1
|
Hassan I, Kanoi BN, Nagaoka H, Sattabongkot J, Udomsangpetch R, Tsuboi T, Takashima E. High-Throughput Antibody Profiling Identifies Targets of Protective Immunity against P. falciparum Malaria in Thailand. Biomolecules 2023; 13:1267. [PMID: 37627332 PMCID: PMC10452476 DOI: 10.3390/biom13081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria poses a significant global health challenge, resulting in approximately 600,000 deaths each year. Individuals living in regions with endemic malaria have the potential to develop partial immunity, thanks in part to the presence of anti-plasmodium antibodies. As efforts are made to optimize and implement strategies to reduce malaria transmission and ultimately eliminate the disease, it is crucial to understand how these interventions impact naturally acquired protective immunity. To shed light on this, our study focused on assessing antibody responses to a carefully curated library of P. falciparum recombinant proteins (n = 691) using samples collected from individuals residing in a low-malaria-transmission region of Thailand. We conducted the antibody assays using the AlphaScreen system, a high-throughput homogeneous proximity-based bead assay that detects protein interactions. We observed that out of the 691 variable surface and merozoite stage proteins included in the library, antibodies to 268 antigens significantly correlated with the absence of symptomatic malaria in an univariate analysis. Notably, the most prominent antigens identified were P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains. These results align with our previous research conducted in Uganda, suggesting that similar antigens like PfEMP1s might play a pivotal role in determining infection outcomes in diverse populations. To further our understanding, it remains critical to conduct functional characterization of these identified proteins, exploring their potential as correlates of protection or as targets for vaccine development.
Collapse
Affiliation(s)
- Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| | - Bernard N. Kanoi
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika 01000, Kenya;
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Rachanee Udomsangpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand;
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan;
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| |
Collapse
|
2
|
Mariano RMDS, Gonçalves AAM, de Oliveira DS, Ribeiro HS, Pereira DFS, Santos IS, Lair DF, da Silva AV, Galdino AS, Chávez-Fumagalli MA, da Silveira-Lemos D, Dutra WO, Giunchetti RC. A Review of Major Patents on Potential Malaria Vaccine Targets. Pathogens 2023; 12:pathogens12020247. [PMID: 36839519 PMCID: PMC9959516 DOI: 10.3390/pathogens12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Malaria is a parasitic infection that is a great public health concern and is responsible for high mortality rates worldwide. Different strategies have been employed to improve disease control, demonstrating the ineffectiveness of controlling vectors, and parasite resistance to antimalarial drugs requires the development of an effective preventive vaccine. There are countless challenges to the development of such a vaccine directly related to the parasite's complex life cycle. After more than four decades of basic research and clinical trials, the World Health Organization (WHO) has recommended the pre-erythrocytic Plasmodium falciparum (RTS, S) malaria vaccine for widespread use among children living in malaria-endemic areas. However, there is a consensus that major improvements are needed to develop a vaccine with a greater epidemiological impact in endemic areas. This review discusses novel strategies for malaria vaccine design taking the target stages within the parasite cycle into account. The design of the multi-component vaccine shows considerable potential, especially as it involves transmission-blocking vaccines (TBVs) that eliminate the parasite's replication towards sporozoite stage parasites during a blood meal of female anopheline mosquitoes. Significant improvements have been made but additional efforts to achieve an efficient vaccine are required to improve control measures. Different strategies have been employed, thus demonstrating the ineffectiveness in controlling vectors, and parasite resistance to antimalarial drugs requires the development of a preventive vaccine. Despite having a vaccine in an advanced stage of development, such as the RTS, S malaria vaccine, the search for an effective vaccine against malaria is far from over. This review discusses novel strategies for malaria vaccine design taking into account the target stages within the parasite's life cycle.
Collapse
Affiliation(s)
- Reysla Maria da Silveira Mariano
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Ana Alice Maia Gonçalves
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Diana Souza de Oliveira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Helen Silva Ribeiro
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Diogo Fonseca Soares Pereira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Ingrid Soares Santos
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Daniel Ferreira Lair
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Augusto Ventura da Silva
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Alexsandro Sobreira Galdino
- Laboratory of Biotechnology of Microorganisms, Federal University of São João Del-Rei, Divinópolis CEP 35501-296, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Arequipa 04000, Peru
| | - Denise da Silveira-Lemos
- Campus Jaraguá, University José of Rosário Vellano, UNIFENAS, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
- Correspondence: or ; Tel.: +55-31-3409-3003
| |
Collapse
|
3
|
Takashima E, Kanoi BN, Nagaoka H, Morita M, Hassan I, Palacpac NMQ, Egwang TG, Horii T, Gitaka J, Tsuboi T. Meta-Analysis of Human Antibodies Against Plasmodium falciparum Variable Surface and Merozoite Stage Antigens. Front Immunol 2022; 13:887219. [PMID: 35757771 PMCID: PMC9218060 DOI: 10.3389/fimmu.2022.887219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Concerted efforts to fight malaria have caused significant reductions in global malaria cases and mortality. Sustaining this will be critical to avoid rebound and outbreaks of seasonal malaria. Identifying predictive attributes that define clinical malaria will be key to guide development of second-generation tools to fight malaria. Broadly reactive antibodies against variable surface antigens that are expressed on the surface of infected erythrocytes and merozoites stage antigens are targets of naturally acquired immunity and prime candidates for anti-malaria therapeutics and vaccines. However, predicting the relationship between the antigen-specific antibodies and protection from clinical malaria remains unresolved. Here, we used new datasets and multiple approaches combined with re-analysis of our previous data to assess the multi-dimensional and complex relationship between antibody responses and clinical malaria outcomes. We observed 22 antigens (17 PfEMP1 domains, 3 RIFIN family members, merozoite surface protein 3 (PF3D7_1035400), and merozoites-associated armadillo repeats protein (PF3D7_1035900) that were selected across three different clinical malaria definitions (1,000/2,500/5,000 parasites/µl plus fever). In addition, Principal Components Analysis (PCA) indicated that the first three components (Dim1, Dim2 and Dim3 with eigenvalues of 306, 48, and 29, respectively) accounted for 66.1% of the total variations seen. Specifically, the Dim1, Dim2 and Dim3 explained 52.8%, 8.2% and 5% of variability, respectively. We further observed a significant relationship between the first component scores and age with antibodies to PfEMP1 domains being the key contributing variables. This is consistent with a recent proposal suggesting that there is an ordered acquisition of antibodies targeting PfEMP1 proteins. Thus, although limited, and further work on the significance of the selected antigens will be required, these approaches may provide insights for identification of drivers of naturally acquired protective immunity as well as guide development of additional tools for malaria elimination and eradication.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Jesse Gitaka
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
4
|
Aparici-Herraiz I, Gualdrón-López M, Castro-Cavadía CJ, Carmona-Fonseca J, Yasnot MF, Fernandez-Becerra C, del Portillo HA. Antigen Discovery in Circulating Extracellular Vesicles From Plasmodium vivax Patients. Front Cell Infect Microbiol 2022; 11:811390. [PMID: 35141172 PMCID: PMC8819181 DOI: 10.3389/fcimb.2021.811390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite with 7 million annual clinical cases and 2.5 billion people living under risk of infection. There is an urgent need to discover new antigens for vaccination as only two vaccine candidates are currently in clinical trials. Extracellular vesicles (EVs) are small membrane-bound vesicles involved in intercellular communication and initially described in reticulocytes, the host cell of P. vivax, as a selective disposal mechanism of the transferrin receptor (CD71) in the maturation of reticulocytes to erythrocytes. We have recently reported the proteomics identification of P. vivax proteins associated to circulating EVs in P. vivax patients using size exclusion chromatography followed by mass spectrometry (MS). Parasite proteins were detected in only two out of ten patients. To increase the MS signal, we have implemented the direct immuno-affinity capture (DIC) technique to enrich in EVs derived from CD71-expressing cells. Remarkably, we identified parasite proteins in all patients totaling 48 proteins and including several previously identified P. vivax vaccine candidate antigens (MSP1, MSP3, MSP7, MSP9, Serine-repeat antigen 1, and HSP70) as well as membrane, cytosolic and exported proteins. Notably, a member of the Plasmodium helical interspersed sub-telomeric (PHIST-c) family and a member of the Plasmodium exported proteins, were detected in five out of six analyzed patients. Humoral immune response analysis using sera from vivax patients confirmed the antigenicity of the PHIST-c protein. Collectively, we showed that enrichment of EVs by CD71-DIC from plasma of patients, allows a robust identification of P. vivax immunogenic proteins. This study represents a significant advance in identifying new antigens for vaccination against this human malaria parasite.
