellular metabolic fluxes of the fungus in this complex process is limited, but appears highly relevant to better understand and rationally engineer the underlying metabolism. To quantify intracellular fluxes of growing and riboflavin producing A. gossypii, studies with different 13C tracers were embedded into a framework of experimental design, isotopic labeling analysis by MS and NMR techniques, and model-based data processing. The studies included the use 13C of yeast extract, a key component used in the process. Results During growth, the TCA cycle was found highly active, whereas the cells exhibited a low flux through gluconeogenesis as well as pentose phosphate pathway. Yeast extract was the main carbon donor for anabolism, while vegetable oil selectively contributed to the proteinogenic amino acids glutamate, aspartate, and alanine. During the subsequent riboflavin biosynthetic phase, the carbon flux through the TCA cycle remained high. Regarding riboflavin formation, most of the vitamin’s carbon originated from rapeseed oil (81 ± 1%), however extracellular glycine and yeast extract also contributed with 9 ± 0% and 8 ± 0%, respectively. In addition, advanced yeast extract-based building blocks such as guanine and GTP were directly incorporated into the vitamin. Conclusion Intracellular carbon fluxes for growth and riboflavin production on vegetable oil provide the first flux insight into a fungus on complex industrial medium. The knowledge gained therefrom is valuable for further strain and process improvement. Yeast extract, while being the main carbon source during growth, contributes valuable building blocks to the synthesis of vitamin B2. This highlights the importance of careful selection of the right yeast extract for a process based on its unique composition. Electronic supplementary material The online version of this article (10.1186/s12934-018-1003-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Lindsay Peyriga
- Université de Toulouse, INSA, UPS, INP, Toulouse, France.,INRA, UMR792 Ingénerie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Jean-Charles Portais
- Université de Toulouse, INSA, UPS, INP, Toulouse, France.,INRA, UMR792 Ingénerie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
19
|
Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 2018; 115:2541-2553. [PMID: 29940069 DOI: 10.1002/bit.26774] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 11/07/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important multifunctional biopolymer with various applications, for which adenosine triphosphate (ATP) supply plays a vital role in biosynthesis. In this study, the enhancement of γ-PGA production was attempted through various approaches of improving ATP supply in the engineered strains of Bacillus licheniformis. The first approach is to engineer respiration chain branches of B. licheniformis, elimination of cytochrome bd oxidase branch reduced the maintenance coefficient, leading to a 19.27% increase of γ-PGA yield. The second approach is to introduce Vitreoscilla hemoglobin (VHB) into recombinant B. licheniformis, led to a 13.32% increase of γ-PGA yield. In the third approach, the genes purB and adK in ATP-biosynthetic pathway were respectively overexpressed, with the AdK overexpressed strain increased γ-PGA yield by 14.69%. Our study also confirmed that the respiratory nitrate reductase, NarGHIJ, is responsible for the conversion of nitrate to nitrite, and assimilatory nitrate reductase NasBC is for conversion of nitrite to ammonia. Both NarGHIJ and NasBC were positively regulated by the two-component system ResD-ResE, and overexpression of NarG, NasC, and ResD also improved the ATP supply and the consequent γ-PGA yield. Based on the above individual methods, a method of combining the deletion of cydBC gene and overexpression of genes vgB, adK, and resD were used to enhance ATP content of the cells to 3.53 μmol/g of DCW, the mutant WX-BCVAR with this enhancement produced 43.81 g/L of γ-PGA, a 38.64% improvement compared to wild-type strain WX-02. Collectively, our results demonstrate that improving ATP content in B. licheniformis is an efficient strategy to improve γ-PGA production.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Penghui He
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiyi Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Fei Mo
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, School of food and biological engineering, Hubei University of Technology, Wuhan, China
| | - Qin Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Christopher T Nomura
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
- Department of Chemistry, The State University of New York, College of Environmental Science and Forestry (SUNY ESF), Iowa State University, Syracuse, New York
| | - Zhiyou Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
20
|
Wang J, Liu S, Li Y, Wang H, Xiao S, Li C, Liu B. Central carbon metabolism influences cellulase production in Bacillus licheniformis. Lett Appl Microbiol 2017; 66:49-54. [PMID: 29063629 DOI: 10.1111/lam.12813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/18/2017] [Accepted: 10/17/2017] [Indexed: 01/19/2023]
Abstract
Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. SIGNIFICANCE AND IMPACT OF THE STUDY Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering.
Collapse
Affiliation(s)
- J Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - S Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Y Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - H Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - S Xiao
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - C Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - B Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
21
|
Hoffart E, Grenz S, Lange J, Nitschel R, Müller F, Schwentner A, Feith A, Lenfers-Lücker M, Takors R, Blombach B. High Substrate Uptake Rates Empower Vibrio natriegens as Production Host for Industrial Biotechnology. Appl Environ Microbiol 2017; 83:e01614-17. [PMID: 28887417 PMCID: PMC5666143 DOI: 10.1128/aem.01614-17] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
The productivity of industrial fermentation processes is essentially limited by the biomass-specific substrate consumption rate (qS ) of the applied microbial production system. Since qS depends on the growth rate (μ), we highlight the potential of the fastest-growing nonpathogenic bacterium, Vibrio natriegens, as a novel candidate for future biotechnological processes. V. natriegens grows rapidly in BHIN complex medium with a μ of up to 4.43 h-1 (doubling time of 9.4 min) as well as in minimal medium supplemented with various industrially relevant substrates. Bioreactor cultivations in minimal medium with glucose showed that V. natriegens possesses an exceptionally high qS under aerobic (3.90 ± 0.08 g g-1 h-1) and anaerobic (7.81 ± 0.71 g g-1 h-1) conditions. Fermentations with resting cells of genetically engineered V. natriegens under anaerobic conditions yielded an overall volumetric productivity of 0.56 ± 0.10 g alanine liter-1 min-1 (i.e., 34 g liter-1 h-1). These inherent properties render V. natriegens a promising new microbial platform for future industrial fermentation processes operating with high productivity.IMPORTANCE Low conversion rates are one major challenge to realizing microbial fermentation processes for the production of commodities operating competitively with existing petrochemical approaches. For this reason, we screened for a novel platform organism possessing characteristics superior to those of traditionally employed microbial systems. We identified the fast-growing V. natriegens, which exhibits a versatile metabolism and shows striking growth and conversion rates, as a solid candidate to reach outstanding productivities. Due to these inherent characteristics, V. natriegens can speed up common laboratory routines, is suitable for already existing production procedures, and forms an excellent foundation for engineering next-generation bioprocesses.
