1
|
Akoniyon OP, Akiibinu M, Adeleke MA, Maharaj R, Okpeku M. A Comparative Study of Genetic Diversity and Multiplicity of Infection in Uncomplicated Plasmodium falciparum Infections in Selected Regions of Pre-Elimination and High Transmission Settings Using MSP1 and MSP2 Genes. Pathogens 2024; 13:172. [PMID: 38392910 PMCID: PMC10891941 DOI: 10.3390/pathogens13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Understanding the genetic structure of P. falciparum population in different regions is pivotal to malaria elimination. Genetic diversity and the multiplicity of infection are indicators used for measuring malaria endemicity across different transmission settings. Therefore, this study characterized P. falciparum infections from selected areas constituting pre-elimination and high transmission settings in South Africa and Nigeria, respectively. METHODS Parasite genomic DNA was extracted from 129 participants with uncomplicated P. falciparum infections. Isolates were collected from 78 participants in South Africa (southern Africa) and 51 in Nigeria (western Africa). Allelic typing of the msp1 and msp2 genes was carried out using nested PCR. RESULTS In msp1, the K1 allele (39.7%) was the most common allele among the South African isolates, while the RO33 allele (90.2%) was the most common allele among the Nigerian isolates. In the msp2 gene, FC27 and IC3D7 showed almost the same percentage distribution (44.9% and 43.6%) in the South African isolates, whereas FC27 had the highest percentage distribution (60.8%) in the Nigerian isolates. The msp2 gene showed highly distinctive genotypes, indicating high genetic diversity in the South African isolates, whereas msp1 showed high genetic diversity in the Nigerian isolates. The RO33 allelic family displayed an inverse relationship with participants' age in the Nigerian isolates. The overall multiplicity of infection (MOI) was significantly higher in Nigeria (2.87) than in South Africa (2.44) (p < 0.000 *). In addition, heterozygosity was moderately higher in South Africa (1.46) than in Nigeria (1.13). CONCLUSIONS The high genetic diversity and MOI in P. falciparum that were observed in this study could provide surveillance data, on the basis of which appropriate control strategies should be adopted.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (M.A.A.)
| | - Moses Akiibinu
- Department of Biochemistry and Chemistry, Caleb University, Lagos 11379, Nigeria;
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (M.A.A.)
| |
Collapse
|
2
|
Baina MT, Djontu JC, Lissom A, Doulamo NVA, Umuhoza DM, Ntabi JDM, Vouvoungui CJ, Boumpoutou RK, Mayela J, Diafouka-Kietela S, Nguimbi E, Ntoumi F. Plasmodium falciparum msp-1 and msp-2 genetic diversity and multiplicity of infection in isolates from Congolese patients in the Republic of Congo. Parasitol Res 2023; 122:2433-2443. [PMID: 37624380 DOI: 10.1007/s00436-023-07951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
With limited up to date data from the Republic of Congo, the aim of this study was to investigate allelic polymorphism of merozoite surface protein-1 (msp-1) and merozoite surface protein-2 (msp-2). This will help assess the genetic diversity and multiplicity of Plasmodium falciparum infection (MOI), from uncomplicated malaria individuals living in Brazzaville. Between March and October 2021, a cross-sectional study was carried out at a health center in Madibou District located in the south of Brazzaville. Plasmodium infection was diagnosed in human blood by microscopy and the block 2 of P. falciparum msp-1 and block 3 of msp-2 genes were genotyped by nested PCR. Overall, 57 genotypes with fragment sizes ranging from 110 to 410 bp were recorded for msp-1, among which 25, 21, and 11 genotypes identified for K1, MAD20, and RO33 allelic families respectively. RO33 (34.3%) and MAD20 (34.3%) allelic families were more frequent compared to K1 (31.4%) although the difference was not statistically significant. Also, 47 msp-2 genotypes were identified, including 26 FC27 genotypes type, and 21 genotypes belonging to the 3D7 allelic family. FC27 was more frequent (52.3%) compared to 3D7 (47.7%). The prevalence of the polyclonal infection was 90.0% while the MOI was 2.90 ± 1.0. The MOI and polyclonal infection were not significantly associated with the parasitaemia and anaemia. This study reveals a high genetic diversity and the trend of increasing MOI of P. falciparum isolates from the south of Brazzaville, compared to the reports from the same setting before the COVID-19 pandemic.
Collapse
Affiliation(s)
- Marcel Tapsou Baina
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Jean Claude Djontu
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.