Collapse
Affiliation(s)
| | | | | | - Jaime Carmona-Fonseca
- Grupo de Salud y Comunidad Cesar Uribe Piedrahíta, Universidad de Antioquia, Medellín, Colombia
| | - María Fernanda Yasnot
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba-GIMBIC, Universidad de Córdoba, Monteria, Colombia
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
- *Correspondence: Carmen Fernandez-Becerra, ; Hernando A. del Portillo,
| | - Hernando A. del Portillo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- *Correspondence: Carmen Fernandez-Becerra, ; Hernando A. del Portillo,
| |
Collapse
|
5
|
Pirahmadi S, Afzali S, Zargar M, Zakeri S, Mehrizi AA. How can we develop an effective subunit vaccine to achieve successful malaria eradication? Microb Pathog 2021; 160:105203. [PMID: 34547408 DOI: 10.1016/j.micpath.2021.105203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022]
Abstract
Malaria, a mosquito-borne infection, is the most widespread parasitic disease. Despite numerous efforts to eradicate malaria, this disease is still a health concern worldwide. Owing to insecticide-resistant vectors and drug-resistant parasites, available controlling measures are insufficient to achieve a malaria-free world. Thus, there is an urgent need for new intervention tools such as efficient malaria vaccines. Subunit vaccines are the most promising malaria vaccines under development. However, one of the major drawbacks of subunit vaccines is the lack of efficient and durable immune responses including antigen-specific antibody, CD4+, and CD8+ T-cell responses, long-lived plasma cells, memory cells, and functional antibodies for parasite neutralization or inhibition of parasite invasion. These types of responses could be induced by whole organism vaccines, but eliciting these responses with subunit vaccines has been proven to be more challenging. Consequently, subunit vaccines require several policies to overcome these challenges. In this review, we address common approaches that can improve the efficacy of subunit vaccines against malaria.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shima Afzali
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Zargar
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Raissi V, Etemadi S, Getso MI, Mehravaran A, Raiesi O. Structure-genetic diversity and recombinant protein of circumsporozoite protein (CSP) of vivax malaria antigen: A potential malaria vaccine candidate. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Kanoi BN, Nagaoka H, Morita M, Tsuboi T, Takashima E. Leveraging the wheat germ cell-free protein synthesis system to accelerate malaria vaccine development. Parasitol Int 2020; 80:102224. [PMID: 33137499 DOI: 10.1016/j.parint.2020.102224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 01/29/2023]
Abstract
Vaccines against infectious diseases have had great successes in the history of public health. Major breakthroughs have occurred in the development of vaccine-based interventions against viral and bacterial pathogens through the application of classical vaccine design strategies. In contrast the development of a malaria vaccine has been slow. Plasmodium falciparum malaria affects millions of people with nearly half of the world population at risk of infection. Decades of dedicated research has taught us that developing an effective vaccine will be time consuming, challenging, and expensive. Nevertheless, recent advancements such as the optimization of robust protein synthesis platforms, high-throughput immunoscreening approaches, reverse vaccinology, structural design of immunogens, lymphocyte repertoire sequencing, and the utilization of artificial intelligence, have renewed the prospects of an accelerated discovery of the key antigens in malaria. A deeper understanding of the major factors underlying the immunological and molecular mechanisms of malaria might provide a comprehensive approach to identifying novel and highly efficacious vaccines. In this review we discuss progress in novel antigen discoveries that leverage on the wheat germ cell-free protein synthesis system (WGCFS) to accelerate malaria vaccine development.
Collapse
Affiliation(s)
- Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
8
|
Plasmodium vivax spleen-dependent genes encode antigens associated with cytoadhesion and clinical protection. Proc Natl Acad Sci U S A 2020; 117:13056-13065. [PMID: 32439708 PMCID: PMC7293605 DOI: 10.1073/pnas.1920596117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In spite of low peripheral blood parasitemia, vivax malaria causes severe disease. This conundrum finds an explanation from reports suggesting that the spleen is a place for parasite sequestration. We performed a global transcriptional analysis of parasites that grew in the presence or absence of the spleen in a nonhuman primate model. We identified 67 spleen-dependent genes, including multigene variant families, and functionally demonstrated specific adherence to human spleen fibroblasts by a member of such families. Moreover, we further demonstrated that spleen-dependent Plasmodium vivax genes code for immunogenic proteins during natural infections. Our results indicate that this organ plays an important function in P. vivax malaria and call for deeper studies of the role of spleen in P. vivax infections. Plasmodium vivax, the most widely distributed human malaria parasite, causes severe clinical syndromes despite low peripheral blood parasitemia. This conundrum is further complicated as cytoadherence in the microvasculature is still a matter of investigations. Previous reports in Plasmodium knowlesi, another parasite species shown to infect humans, demonstrated that variant genes involved in cytoadherence were dependent on the spleen for their expression. Hence, using a global transcriptional analysis of parasites obtained from spleen-intact and splenectomized monkeys, we identified 67 P. vivax genes whose expression was spleen dependent. To determine their role in cytoadherence, two Plasmodium falciparum transgenic lines expressing two variant proteins pertaining to VIR and Pv-FAM-D multigene families were used. Cytoadherence assays demonstrated specific binding to human spleen but not lung fibroblasts of the transgenic line expressing the VIR14 protein. To gain more insights, we expressed five P. vivax spleen-dependent genes as recombinant proteins, including members of three different multigene families (VIR, Pv-FAM-A, Pv-FAM-D), one membrane transporter (SECY), and one hypothetical protein (HYP1), and determined their immunogenicity and association with clinical protection in a prospective study of 383 children in Papua New Guinea. Results demonstrated that spleen-dependent antigens are immunogenic in natural infections and that antibodies to HYP1 are associated with clinical protection. These results suggest that the spleen plays a major role in expression of parasite proteins involved in cytoadherence and can reveal antigens associated with clinical protection, thus prompting a paradigm shift in P. vivax biology toward deeper studies of the spleen during infections.