Collapse
Affiliation(s)
- Eugenia Hoffart
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Sebastian Grenz
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Julian Lange
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Robert Nitschel
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Felix Müller
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Andreas Schwentner
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - André Feith
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Mira Lenfers-Lücker
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
22
|
von Cosmos NH, Watson BA, Fellman J, Mattinson D, Edwards CG. Characterization of Bacillus megaterium , Bacillus pumilus , and Paenibacillus polymyxa isolated from a Pinot noir wine from Western Washington State. Food Microbiol 2017. [DOI: 10.1016/j.fm.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Youngster T, Wushensky JA, Aristilde L. Profiling glucose-induced selective inhibition of disaccharide catabolism in Bacillus megaterium QM B1551 by stable isotope labelling. MICROBIOLOGY-SGM 2017; 163:1509-1514. [PMID: 28954687 DOI: 10.1099/mic.0.000540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We investigated the co-catabolism of carbohydrate mixtures in Bacillus megaterium QM B1551 using a 13C-assisted metabolomics profiling approach. Specifically, we monitored the ability of B. megaterium to achieve the simultaneous catabolism of glucose and a common disaccharide - cellobiose, maltose, or sucrose. Growth experiments indicated that each disaccharide alone can serve as a sole carbon source for B. megaterium, in accordance with the genetic analysis of this bacterium, which predicted diverse metabolic capabilities. However, following growth on 13C-labelled glucose and each unlabelled disaccharide, the labelling patterns of the intracellular metabolites in glycolysis and the pentose phosphate pathway revealed a hierarchy in disaccharide catabolism: (i) complete inhibition of cellobiose catabolism, (ii) minimal catabolism of maltose and (iii) unbiased catabolism of sucrose. The labelling of amino acids confirmed this selective assimilation of each substrate in biomass precursors. This study highlights the fact that B. megaterium exhibits a mixed-carbohydrate utilization that is different from that of B. subtilis, the most studied model Bacillus species.
Collapse
Affiliation(s)
- Tracy Youngster
- Soil and Crop Sciences Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Julie A Wushensky
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.,Soil and Crop Sciences Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Singh R, Miriyala SS, Giri L, Mitra K, Kareenhalli VV. Identification of unstructured model for subtilin production through Bacillus subtilis using hybrid genetic algorithm. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. Nat Microbiol 2017; 2:17073. [PMID: 28504670 DOI: 10.1038/nmicrobiol.2017.73] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/05/2017] [Indexed: 02/04/2023]
Abstract
Coenzymes are vital for cellular metabolism and act on the full spectrum of enzymatic reactions. Intrinsic chemical reactivity, enzyme promiscuity and high flux through their catalytic cycles make coenzymes prone to damage. To counteract such compromising factors and ensure stable levels of functional coenzymes, cells use a complex interplay between de novo synthesis, salvage, repair and degradation. However, the relative contribution of these factors is currently unknown, as is the overall stability of coenzymes in the cell. Here, we use dynamic 13C-labelling experiments to determine the half-life of major coenzymes of Escherichia coli. We find that coenzymes such as pyridoxal 5-phosphate, flavins, nicotinamide adenine dinucleotide (phosphate) and coenzyme A are remarkably stable in vivo and allow biosynthesis close to the minimal necessary rate. In consequence, they are essentially produced to compensate for dilution by growth and passed on over generations of cells. Exceptions are antioxidants, which are short-lived, suggesting an inherent requirement for increased renewal. Although the growth-driven turnover of stable coenzymes is apparently subject to highly efficient end-product homeostasis, we exemplify that coenzyme pools are propagated in excess in relation to actual growth requirements. Additional testing of Bacillus subtilis and Saccharomyces cerevisiae suggests that coenzyme longevity is a conserved feature in biology.
Collapse
|
26
|
Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates. Appl Environ Microbiol 2016; 82:4570-4583. [PMID: 27208115 PMCID: PMC4984280 DOI: 10.1128/aem.00638-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 12/16/2022] Open
Abstract
The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris. Retentostat feeding regimes were based on the maintenance energy requirement (mS) and maximum biomass yield on glucose (YX/Smax) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (μ) of 0.025 h−1 to near-zero specific growth rates (μ < 0.001 h−1). At these near-zero specific growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low μ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while μ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. IMPORTANCE The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production processes, a better understanding of cell physiology at an extremely low growth rate would be of extraordinary value. Therefore, we have grown P. pastoris in a retentostat, which allows the cultivation of metabolically active cells even at zero growth. Here we reached doubling times as long as 38 days and found that P. pastoris decreases its maintenance energy demand 3-fold during very slow growth, which enables it to survive with a much lower substrate supply than baker's yeast.
