1
|
Ciccarone F, Ciriolo MR. Reprogrammed mitochondria: a central hub of cancer cell metabolism. Biochem Soc Trans 2024; 52:1305-1315. [PMID: 38716960 DOI: 10.1042/bst20231090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Mitochondria represent the metabolic hub of normal cells and play this role also in cancer but with different functional purposes. While cells in differentiated tissues have the prerogative of maintaining basal metabolism and support the biosynthesis of specialized products, cancer cells have to rewire the metabolic constraints imposed by the differentiation process. They need to balance the bioenergetic supply with the anabolic requirements that entail the intense proliferation rate, including nucleotide and membrane lipid biosynthesis. For this aim, mitochondrial metabolism is reprogrammed following the activation of specific oncogenic pathways or due to specific mutations of mitochondrial proteins. The main process leading to mitochondrial metabolic rewiring is the alteration of the tricarboxylic acid cycle favoring the appropriate orchestration of anaplerotic and cataplerotic reactions. According to the tumor type or the microenvironmental conditions, mitochondria may decouple glucose catabolism from mitochondrial oxidation in favor of glutaminolysis or disable oxidative phosphorylation for avoiding harmful production of free radicals. These and other metabolic settings can be also determined by the neo-production of oncometabolites that are not specific for the tissue of origin or the accumulation of metabolic intermediates able to boost pro-proliferative metabolism also impacting epigenetic/transcriptional programs. The full characterization of tumor-specific mitochondrial signatures may provide the identification of new biomarkers and therapeutic opportunities based on metabolic approaches.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
2
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
3
|
Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans. Int J Mol Sci 2022; 23:ijms232012131. [PMID: 36292984 PMCID: PMC9603055 DOI: 10.3390/ijms232012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial DNA changes can contribute to both an increased and decreased likelihood of cancer. This process is complex and not fully understood. Polymorphisms and mutations, especially those of the missense type, can affect mitochondrial functions, particularly if the conservative domain of the protein is concerned. This study aimed to identify the possible relationships between brain gliomas and the occurrence of specific mitochondrial DNA polymorphisms and mutations in respiratory complexes III, IV and V. The investigated material included blood and tumour material collected from 30 Caucasian patients diagnosed with WHO grade II, III or IV glioma. The mitochondrial genetic variants were investigated across the mitochondrial genome using next-generation sequencing (MiSeq/FGx system—Illumina). The study investigated, in silico, the effects of missense mutations on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness. The A14793G (MTCYB), A15758G, (MT-CYB), A15218G (MT-CYB), G7444A (MT-CO1) polymorphisms, and the T15663C (MT-CYB) and G8959A (ATP6) mutations were assessed in silico as harmful alterations that could be involved in oncogenesis. The G8959A (E145K) ATP6 missense mutation has not been described in the literature so far. In light of these results, further research into the role of mtDNA changes in brain tumours should be conducted.
Collapse
|
4
|
Jain A, Katiyar A, Singh R, Bakhshi S, Singh H, Palanichamy JK, Singh A. Implications of mitochondrial DNA variants in pediatric B-cell acute lymphoblastic leukemia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Research on the role of variations in the mitochondrial genome in pathogenesis of acute lymphoblastic leukemia (ALL) has been unfolding at a rapid rate. Our laboratory has previously described higher number of copies of the mitochondrial genomes per cell in pediatric ALL patients as compared to the healthy controls. In the current study, we evaluated the pattern of mitochondrial genome variations in 20 de-novo pediatric B-ALL cases and seven controls. Quantitative real-time Polymerase Chain Reaction was used for estimation of mitochondrial genomes’ copy number in bone marrow samples of each ALL patient and peripheral blood samples of controls. The complete mitochondrial genomes of all samples were sequenced using the Illumina platform.
Results
Sequencing data analysis using multiple mitochondrial genome databases revealed 325 variants in all 27 samples, out of which 221 variants were previously known while 104 were unassigned, new variants. The 325 variants consisted of 7 loss-of-function variants, 131 synonymous variants, 75 missense variants, and 112 non-coding variants. New, missense variants (n = 21) were identified in genes encoding the electron transport chain complexes with most of them encoding ND4, ND5 of complex I. Missense and loss-of-function variants were found to be deleterious by many predictor databases of pathogenicity. MuTect2 identified true somatic variants present only in tumors between patient-sibling pairs and showed overlap with missense and loss-of-function variants. Online MtDNA-server showed heteroplasmic and homoplasmic variants in mitochondrial genome.
Conclusions
The data suggest that some of these variations might have a deleterious impact on the expression of mitochondrial encoded genes with a possible functional relevance in leukemia.