Collapse
|
9
|
Miura K, Tachibana M, Takashima E, Morita M, Kanoi BN, Nagaoka H, Baba M, Torii M, Ishino T, Tsuboi T. Malaria transmission-blocking vaccines: wheat germ cell-free technology can accelerate vaccine development. Expert Rev Vaccines 2019; 18:1017-1027. [PMID: 31566026 PMCID: PMC11000147 DOI: 10.1080/14760584.2019.1674145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Highly effective malaria vaccines are essential component toward malaria elimination. Although the leading malaria vaccine, RTS,S/AS01, with modest efficacy is being evaluated in a pilot feasibility trial, development of a malaria transmission-blocking vaccine (TBV) could make a major contribution toward malaria elimination. Only a few TBV antigens have reached pre-clinical or clinical development but with several challenges including difficulties in the expression of malaria recombinant proteins and low immunogenicity in humans. Therefore, novel approaches to accelerate TBV research to preclinical development are critical to generate an efficacious TBV.Areas covered: PubMed was searched to review the progress and future prospects of malaria TBV research and development. We also reviewed registered trials at ClinicalTrials.gov as well as post-genome TBV candidate discovery research including our efforts.Expert opinion: Wheat germ cell-free protein synthesis technology can accelerate TBV development by overcoming some current challenges of TBV research.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
10
|
Dobaño C, Bardají A, Kochar S, Kochar SK, Padilla N, López M, Unger HW, Ome-Kaius M, Castellanos ME, Arévalo-Herrera M, Hans D, Martínez-Espinosa FE, Bôtto-Menezes C, Malheiros A, Desai M, Casellas A, Chitnis CE, Rogerson S, Mueller I, Menéndez C, Requena P. Blood cytokine, chemokine and growth factor profiling in a cohort of pregnant women from tropical countries. Cytokine 2019; 125:154818. [PMID: 31514106 DOI: 10.1016/j.cyto.2019.154818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022]
Abstract
The immune status of women changes during and after pregnancy, differs between blood compartments at delivery and is affected by environmental factors particularly in tropical areas endemic for multiple infections. We quantified the plasma concentration of a set of thirty-one TH1, TH2, TH17 and regulatory cytokines, pro-inflammatory and anti-inflammatory cytokines and chemokines, and growth factors (altogether biomarkers), in a cohort of 540 pregnant women from five malaria-endemic tropical countries. Samples were collected at recruitment (first antenatal visit), delivery (periphery, cord and placenta) and postpartum, allowing a longitudinal analysis. We found the lowest concentration of biomarkers at recruitment and the highest at postpartum, with few exceptions. Among them, IL-6, HGF and TGF-β had the highest levels at delivery, and even higher concentrations in the placenta compared to peripheral blood. Placental concentrations were generally higher than peripheral, except for eotaxin that was lower. We also compared plasma biomarker concentrations between the tropical cohort and a control group from Spain at delivery, presenting overall higher biomarker levels the tropical cohort, particularly pro-inflammatory cytokines and growth factors. Only IL-6 presented lower levels in the tropical group. Moreover, a principal component analysis of biomarker concentrations at delivery showed that women from Spain grouped more homogenously, and that IL-6 and IL-8 clustered together in the tropical cohort but not in the Spanish one. Plasma cytokine concentrations correlated with Plasmodium antibody levels at postpartum but not during pregnancy. This basal profiling of immune mediators over gestation and in different compartments at delivery is important to subsequently understand response to infections and clinical outcomes in mothers and infants in tropical areas.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer del Rosselló, 132, 08036 Barcelona, Spain.
| | - Azucena Bardají
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer del Rosselló, 132, 08036 Barcelona, Spain
| | - Swati Kochar
- Medical College, PBM Hospital, Bikaner, Rajasthan 334001, India
| | - Sanjay K Kochar
- Medical College, PBM Hospital, Bikaner, Rajasthan 334001, India
| | - Norma Padilla
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, 18 Avenida 11-95, Guatemala 01015, Guatemala
| | - Marta López
- Department of Maternal-Fetal Medicine, Hospital Clínic-IDIBAPS, CIBER-ER, Carrer del Rosselló, 149, 08036 Barcelona, Spain
| | - Holger W Unger
- Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang 511, Papua New Guinea
| | - Maria Ome-Kaius
- Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang 511, Papua New Guinea
| | - Maria Eugenia Castellanos
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, 18 Avenida 11-95, Guatemala 01015, Guatemala
| | | | - Dhiraj Hans
- International Center for Genetic Engineering and Biotechnology, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Flor E Martínez-Espinosa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, s/n - Dom Pedro, Manaus, AM 69040-000, Brazil; Instituto Leônidas e Maria Deane, Rua Teresina, 476 - Adrianópolis, Manaus 69.057-070, Brazil
| | - Camila Bôtto-Menezes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, s/n - Dom Pedro, Manaus, AM 69040-000, Brazil; Universidade do Estado do Amazonas, 69850-000, R. Bloco Um e Três, 4-40 - Platô do Piquiá, Boca do Acre, AM 69850-000, Brazil
| | - Adriana Malheiros
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Av. Jauary Marinho - Setor Sul - Coroado, Manaus, AM, Brazil
| | - Meghna Desai
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Malaria Branch, 1600 Clifton Rd, Atlanta, GA 30333, USA
| | - Aina Casellas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer del Rosselló, 132, 08036 Barcelona, Spain
| | - Chetan E Chitnis
- International Center for Genetic Engineering and Biotechnology, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India; Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | | | - Ivo Mueller
- Walter and Eliza Hall Institute, 1G, Royal Parade, Parkville, VIC 3052, Australia
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer del Rosselló, 132, 08036 Barcelona, Spain
| | - Pilar Requena
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer del Rosselló, 132, 08036 Barcelona, Spain; Departmento de Medicina Preventiva y Salud Pública, Universidad de Granada, Facultad de Farmacia, Campus de Cartuja, 18071 Granada, Spain.