Collapse
|
27
|
Vos T, Hakkaart XDV, de Hulster EAF, van Maris AJA, Pronk JT, Daran-Lapujade P. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Microb Cell Fact 2016; 15:111. [PMID: 27317316 PMCID: PMC4912818 DOI: 10.1186/s12934-016-0501-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022] Open
Abstract
Background Saccharomyces cerevisiae is an established microbial platform for production of native and non-native compounds. When product pathways compete with growth for precursors and energy, uncoupling of growth and product formation could increase product yields and decrease formation of biomass as a by-product. Studying non-growing, metabolically active yeast cultures is a first step towards developing S. cerevisiae as a robust, non-growing cell factory. Microbial physiology at near-zero growth rates can be studied in retentostats, which are continuous-cultivation systems with full biomass retention. Hitherto, retentostat studies on S. cerevisiae have focused on anaerobic conditions, which bear limited relevance for aerobic industrial processes. The present study uses aerobic, glucose-limited retentostats to explore the physiology of non-dividing, respiring S. cerevisiae cultures, with a focus on industrially relevant features. Results Retentostat feeding regimes for smooth transition from exponential growth in glucose-limited chemostat cultures to near-zero growth rates were obtained by model-aided experimental design. During 20 days of retentostats cultivation, the specific growth rate gradually decreased from 0.025 h−1 to below 0.001 h−1, while culture viability remained above 80 %. The maintenance requirement for ATP (mATP) was estimated at 0.63 ± 0.04 mmol ATP (g biomass)−1 h−1, which is ca. 35 % lower than previously estimated for anaerobic retentostats. Concomitant with decreasing growth rate in aerobic retentostats, transcriptional down-regulation of genes involved in biosynthesis and up-regulation of stress-responsive genes resembled transcriptional regulation patterns observed for anaerobic retentostats. The heat-shock tolerance in aerobic retentostats far exceeded previously reported levels in stationary-phase batch cultures. While in situ metabolic fluxes in retentostats were intentionally low due to extreme caloric restriction, off-line measurements revealed that cultures retained a high metabolic capacity. Conclusions This study provides the most accurate estimation yet of the maintenance-energy coefficient in aerobic cultures of S. cerevisiae, which is a key parameter for modelling of industrial aerobic, glucose-limited fed-batch processes. The observed extreme heat-shock tolerance and high metabolic capacity at near-zero growth rates demonstrate the intrinsic potential of S. cerevisiae as a robust, non-dividing microbial cell factory for energy-intensive products. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tim Vos
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Xavier D V Hakkaart
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Erik A F de Hulster
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
28
|
Li Y, Zhu X, Zhang X, Fu J, Wang Z, Chen T, Zhao X. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Microb Cell Fact 2016; 15:94. [PMID: 27260256 PMCID: PMC4893254 DOI: 10.1186/s12934-016-0494-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Genome streamlining has emerged as an effective strategy to boost the production efficiency of bio-based products. Many efforts have been made to construct desirable chassis cells by reducing the genome size of microbes. It has been reported that the genome-reduced Bacillus subtilis strain MBG874 showed clear advantages for the production of several heterologous enzymes including alkaline cellulase and protease. In addition to enzymes, B. subtilis is also used for the production of chemicals. To our best knowledge, it is still unknown whether genome reduction could be used to optimize the production of chemicals such as nucleoside products. Results In this study, we constructed a series of genome-reduced strains by deleting non-essential regions in the chromosome of B. subtilis 168. These strains with genome reductions ranging in size from 581.9 to 814.4 kb displayed markedly decreased growth rates, sporulation ratios, transformation efficiencies and maintenance coefficients, as well as increased cell yields. We re-engineered the genome-reduced strains to produce guanosine and thymidine, respectively. The strain BSK814G2, in which purA was knocked out, and prs, purF and guaB were co-overexpressed, produced 115.2 mg/L of guanosine, which was 4.4-fold higher compared to the control strain constructed by introducing the same gene modifications into the parental strain. We also constructed a thymidine producer by deleting the tdk gene and overexpressing the prs, ushA, thyA, dut, and ndk genes from Escherichia coli in strain BSK756, and the resulting strain BSK756T3 accumulated 151.2 mg/L thymidine, showing a 5.2-fold increase compared to the corresponding control strain. Conclusions Genome-scale genetic manipulation has a variety of effects on the physiological characteristics and cell metabolism of B. subtilis. By introducing specific gene modifications related to guanosine and thymidine accumulation, respectively, we demonstrated that genome-reduced strains had greatly improved properties compared to the wild-type strain as chassis cells for the production of these two products. These strains also have great potential for the production of other nucleosides and similar derived chemicals. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0494-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Xujun Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xueyu Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Tianjin Vocational College of Bioengineering, Tianjin, 300462, China
| | - Jing Fu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
29
|
Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microb Cell Fact 2016; 15:73. [PMID: 27142075 PMCID: PMC4855977 DOI: 10.1186/s12934-016-0470-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/24/2016] [Indexed: 02/02/2023] Open
Abstract
Background Given its high surplus and low cost, glycerol has emerged as interesting carbon substrate for the synthesis of value-added chemicals. The soil bacterium Pseudomonas putida KT2440 can use glycerol to synthesize medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA), a class of biopolymers of industrial interest. Here, glycerol metabolism in P. putida KT2440 was studied on the level of gene expression (transcriptome) and metabolic fluxes (fluxome), using precisely adjusted chemostat cultures, growth kinetics and stoichiometry, to gain a systematic understanding of the underlying metabolic and regulatory network. Results Glycerol-grown P. putida KT2440 has a maintenance energy requirement [0.039 (mmolglycerol (gCDW h)−1)] that is about sixteen times lower than that of other bacteria, such as Escherichia coli, which provides a great advantage to use this substrate commercially. The shift from carbon (glycerol) to nitrogen (ammonium) limitation drives the modulation of specific genes involved in glycerol metabolism, transport electron chain, sensors to assess the energy level of the cell, and PHA synthesis, as well as changes in flux distribution to increase the precursor availability for PHA synthesis (Entner–Doudoroff pathway and pyruvate metabolism) and to reduce respiration (glyoxylate shunt). Under PHA-producing conditions (N-limitation), a higher PHA yield was achieved at low dilution rate (29.7 wt% of CDW) as compared to a high rate (12.8 wt% of CDW). By-product formation (succinate, malate) was specifically modulated under these regimes. On top of experimental data, elementary flux mode analysis revealed the metabolic potential of P. putida KT2440 to synthesize PHA and identified metabolic engineering targets towards improved production performance on glycerol. Conclusion This study revealed the complex interplay of gene expression levels and metabolic fluxes under PHA- and non-PHA producing conditions using the attractive raw material glycerol as carbon substrate. This knowledge will form the basis for the development of future metabolically engineered hyper-PHA-producing strains derived from the versatile bacterium P. putida KT2440.