Collapse
|
5
|
Roy S, Kumaravel S, Banerjee P, White TK, O’Brien A, Seelig C, Chauhan R, Ekser B, Bayless KJ, Alpini G, Glaser SS, Chakraborty S. Tumor Lymphatic Interactions Induce CXCR2-CXCL5 Axis and Alter Cellular Metabolism and Lymphangiogenic Pathways to Promote Cholangiocarcinoma. Cells 2021; 10:3093. [PMID: 34831316 PMCID: PMC8623887 DOI: 10.3390/cells10113093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cholangiocarcinoma (CCA), or cancer of bile duct epithelial cells, is a very aggressive malignancy characterized by early lymphangiogenesis in the tumor microenvironment (TME) and lymph node (LN) metastasis which correlate with adverse patient outcome. However, the specific roles of lymphatic endothelial cells (LECs) that promote LN metastasis remains unexplored. Here we aimed to identify the dynamic molecular crosstalk between LECs and CCA cells that activate tumor-promoting pathways and enhances lymphangiogenic mechanisms. Our studies show that inflamed LECs produced high levels of chemokine CXCL5 that signals through its receptor CXCR2 on CCA cells. The CXCR2-CXCL5 signaling axis in turn activates EMT (epithelial-mesenchymal transition) inducing MMP (matrix metalloproteinase) genes such as GLI, PTCHD, and MMP2 in CCA cells that promote CCA migration and invasion. Further, rate of mitochondrial respiration and glycolysis of CCA cells was significantly upregulated by inflamed LECs and CXCL5 activation, indicating metabolic reprogramming. CXCL5 also induced lactate production, glucose uptake, and mitoROS. CXCL5 also induced LEC tube formation and increased metabolic gene expression in LECs. In vivo studies using CCA orthotopic models confirmed several of these mechanisms. Our data points to a key finding that LECs upregulate critical tumor-promoting pathways in CCA via CXCR2-CXCL5 axis, which further augments CCA metastasis.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Subhashree Kumaravel
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Tori K. White
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - April O’Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Catherine Seelig
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Rahul Chauhan
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Burcin Ekser
- Department of Surgery, Division of Transplant Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA;
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Gianfranco Alpini
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, IN 46202-3082, USA;
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202-3082, USA
| | - Shannon S. Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| |
Collapse
|
6
|
Lin YH, Chu YD, Lim SN, Chen CW, Yeh CT, Lin WR. Impact of an MT-RNR1 Gene Polymorphism on Hepatocellular Carcinoma Progression and Clinical Characteristics. Int J Mol Sci 2021; 22:ijms22031119. [PMID: 33498721 PMCID: PMC7865300 DOI: 10.3390/ijms22031119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are highly associated with cancer progression. The poor prognosis of hepatocellular carcinoma (HCC) is largely due to high rates of tumor metastasis. This emphasizes the urgency of identifying these patients in advance and developing new therapeutic targets for successful intervention. However, the issue of whether mtDNA influences tumor metastasis in hepatoma remains unclear. In the current study, multiple mutations in mtDNA were identified by sequencing HCC samples. Among these mutations, mitochondrially encoded 12S rRNA (MT-RNR1) G709A was identified as a novel potential candidate. The MT-RNR1 G709A polymorphism was an independent risk factor for overall survival and distant metastasis-free survival. Subgroup analysis showed that in patients with cirrhosis, HBV-related HCC, α-fetoprotein ≥ 400 ng/mL, aspartate transaminase ≥ 31 IU/L, tumor number > 1, tumor size ≥ 5 cm, and histology grade 3-4, MT-RNR1 G709A was associated with both shorter overall survival and distant metastasis-free survival. Mechanistically, MT-RNR1 G709A was clearly associated with hexokinase 2 (HK2) expression and unfavorable prognosis in HCC patients. Our data collectively highlight that novel associations among MT-RNR1 G709A and HK2 are an important risk factor in HCC patients.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.L.); (Y.-D.C.); (C.-T.Y.)
| | - Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.L.); (Y.-D.C.); (C.-T.Y.)