| |
Collapse
|
11
|
Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol 2018; 46:109-115. [PMID: 30366310 DOI: 10.1016/j.mib.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Plasmodium vivax is uniquely restricted to invading reticulocytes, the youngest of red blood cells. Parasite invasion relies on the sequential deployment of multiple parasite invasion ligands. Correct targeting of the host reticulocyte is mediated by two families of invasion ligands: the reticulocyte binding proteins (RBPs) and erythrocyte binding proteins (EBPs). The Duffy receptor has long been established as a key determinant for P. vivax invasion. However, recently, the RBP protein PvRBP2b has been shown to bind to transferrin receptor, which is expressed on reticulocytes but lost on normocytes, implicating the ligand-receptor in the reticulocyte tropism of P. vivax. Furthermore there is increasing evidence for P. vivax growth and sexual development in reticulocyte-enriched tissues such as the bone marrow.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel W Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
12
|
Comprehensive analysis of antibody responses to Plasmodium falciparum erythrocyte membrane protein 1 domains. Vaccine 2018; 36:6826-6833. [PMID: 30262245 DOI: 10.1016/j.vaccine.2018.08.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/03/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022]
Abstract
Acquired antibodies directed towards antigens expressed on the surface of merozoites and infected erythrocytes play an important role in protective immunity to Plasmodium falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major parasite component of the infected erythrocyte surface, has been implicated in malaria pathology, parasite sequestration and host immune evasion. However, the extent to which unique PfEMP1 domains interact with host immune response remains largely unknown. In this study, we sought to comprehensively understand the naturally acquired antibody responses targeting different Duffy binding-like (DBL), and Cysteine-rich interdomain region (CIDR) domains in a Ugandan cohort. Consequently, we created a protein library consisting of full-length DBL (n = 163) and CIDR (n = 108) domains derived from 62-var genes based on 3D7 genome. The proteins were expressed by a wheat germ cell-free system; a system that yields plasmodial proteins that are comparatively soluble, intact, biologically active and immunoreactive to human sera. Our findings suggest that all PfEMP1 DBL and CIDR domains, regardless of PfEMP1 group, are targets of naturally acquired immunity. The breadth of the immune response expands with children's age. We concurrently identified 10 DBL and 8 CIDR domains whose antibody responses were associated with reduced risk to symptomatic malaria in the Ugandan children cohort. This study highlights that only a restricted set of specific domains are essential for eliciting naturally acquired protective immunity in malaria. In light of current data, tandem domains in PfEMP1s PF3D7_0700100 and PF3D7_0425800 (DC4) are recommended for extensive evaluation in larger population cohorts to further assess their potential as alternative targets for malaria vaccine development.
Collapse
|
13
|
Arévalo-Pinzón G, González-González M, Suárez CF, Curtidor H, Carabias-Sánchez J, Muro A, LaBaer J, Patarroyo MA, Fuentes M. Self-assembling functional programmable protein array for studying protein-protein interactions in malaria parasites. Malar J 2018; 17:270. [PMID: 30016987 PMCID: PMC6050706 DOI: 10.1186/s12936-018-2414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Plasmodium vivax is the most widespread malarial species, causing significant morbidity worldwide. Knowledge is limited regarding the molecular mechanism of invasion due to the lack of a continuous in vitro culture system for these species. Since protein–protein and host–cell interactions play an essential role in the microorganism’s invasion and replication, elucidating protein function during invasion is critical when developing more effective control methods. Nucleic acid programmable protein array (NAPPA) has thus become a suitable technology for studying protein–protein and host–protein interactions since producing proteins through the in vitro transcription/translation (IVTT) method overcomes most of the drawbacks encountered to date, such as heterologous protein production, stability and purification. Results Twenty P. vivax proteins on merozoite surface or in secretory organelles were selected and successfully cloned using gateway technology. Most constructs were displayed in the array expressed in situ, using the IVTT method. The Pv12 protein was used as bait for evaluating array functionality and co-expressed with P. vivax cDNA display in the array. It was found that Pv12 interacted with Pv41 (as previously described), as well as PvMSP142kDa, PvRBP1a, PvMSP8 and PvRAP1. Conclusions NAPPA is a high-performance technique enabling co-expression of bait and query in situ, thereby enabling interactions to be analysed rapidly and reproducibly. It offers a fresh alternative for studying protein–protein and ligand–receptor interactions regarding a parasite which is difficult to cultivate (i.e. P. vivax). Electronic supplementary material The online version of this article (10.1186/s12936-018-2414-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - María González-González
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| | - Carlos Fernando Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222 # 55-37, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | | | - Antonio Muro
- Unidad de Investigación Enfermedades Infecciosas y Tropicales (e-INTRO), Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (IBSAL-CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Universitario Miguel de Unamuno s/n, 37007, Salamanca, Spain
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Manuel Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain. .,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
14
|
Gualdrón-López M, Flannery EL, Kangwanrangsan N, Chuenchob V, Fernandez-Orth D, Segui-Barber J, Royo F, Falcón-Pérez JM, Fernandez-Becerra C, Lacerda MVG, Kappe SHI, Sattabongkot J, Gonzalez JR, Mikolajczak SA, Del Portillo HA. Characterization of Plasmodium vivax Proteins in Plasma-Derived Exosomes From Malaria-Infected Liver-Chimeric Humanized Mice. Front Microbiol 2018; 9:1271. [PMID: 29988527 PMCID: PMC6026661 DOI: 10.3389/fmicb.2018.01271] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022] Open
Abstract
Exosomes are extracellular vesicles of endocytic origin containing molecular signatures implying the cell of origin; thus, they offer a unique opportunity to discover biomarkers of disease. Plasmodium vivax, responsible for more than half of all malaria cases outside Africa, is a major obstacle in the goal of malaria elimination due to the presence of dormant liver stages (hypnozoites), which after the initial infection may reactivate to cause disease. Hypnozoite infection is asymptomatic and there are currently no diagnostic tools to detect their presence. The human liver-chimeric (FRG huHep) mouse is a robust P. vivax infection model for exo-erythrocytic development of liver stages, including hypnozoites. We studied the proteome of plasma-derived exosomes isolated from P. vivax infected FRG huHep mice with the objective of identifying liver-stage expressed parasite proteins indicative of infection. Proteomic analysis of these exosomes showed the presence of 290 and 234 proteins from mouse and human origin, respectively, including canonical exosomal markers. Human proteins include proteins previously detected in liver-derived exosomes, highlighting the potential of this chimeric mouse model to study plasma exosomes derived unequivocally from human hepatocytes. Noticeably, we identified 17 parasite proteins including enzymes, surface proteins, components of the endocytic pathway and translation machinery, as well as uncharacterized proteins. Western blot analysis validated the presence of human arginase-I and an uncharacterized P. vivax protein in plasma-derived exosomes. This study represents a proof-of-principle that plasma-derived exosomes from P. vivax infected FRG-huHep mice contain human hepatocyte and P. vivax proteins with the potential to unveil biological features of liver infection and identify biomarkers of hypnozoite infection.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain.,Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Erika L Flannery
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Vorada Chuenchob
- Center for Infectious Disease Research, Seattle, WA, United States
| | | | - Joan Segui-Barber
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
| | - Felix Royo
- Exosomes Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHD), Derio, Spain
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHD), Derio, Spain.,Metabolomics platform, CIC bioGUNE, CIBERehd, Derio, Spain.,IKERBASKE Basque Foundation for Science, Bilbao, Spain
| | - Carmen Fernandez-Becerra
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain.,Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil.,Instituto Leônidas & Maria Deane, Manaus, Brazil
| | - Stefan H I Kappe
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Juan R Gonzalez
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
| | | | - Hernando A Del Portillo
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain.,Institute for Health Sciences Trias I Pujol, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
15
|
Sakamoto H, Takeo S, Takashima E, Miura K, Kanoi BN, Kaneko T, Han ET, Tachibana M, Matsuoka K, Sattabongkot J, Udomsangpetch R, Ishino T, Tsuboi T. Identification of target proteins of clinical immunity to Plasmodium falciparum in a region of low malaria transmission. Parasitol Int 2017; 67:203-208. [PMID: 29217416 DOI: 10.1016/j.parint.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023]
Abstract
The target molecules of antibodies against falciparum malaria remain largely unknown. Recently we have identified multiple proteins as targets of immunity against Plasmodium falciparum using African serum samples. To investigate whether potential targets of clinical immunity differ with transmission intensity, we assessed immune responses in residents of low malaria transmission region in Thailand. Malaria asymptomatic volunteers (Asy: n=19) and symptomatic patients (Sym: n=21) were enrolled into the study. Serum immunoreactivity to 186 wheat germ cell-free system (WGCFS)-synthesized recombinant P. falciparum asexual-blood stage proteins were determined by AlphaScreen, and subsequently compared between the study groups. Forty proteins were determined as immunoreactive with antibody responses to 35 proteins being higher in Asy group than in Sym group. Among the 35 proteins, antibodies to MSP3, MSPDBL1, RH2b, and MSP7 were significantly higher in Asy than Sym (unadjusted p<0.005) suggesting these antigens may have a protective role in clinical malaria. MSP3 reactivity remained significantly different between Asy and Sym groups even after multiple comparison adjustments (adjusted p=0.033). Interestingly, while our two preceding studies using African sera were conducted differently (e.g., cross-sectional vs. longitudinal design, observed clinical manifestation vs. functional activity), those studies similarly identified MSP3 and MSPDBL1 as potential targets of protective immunity. This study further provides a strong rationale for the application of WGCFS-based immunoprofiling to malaria vaccine candidate and biomarker discovery even in low or reduced malaria transmission settings.