Collapse
|
30
|
Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, Shimizu K, Tang YJ, Bao FS. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming. PLoS Comput Biol 2016; 12:e1004838. [PMID: 27092947 PMCID: PMC4836714 DOI: 10.1371/journal.pcbi.1004838] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.
Collapse
Affiliation(s)
- Stephen Gang Wu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Yuxuan Wang
- Department of Computer Science and Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Wu Jiang
- Boxed Wholesale, Edison, New Jersey, United States of America
| | - Tolutola Oyetunde
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, People’s Republic of China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, People’s Republic of China
| | - Kazuyuki Shimizu
- Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail: (YJT); (FSB)
| | - Forrest Sheng Bao
- Department of Electrical and Computer Engineering, University of Akron, Akron, Ohio, United States of America
- * E-mail: (YJT); (FSB)
| |
Collapse
|
31
|
13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production. Bioengineering (Basel) 2015; 3:bioengineering3010003. [PMID: 28952565 PMCID: PMC5597161 DOI: 10.3390/bioengineering3010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms
Collapse
|
32
|
Goelzer A, Muntel J, Chubukov V, Jules M, Prestel E, Nölker R, Mariadassou M, Aymerich S, Hecker M, Noirot P, Becher D, Fromion V. Quantitative prediction of genome-wide resource allocation in bacteria. Metab Eng 2015; 32:232-243. [PMID: 26498510 DOI: 10.1016/j.ymben.2015.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/24/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022]
Abstract
Predicting resource allocation between cell processes is the primary step towards decoding the evolutionary constraints governing bacterial growth under various conditions. Quantitative prediction at genome-scale remains a computational challenge as current methods are limited by the tractability of the problem or by simplifying hypotheses. Here, we show that the constraint-based modeling method Resource Balance Analysis (RBA), calibrated using genome-wide absolute protein quantification data, accurately predicts resource allocation in the model bacterium Bacillus subtilis for a wide range of growth conditions. The regulation of most cellular processes is consistent with the objective of growth rate maximization except for a few suboptimal processes which likely integrate more complex objectives such as coping with stressful conditions and survival. As a proof of principle by using simulations, we illustrated how calibrated RBA could aid rational design of strains for maximizing protein production, offering new opportunities to investigate design principles in prokaryotes and to exploit them for biotechnological applications.
Collapse
Affiliation(s)
- Anne Goelzer
- INRA, UR1404, MaIAGE, F-78350 Jouy-en-Josas, France
| | - Jan Muntel
- Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, D-17489 Greifswald, Germany
| | - Victor Chubukov
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Matthieu Jules
- INRA, UMR Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech,UMR Micalis, F-78350 Jouy-en-Josas, France
| | - Eric Prestel
- INRA, UMR Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech,UMR Micalis, F-78350 Jouy-en-Josas, France
| | - Rolf Nölker
- Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, D-17489 Greifswald, Germany
| | | | - Stéphane Aymerich
- INRA, UMR Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech,UMR Micalis, F-78350 Jouy-en-Josas, France
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, D-17489 Greifswald, Germany
| | - Philippe Noirot
- INRA, UMR Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech,UMR Micalis, F-78350 Jouy-en-Josas, France
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, D-17489 Greifswald, Germany
| | | |
Collapse
|
33
|
Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jørgensen BB. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 2015; 39:688-728. [PMID: 25994609 DOI: 10.1093/femsre/fuv020] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.