| | - Abel Lissom
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Department of Zoology, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Naura Veil Assioro Doulamo
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Dieu Merci Umuhoza
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Jacque Dollon Mbama Ntabi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Christevy Jeanney Vouvoungui
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | | | - Jolivet Mayela
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
| | | | - Etienne Nguimbi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Castañeda-Mogollón D, Toppings NB, Kamaliddin C, Lang R, Kuhn S, Pillai DR. Amplicon Deep Sequencing Reveals Multiple Genetic Events Lead to Treatment Failure with Atovaquone-Proguanil in Plasmodium falciparum. Antimicrob Agents Chemother 2023; 67:e0170922. [PMID: 37154745 PMCID: PMC10269153 DOI: 10.1128/aac.01709-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/05/2023] [Indexed: 05/10/2023] Open
Abstract
Atovaquone-proguanil (AP) is used as treatment for uncomplicated malaria, and as a chemoprophylactic agent against Plasmodium falciparum. Imported malaria remains one of the top causes of fever in Canadian returning travelers. Twelve sequential whole-blood samples before and after AP treatment failure were obtained from a patient diagnosed with P. falciparum malaria upon their return from Uganda and Sudan. Ultradeep sequencing was performed on the cytb, dhfr, and dhps markers of treatment resistance before and during the episode of recrudescence. Haplotyping profiles were generated using three different approaches: msp2-3D7 agarose and capillary electrophoresis, and cpmp using amplicon deep sequencing (ADS). A complexity of infection (COI) analysis was conducted. De novo cytb Y268C mutants strains were observed during an episode of recrudescence 17 days and 16 h after the initial malaria diagnosis and AP treatment initiation. No Y268C mutant reads were observed in any of the samples prior to the recrudescence. SNPs in the dhfr and dhps genes were observed upon initial presentation. The haplotyping profiles suggest multiple clones mutating under AP selection pressure (COI > 3). Significant differences in COI were observed by capillary electrophoresis and ADS compared to the agarose gel results. ADS using cpmp revealed the lowest haplotype variation across the longitudinal analysis. Our findings highlight the value of ultra-deep sequencing methods in the understanding of P. falciparum haplotype infection dynamics. Longitudinal samples should be analyzed in genotyping studies to increase the analytical sensitivity.
Collapse
Affiliation(s)
- Daniel Castañeda-Mogollón
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
| | - Noah B. Toppings
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
| | - Claire Kamaliddin
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
| | - Raynell Lang
- Cumming School of Medicine, Department of Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Community Health Sciences, the University of Calgary, Calgary, Alberta, Canada
| | - Susan Kuhn
- Cumming School of Medicine, Department of Pediatrics, the University of Calgary, Calgary, Alberta, Canada
| | - Dylan R. Pillai
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic & Scientific Centre, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Baina MT, Lissom A, Assioro Doulamo NV, Djontu JC, Umuhoza DM, Mbama-Ntabi JD, Diafouka-Kietela S, Mayela J, Missontsa G, Wondji C, Adegnika AA, Nguimbi E, Borrmann S, Ntoumi F. Comparative study of Plasmodium falciparum msp-1 and msp-2 Genetic Diversity in Isolates from Rural and Urban Areas in the South of Brazzaville, Republic of Congo. Pathogens 2023; 12:pathogens12050742. [PMID: 37242412 DOI: 10.3390/pathogens12050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Polymorphisms in the genes encoding the merozoite surface proteins msp-1 and msp-2 are widely used markers for characterizing the genetic diversity of Plasmodium falciparum. This study aimed to compare the genetic diversity of circulating parasite strains in rural and urban settings in the Republic of Congo after the introduction of artemisinin-based combination therapy (ACT) in 2006. A cross-sectional survey was conducted from March to September 2021 in rural and urban areas close to Brazzaville, during which Plasmodium infection was detected using microscopy (and nested-PCR for submicroscopic infection). The genes coding for merozoite proteins-1 and -2 were genotyped by allele-specific nested PCR. Totals of 397 (72.4%) and 151 (27.6%) P. falciparum isolates were collected in rural and urban areas, respectively. The K1/msp-1 and FC27/msp-2 allelic families were predominant both in rural (39% and 64%, respectively) and urban (45.4% and 54.5% respectively) areas. The multiplicity of infection (MOI) was higher (p = 0.0006) in rural areas (2.9) compared to urban settings (2.4). The rainy season and the positive microscopic infection were associated with an increase in MOI. These findings reveal a higher P. falciparum genetic diversity and MOI in the rural setting of the Republic of Congo, which is influenced by the season and the participant clinical status.
Collapse
Affiliation(s)
- Marcel Tapsou Baina
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP69, Congo
| | - Abel Lissom
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
- Department of Zoology, Faculty of Science, University of Bamenda, Bambili P.O. Box 39, Cameroon
| | - Naura Veil Assioro Doulamo
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP69, Congo
| | - Jean Claude Djontu
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
| | - Dieu Merci Umuhoza
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP69, Congo
| | - Jacques Dollon Mbama-Ntabi
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP69, Congo
| | - Steve Diafouka-Kietela
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
| | - Jolivet Mayela
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
| | - Georges Missontsa
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
| | - Charles Wondji
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Centre Region, Yaoundé P.O. Box 13501, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, UK