Collapse
Affiliation(s)
- Hirokazu Sakamoto
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Satoru Takeo
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takamasa Kaneko
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Kazuhiro Matsuoka
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Jetsumon Sattabongkot
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Rachanee Udomsangpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhosn Pathom 73170, Thailand
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
16
|
Requena P, Arévalo-Herrera M, Menegon M, Martínez-Espinosa FE, Padilla N, Bôtto-Menezes C, Malheiro A, Hans D, Castellanos ME, Robinson L, Samol P, Kochar S, Kochar SK, Kochar DK, Desai M, Sanz S, Quintó L, Mayor A, Rogerson S, Mueller I, Severini C, Del Portillo HA, Bardají A, Chitnis CC, Menéndez C, Dobaño C. Naturally Acquired Binding-Inhibitory Antibodies to Plasmodium vivax Duffy Binding Protein in Pregnant Women Are Associated with Higher Birth Weight in a Multicenter Study. Front Immunol 2017; 8:163. [PMID: 28261219 PMCID: PMC5313505 DOI: 10.3389/fimmu.2017.00163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022] Open
Abstract
A vaccine to eliminate malaria would need a multi-stage and multi-species composition to achieve robust protection, but the lack of knowledge about antigen targets and mechanisms of protection precludes the development of fully efficacious malaria vaccines, especially for Plasmodium vivax (Pv). Pregnant women constitute a risk population who would greatly benefit from a vaccine preventing the adverse events of Plasmodium infection during gestation. We hypothesized that functional immune responses against putative targets of naturally acquired immunity to malaria and vaccine candidates will be associated with protection against malaria infection and/or poor outcomes during pregnancy. We measured (i) IgG responses to a large panel of Pv and Plasmodium falciparum (Pf) antigens, (ii) the capacity of anti-Pv ligand Duffy binding protein (PvDBP) antibodies to inhibit binding to Duffy antigen, and (iii) cellular immune responses to two Pv antigens, in a subset of 1,056 pregnant women from Brazil, Colombia, Guatemala, India, and Papua New Guinea (PNG). There were significant intraspecies and interspecies correlations for most antibody responses (e.g., PfMSP119 versus PfAMA1, Spearman’s rho = 0.81). Women from PNG and Colombia had the highest levels of IgG overall. Submicroscopic infections seemed sufficient to boost antibody responses in Guatemala but not antigen-specific cellular responses in PNG. Brazil had the highest percentage of Duffy binding inhibition (p-values versus Colombia: 0.040; Guatemala: 0.047; India: 0.003, and PNG: 0.153) despite having low anti-PvDBP IgG levels. Almost all antibodies had a positive association with present infection, and coinfection with the other species increased this association. Anti-PvDBP, anti-PfMSP1, and anti-PfAMA1 IgG levels at recruitment were positively associated with infection at delivery (p-values: 0.010, 0.003, and 0.023, respectively), suggesting that they are markers of malaria exposure. Peripheral blood mononuclear cells from Pv-infected women presented fewer CD8+IFN-γ+ T cells and secreted more G-CSF and IL-4 independently of the stimulus used in vitro. Functional anti-PvDBP levels at recruitment had a positive association with birth weight (difference per doubling antibody levels: 45 g, p-value: 0.046). Thus, naturally acquired binding-inhibitory antibodies to PvDBP might confer protection against poor outcomes of Pv malaria in pregnancy.
Collapse
Affiliation(s)
- Pilar Requena
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | | | | | - Flor E Martínez-Espinosa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil; Instituto Leônidas e Maria Deane (ILMD/Fiocruz Amazonia), Amazonia, Brazil
| | - Norma Padilla
- Centro de Estudios en Salud, Universidad del Valle de Guatemala , Guatemala City , Guatemala
| | - Camila Bôtto-Menezes
- Instituto Leônidas e Maria Deane (ILMD/Fiocruz Amazonia), Amazonia, Brazil; Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Adriana Malheiro
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas , Manaus , Brazil
| | - Dhiraj Hans
- International Center for Genetic Engineering and Biotechnology , Delhi , India
| | | | - Leanne Robinson
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea; Macfarlane Burnet Institute of Medical Research, Melbourne, VIC, Australia; Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Paula Samol
- Papua New Guinea Institute of Medical Research , Madang , Papua New Guinea
| | - Swati Kochar
- Medical College Bikaner , Bikaner, Rajasthan , India
| | | | | | - Meghna Desai
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Malaria Branch , Atlanta, GA , USA
| | - Sergi Sanz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | - Llorenç Quintó
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | | | - Ivo Mueller
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain; Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | | | - Hernando A Del Portillo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain; ICREA, Barcelona, Spain
| | - Azucena Bardají
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | - Chetan C Chitnis
- International Center for Genetic Engineering and Biotechnology , Delhi , India
| | - Clara Menéndez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | - Carlota Dobaño
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| |
Collapse
|
17
|
López C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? Front Immunol 2017; 8:126. [PMID: 28243235 PMCID: PMC5304258 DOI: 10.3389/fimmu.2017.00126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Malaria caused by Plasmodium vivax continues being one of the most important infectious diseases around the world; P. vivax is the second most prevalent species and has the greatest geographic distribution. Developing an effective antimalarial vaccine is considered a relevant control strategy in the search for means of preventing the disease. Studying parasite-expressed proteins, which are essential in host cell invasion, has led to identifying the regions recognized by individuals who are naturally exposed to infection. Furthermore, immunogenicity studies have revealed that such regions can trigger a robust immune response that can inhibit sporozoite (hepatic stage) or merozoite (erythrocyte stage) invasion of a host cell and induce protection. This review provides a synthesis of the most important studies to date concerning the antigenicity and immunogenicity of both synthetic peptide and recombinant protein candidates for a vaccine against malaria produced by P. vivax.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Natalia Hincapié-Escobar
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC) , Bogotá , Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
18
|
Kanoi BN, Takashima E, Morita M, White MT, Palacpac NMQ, Ntege EH, Balikagala B, Yeka A, Egwang TG, Horii T, Tsuboi T. Antibody profiles to wheat germ cell-free system synthesized Plasmodium falciparum proteins correlate with protection from symptomatic malaria in Uganda. Vaccine 2017; 35:873-881. [PMID: 28089547 DOI: 10.1016/j.vaccine.2017.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
Abstract
The key targets of protective antibodies against Plasmodium falciparum remain largely unknown. In this study, we determined immunoreactivity to 1827 recombinant proteins derived from 1565 genes representing ∼30% of the entire P. falciparum genome, for identification of novel malaria vaccine candidates. The recombinant proteins were expressed by wheat germ cell-free system, a platform that can synthesize quality plasmodial proteins that elicit biologically active antibodies in animals. Sera were obtained from indigenous residents of a malaria endemic region in Northern Uganda who were enrolled at the start of a rainy season and prospectively monitored for symptomatic malaria episodes for a year. Immunoreactivity to sera was determined by AlphaScreen; a homogeneous high-throughput system that detects protein interactions. Our analysis revealed antibody responses to 128 proteins that significantly associated with protection from symptomatic malaria. From 128 proteins, 53 were down-selected as the most plausible targets of host protective immune response by virtue of having a predicted signal peptide and/or transmembrane domain(s), or confirmed localization on the parasite surface. The 53 proteins comprised of not only previously characterized vaccine candidates but also uncharacterized proteins. Proteins involved in erythrocyte invasion; RON4, RON2 and CLAG3.1 and pre-erythrocytic proteins; SIAP-2, TRAP and CelTOS, were recommended for prioritization for further evaluation as vaccine candidates. The findings clearly demonstrate that generation of the protein library using the wheat germ cell-free system coupled with high throughput immunoscreening with AlphaScreen offers new options for rational discovery and selection of potential malaria vaccine candidates.