Collapse
Affiliation(s)
- Mark A Lever
- Center for Geomicrobiology, Institute of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - Karyn L Rogers
- Rensselaer Polytechnic Institute, Earth and Environmental Sciences, Jonsson-Rowland Science Center, 1W19, 110 8th Street, Troy, NY 12180, USA
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee at Knoxville, M409 Walters Life Sciences, Knoxville, TN 37996-0845, USA
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, D-38124 Braunschweig, Germany
| | - Bernhard Schink
- Microbial Ecology, Department of Biology, University of Konstanz, P.O. Box 55 60, D-78457 Konstanz, Germany
| | - Rudolf K Thauer
- Max Planck Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, Germany
| | - Tori M Hoehler
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA 94035-1000, USA
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Institute of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Abstract
Trans-aconitate methyltransferase regulator (TamR) is a member of the ligand-responsive multiple antibiotic resistance regulator (MarR) family of transcription factors. In Streptomyces coelicolor, TamR regulates transcription of tamR (encoding TamR), tam (encoding trans-aconitate methyltransferase) and sacA (encoding aconitase); up-regulation of these genes promotes metabolic flux through the citric acid cycle. DNA binding by TamR is attenuated and transcriptional derepression is achieved on binding of ligands such as citrate and trans-aconitate to TamR. In the present study, we show that three additional genes are regulated by S. coelicolor TamR. Genes encoding malate synthase (aceB1; SCO6243), malate dehydrogenase (mdh; SCO4827) and isocitrate dehydrogenase (idh; SCO7000) are up-regulated in vivo when citrate and trans-aconitate accumulate, and TamR binds the corresponding gene promoters in vitro, a DNA binding that is attenuated by cognate ligands. Mutations to the TamR binding site attenuate DNA binding in vitro and result in constitutive promoter activity in vivo. The predicted TamR binding sites are highly conserved in the promoters of these genes in Streptomyces species that encode divergent tam-tamR gene pairs, suggesting evolutionary conservation. Like aconitase and trans-aconitate methyltransferase, malate dehydrogenase, isocitrate dehydrogenase and malate synthase are closely related to the citric acid cycle, either catalysing individual reaction steps or, in the case of malate synthase, participating in the glyoxylate cycle to produce malate that enters the citric acid cycle to replenish the intermediate pool. Taken together, our data suggest that TamR plays an important and conserved role in promoting metabolic flux through the citric acid cycle.
Collapse
|
35
|
Imam S, Fitzgerald CM, Cook EM, Donohue TJ, Noguera DR. Quantifying the effects of light intensity on bioproduction and maintenance energy during photosynthetic growth of Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2015; 123:167-182. [PMID: 25428581 DOI: 10.1007/s11120-014-0061-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Obtaining a better understanding of the physiology and bioenergetics of photosynthetic microbes is an important step toward optimizing these systems for light energy capture or production of valuable commodities. In this work, we analyzed the effect of light intensity on bioproduction, biomass formation, and maintenance energy during photoheterotrophic growth of Rhodobacter sphaeroides. Using data obtained from steady-state bioreactors operated at varying dilution rates and light intensities, we found that irradiance had a significant impact on biomass yield and composition, with significant changes in photopigment, phospholipid, and biopolymer storage contents. We also observed a linear relationship between incident light intensity and H2 production rate between 3 and 10 W m(-2), with saturation observed at 100 W m(-2). The light conversion efficiency to H2 was also higher at lower light intensities. Photosynthetic maintenance energy requirements were also significantly affected by light intensity, with links to differences in biomass composition and the need to maintain redox homeostasis. Inclusion of the measured condition-dependent biomass and maintenance energy parameters and the measured photon uptake rate into a genome-scale metabolic model for R. sphaeroides (iRsp1140) significantly improved its predictive performance. We discuss how our analyses provide new insights into the light-dependent changes in bioenergetic requirements and physiology during photosynthetic growth of R. sphaeroides and potentially other photosynthetic organisms.
Collapse
Affiliation(s)
- Saheed Imam
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
36
|
Wu Q, Zhang R, Peng S, Xu Y. Transcriptional characteristics associated with lichenysin biosynthesis in Bacillus licheniformis from Chinese Maotai-flavor liquor making. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:888-893. [PMID: 25561250 DOI: 10.1021/jf5036806] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work investigated the biosynthetic mechanism of lichenysin, the newly identified nonvolatile matrix component in Chinese liquors. Transcriptomes were analyzed in three producers, Bacillus licheniformis CGMCC 3961, 3962, and 3963, which were isolated from Maotai-flavor liquor-making process and produced 386.3, 553.5, and 795.2 μg/L lichenysin in a simulative liquor fermentation process. Lichenysin synthetase genes lchAA-AD in these three producers were expressed much more highly than those of the nonproducer B. licheniformis ATCC 14580 (>18.4-fold). In addition, ABC transporters were the most significant responsive metabolic pathway, and the expression levels of peptide transporter genes dppABCDE all increased more than 19.2-fold. When B. licheniformis CGMCC 3963 was cultured in synthetic medium, the expression of dppABCDE and lichenysin both increased with the addition of casein hydrolysate (containing various peptides). This indicated that peptide would act as a substrate for lichenysin synthesis. This work sheds new light on the mechanism for lichenysin biosynthesis.