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.L.); (Y.-D.C.); (C.-T.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.L.); (Y.-D.C.); (C.-T.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Correspondence: or ; Tel./Fax: +886-3-3281200 (ext. 8102)
| |
Collapse
|
7
|
Raghav L, Chang YH, Hsu YC, Li YC, Chen CY, Yang TY, Chen KC, Hsu KH, Tseng JS, Chuang CY, Lee MH, Wang CL, Chen HW, Yu SL, Su SF, Yuan SS, Chen JJ, Ho SY, Li KC, Yang PC, Chang GC, Chen HY. Landscape of Mitochondria Genome and Clinical Outcomes in Stage 1 Lung Adenocarcinoma. Cancers (Basel) 2020; 12:E755. [PMID: 32210009 PMCID: PMC7140061 DOI: 10.3390/cancers12030755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
Risk factors including genetic effects are still being investigated in lung adenocarcinoma (LUAD). Mitochondria play an important role in controlling imperative cellular parameters, and anomalies in mitochondrial function might be crucial for cancer development. The mitochondrial genomic aberrations found in lung adenocarcinoma and their associations with cancer development and progression are not yet clearly characterized. Here, we identified a spectrum of mitochondrial genome mutations in early-stage lung adenocarcinoma and explored their association with prognosis and clinical outcomes. Next-generation sequencing was used to reveal the mitochondrial genomes of tumor and conditionally normal adjacent tissues from 61 Stage 1 LUADs. Mitochondrial somatic mutations and clinical outcomes including relapse-free survival (RFS) were analyzed. Patients with somatic mutations in the D-loop region had longer RFS (adjusted hazard ratio, adjHR = 0.18, p = 0.027), whereas somatic mutations in mitochondrial Complex IV and Complex V genes were associated with shorter RFS (adjHR = 3.69, p = 0.012, and adjHR = 6.63, p = 0.002, respectively). The risk scores derived from mitochondrial somatic mutations were predictive of RFS (adjHR = 9.10, 95%CI: 2.93-28.32, p < 0.001). Our findings demonstrated the vulnerability of the mitochondrial genome to mutations and the potential prediction ability of somatic mutations. This research may contribute to improving molecular guidance for patient treatment in precision medicine.
Collapse
Affiliation(s)
- Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan;
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan;
| | - Yu-Cheng Li
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Chih-Yi Chen
- Institute of Medicine, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Tsung-Ying Yang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Kuo-Hsuan Hsu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jeng-Sen Tseng
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chih-Liang Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, Taipei 10617, Taiwan;
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Sheng-Fang Su
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan;
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Jeremy J.W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095-1554, USA
| | - Pan-Chyr Yang
- Center of Genomic Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Gee-Chen Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung 40704, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
8
|
Abstract
Mitochondria play various important roles in energy production, metabolism, and apoptosis. Mitochondrial dysfunction caused by alterations in mitochondrial DNA (mtDNA) can lead to the initiation and progression of cancers and other diseases. These alterations include mutations and copy number variations. Especially, the mutations in D-loop, MT-ND1, and MT-ND5 affect mitochondrial functions and are widely detected in various cancers. Meanwhile, several other mutations have been correlated with muscular and neuronal diseases, especially MT-TL1 is deeply related. These pieces of evidence indicated mtDNA alterations in diseases show potential as a novel therapeutic target. mtDNA repair enzymes are the target for delaying or stalling the mtDNA damage-induced cancer progression and metastasis. Moreover, some mutations reveal a prognosis ability of the drug resistance. Current efforts aim to develop mitochondrial transplantation technique as a direct cure for deregulated mitochondria-associated diseases. This review summarizes the implications of mitochondrial dysfunction in cancers and other pathologies; and discusses the relevance of mitochondria-targeted therapies, along with their contribution as potential biomarkers.
Collapse
Affiliation(s)
- Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Moghbeli M. Genetic and molecular biology of breast cancer among Iranian patients. J Transl Med 2019; 17:218. [PMID: 31286981 PMCID: PMC6615213 DOI: 10.1186/s12967-019-1968-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract Background, Breast cancer (BC) is one of the leading causes of cancer related deaths in Iran. This high ratio of mortality had a rising trend during the recent years which is probably associated with late diagnosis. Main body Therefore it is critical to define a unique panel of genetic markers for the early detection among our population. In present review we summarized all of the reported significant genetic markers among Iranian BC patients for the first time, which are categorized based on their cellular functions. Conclusions This review paves the way of introducing a unique ethnic specific panel of diagnostic markers among Iranian BC patients. Indeed, this review can also clarify the genetic and molecular bases of BC progression among Iranians.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Kwon S, Kim SS, Nebeck HE, Ahn EH. Immortalization of Different Breast Epithelial Cell Types Results in Distinct Mitochondrial Mutagenesis. Int J Mol Sci 2019; 20:E2813. [PMID: 31181796 PMCID: PMC6600575 DOI: 10.3390/ijms20112813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 11/16/2022] Open
Abstract
Different phenotypes of normal cells might influence genetic profiles, epigenetic profiles, and tumorigenicities of their transformed derivatives. In this study, we investigate whether the whole mitochondrial genome of immortalized cells can be attributed to the different phenotypes (stem vs. non-stem) of their normal epithelial cell originators. To accurately determine mutations, we employed Duplex Sequencing, which exhibits the lowest error rates among currently-available DNA sequencing methods. Our results indicate that the vast majority of the observed mutations of the whole mitochondrial DNA occur at low-frequency (rare mutations). The most prevalent rare mutation types are C→T/G→A and A→G/T→C transitions. Frequencies and spectra of homoplasmic point mutations are virtually identical between stem cell-derived immortalized (SV1) cells and non-stem cell-derived immortalized (SV22) cells, verifying that both cell types were derived from the same woman. However, frequencies of rare point mutations are significantly lower in SV1 cells (5.79 × 10-5) than in SV22 cells (1.16 × 10-4). The significantly lower frequencies of rare mutations are aligned with a finding of longer average distances to adjacent mutations in SV1 cells than in SV22 cells. Additionally, the predicted pathogenicity for rare mutations in the mitochondrial tRNA genes tends to be lower (by 2.5-fold) in SV1 cells than in SV22 cells. While four known/confirmed pathogenic mt-tRNA mutations (m.5650 G>A, m.5521 G>A, m.5690 A>G, m.1630 A>G) were identified in SV22 cells, no such mutations were observed in SV1 cells. Our findings suggest that the immortalization of normal cells with stem cell features leads to decreased mitochondrial mutagenesis, particularly in RNA gene regions. The mutation spectra and mutations specific to stem cell-derived immortalized cells (vs. non-stem cell derived) have implications in characterizing the heterogeneity of tumors and understanding the role of mitochondrial mutations in the immortalization and transformation of human cells.