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University Hospital of Tübingen, 72074 Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné BP242, Gabon
- German Center for Infection Research (DZIF), partner site Tübingen, 72074 Tübingen, Germany
| | - Etienne Nguimbi
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP69, Congo
| | - Steffen Borrmann
- Institute of Tropical Medicine, University Hospital of Tübingen, 72074 Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné BP242, Gabon
| | - Francine Ntoumi
- Fondation Congolaise Pour la Recherche Médicale, Villa D6-Cité OMS-Djoué, Brazzaville BP69, Brazzaville BP69, Congo
- Institute of Tropical Medicine, University Hospital of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
5
|
Simpson SV, Nundu SS, Arima H, Kaneko O, Mita T, Culleton R, Yamamoto T. The diversity of Plasmodium falciparum isolates from asymptomatic and symptomatic school-age children in Kinshasa Province, Democratic Republic of Congo. Malar J 2023; 22:102. [PMID: 36941587 PMCID: PMC10025789 DOI: 10.1186/s12936-023-04528-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/10/2023] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND Understanding Plasmodium falciparum population diversity and transmission dynamics provides information on the intensity of malaria transmission, which is needed for assessing malaria control interventions. This study aimed to determine P. falciparum allelic diversity and multiplicity of infection (MOI) among asymptomatic and symptomatic school-age children in Kinshasa Province, Democratic Republic of Congo (DRC). METHODS A total of 438 DNA samples (248 asymptomatic and 190 symptomatic) were characterized by nested PCR and genotyping the polymorphic regions of pfmsp1 block 2 and pfmsp2 block 3. RESULTS Nine allele types were observed in pfmsp1 block2. The K1-type allele was predominant with 78% (229/293) prevalence, followed by the MAD20-type allele (52%, 152/293) and RO33-type allele (44%, 129/293). Twelve alleles were detected in pfmsp2, and the 3D7-type allele was the most frequent with 84% (256/304) prevalence, followed by the FC27-type allele (66%, 201/304). Polyclonal infections were detected in 63% (95% CI 56, 69) of the samples, and the MOI (SD) was 1.99 (0.97) in P. falciparum single-species infections. MOIs significantly increased in P. falciparum isolates from symptomatic parasite carriers compared with asymptomatic carriers (2.24 versus 1.69, adjusted b: 0.36, (95% CI 0.01, 0.72), p = 0.046) and parasitaemia > 10,000 parasites/µL compared to parasitaemia < 5000 parasites/µL (2.68 versus 1.63, adjusted b: 0.89, (95% CI 0.46, 1.25), p < 0.001). CONCLUSION This survey showed low allelic diversity and MOI of P. falciparum, which reflects a moderate intensity of malaria transmission in the study areas. MOIs were more likely to be common in symptomatic infections and increased with the parasitaemia level. Further studies in different transmission zones are needed to understand the epidemiology and parasite complexity in the DRC.
Collapse
Affiliation(s)
- Shirley V Simpson
- Programme for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Sabin S Nundu
- Programme for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan.
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
- Institut National de Recherche Biomédicale (INRB), Kinshasa-Gombe, Democratic Republic of Congo.
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Osamu Kaneko
- Programme for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Richard Culleton
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
- Division of Molecular Parasitology, Proteo-Science Centre, Ehime University, Ehime, 790-8577, Japan
| | - Taro Yamamoto
- Programme for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| |
Collapse
|
6
|
Wang X, Bai Y, Xiang Z, Zeng W, Wu Y, Zhao H, Zhao W, Chen X, Duan M, Li X, Zhu W, Sun K, Wu Y, Zhang Y, Li X, Rosenthal BM, Cui L, Yang Z. Genetic diversity of Plasmodium vivax populations from the China-Myanmar border identified by genotyping merozoite surface protein markers. Trop Med Health 2023; 51:2. [PMID: 36631913 PMCID: PMC9832627 DOI: 10.1186/s41182-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Parasite diversity and population structure influence malaria control measures. Malaria transmission at international borders affects indigenous residents and migrants, defying management efforts and resulting in malaria re-introduction. Here we aimed to determine the extent and distribution of genetic variations in Plasmodium vivax populations and the complexity of infections along the China-Myanmar border. METHODS We collected clinical P. vivax samples from local and migrant malaria patients from Laiza and Myitsone, Kachin State, Myanmar, respectively. We characterized the polymorphisms in two P. vivax merozoite surface protein markers, Pvmsp-3α and Pvmsp-3β, by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. We sought to determine whether these genetic markers could differentiate these two neighboring parasite populations. RESULTS PCR revealed three major size variants for Pvmsp-3α and four for Pvmsp-3β among the 370 and 378 samples, respectively. PCR-RFLP resolved 26 fragment-size alleles by digesting Pvmsp-3α with Alu I and Hha I and 28 alleles by digesting Pvmsp-3β with Pst I. PCR-RFLP analysis of Pvmsp-3α found that infections in migrant laborers from Myitsone bore more alleles than did infections in residents of Laiza, while such difference was not evident from genotyping Pvmsp-3β. Infections originating from these two places contained distinct but overlapping subpopulations of P. vivax. Infections from Myitsone had a higher multiplicity of infection as judged by the size of the Pvmsp-3α amplicons and alleles after Alu I/Hha I digestion. CONCLUSIONS Migrant laborers from Myitsone and indigenous residents from Laiza harbored overlapping but genetically distinct P. vivax parasite populations. The results suggested a more diverse P. vivax population in Myitsone than in the border town of Laiza. PCR-RFLP of Pvmsp-3α offers a convenient method to determine the complexity of P. vivax infections and differentiate parasite populations.