Collapse
Affiliation(s)
- Qun Wu
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, and School of Biotechnology, Jiangnan University , Wuxi, Jiangsu, China 214122
| | | | | | | |
Collapse
|
37
|
Niu H, Leak D, Shah N, Kontoravdi C. Metabolic characterization and modeling of fermentation process of an engineered Geobacillus thermoglucosidasius strain for bioethanol production with gas stripping. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Overkamp W, Ercan O, Herber M, van Maris AJA, Kleerebezem M, Kuipers OP. Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis. Environ Microbiol 2014; 17:346-63. [PMID: 25367190 DOI: 10.1111/1462-2920.12676] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 11/27/2022]
Abstract
Nutrient scarcity is a common condition in nature, but the resulting extremely low growth rates (below 0.025 h(-1) ) are an unexplored research area in Bacillus subtilis. To understand microbial life in natural environments, studying the adaptation of B. subtilis to near-zero growth conditions is relevant. To this end, a chemostat modified for culturing an asporogenous B. subtilis sigF mutant strain at extremely low growth rates (also named a retentostat) was set up, and biomass accumulation, culture viability, metabolite production and cell morphology were analysed. During retentostat culturing, the specific growth rate decreased to a minimum of 0.00006 h(-1) , corresponding to a doubling time of 470 days. The energy distribution between growth and maintenance-related processes showed that a state of near-zero growth was reached. Remarkably, a filamentous cell morphology emerged, suggesting that cell separation is impaired under near-zero growth conditions. To evaluate the corresponding molecular adaptations to extremely low specific growth, transcriptome changes were analysed. These revealed that cellular responses to near-zero growth conditions share several similarities with those of cells during the stationary phase of batch growth. However, fundamental differences between these two non-growing states are apparent by their high viability and absence of stationary phase mutagenesis under near-zero growth conditions.
Collapse
Affiliation(s)
- Wout Overkamp
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Distinct effects of sorbic acid and acetic acid on the electrophysiology and metabolism of Bacillus subtilis. Appl Environ Microbiol 2014; 80:5918-26. [PMID: 25038097 DOI: 10.1128/aem.01391-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances, they are assumed to diffuse across the membrane as neutral undissociated acids. We show here that the level of initial intracellular acidification depends on the concentration of undissociated acid and less on the nature of the acid. Recovery of the internal pH depends on the presence of an energy source, but acidification of the cytosol causes a decrease in glucose flux. Furthermore, sorbic acid is a more potent uncoupler of the membrane potential than acetic acid. Together these effects may also slow the rate of ATP synthesis significantly and may thus (partially) explain sorbic acid's effectiveness.
Collapse
|
40
|
Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab Eng 2014; 24:61-9. [DOI: 10.1016/j.ymben.2014.04.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022]
|
41
|
Kohlstedt M, Sappa PK, Meyer H, Maaß S, Zaprasis A, Hoffmann T, Becker J, Steil L, Hecker M, van Dijl JM, Lalk M, Mäder U, Stülke J, Bremer E, Völker U, Wittmann C. Adaptation ofBacillus subtiliscarbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective. Environ Microbiol 2014; 16:1898-917. [DOI: 10.1111/1462-2920.12438] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/18/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Michael Kohlstedt
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| | - Praveen K. Sappa
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Hanna Meyer
- Institutes of Biochemistry; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Sandra Maaß
- Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Adrienne Zaprasis
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Tamara Hoffmann
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Judith Becker
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Michael Hecker
- Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Michael Lalk
- Institutes of Biochemistry; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Ulrike Mäder
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Jörg Stülke
- Department for General Microbiology; Georg-August-University Göttingen; Göttingen Germany
| | - Erhard Bremer
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| |
Collapse
|
42
|
Bartholomae M, Meyer FM, Commichau FM, Burkovski A, Hillen W, Seidel G. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites. FEBS J 2014; 281:1132-43. [PMID: 24325460 DOI: 10.1111/febs.12679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
In Bacillus subtilis, recent in vivo studies revealed that particular enzymes of the tricarboxylic acid cycle form complexes that allow an efficient transfer of metabolites. Remarkably, a complex of the malate dehydrogenase (Mdh) (EC 1.1.1.37) with isocitrate dehydrogenase (Icd) (EC 1.1.1.42) was identified, although both enzymes do not catalyze subsequent reactions. In the present study, the interactions between these enzymes were characterized in vitro by surface plasmon resonance in the absence and presence of their substrates and cofactors. These analyses revealed a weak but specific interaction between Mdh and Icd, which was specifically stimulated by a mixture of substrates and cofactors of Icd: isocitrate, NADP(+) and Mg(2+). Wild-type Icd converted these substrates too fast, preventing any valid quantitative analysis of the interaction with Mdh. Therefore, binding of the IcdS104P mutant to Mdh was quantified because the mutation reduced the enzymatic activity by 174-fold but did not affect the stimulatory effect of substrates and cofactors on Icd-Mdh complex formation. The analysis of the unstimulated Mdh-IcdS104P interaction revealed kinetic constants of k(a) = 2.0 ± 0.2 × 10(2) m(-1) ·s(-1) and k(d) = 1.0 ± 0.1 × 10(-3) ·s(-1) and a K(D) value of 5.0 ± 0.1 μm. Addition of isocitrate, NADP(+) and Mg(2+) stimulated the affinity of IcdS104P to Mdh by 33-fold (K(D) = 0.15 ± 0.01 μm, k(a) = 1.7 ± 0.7 × 10(3) m(-1) ·s(-1), k(d) = 2.6 ± 0.6 × 10(-4) ·s(-1)). Analyses of the enzymatic activities of wild-type Icd and Mdh showed that Icd activity doubles in the presence of Mdh, whereas Mdh activity was slightly reduced by Icd. In summary, these data indicate substrate control of complex formation in the tricarboxylic acid cycle metabolon assembly and maintenance of the α-ketoglutarate supply for amino acid anabolism in vivo.