Collapse
Affiliation(s)
- Sujin Kwon
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Susan S Kim
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Howard E Nebeck
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Eun Hyun Ahn
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
Masserrat A, Sharifpanah F, Akbari L, Tonekaboni SH, Karimzadeh P, Asharafi MR, Mazouei S, Sauer H, Houshmand M. Mitochondrial G8292A and C8794T mutations in patients with Niemann-Pick disease type C. Biomed Rep 2018; 9:65-73. [PMID: 29930807 PMCID: PMC6007046 DOI: 10.3892/br.2018.1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/27/2018] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick disease type C (NP-C) is a neurovisceral lipid storage disorder. At the cellular level, the disorder is characterized by accumulation of unesterified cholesterol and glycolipids in the lysosomal/late endosomal system. NP-C is transmitted in an autosomal recessive manner and is caused by mutations in either the NPC1 (95% of families) or NPC2 gene. The estimated disease incidence is 1 in 120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. Variants of adenosine triphosphatase (ATPase) subunit 6 and ATPase subunit 8 (ATPase6/8) in mitochondrial DNA (mtDNA) have been reported in different types of genetic diseases including NP-C. In the present study, the blood samples of 22 Iranian patients with NP-C and 150 healthy subjects as a control group were analyzed. The DNA of the blood samples was extracted by the salting out method and analyzed for ATPase6/8 mutations using polymerase chain reaction sequencing. Sequence variations in mitochondrial genome samples were determined via the Mitomap database. Analysis of sequencing data confirmed the existence of 11 different single nucleotide polymorphisms (SNPs) in patients with NP-C1. One of the most prevalent polymorphisms was the A8860G variant, which was observed in both affected and non-affected groups and determined to have no significant association with NP-C incidence. Amongst the 11 polymorphisms, only one was identified in the ATPase8 gene, while 9 including A8860G were observed in the ATPase6 gene. Furthermore, two SNPs, G8292A and C8792A, located in the non-coding region of mtDNA and the ATPase6 gene, respectively, exhibited significantly higher prevalence rates in NP-C1 patients compared with the control group (P<0.01). The present study suggests that there may be an association between mitochondrial ATPase6/8 mutations and the incidence of NP-C disease. In addition, the mitochondrial SNPs identified maybe pathogenic mutations involved in the development and prevalence of NP-C. Furthermore, these results suggest a higher occurrence of mutations in ATPase6 than in ATPase8 in NP-C patients.
Collapse
Affiliation(s)
- Abbas Masserrat
- Department of Biology, Faculty of Science, Islamic Azad University, Damghan 3671639998, Iran
| | - Fatemeh Sharifpanah
- Department of Physiology, Faculty of Medicine, Justus Liebig University, D-35392 Giessen, Germany
| | - Leila Akbari
- Houshmand Genetic Diagnostics Laboratory, Taban Clinic, Tehran 1997844151, Iran
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Seyed Hasan Tonekaboni
- Department of Neurology, Faculty of Medicine, Shahid Beheshti University, Tehran 19839-63113, Iran
| | - Parvaneh Karimzadeh
- Department of Neurology, Faculty of Medicine, Shahid Beheshti University, Tehran 19839-63113, Iran
| | - Mahmood Reza Asharafi
- Department of Neurology, Faculty of Medicine, Tehran University, Tehran 1417613151, Iran
| | - Safoura Mazouei
- Department of Cardiology, Clinic of Internal Medicine I, Friedrich Schiller University, D-07747 Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, D-35392 Giessen, Germany
| | - Massoud Houshmand
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| |
Collapse
|
12
|
Bahreini F, Houshmand M, Modarressi MH, Akrami SM. Mitochondrial Variants in Pompe Disease: A Comparison between Classic and Non-Classic Forms. CELL JOURNAL 2018; 20:333-339. [PMID: 29845786 PMCID: PMC6004991 DOI: 10.22074/cellj.2018.5238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022]
Abstract
Objective Pompe disease (PD) is a progressive neuromuscular disorder that is caused by glucosidase acid alpha (GAA)
deleterious mutations. Mitochondrial involvement is an important contributor to neuromuscular diseases. In this study the
sequence of MT-ATP 6/8 and Cytochrome C oxidase I/II genes along with the expression levels of the former genes were
compared in classic and non-classic patients.