Collapse
Affiliation(s)
- Xun Wang
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yao Bai
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zheng Xiang
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Weilin Zeng
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yanrui Wu
- grid.285847.40000 0000 9588 0960Department of Cell Biology and Genetics, Kunming Medical University, Kunming, China
| | - Hui Zhao
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Wei Zhao
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Xi Chen
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Mengxi Duan
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Xiaosong Li
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Wenya Zhu
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Kemin Sun
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yiman Wu
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yanmei Zhang
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Xiaomei Li
- grid.285847.40000 0000 9588 0960Faculty of Public Health, Kunming Medical University, Kunming, Yunnan Province China
| | - Benjamin M. Rosenthal
- grid.508984.8Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD USA
| | - Liwang Cui
- grid.170693.a0000 0001 2353 285XDepartment of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Zhaoqing Yang
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| |
Collapse
|
7
|
Reda AG, Messele A, Mohammed H, Assefa A, Golassa L, Mamo H. Temporal dynamics of Plasmodium falciparum population in Metehara, east-central Ethiopia. Malar J 2022; 21:267. [PMID: 36109748 PMCID: PMC9479295 DOI: 10.1186/s12936-022-04277-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is the most serious, genetically most complex and fastest-evolving malaria parasite. Information on genetic diversity of this parasite would guide policy decision and malaria elimination endeavors. This study explored the temporal dynamics of P. falciparum population in two time points in Metehara, east-central Ethiopia. METHODS The participants were quantitative real-time polymerase chain reaction-confirmed patients who were recruited for uncomplicated falciparum malaria therapeutic efficacy test in 2015 and 2019. Dry blood spot samples were analysed by the nested PCR to genotype P. falciparum merozoite surface protein (msp1, msp2) and glutamate-rich protein (glurp) genes. RESULTS While msp1, msp2 and glurp genotypes were successfully detected in 26(89.7%), 24(82.8%) and 14(48.3%) of 2015 samples (n = 29); the respective figures for 2019 (n = 41) were 31(68.3%), 39(95.1%), 25(61.0%). In 2015, the frequencies of K1, MAD20 and RO33 allelic families of msp1, and FC27 and IC/3D7 of msp2 were 19(73.1%), 8(30.6%), 14(53.8%), 21(87.5%), 12(50.5%); and in 2019 it was 15(48.4%), 19(61.3%), 15(48.4%), 30(76.9%), 27(69.2%) respectively. MAD20 has shown dominance over both K1 and RO33 in 2019 compared to the proportion in 2015. Similarly, although FC27 remained dominant, there was shifting trend in the frequency of IC/3D7 from 50.5% in 2015 to 69.2% in 2019. The multiplicity of infection (MOI) and expected heterozygosity index (He) in 2015 and 2019 were respectively [1.43 ± 0.84] and [1.15 ± 0.91], 0.3 and 0.03 for msp1. However, there was no significant association between MOI and age or parasitaemia in both time points. CONCLUSION The lower genetic diversity in P. falciparum population in the two time points and overall declining trend as demonstrated by the lower MOI and He may suggest better progress in malaria control in Metehara. But, the driving force and selective advantage of switching to MAD20 dominance over the other two msp1 allelic families, and the dynamics within msp2 alleles needs further investigation.
Collapse
Affiliation(s)
- Abeba Gebretsadik Reda
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Alebachew Messele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hussein Mohammed
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Opute AO, Akinkunmi JA, Funsho AO, Obaniyi AK, Anifowoshe AT. Genetic diversity of Plasmodium falciparum isolates in Nigeria. A review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The complexity of infection in malaria-endemic areas is exacerbated by the presence of genetically diverse Plasmodium falciparum strains. There is a risk that more virulent or drug-resistant versions of the disease may arise. Therefore, we reviewed most reported molecular markers that have been detailed to date in Nigeria.
Main body of the abstract
In this review, we have summarized the genetic diversity of P. falciparum in Nigeria using the two well-reported genes (msp1 and msp2) as genetic diversity biomarkers. The review includes the findings obtained from research conducted in all major geopolitical regions of the country. We found that MSP-2 infection complexity is generally moderate to high in the North-central region. However, in the South-West, there were several regions where the multiplicity of infection (MOI) was either low or extremely high.
Conclusion
Understanding how Nigeria's malaria situation fits into various reports on P. falciparum genetic variation can improve treatment and immunization options. This review will be helpful for future treatment strategies that would be tailored to the specific needs of Nigeria's malaria-endemic populations.
Collapse
|
9
|
Ikegbunam MN, Uba C, Flügge J, Abone H, Ezeagwuna D, Ushie S, Esimone C. Malaria surveillance amongst pregnant women attending antenatal care in private hospitals in Onitsha metropolis, South Eastern Nigeria. MALARIAWORLD JOURNAL 2022; 13:2. [PMID: 35813272 PMCID: PMC9242532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Recent reports suggest that pregnant women living in holoendemic regions of sub-Sahara Africa die in great numbers annually due to malaria disease resulting from their higher susceptibility, reduced immunity and demographic associated factors. This work investigated the prevalence of Plasmodium falciparum in pregnant women attending antenatal care (ANC) in selected private hospitals in Onitsha metropolis South East Nigeria. Methods Venous blood samples were collected from 270 pregnant women during ANC visits between October 2016 and December 2017. A questionnaire was used to collect demographic data, gestational age, knowledge of malaria and preventive measures while clinical presentations and symptoms were extracted from the physician's clerking form. Laboratory diagnosis was done using microscopy. The effect of the demographic variables and other associated factors on prevalence and parasite densities was studied using Chi-square and ANOVA tests. Results The overall P. falciparum prevalence was 42.6%. Prevalence varied with the maternal age, gestational age, preventive measures adopted by the pregnant women and clinical presentations. 27.8 % of the infected women were highly parasitized (>5000 parasites/μl); 67% had a moderate parasite density (1,000-4,999 parasites/μl) and 5.2% showed a low parasite density (1-999 parasites/μl). We observed that 35.2%, 30%, 18.9% and 5.2% of the study cohorts preferred and used treated bed nets, insecticides, windows and door screening and non-treated bed nets respectively as malaria preventive measures. 5.9% did not use any protection. Conclusions The findings of this study revealed high prevalence of malaria among pregnant women living in Onitsha metropolis with high mean parasite densities despite strong adherence to use of sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment in pregnancy (IPTp) and other malaria preventive measures.