Collapse
Affiliation(s)
- Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Michael T White
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Nirianne M Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Edward H Ntege
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Betty Balikagala
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Adoke Yeka
- Makerere University College of Health Sciences, School of Public Health, Kampala, Uganda
| | - Thomas G Egwang
- Med Biotech Laboratories, Plot 4-6 Bell Close, Port Bell Road Luzira, Kampala, Uganda
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
19
|
Requena P, Rui E, Padilla N, Martínez-Espinosa FE, Castellanos ME, Bôtto-Menezes C, Malheiro A, Arévalo-Herrera M, Kochar S, Kochar SK, Kochar DK, Umbers AJ, Ome-Kaius M, Wangnapi R, Hans D, Menegon M, Mateo F, Sanz S, Desai M, Mayor A, Chitnis CC, Bardají A, Mueller I, Rogerson S, Severini C, Fernández-Becerra C, Menéndez C, del Portillo H, Dobaño C. Plasmodium vivax VIR Proteins Are Targets of Naturally-Acquired Antibody and T Cell Immune Responses to Malaria in Pregnant Women. PLoS Negl Trop Dis 2016; 10:e0005009. [PMID: 27711158 PMCID: PMC5053494 DOI: 10.1371/journal.pntd.0005009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
P. vivax infection during pregnancy has been associated with poor outcomes such as anemia, low birth weight and congenital malaria, thus representing an important global health problem. However, no vaccine is currently available for its prevention. Vir genes were the first putative virulent factors associated with P. vivax infections, yet very few studies have examined their potential role as targets of immunity. We investigated the immunogenic properties of five VIR proteins and two long synthetic peptides containing conserved VIR sequences (PvLP1 and PvLP2) in the context of the PregVax cohort study including women from five malaria endemic countries: Brazil, Colombia, Guatemala, India and Papua New Guinea (PNG) at different timepoints during and after pregnancy. Antibody responses against all antigens were detected in all populations, with PNG women presenting the highest levels overall. P. vivax infection at sample collection time was positively associated with antibody levels against PvLP1 (fold-increase: 1.60 at recruitment -first antenatal visit-) and PvLP2 (fold-increase: 1.63 at delivery), and P. falciparum co-infection was found to increase those responses (for PvLP1 at recruitment, fold-increase: 2.25). Levels of IgG against two VIR proteins at delivery were associated with higher birth weight (27 g increase per duplicating antibody levels, p<0.05). Peripheral blood mononuclear cells from PNG uninfected pregnant women had significantly higher antigen-specific IFN-γ TH1 responses (p=0.006) and secreted less pro-inflammatory cytokines TNF and IL-6 after PvLP2 stimulation than P. vivax-infected women (p<0.05). These data demonstrate that VIR antigens induce the natural acquisition of antibody and T cell memory responses that might be important in immunity to P. vivax during pregnancy in very diverse geographical settings. Naturally-acquired antibody responses to novel recombinant proteins and synthetic peptides based on sequences from P. vivax VIR antigens were evaluated in women from five distinct geographical regions endemic for malaria, during and after pregnancy. Levels of IgG to VIR antigens were indicative of cumulative malaria exposure and increased with current P. vivax infection and P. falciparum co-infection. Antibody data were consistent with levels of malaria endemicity and current prevalence in the diverse geographical areas studied. In addition, the magnitude of IgG response to two VIR antigens at delivery was associated with higher birth weight. Furthermore, T cell responses to VIR antigens were naturally induced and their magnitude varied according to P. vivax infectious status. Peripheral blood mononuclear cells from uninfected pregnant women from a highly endemic area produced higher TH1 (IFN-γ) and lower pro-inflammatory cytokines (TNF and IL-6) upon stimulation with a long synthetic peptide representing conserved globular domains of VIR antigens than P. vivax-infected women. Data suggest that further investigation on these antigens as potential targets of immunity in naturally-exposed individuals is warranted.
Collapse
Affiliation(s)
- Pilar Requena
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Edmilson Rui
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Norma Padilla
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Flor E. Martínez-Espinosa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto Leônidas e Maria Deane (ILMD/Fiocruz Amazonia), Brazil
| | | | - Camila Bôtto-Menezes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Adriana Malheiro
- Instituto de Ciências Biológicas. Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Swati Kochar
- Department of Medicine, Medical College, Bikaner, Rajasthan, India
| | - Sanjay K. Kochar
- Department of Medicine, Medical College, Bikaner, Rajasthan, India
| | | | | | - Maria Ome-Kaius
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Regina Wangnapi
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Dhiraj Hans
- International Center for Genetic Engineering and Biotechnology, Delhi, India
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Mateo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sergi Sanz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Meghna Desai
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, Georgia, United States of America
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Chetan C. Chitnis
- International Center for Genetic Engineering and Biotechnology, Delhi, India
| | - Azucena Bardají
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ivo Mueller
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Walter and Eliza Hall Institute, Parkville, Australia
| | - Stephen Rogerson
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Carmen Fernández-Becerra
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Clara Menéndez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Hernando del Portillo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail: (HdP); (CD)
| | - Carlota Dobaño
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- * E-mail: (HdP); (CD)
| |
Collapse
|
20
|
Catherine C, Lee SW, Ju JW, Kim HC, Shin HI, Kim YJ, Kim DM. Cell-Free Expression and In Situ Immobilization of Parasite Proteins from Clonorchis sinensis for Rapid Identification of Antigenic Candidates. PLoS One 2015; 10:e0143597. [PMID: 26599101 PMCID: PMC4657965 DOI: 10.1371/journal.pone.0143597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 11/06/2015] [Indexed: 01/05/2023] Open
Abstract
Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA.