Collapse
Affiliation(s)
- Maike Bartholomae
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Pala-Ozkok I, Orhon D. Chronic effect of erythromycin on substrate biodegradation kinetics of activated sludge. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, Link H, Aymerich S, Stelling J, Sauer U. Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol 2013; 9:709. [PMID: 24281055 PMCID: PMC4039378 DOI: 10.1038/msb.2013.66] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022] Open
Abstract
Regulation of enzyme expression is one key mechanism by which cells control their metabolic programs. In this work, a quantitative analysis of metabolism in a model bacterium under different conditions shows that expression alone cannot explain the majority of the observed metabolic changes. ![]()
Most enzymes are indeed highly expressed in conditions where they are more active. Quantitatively, however, the observed changes in expression between conditions do not match the changes in activity for most enzymes. A good quantitative match is only observed for enzymes involved in the TCA cycle. Metabolomics reveals that increased substrate availability explains only a few instances of changes in activity.
One of the key ways in which microbes are thought to regulate their metabolism is by modulating the availability of enzymes through transcriptional regulation. However, the limited success of efforts to manipulate metabolic fluxes by rewiring the transcriptional network has cast doubt on the idea that transcript abundance controls metabolic fluxes. In this study, we investigate control of metabolic flux in the model bacterium Bacillus subtilis by quantifying fluxes, transcripts, and metabolites in eight metabolic states enforced by different environmental conditions. We find that most enzymes whose flux switches between on and off states, such as those involved in substrate uptake, exhibit large corresponding transcriptional changes. However, for the majority of enzymes in central metabolism, enzyme concentrations were insufficient to explain the observed fluxes—only for a number of reactions in the tricarboxylic acid cycle were enzyme changes approximately proportional to flux changes. Surprisingly, substrate changes revealed by metabolomics were also insufficient to explain observed fluxes, leaving a large role for allosteric regulation and enzyme modification in the control of metabolic fluxes.
Collapse
Affiliation(s)
- Victor Chubukov
- Institute of Molecular System Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Borgos SEF, Bordel S, Sletta H, Ertesvåg H, Jakobsen Ø, Bruheim P, Ellingsen TE, Nielsen J, Valla S. Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling. BMC SYSTEMS BIOLOGY 2013; 7:19. [PMID: 23497367 PMCID: PMC3641028 DOI: 10.1186/1752-0509-7-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/06/2013] [Indexed: 11/26/2022]
Abstract
Background Alginate is an industrially important polysaccharide, currently produced commercially by harvesting of marine brown sea-weeds. The polymer is also synthesized as an exo-polysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter, and these organisms may represent an alternative alginate source in the future. The current work describes an attempt to rationally develop a biological system tuned for very high levels of alginate production, based on a fundamental understanding of the system through metabolic modeling supported by transcriptomics studies and carefully controlled fermentations. Results Alginate biosynthesis in Pseudomonas fluorescens was studied in a genomics perspective, using an alginate over-producing strain carrying a mutation in the anti-sigma factor gene mucA. Cells were cultivated in chemostats under nitrogen limitation on fructose or glycerol as carbon sources, and cell mass, growth rate, sugar uptake, alginate and CO2 production were monitored. In addition a genome scale metabolic model was constructed and samples were collected for transcriptome analyses. The analyses show that polymer production operates in a close to optimal way with respect to stoichiometric utilization of the carbon source and that the cells increase the uptake of carbon source to compensate for the additional needs following from alginate synthesis. The transcriptome studies show that in the presence of the mucA mutation, the alg operon is upregulated together with genes involved in energy generation, genes on both sides of the succinate node of the TCA cycle and genes encoding ribosomal and other translation-related proteins. Strains expressing a functional MucA protein (no alginate production) synthesize cellular biomass in an inefficient way, apparently due to a cycle that involves oxidation of NADPH without ATP production. The results of this study indicate that the most efficient way of using a mucA mutant as a cell factory for alginate production would be to use non-growing conditions and nitrogen deprivation. Conclusions The insights gained in this study should be very useful for a future efficient production of microbial alginates.
Collapse
Affiliation(s)
- Sven E F Borgos
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, N 7491, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Koch-Koerfges A, Pfelzer N, Platzen L, Oldiges M, Bott M. Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:699-708. [PMID: 23416842 DOI: 10.1016/j.bbabio.2013.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/25/2013] [Accepted: 02/05/2013] [Indexed: 02/03/2023]
Abstract
In this study a comparative analysis of three Corynebacterium glutamicum ATCC 13032 respiratory chain mutants lacking either the cytochrome bd branch (ΔcydAB), or the cytochrome bc1-aa3 branch (Δqcr), or both branches was performed. The lack of cytochrome bd oxidase was inhibitory only under conditions of oxygen limitation, whereas the absence of a functional cytochrome bc1-aa3 supercomplex led to decreases in growth rate, biomass yield, respiration and proton-motive force (pmf) and a strongly increased maintenance coefficient under oxygen excess. These results show that the bc1-aa3 supercomplex is of major importance for aerobic respiration. For the first time, a C. glutamicum strain with a completely inactivated aerobic respiratory chain was obtained (ΔcydABΔqcr), named DOOR (devoid of oxygen respiration), which was able to grow aerobically in BHI (brain-heart infusion) glucose complex medium with a 70% reduced biomass yield compared to the wild type. Surprisingly, reasonable aerobic growth was also possible in glucose minimal medium after supplementation with peptone. Under these conditions, the DOOR strain displayed a fermentative type of catabolism with l-lactate as major and acetate and succinate as minor products. The DOOR strain had about 2% of the oxygen consumption rate of the wild type, showing the absence of additional terminal oxidases. The pmf of the DOOR mutant was reduced by about 30% compared to the wild type. Candidates for pmf generation in the DOOR strain are succinate:menaquinone oxidoreductase, which probably can generate pmf in the direction of fumarate reduction, and F1FO-ATP synthase, which can couple ATP hydrolysis to the export of protons.