Collapse
Affiliation(s)
- Moses N. Ikegbunam
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria,Molecular Research Foundation for Students and Scientists, Nnamdi Azikiwe University, Awka, Nigeria,Institute for Tropical Medicine, Tübingen, Germany,,
| | - Chibuzo Uba
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | | | - Harrison Abone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Dorothy Ezeagwuna
- Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Simeon Ushie
- Department of Medical Microbiology and Parasitology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Charles Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria,Molecular Research Foundation for Students and Scientists, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
10
|
Sathishkumar V, Nirmolia T, Bhattacharyya DR, Patgiri SJ. Genetic polymorphism of Plasmodium falciparum msp-1, msp-2 and glurp vaccine candidate genes in pre-artemisinin era clinical isolates from Lakhimpur district in Assam, Northeast India. Access Microbiol 2022; 4:000350. [PMID: 35812711 PMCID: PMC9260089 DOI: 10.1099/acmi.0.000350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Northeast India shares its international border with Southeast Asia and has a number of malaria endemic zones. Monitoring genetic diversity of malaria parasites is important in this area as drug resistance and increasing genetic diversity form a vicious cycle in which one favours the development of the other. This retrospective study was done to evaluate the genetic diversity patterns in Plasmodium falciparum strains circulating in North Lakhimpur area of Assam in the pre-artemisinin era and compare the findings with current diversity patterns. Methods Genomic DNA extraction was done from archived blood spot samples collected in 2006 from malaria-positive cases in Lakhimpur district of Assam, Northeast India. Three antigenic markers of genetic diversity were studied – msp-1 (block-2), msp-2 (block-3) and the glurp RII region of P. falciparum using nested PCR. Results Allelic diversity was examined in 71 isolates and high polymorphism was observed. In msp-1, eight genotypes were detected; K1 (single allele), MAD20 (six different alleles) and RO33 (single allele) allelic families were noted. Among msp-2 genotypes, 22 distinct alleles were observed out of which FC27 had six alleles and IC/3D7 had 16 alleles. In RII region of glurp, nine genotypes were obtained. Expected heterozygosity (HE) values of the three antigenic markers were 0.72, 0.81 and 0.88, respectively. Multiplicity of infection (MOI) values noted were 1.28, 1.84 and 1.04 for msp-1, msp-2 and glurp, respectively. Conclusion Results suggest a high level of genetic diversity in P. falciparum msp (block-2 of msp-1 and block-3 of msp-2) and the glurp RII region in Northeast India in the pre-artemisinin era when chloroqunine was the primary drug used for uncomplicated falciparum malaria. Comparison with current studies have revealed that the genetic diversity in these genes is still high in this region, complicating malaria vaccine research.
Collapse
Affiliation(s)
- Vinayagam Sathishkumar
- ICMR-Regional Medical Research Centre, North East Region, Dibrugarh 786001, Assam, India
| | - Tulika Nirmolia
- ICMR-Regional Medical Research Centre, North East Region, Dibrugarh 786001, Assam, India
| | | | - Saurav Jyoti Patgiri
- ICMR-Regional Medical Research Centre, North East Region, Dibrugarh 786001, Assam, India
| |
Collapse
|
11
|
Ullah I, Khan A, Israr M, Shah M, Shams S, Khan W, Shah M, Siraj M, Akbar K, Naz T, Afridi SG. Genomic miscellany and allelic frequencies of Plasmodium falciparum msp-1, msp-2 and glurp in parasite isolates. PLoS One 2022; 17:e0264654. [PMID: 35259187 PMCID: PMC8903261 DOI: 10.1371/journal.pone.0264654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction
The genomic miscellany of malaria parasites can help inform the intensity of malaria transmission and identify potential deficiencies in malaria control programs. This study was aimed at investigating the genomic miscellany, allele frequencies, and MOI of P. falciparum infection.
Methods
A total of 85 P. falciparum confirmed isolates out of 100 were included in this study that were collected from P. falciparum patients aged 4 months to 60 years in nine districts of Khyber Pakhtunkhwa Province. Parasite DNA was extracted from 200µL whole blood samples using the Qiagen DNA extraction kit following the manufacturer’s instructions. The polymorphic regions of msp-1, msp-2 and glurp loci were genotyped using nested PCR followed by gel electrophoresis for amplified fragments identification and subsequent data analysis.
Results
Out of 85 P. falciparum infections detected, 30 were msp-1 and 32 were msp-2 alleles specific. Successful amplification occurred in 88.23% (75/85) isolates for msp-1, 78.9% (67/85) for msp-2 and 70% (60/85) for glurp gene. In msp-1, the K1 allelic family was predominantly prevalent as 66.66% (50/75), followed by RO33 and MAD20. The frequency of samples with single infection having only K1, MAD20 and RO33 were 21.34% (16/75), 8% (6/75), and 10.67% (8/75), respectively. In msp-2, both the FC27 and 3D7 allelic families revealed almost the same frequencies as 70.14% (47/67) and 67.16% (45/67), respectively. Nine glurp RII region alleles were identified in 60 isolates. The overall mean multiplicity of infection for msp genes was 1.6 with 1.8 for msp-1 and 1.4 for msp-2, while for glurp the MOI was 1.03. There was no significant association between multiplicity of infection and age groups (Spearman’s rank coefficient = 0.050; P = 0.6) while MOI and parasite density correlated for only msp-2 allelic marker.