Collapse
Affiliation(s)
- Christy Catherine
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305–764, Korea
| | - Seung-Won Lee
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305–764, Korea
| | - Jung Won Ju
- Division of Malaria and Parasitic Diseases, National Institute of Health, Osong 361–951, Korea
| | - Ho-Cheol Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305–764, Korea
| | - Hyun-Il Shin
- Division of Malaria and Parasitic Diseases, National Institute of Health, Osong 361–951, Korea
| | - Yu Jung Kim
- Division of Malaria and Parasitic Diseases, National Institute of Health, Osong 361–951, Korea
| | - Dong-Myung Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305–764, Korea
- * E-mail:
| |
Collapse
|
21
|
Abstract
Although it is more than a decade since the parasite genome information was obtained, standardized novel genome-wide selection/prioritization strategies for candidacy of malaria vaccine antigens are still sought. In the quest to systematically identify candidates, it is impossible to overemphasize the usefulness of wheat germ cell-free technology in expressing quality proteins for the post-genome vaccine candidate discovery.
Collapse
Affiliation(s)
- Eizo Takashima
- a Division of Malaria Research, Proteo-Science Center , Ehime University , Matsuyama , Ehime 790-8577 , Japan
| | - Masayuki Morita
- a Division of Malaria Research, Proteo-Science Center , Ehime University , Matsuyama , Ehime 790-8577 , Japan
| | - Takafumi Tsuboi
- a Division of Malaria Research, Proteo-Science Center , Ehime University , Matsuyama , Ehime 790-8577 , Japan
| |
Collapse
|
22
|
Chia WN, Goh YS, Rénia L. Novel approaches to identify protective malaria vaccine candidates. Front Microbiol 2014; 5:586. [PMID: 25452745 PMCID: PMC4233905 DOI: 10.3389/fmicb.2014.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/17/2022] Open
Abstract
Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood stage, or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50%) protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Wan Ni Chia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
23
|
Requena P, Campo JJ, Umbers AJ, Ome M, Wangnapi R, Barrios D, Robinson LJ, Samol P, Rosanas-Urgell A, Ubillos I, Mayor A, López M, de Lazzari E, Arévalo-Herrera M, Fernández-Becerra C, del Portillo H, Chitnis CE, Siba PM, Bardají A, Mueller I, Rogerson S, Menéndez C, Dobaño C. Pregnancy and Malaria Exposure Are Associated with Changes in the B Cell Pool and in Plasma Eotaxin Levels. THE JOURNAL OF IMMUNOLOGY 2014; 193:2971-83. [DOI: 10.4049/jimmunol.1401037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Makino SI, Beebe ET, Markley JL, Fox BG. Cell-free protein synthesis for functional and structural studies. Methods Mol Biol 2014; 1091:161-78. [PMID: 24203331 DOI: 10.1007/978-1-62703-691-7_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Recent advances in cell-free protein expression systems have made them reliable and practical for functional and structural studies of a wide variety of proteins. In particular, wheat germ cell-free translation can consistently produce target proteins in microgram quantities from relatively inexpensive, small-scale reactions. Here we describe our small-scale protein expression method for rapidly producing proteins for functional assay and techniques for determining if the target is suitable for scale-up to amounts potentially needed for structure determination. The cell-free system is versatile and can be easily customized with the inclusion of additives. We describe simple modifications used for producing membrane proteins.
Collapse
Affiliation(s)
- Shin-ichi Makino
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
25
|
Beebe ET, Makino SI, Markley JL, Fox BG. Automated cell-free protein production methods for structural studies. Methods Mol Biol 2014; 1140:117-135. [PMID: 24590713 DOI: 10.1007/978-1-4939-0354-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In contrast to cell-based protein expression, cell-free production is highly consistent, scalable, and amenable to automation. Robots can handle many samples and perform repetitive procedures that are otherwise prone to human error. Here is described commercially available robotics for a wheat germ cell-free system with emphasis on practical applications for structural and functional studies. In addition, described is a cell-free method for preparing protein complexes.
Collapse
Affiliation(s)
- Emily T Beebe
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | | | | | | |
Collapse
|
26
|
Arumugam TU, Ito D, Takashima E, Tachibana M, Ishino T, Torii M, Tsuboi T. Application of wheat germ cell-free protein expression system for novel malaria vaccine candidate discovery. Expert Rev Vaccines 2013; 13:75-85. [DOI: 10.1586/14760584.2014.861747] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Expression of functional Plasmodium falciparum enzymes using a wheat germ cell-free system. EUKARYOTIC CELL 2013; 12:1653-63. [PMID: 24123271 DOI: 10.1128/ec.00222-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One decade after the sequencing of the Plasmodium falciparum genome, 95% of malaria proteins in the genome cannot be expressed in traditional cell-based expression systems, and the targets of the best new leads for antimalarial drug discovery are either not known or not available in functional form. For a disease that kills up to 1 million people per year, routine expression of recombinant malaria proteins in functional form is needed both for the discovery of new therapeutics and for identification of targets of new drugs. We tested the general utility of cell-free systems for expressing malaria enzymes. Thirteen test enzyme sequences were reverse amplified from total RNA, cloned into a plant-like expression vector, and subjected to cell-free expression in a wheat germ system. Protein electrophoresis and autoradiography confirmed the synthesis of products of expected molecular masses. In rare problematic cases, truncated products were avoided by using synthetic genes carrying wheat codons. Scaled-up production generated 39 to 354 μg of soluble protein per 10 mg of translation lysate. Compared to rare proteins where cell-based systems do produce functional proteins, the cell-free yields are comparable or better. All 13 test products were enzymatically active, without failure. This general path to produce functional malaria proteins should now allow the community to access new tools, such as biologically active protein arrays, and lead to the discovery of new chemical functions, structures, and inhibitors of previously inaccessible malaria gene products.
Collapse
|
28
|
Functional comparison of Plasmodium falciparum transmission-blocking vaccine candidates by the standard membrane-feeding assay. Infect Immun 2013; 81:4377-82. [PMID: 24042109 DOI: 10.1128/iai.01056-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, there has been a renewed interest in the development of transmission-blocking vaccines (TBV) against Plasmodium falciparum malaria. While several candidate TBVs have been reported, studies directly comparing them in functional assays are limited. To this end, recombinant proteins of TBV candidates Pfs25, Pfs230, and PfHAP2 were expressed in the wheat germ cell-free expression system. Outbred CD-1 mice were immunized twice with the antigens. Two weeks after the second immunization, IgG levels were measured by enzyme-linked immunosorbent assay (ELISA), and IgG functionality was assessed by the standard membrane-feeding assay (SMFA) using cultured P. falciparum NF54 gametocytes and Anopheles stephensi mosquitoes. All three recombinant proteins elicited similar levels of antigen-specific IgG judged by ELISA. When IgGs purified from pools of immune serum were tested at 0.75 mg/ml in the SMFA, all three IgGs showed 97 to 100% inhibition in oocyst intensity compared to control IgG. In two additional independent SMFA evaluations, anti-Pfs25, anti-Pfs230, and anti-PfHAP2 IgGs inhibited oocyst intensity in a dose-dependent manner. When all three data sets were analyzed, anti-Pfs25 antibody showed significantly higher inhibition than the other two antibodies (P < 0.001 for both), while there was no significant difference between the other two (P = 0.15). A proportion of plasma samples collected from adults living in an area of malaria endemicity in Mali recognized Pfs230 and PfHAP2. This is the first study showing that the HAP2 protein of P. falciparum can induce transmission-blocking antibody. The current study supports the possibility of using this system for a comparative study with multiple TBV candidates.