Materials and Methods In this case-control study, the sequence of MT-ATP 6/8 and Cytochrome C oxidase was
analyzed by polymerase chain reaction (PCR)-Sanger sequencing and expression of MT-ATP genes were quantified
by real time-PCR (RT-PCR) in 28 Pompe patients. The results were then compared with 100 controls. All sequences
were compared with the revised Cambridge reference sequence as reference.
Results Screening of MT-ATP6/8 resulted in the identification of three novel variants, namely T9117A, A8456C and
A8524C. There was a significant decrease in MT-ATP6 expression between classic (i.e. adult) and control groups
(P=0.030). Additionally, the MT-ATP8 expression was significantly decreased in classic (P=0.004) and non-classic
(i.e. infant) patients (P=0.013). In total, 22 variants were observed in Cytochrome C oxidase, five of which were non-
synonymous, one leading to a stop codon and another (C9227G) being a novel heteroplasmic variant. The A8302G in
the lysine tRNA gene was found in two brothers in a pedigree, while a T7572C variant in the aspartate tRNA gene was
observed in two brothers in another pedigree.
Conclusion The extent of mitochondrial involvement in the classic group was more significant than in the non-classic
form. Beside GAA deleterious mutations, it seems that mtDNA variants have a secondary effect on PD. Understanding,
the role of mitochondria in the pathogenesis of Pompe may potentially be helpful in developing new therapeutic
strategies.
Collapse
Affiliation(s)
- Fatemeh Bahreini
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.Electronic Address:
| |
Collapse
|
13
|
Complete sequence of the ATP6 and ND3 mitochondrial genes in breast cancer tissue of postmenopausal women with different body mass indexes. Ann Diagn Pathol 2018; 32:23-27. [DOI: 10.1016/j.anndiagpath.2017.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/24/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
|
14
|
Dornfeld KJ, Skildum AJ. Mitochondria Remodeling in Cancer. MITOCHONDRIAL BIOLOGY AND EXPERIMENTAL THERAPEUTICS 2018:153-191. [DOI: 10.1007/978-3-319-73344-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Hertweck KL, Dasgupta S. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities. Front Oncol 2017; 7:262. [PMID: 29164061 PMCID: PMC5673620 DOI: 10.3389/fonc.2017.00262] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Mitochondria from normal and cancerous cells represent a tale of two cities, wherein both execute similar processes but with different cellular and molecular effects. Given the number of reviews currently available which describe the functional implications of mitochondrial mutations in cancer, this article focuses on documenting current knowledge in the abundance and distribution of somatic mitochondrial mutations, followed by elucidation of processes which affect the fate of mutations in cancer cells. The conclusion includes an overview of translational implications for mtDNA mutations, as well as recommendations for future research uniting mitochondrial variants and tumorigenesis.
Collapse
Affiliation(s)
- Kate L Hertweck
- Department of Biology, The University of Texas at Tyler, Tyler, TX, United States
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| |
Collapse
|
16
|
Garcia-Heredia JM, Carnero A. Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain. Oncotarget 2016; 6:41582-99. [PMID: 26462158 PMCID: PMC4747175 DOI: 10.18632/oncotarget.6057] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 01/13/2023] Open
Abstract
Otto Warburg observed that cancer cells derived their energy from aerobic glycolysis by converting glucose to lactate. This mechanism is in opposition to the higher energy requirements of cancer cells because oxidative phosphorylation (OxPhos) produces more ATP from glucose. Warburg hypothesized that this phenomenon occurs due to the malfunction of mitochondria in cancer cells. The rediscovery of Warburg's hypothesis coincided with the discovery of mitochondrial tumor suppressor genes that may conform to Warburg's hypothesis along with the demonstrated negative impact of HIF-1 on PDH activity and the activation of HIF-1 by oncogenic signals such as activated AKT. This work summarizes the alterations in mitochondrial respiratory chain proteins that have been identified and their involvement in cancer. Also discussed is the fact that most of the mitochondrial mutations have been found in homoplasmy, indicating a positive selection during tumor evolution, thereby supporting their causal role.