Conclusions
The study showed high genetic diversity and allelic frequency with multiple clones of msp-1, msp-2 and glurp in P. falciparum isolates in Khyber Pakhtunkhwa, Pakistan. In the present study the genotype data may provide valuable information essential for monitoring the impact of malaria eradication efforts in this region.
Collapse
Affiliation(s)
- Ibrar Ullah
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Israr
- Department of Forensic Sciences, University of Swat, Swat, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muzafar Shah
- Centre for Animal Sciences & Fisheries, University of Swat, Swat, Pakistan
| | - Muhammad Siraj
- Department of Zoology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Kehkashan Akbar
- Department of Biochemistry, Abbottabad International Medical College, Abbottabad, Pakistan
| | - Tahira Naz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- * E-mail:
| |
Collapse
|
12
|
Usman-Yamman H, Omalu C J I, Abubakar A, Abolarinwa S O, Eke S S, Otuu CA. Genetic diversity of plasmodium falciparum isolates in Minna, North Central Nigeria inferred by PCR genotyping of Merozoite surface protein 1 and 2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105143. [PMID: 34800712 DOI: 10.1016/j.meegid.2021.105143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
North Central Nigeria is one region in Nigeria with a significant incidence of malaria caused majorly by Plasmodium falciparum. This study utilizes the msp1 and msp2 genes of P. falciparum to examine its diversity and multiplicity of infection (MOI). Blood samples were collected from 247 children across selected healthcare facilities in Minna, from infants and children aged 6 months to 17 years. Of the total collection, 143 (58%) of the children were infected with P. falciparum with parasite density ≥ 1000 μl, and from which fifty (50) samples was randomly selected and presented for PCR for the characterization of msp1 and msp2 gene using nested-PCR method. Overall, 57 msp1 genotypes, including K1, MAD20 and RO33 were identified, ranging from (250-1000 bp), (100-500 bp) and (400-500 bp), respectively. In addition, 54 different msp2 genotypes of FC27 and 3D7 alleles ranging from (100-900 bp) and (100-800 bp), respectively were selected. A monoclonal infection of 39% and a polyclonal infection of 61% was recorded, however, a particularity about this study is the polyclonal nature of RO33. Determination of gene diversity revealed MAD20 as the predominant allele for msp1 with a mean MOI of 1.35 and FC27 for msp2 with 1.72 MOI. The overall MOI recorded for the study was 1.60. There was, however, no statistical significance difference between MOI and age of the child (P > 0.05). Meanwhile, findings from this study revealed P. falciparum populations were not genetically diverse with Heterozygosity (He) index of 0.0636. However, a significant level gene diversity within the antigenic markers of msp1 and msp2 was observed with He index of 0.714 and 0.830, respectively. This study has demonstrated the potential of gene diversity and MOI of P. falciparum, as important markers for assessing differences in malaria transmission intensity. Continuous malaria genetic surveillance is therefore recommended as a fundamental tool for monitoring changes in gene types and for intervention programs' effectiveness.
Collapse
Affiliation(s)
- Hadijah Usman-Yamman
- Department of Animal Biology, Federal University of Technology, Minna, Niger State, Nigeria.
| | - Innocent Omalu C J
- Department of Animal Biology, Federal University of Technology, Minna, Niger State, Nigeria.
| | - Abdulkadir Abubakar
- Department of Biochemistry, Federal University of Technology, Minna, Niger State, Nigeria.
| | - Abolarinwa S O
- Department of Animal Biology, Federal University of Technology, Minna, Niger State, Nigeria.
| | - Samuel Eke S
- Department of Biology, Air Force Institute of Technology, Kaduna, Nigeria.
| | - Chidiebere A Otuu
- Parasitology and Public Health Research Unit, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
13
|
Mohammed H, Assefa A, Chernet M, Wuletaw Y, Commons RJ. Genetic polymorphisms of Plasmodium falciparum isolates from Melka-Werer, North East Ethiopia based on the merozoite surface protein-2 (msp-2) gene as a molecular marker. Malar J 2021; 20:85. [PMID: 33579293 PMCID: PMC7881608 DOI: 10.1186/s12936-021-03625-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
Background The characterization of parasite populations circulating in malaria endemic areas is necessary to evaluate the success of ongoing interventions and malaria control strategies. This study was designed to investigate the genetic diversity of Plasmodium falciparum isolates from the semi-arid area in North East Ethiopia, using the highly polymorphic merozoite surface protein-2 (msp2) gene as a molecular marker. Methods Dried blood spot isolates were collected from patients with P. falciparum infection between September 2014 and January 2015 from Melka-Werer, North East Ethiopia. Parasite DNA was extracted and genotyped using allele-specific nested polymerase chain reactions for msp2. Results 52 isolates were collected with msp2 identified in 41 (78.8%) isolates. Allele typing of the msp2 gene detected the 3D7/IC allelic family in 54% and FC27 allelic family in 46%. A total of 14 different msp2 genotypes were detected including 6 belonging to the 3D7/IC family and 8 to the FC27 family. Forty percent of isolates had multiple genotypes and the overall mean multiplicity of infections (MOI) was 1.2 (95%CI 0.96–1.42). The heterozygosity index was 0.50 for the msp2 locus. There was no difference in MOI between age groups. A negative correlation between parasite density and multiplicity of infection was found (p = 0.02). Conclusion Plasmodium falciparum isolates from the semi-arid area of North East Ethiopia are mainly monoclonal with low MOI and limited genetic diversity in the study population.