Collapse
|
29
|
Cheng Y, Ito D, Sattabongkot J, Lim CS, Kong DH, Ha KS, Wang B, Tsuboi T, Han ET. Serological responses to a soluble recombinant chimeric Plasmodium vivax circumsporozoite protein in VK210 and VK247 population. Malar J 2013; 12:323. [PMID: 24034268 PMCID: PMC3847697 DOI: 10.1186/1475-2875-12-323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/11/2013] [Indexed: 12/01/2022] Open
Abstract
Background Circumsporozoite protein (CSP) is essential for sporozoite formation and sporozoite invasion into human hepatocyte. Previously, a recombinant P. vivax CSP based on chimeric repeats (rPvCSP-c) representing two major alleles VK210 and VK247 within central region has been designed. Naturally acquired humoral immune responses study show that antigenicity of rPvCSP-c was much higher than that of native strain. However, the serologic reactivity of rPvCSP-c was still unclear in detail. Methods In present study, recognition of rPvCSP-c in vivax malaria typed VK210 and VK247 alleles was assessed. VK210 typed and VK247 typed sera from adult residents reacted specifically with rPvCSP-c using protein array and immunoblot assay. Additionally, anti-rPvCSP-c serum recognized the fixed VK210 and VK247 sporozoites by immunofluorescence assay. Furthermore, statistic analysis was performed for correlational detection. Results The rPvCSP-c reacted with both VK210 typed and VK247 typed P. vivax infected patient sera and anti-rPvCSP-c immune serum also reacted with VK210 and VK247 sporozoite parasites of P. vivax specifically. There was a positive correlation between increased antibody level, age of patients and also associated with pvcsp repeat number, although the level of responses did vary considerably in their reactivity to the rPvCSP-c from negative to very high level within each age group. Conclusions These data confirmed the serologic reactivity of the novel rPvCSP-c in exposed both VK210 and VK247 populations. These results strongly suggested that this recombinant CSP was biologically active and potently immunogenic across major strains and raised the prospect that this protein could be used as serologic marker.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 200-701, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The Plasmodium vivax merozoite surface protein 1 paralog is a novel erythrocyte-binding ligand of P. vivax. Infect Immun 2013; 81:1585-95. [PMID: 23460511 DOI: 10.1128/iai.01117-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merozoite surface protein 1 of Plasmodium vivax (PvMSP1), a glycosylphosphatidylinositol-anchored protein (GPI-AP), is a malaria vaccine candidate for P. vivax. The paralog of PvMSP1, named P. vivax merozoite surface protein 1 paralog (PvMSP1P; PlasmoDB PVX_099975), was recently identified and predicted as a GPI-AP. The similarities in genetic structural characteristics between PvMSP1 and PvMSP1P (e.g., size of open reading frames, two epidermal growth factor-like domains, and GPI anchor motif in the C terminus) led us to study this protein. In the present study, different regions of the PvMSP1P protein, demarcated based on the processed forms of PvMSP1, were expressed successfully as recombinant proteins [i.e., 83 (A, B, and C), 30, 38, 42, 33, and 19 fragments]. We studied the naturally acquired immune response against each fragment of recombinant PvMSP1P and the potential ability of each fragment to bind erythrocytes. The N-terminal fragment (83A) and two C-terminal fragments (33 and 19) reacted strongly with sera from P. vivax-infected patients, with 50 to 68% sensitivity and 95 to 96% specificity, respectively. Due to colocalization of PvMSP1P with PvMSP1, we supposed that PvMSP1P plays a similar role as PvMSP1 during erythrocyte invasion. An in vitro cytoadherence assay showed that PvMSP1P, especially the 19-kDa C-terminal region, could bind to erythrocytes. We also found that human sera from populations naturally exposed to vivax malaria and antisera obtained by immunization using the recombinant molecule PvMSP1P-19 inhibited in vitro binding of human erythrocytes to PvMSP1P-19. These results provide further evidence that the PvMSP1P might be an essential parasite adhesion molecule in the P. vivax merozoite and is a potential vaccine candidate against P. vivax.
Collapse
|
31
|
Shadiac N, Nagarajan Y, Waters S, Hrmova M. Close allies in membrane protein research: Cell-free synthesis and nanotechnology. Mol Membr Biol 2013; 30:229-45. [DOI: 10.3109/09687688.2012.762125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Yildiz Zeyrek F, Palacpac N, Yuksel F, Yagi M, Honjo K, Fujita Y, Arisue N, Takeo S, Tanabe K, Horii T, Tsuboi T, Ishii KJ, Coban C. Serologic markers in relation to parasite exposure history help to estimate transmission dynamics of Plasmodium vivax. PLoS One 2011; 6:e28126. [PMID: 22140521 PMCID: PMC3226671 DOI: 10.1371/journal.pone.0028126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/01/2011] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax infection has been gaining attention because of its re-emergence in several parts of the world. Southeastern Turkey is one of the places in which persistent focal malaria caused exclusively by P. vivax parasites occurs. Although control and elimination studies have been underway for many years, no detailed study has been conducted to understand the mechanisms underlying the ineffective control of malaria in this region. Here, for the first time, using serologic markers we try to extract as much information as possible in this region to get a glimpse of P. vivax transmission. We conducted a sero-immunological study, evaluating antibody responses of individuals living in Sanliurfa to four different P. vivax antigens; three blood-stage antigens (PvMSP1₁₉, PvAMA1-ecto, and PvSERA4) and one pre-erythrocytic stage antigen (PvCSP). The results suggest that a prior history of malaria infection and age can be determining factors for the levels and sustainability of naturally acquired antibodies. Significantly higher antibody responses to all the studied antigens were observed in blood smear-negative individuals with a prior history of malaria infection. Moreover, these individuals were significantly older than blood smear-negative individuals with no prior history of infection. These data from an area of sole P. vivax-endemic region may have important implications for the global malaria control/elimination programs and vaccine design.
Collapse
Affiliation(s)
- Fadile Yildiz Zeyrek
- Laboratory of Malaria Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Microbiology, Harran University School of Medicine, Sanliurfa, Turkey
| | - Nirianne Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Fehmi Yuksel
- Department of Microbiology, Harran University School of Medicine, Sanliurfa, Turkey
| | - Masanori Yagi
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kaori Honjo
- Global Collaboration Center, Osaka University, Osaka, Japan
| | - Yukiko Fujita
- Laboratory of Malaria Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Nobuko Arisue
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satoru Takeo
- Cell-Free Science and Technology Research Center, Ehime University, Ehime, Japan
| | - Kazuyuki Tanabe
- Laboratory of Malariology, International Research Center of Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takafumi Tsuboi
- Cell-Free Science and Technology Research Center, Ehime University, Ehime, Japan
| | - Ken J. Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Cevayir Coban
- Laboratory of Malaria Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|