Collapse
Affiliation(s)
- Jose M Garcia-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
17
|
Bahreini F, Houshmand M, Modaresi MH, Tonekaboni H, Nafissi S, Nazari F, Akrami SM. Mitochondrial Copy Number and D-Loop Variants in Pompe Patients. CELL JOURNAL 2016; 18:405-15. [PMID: 27602323 PMCID: PMC5011329 DOI: 10.22074/cellj.2016.4569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/24/2016] [Indexed: 02/06/2023]
Abstract
Objective Pompe disease is a rare neuromuscular genetic disorder and is classified
into two forms of early and late-onset. Over the past two decades, mitochondrial abnor-
malities have been recognized as an important contributor to an array of neuromuscular
diseases. We therefore aimed to compare mitochondrial copy number and mitochondrial
displacement-loop sequence variation in infantile and adult Pompe patients.
Materials and Methods In this retrospective study, the mitochondrial D-loop sequence
was analyzed by polymerase chain reaction (PCR) and direct sequencing to detect pos-
sible variation in 28 Pompe patients (17 infants and 11 adults). Results were compared
with 100 healthy controls and sequences of all individuals were compared with the Cam-
bridge reference sequence. Real-time PCR was used to quantify mitochondrial DNA copy
number.
Results Among 59 variants identified, 37(62.71%) were present in the infant group,
14(23.333%) in the adult group and 8(13.333%) in both groups. Mitochondrial copy
number in infant patients was lower than adults (P<0.05). A significant frequency differ-
ence was seen between the two groups for 12 single nucleotide polymorphism (SNP).
A novel insertion (317-318 ins CCC) was observed in patients and six SNPs were iden-
tified as neutral variants in controls. There was an inverse association between mito-
chondrial copy number and D-loop variant number (r=0.54).
Conclusion The 317-318 ins CCC was detected as a new mitochondrial variant in
Pompe patients.
Collapse
Affiliation(s)
- Fatemeh Bahreini
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Hossein Modaresi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Tonekaboni
- Department of Pediatric Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Iranian Center for Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ferdoss Nazari
- Iranian Center for Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Avcilar T, Kirac D, Ergec D, Koc G, Ulucan K, Kaya Z, Kaspar EC, Turkeri L, Guney AI. Investigation of the association between mitochondrial DNA and p53 gene mutations in transitional cell carcinoma of the bladder. Oncol Lett 2016; 12:2872-2879. [PMID: 27698873 DOI: 10.3892/ol.2016.5000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Bladder carcinoma is the most common malignancy of the urinary tract. The major aim of the present study is to investigate the association between mitochondrial DNA (mtDNA) and p53 gene mutations in bladder carcinoma. A total of 30 patients with transitional cell carcinoma and 27 controls were recruited for the study. Bladder cancer tissues were obtained by radical cystectomy or transurethral resection. Genomic DNA was extracted from peripheral blood. mtDNA and p53 genes were amplified by polymerase chain reaction and sequenced directly. A total of 37 polymorphisms were identified, among which, 2 mutations were significant in the patient group, and 1 mutation was significant in the control group. Additionally, 5 different moderate positive correlations between mtDNA mutations and 3 different positive correlations between p53 gene and mtDNA mutations were detected. The high incidence of mtDNA and p53 gene mutations in bladder cancer suggests that these genes could be important in carcinogenesis.
Collapse
Affiliation(s)
- Tuba Avcilar
- Department of Medical Genetics, Faculty of Medicine, Marmara University, Istanbul 34890, Turkey
| | - Deniz Kirac
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Deniz Ergec
- Department of Medical Genetics, Faculty of Medicine, Marmara University, Istanbul 34890, Turkey
| | - Gulsah Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydın University, Istanbul 34295, Turkey
| | - Korkut Ulucan
- Department of Medical Biology and Genetics, Faculty of Dentistry, Marmara University, Istanbul 34854, Turkey
| | - Zehra Kaya
- Department of Medical Biology, Faculty of Medicine, Yuzuncu Yıl University, Van 65080, Turkey
| | - Elif Cigdem Kaspar
- Department of Biostatistics, Faculty of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Levent Turkeri
- Department of Urology, Faculty of Medicine, Marmara University, Istanbul 34890, Turkey
| | - Ahmet Ilter Guney
- Department of Medical Genetics, Faculty of Medicine, Marmara University, Istanbul 34890, Turkey
| |
Collapse
|
19
|
Surdyka M, Slaska B. Defect in ND2, COX2, ATP6 and COX3 mitochondrial genes as a risk factor for canine mammary tumour. Vet Comp Oncol 2016; 15:1062-1072. [PMID: 27278673 DOI: 10.1111/vco.12247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/02/2016] [Accepted: 05/20/2016] [Indexed: 11/29/2022]
Abstract
The aim of this study was to identify mutations in ND2, COX2, ATP6 and COX3 mitochondrial genes in canine mammary tumour, determine their association with the process of neoplastic transformation, and phenotypic traits of dogs. In total, 93 biological samples, including blood, normal and neoplastic tissue samples from 31 dogs with diagnosed malignant canine mammary tumours were analysed. DNA sequencing of genes as well as bioinformatics and statistical analyses were performed. A total of 28 polymorphic loci and 11 mutations were identified. One of the mutations was blood heteroplasmy and two of the mutations caused an amino acid change in p.N117S and p.A184T. For the first time, mutations in mitochondrial genes were detected in dogs with mammary tumours. A statistically significant association between the presence of mutations and the size and age of dogs was demonstrated. Some of these changes may imply that these are the hotspot mutations of canine mammary tumour.