Collapse
Affiliation(s)
- Hussein Mohammed
- Malaria, Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Ashenafi Assefa
- Malaria, Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Melkie Chernet
- Malaria, Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Wuletaw
- Malaria, Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Robert J Commons
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Internal Medicine Services, Ballarat Health Services, Ballarat, Australia
| |
Collapse
|
14
|
Oyedeji SI, Bassi PU, Oyedeji SA, Ojurongbe O, Awobode HO. Genetic diversity and complexity of Plasmodium falciparum infections in the microenvironment among siblings of the same household in North-Central Nigeria. Malar J 2020; 19:338. [PMID: 32938438 PMCID: PMC7493857 DOI: 10.1186/s12936-020-03415-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum parasites are known to exhibit extensive genetic diversity in areas of high transmission intensity and infected individuals in such communities often harbour several complex mixtures of parasite clones with different genetic characteristics. However, in the micro-environment, the extent of genetic diversity of P. falciparum parasites remain largely unknown. In this study therefore, the complexity of P. falciparum infections in households was investigated among symptomatic siblings, living under the same roof in north-central Nigeria. Methods Children were enrolled into the study if they were at least two from a household and presented with symptoms of uncomplicated malaria. Clinical malaria was confirmed by light microscopy of Giemsa-stained thick and thin blood films. Genomic DNA was isolated from blood spots on filter paper. Molecular characterization of P. falciparum isolates was done by allele-specific nested PCR of the highly polymorphic merozoite surface protein-2 (msp-2) gene. Results Ninety-three children from 43 households were enrolled into this study. A total of 26 different msp-2 alleles were identified from 215 fragments (range: 180–480 bp). Majority of the isolates [65.6% (n = 61)] were polyclonal infections consisting of 2–6 clones and were significantly more common with the FC27 allelic family (p = 0.036). The multiplicity of infection (MOI) per household ranged from 1.0 to 4.5 while the overall MOI in the study population was 2.31. The pattern of distribution of msp-2 allele types among the households fell into two categories: households where both msp-2 allele types (FC27 and 3D7) were present; households where only one msp-2 allele type (FC27 or 3D7) was present. Majority of the households [88.4% (n = 38)], had both msp-2 allele types but they were disproportionately distributed among the children while in a few households [11.6% (n = 5)], all the children were infected with only one type of msp-2 allele. Conclusion These findings showed that P. falciparum isolates exhibit remarkable degree of genetic diversity in the micro-environment and are composed mainly of multiclonal infections, which is an indication of a high ongoing parasite transmission. This suggests that the micro-environment is an important area of focus for malaria control interventions and for evaluating intervention programmes.
Collapse
Affiliation(s)
- Segun Isaac Oyedeji
- Molecular Genetics and Parasitology Unit, Department of Animal & Environmental Biology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria.
| | - Peter Usman Bassi
- Department of Pharmacology and Therapeutics, University of Abuja, Abuja, Nigeria
| | | | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | | |
Collapse
|
15
|
Sondo P, Derra K, Rouamba T, Nakanabo Diallo S, Taconet P, Kazienga A, Ilboudo H, Tahita MC, Valéa I, Sorgho H, Lefèvre T, Tinto H. Determinants of Plasmodium falciparum multiplicity of infection and genetic diversity in Burkina Faso. Parasit Vectors 2020; 13:427. [PMID: 32819420 PMCID: PMC7441709 DOI: 10.1186/s13071-020-04302-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Investigating malaria transmission dynamics is essential to inform policy decision making. Whether multiplicity of infection (MOI) dynamic from individual infections could be a reliable malaria metric in high transmission settings with marked variation in seasons of malaria transmission has been poorly assessed. This study aimed at investigating factors driving Plasmodium falciparum MOI and genetic diversity in a hyperendemic area of Burkina Faso. METHODS Blood samples collected from a pharmacovigilance trial were used for polymerase chain reaction genotyping of the merozoite surface proteins 1 and 2. MOI was defined as the number of distinct parasite genotypes co-existing within a particular infection. Monthly rainfall data were obtained from satellite data of the Global Precipitation Measurement Database while monthly malaria incidence aggregated data were extracted from District Health Information Software 2 medical data of the Center-West health regional direction. RESULTS In the study area, infected people harboured an average of 2.732 (± 0.056) different parasite genotypes. A significant correlation between the monthly MOI and the monthly malaria incidence was observed, suggesting that MOI could be a good predictor of transmission intensity. A strong effect of season on MOI was observed, with infected patients harbouring higher number of parasite genotypes during the rainy season as compared to the dry season. There was a negative relationship between MOI and host age. In addition, MOI decreased with increasing parasite densities, suggesting that there was a within-host competition among co-infecting genetically distinct P. falciparum variants. Each allelic family of the msp1 and msp2 genes was present all year round with no significant monthly fluctuation. CONCLUSIONS In high malaria endemic settings with marked variation in seasons of malaria transmission, MOI represents an appropriate malaria metric which provides useful information about the longitudinal changes in malaria transmission in a given area. Besides transmission season, patient age and parasite density are important factors to consider for better understanding of variations in MOI. All allelic families of msp1 and msp2 genes were found in both dry and rainy season. The approach offers the opportunity of translating genotyping data into relevant epidemiological information for malaria control.