Collapse
|
47
|
Hao T, Han B, Ma H, Fu J, Wang H, Wang Z, Tang B, Chen T, Zhao X. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. MOLECULAR BIOSYSTEMS 2013; 9:2034-44. [DOI: 10.1039/c3mb25568a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Rühl M, Le Coq D, Aymerich S, Sauer U. 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis. J Biol Chem 2012; 287:27959-70. [PMID: 22740702 DOI: 10.1074/jbc.m112.366492] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In their natural habitat, microorganisms are typically confronted with nutritional limitations that restrict growth and force them to persevere in a stationary phase. Despite the importance of this phase, little is known about the metabolic state(s) that sustains it. Here, we investigate metabolically active but non-growing Bacillus subtilis during nitrogen starvation. In the absence of biomass formation as the major NADPH sink, the intracellular flux distribution in these resting B. subtilis reveals a large apparent catabolic NADPH overproduction of 5.0 ± 0.6 mmol g(-1)h(-1) that was partly caused by high pentose phosphate pathway fluxes. Combining transcriptome analysis, stationary (13)C-flux analysis in metabolic deletion mutants, (2)H-labeling experiments, and kinetic flux profiling, we demonstrate that about half of the catabolic excess NADPH is oxidized by two transhydrogenation cycles, i.e. isoenzyme pairs of dehydrogenases with different cofactor specificities that operate in reverse directions. These transhydrogenation cycles were constituted by the combined activities of the glyceraldehyde 3-phosphate dehydrogenases GapA/GapB and the malic enzymes MalS/YtsJ. At least an additional 6% of the overproduced NADPH is reoxidized by continuous cycling between ana- and catabolism of glutamate. Furthermore, in vitro enzyme data show that a not yet identified transhydrogenase could potentially reoxidize ∼20% of the overproduced NADPH. Overall, we demonstrate the interplay between several metabolic mechanisms that concertedly enable network-wide NADPH homeostasis under conditions of high catabolic NADPH production in the absence of cell growth in B. subtilis.
Collapse
Affiliation(s)
- Martin Rühl
- Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
49
|
Rühl M, Rupp B, Nöh K, Wiechert W, Sauer U, Zamboni N. Collisional fragmentation of central carbon metabolites in LC-MS/MS increases precision of ¹³C metabolic flux analysis. Biotechnol Bioeng 2011; 109:763-71. [PMID: 22012626 DOI: 10.1002/bit.24344] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/11/2011] [Indexed: 02/02/2023]
Abstract
Experimental determination of fluxes by (13)C-tracers relies on detection of (13)C-patterns in metabolites or by-products. In the field of (13)C metabolic flux analysis, the most recent developments point toward recording labeling patterns by liquid chromatography (LC)-mass spectrometry (MS)/MS directly in intermediates in central carbon metabolism (CCM) to increase temporal resolution. Surprisingly, the flux studies published so far with LC-MS measurements were based on intact metabolic intermediates-thus neglected the potential benefits of using positional information to improve flux estimation. For the first time, we exploit collisional fragmentation to obtain more fine-grained (13)C-data on intermediates of CCM and investigate their impact in (13)C metabolic flux analysis. For the case study of Bacillus subtilis grown in mineral medium with (13)C-labeled glucose, we compare the flux estimates obtained by iterative isotopologue balancing of (13)C-data obtained either by LC-MS/MS for solely intact intermediates or LC-MS/MS for intact and fragmented intermediates of CCM. We show that with LC-MS/MS data, fragment information leads to more precise estimates of fluxes in pentose phosphate pathway, glycolysis, and to the tricarboxylic acid cycle. Additionally, we present an efficient analytical strategy to rapidly acquire large sets of (13)C-patterns by tandem MS, and an in-depth analysis of the collisional fragmentation of primary intermediates. In the future, this catalogue will enable comprehensive in silico calculability analyses to identify the most sensitive measurements and direct experimental design.
Collapse
Affiliation(s)
- Martin Rühl
- Institute of Molecular Systems Biology, ETH Zurich, Dr. Nicola Zamboni, Wolfgang-Pauli-Str. 16, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Franklin O, Hall EK, Kaiser C, Battin TJ, Richter A. Optimization of biomass composition explains microbial growth-stoichiometry relationships. Am Nat 2011; 177:E29-42. [PMID: 21460549 DOI: 10.1086/657684] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Integrating microbial physiology and biomass stoichiometry opens far-reaching possibilities for linking microbial dynamics to ecosystem processes. For example, the growth-rate hypothesis (GRH) predicts positive correlations among growth rate, RNA content, and biomass phosphorus (P) content. Such relationships have been used to infer patterns of microbial activity, resource availability, and nutrient recycling in ecosystems. However, for microorganisms it is unclear under which resource conditions the GRH applies. We developed a model to test whether the response of microbial biomass stoichiometry to variable resource stoichiometry can be explained by a trade-off among cellular components that maximizes growth. The results show mechanistically why the GRH is valid under P limitation but not under N limitation. We also show why variability of growth rate-biomass stoichiometry relationships is lower under P limitation than under N or C limitation. These theoretical results are supported by experimental data on macromolecular composition (RNA, DNA, and protein) and biomass stoichiometry from two different bacteria. In addition, compared to a model with strictly homeostatic biomass, the optimization mechanism we suggest results in increased microbial N and P mineralization during organic-matter decomposition. Therefore, this mechanism may also have important implications for our understanding of nutrient cycling in ecosystems.
Collapse
Affiliation(s)
- Oskar Franklin
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria.
| | | | | | | | | |
Collapse
|