Collapse
Affiliation(s)
- M Surdyka
- Department of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - B Slaska
- Department of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
20
|
Balali M, Kamalidehghan B, Farhadi M, Ahmadipour F, Ashkezari MD, Hemami MR, Arabzadeh H, Falah M, Meng GY, Houshmand M. Association of nuclear and mitochondrial genes with audiological examinations in Iranian patients with nonaminoglycoside antibiotics-induced hearing loss. Ther Clin Risk Manag 2016; 12:117-28. [PMID: 26889084 PMCID: PMC4743636 DOI: 10.2147/tcrm.s90581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA mutations play an important role in causing sensorineural hearing loss. The purpose of this study was to determine the association of the mitochondrial genes RNR1, MT-TL1, and ND1 as well as the nuclear genes GJB2 and GJB6 with audiological examinations in nonfamilial Iranians with cochlear implants, using polymerase chain reaction, DNA sequencing, and RNA secondary structure analysis. We found that there were no novel mutations in the mitochondrial gene 12S rRNA (MT-RNR1) in patients with and without GJB2 mutation (GJB2+ and GJB2−, respectively), but a total of six polymorphisms were found. No mutations were observed in tRNALeu(UUR) (MT-TL1). Furthermore, eight polymorphisms were found in the mitochondrial ND1 gene. Additionally, no mutations were observed in the nuclear GJB6 gene in patients in the GJB2− and GJB2+ groups. The speech intelligibility rating and category of auditory perception tests were statistically assessed in patients in the GJB2− and GJB2+ groups. The results indicated that there was a significant difference (P<0.05) between the categories of auditory perception score in the GJB2− group compared to that in the GJB2+ group. Successful cochlear implantation was observed among individuals with GJB2 mutations (GJB2+) and mitochondrial polymorphisms compared to those without GJB2 mutations (GJB2−). In conclusion, the outcome of this study suggests that variation in the mitochondrial and nuclear genes may influence the penetrance of deafness. Therefore, further genetic and functional studies are required to help patients in making the best choice for cochlear implants.
Collapse
Affiliation(s)
- Maryam Balali
- Department of Biology, Islamic Azad University, Ashkezar Branch, Ashkezar, Iran; Department and Research Centre of ENT and Head & Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Kamalidehghan
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Farhadi
- Department and Research Centre of ENT and Head & Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadipour
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Mohsen Rezaei Hemami
- Department and Research Centre of ENT and Head & Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Arabzadeh
- Department and Research Centre of ENT and Head & Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Falah
- Department and Research Centre of ENT and Head & Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Goh Yong Meng
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Massoud Houshmand
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
21
|
Errichiello E, Balsamo A, Cerni M, Venesio T. Mitochondrial variants in MT-CO2 and D-loop instability are involved in MUTYH-associated polyposis. J Mol Med (Berl) 2015; 93:1271-81. [PMID: 26138249 DOI: 10.1007/s00109-015-1312-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/28/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Mitochondrial DNA alterations have been widely reported in different human tumours, including colorectal carcinoma, but their mutational spectrum and pathogenic role in specific subsets of patients with polyposis syndromes have been poorly investigated. We compared the breadth of somatic variants across the mitochondrial genome of MUTYH-associated polyposis (MAP) patients with homogeneous groups of classical/attenuated familial adenomatous polyposis (FAP/AFAP) and sporadic cases. Overall, we screened 121 adenomas and seven adenocarcinomas and their corresponding germinal controls, for mitochondrial genes with a crucial role in oxidative phosphorylation and translation (MT-CO1, MT-CO2, MT-CO3, MT-TD, MT-TS1, MT-ATP6) as well as a hypervariable sequence (HV-II) within the control region displacement loop (D-loop), a marker of hypermutability and clonal expansion. The sequencing analysis revealed the presence of 17 variants, mostly causing non-synonymous changes in conserved amino acid residues, typically distributed in the MT-CO2 gene of MAP patients (P < 0.0001), who frequently carried the hot spot m.7763G>A variant. Accordingly, D-loop instability was also significantly associated with variants grouped inside the MT-CO2 gene (P = 0.0061). This is the first report showing a locus-specific distribution of mitochondrial DNA alterations in a subtype of colorectal tumourigenesis. In addition, our findings suggest that MT-CO2 variants, representing early molecular events in MAP tumorigenesis, might be a potential prognostic biomarker for the cancer-risk assessment of patients affected by this syndrome. KEY MESSAGES We compared the frequencies of mtDNA variants in MAP vs. FAP/AFAP/sporadic patients. We found a gene-specific (MT-CO2) distribution of mtDNA variants in MAP cases. Most mtDNA variants caused non-synonymous changes in conserved amino acid residues. D-loop instability was significantly associated with variants grouped inside MT-CO2. MT-CO2 variants might be a potential prognostic biomarker in MAP patients.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Molecular Pathology Laboratory, Unit of Pathology, Institute for Cancer Research and Treatment, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, Torino, Italy
| | - Antonella Balsamo
- Molecular Pathology Laboratory, Unit of Pathology, Institute for Cancer Research and Treatment, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, Torino, Italy
| | - Marianna Cerni
- Molecular Pathology Laboratory, Unit of Pathology, Institute for Cancer Research and Treatment, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, Torino, Italy
| | - Tiziana Venesio
- Molecular Pathology Laboratory, Unit of Pathology, Institute for Cancer Research and Treatment, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, Torino, Italy.
| |
Collapse
|
22
|
Thapa S, Lalrohlui F, Ghatak S, Zohmingthanga J, Lallawmzuali D, Pautu JL, Senthil Kumar N. Mitochondrial complex I and V gene polymorphisms associated with breast cancer in mizo-mongloid population. Breast Cancer 2015; 23:607-16. [PMID: 25896597 DOI: 10.1007/s12282-015-0611-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mizoram has the highest incidence of cancer in India. Among women, breast cancer is most prevalent and the state occupies fifth position globally. The reason for high rate of cancer in this region is still not known but it may be related to ethnic/racial variations or lifestyle factors. METHODS The present study aims to identify the candidate mitochondrial DNA (mtDNA) biomarkers-ND1and ATPase for early breast cancer diagnosis in Mizo population. Genomic DNA was extracted from blood samples of 30 unrelated breast cancer and ten healthy women. The mtNDI and mtATP coding regions were amplified by step-down PCR and were subjected to restriction enzyme digestion and direct sequencing by Sanger method. Subsequently, the results of the DNA sequence analysis were compared with that of the revised Cambridge Reference Sequence (rCRS) using Mutation Surveyor and MITOMAP. RESULTS Most of the mutations were reported and new mutations that are not reported in relationship with breast cancer were also found. The mutations are mostly base substitutions. The effect of non-synonymous substitutions on the amino acid sequence was determined using the PolyPhen-2 software. Statistical analysis was performed for both cases and controls. Odds ratios (ORs) and 95 % confidence intervals (CIs) were estimated from logistic regression. High intake of animal fat and age at menarche was found to be associated with a higher risk of breast cancer in Mizo population. CONCLUSION Our results also showed that ATPase6 as compared to ATPase8 gene is far more predisposed to variations in Mizo population with breast cancer and this finding may play an important role in breast cancer prognosis.
Collapse
Affiliation(s)
- Sunaina Thapa
- Department of Biotechnology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Freda Lalrohlui
- Department of Biotechnology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Souvik Ghatak
- Department of Biotechnology, Mizoram University, Aizawl, 796004, Mizoram, India
| | | | - Doris Lallawmzuali
- Mizoram State Cancer Institute, Zemabawk, Aizawl, 796017, Mizoram, India
| | - Jeremy L Pautu
- Mizoram State Cancer Institute, Zemabawk, Aizawl, 796017, Mizoram, India
| | | |
Collapse
|
23
|
Meng XL, Meng H, Zhang W, Qin YH, Zhao NM. The role of mitochondrial tRNA variants in female breast cancer. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3199-201. [PMID: 25703847 DOI: 10.3109/19401736.2015.1007332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial tRNA (Mt-tRNA) variants have been found to be involved in the carcinogenesis of breast cancer. These tRNAs, which played critical roles in mitochondrial protein synthesis, were important regulators in tumorigenesis. Distinguishing the polymorphisms or mutations in mt-tRNA genes was still puzzling for the clinicians and geneticists when confronted with the breast cancer. In this study, we performed a detailed analysis of recently reported mutations in mt-tRNA genes and further discussed the relationship between these variants and breast cancer.
Collapse
Affiliation(s)
| | - Hua Meng
- b Department of Cardiology , Henan Provincial People's Hospital, Zhengzhou University People's Hospital , Zhengzhou , China
| | | | | | | |
Collapse
|