Collapse
Affiliation(s)
- Paul Sondo
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso.
| | - Karim Derra
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Seydou Nakanabo Diallo
- Institut National de Santé Publique/Centre Muraz de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Paul Taconet
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Adama Kazienga
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Hamidou Ilboudo
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Marc Christian Tahita
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Innocent Valéa
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Hermann Sorgho
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Thierry Lefèvre
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France.,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso.,Institut de Recherche pour le Développement (IRD), Centre National pour la Recherche Scientifique (CNRS), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier, Montpellier, France
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| |
Collapse
|
16
|
Abamecha A, El-Abid H, Yilma D, Addisu W, Ibenthal A, Bayih AG, Noedl H, Yewhalaw D, Moumni M, Abdissa A. Genetic diversity and genotype multiplicity of Plasmodium falciparum infection in patients with uncomplicated malaria in Chewaka district, Ethiopia. Malar J 2020; 19:203. [PMID: 32513191 PMCID: PMC7281928 DOI: 10.1186/s12936-020-03278-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/03/2022] Open
Abstract
Background Genetic diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity of P. falciparum strains can be used to assess intensity of parasite transmission and identify potential deficiencies in malaria control programmes, which provides vital information to evaluating malaria elimination efforts. This study investigated the P. falciparum genetic diversity and genotype multiplicity of infection in parasite isolates from cases with uncomplicated P. falciparum malaria in Southwest Ethiopia. Methods A total of 80 P. falciparum microscopy and qPCR positive blood samples were collected from study participants aged 6 months to 60 years, who visited the health facilities during study evaluating the efficacy of artemether-lumefantrine from September–December, 2017. Polymorphic regions of the msp-1 and msp-2 were genotyped by nested polymerase chain reactions (nPCR) followed by gel electrophoresis for fragment analysis. Results Of 80 qPCR-positive samples analysed for polymorphisms on msp-1 and msp-2 genes, the efficiency of msp-1 and msp-2 gene amplification reactions with family-specific primers were 95% and 98.8%, respectively. Allelic variation of 90% (72/80) for msp-1 and 86.2% (69/80) for msp-2 were observed. K1 was the predominant msp-1 allelic family detected in 20.8% (15/72) of the samples followed by MAD20 and RO33. Within msp-2, allelic family FC27 showed a higher frequency (26.1%) compared to IC/3D7 (15.9%). Ten different alleles were observed in msp-1 with 6 alleles for K1, 3 alleles for MAD20 and 1 allele for RO33. In msp-2, 19 individual alleles were detected with 10 alleles for FC27 and 9 alleles for 3D7. Eighty percent (80%) of isolates had multiple genotypes and the overall mean multiplicity of infection was 3.2 (95% CI 2.87–3.46). The heterozygosity indices were 0.43 and 0.85 for msp-1 and msp-2, respectively. There was no significant association between multiplicity of infection and age or parasite density. Conclusions The study revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations in Chewaka district, Ethiopia, suggesting that both endemicity level and malaria transmission remain high and that strengthened control efforts are needed in Ethiopia.
Collapse
Affiliation(s)
- Abdulhakim Abamecha
- School of Medical Laboratory Science, Faculty of Health Sciences, Institute of Health, Jimma University, Jimma, Ethiopia. .,Department of Biomedical, College of Public Health and Medical Science, Mettu University, Mettu, Ethiopia. .,Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia.
| | - Hassan El-Abid
- Laboratory of Cellular Genomics and Molecular Techniques for Investigation, Faculty of Sciences, Moulay Ismail University, Meknès, Morocco
| | - Daniel Yilma
- Department of Internal Medicine, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Wondimagegn Addisu
- School of Medical Laboratory Science, Faculty of Health Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Achim Ibenthal
- Faculty of Science and Art, HAWK University, Gottingen, Germany
| | | | - Harald Noedl
- Malaria Research Initiative Bandarban (MARIB), Vienna, Austria
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Science, Faculty of Health Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Mohieddine Moumni
- Laboratory of Cellular Genomics and Molecular Techniques for Investigation, Faculty of Sciences, Moulay Ismail University, Meknès, Morocco
| | - Alemseged Abdissa
- School of Medical Laboratory Science, Faculty of Health Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
17
|
Mayengue PI, Kouhounina Batsimba D, Niama RF, Ibara Ottia R, Malonga-Massanga A, Fila-Fila GPU, Ahombo G, Kobawila SC, Parra HJ. Variation of prevalence of malaria, parasite density and the multiplicity of Plasmodium falciparum infection throughout the year at three different health centers in Brazzaville, Republic of Congo. BMC Infect Dis 2020; 20:190. [PMID: 32131754 PMCID: PMC7057455 DOI: 10.1186/s12879-020-4913-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/17/2020] [Indexed: 11/12/2022] Open
Abstract
Background In the Republic of Congo, hot temperature and seasons distortions observed may impact the development of malaria parasites. We investigate the variation of malaria cases, parasite density and the multiplicity of Plasmodium falciparum infection throughout the year in Brazzaville. Methods From May 2015 to May 2016, suspected patients with uncomplicated malaria were enrolled at the Hôpital de Mfilou, CSI « Maman Mboualé», and the Laboratoire National de Santé Publique. For each patient, thick blood was examined and parasite density was calculated. After DNA isolation, MSP1 and MSP2 genes were genotyped. Results A total of 416, 259 and 131 patients with suspected malaria were enrolled at the CSI «Maman Mboualé», Hôpital de Mfilou and the Laboratoire National de Santé Publique respectively. Proportion of malaria cases and geometric mean parasite density were higher at the CSI «Maman Mboualé» compared to over sites (P-value <0.001). However the multiplicity of infection was higher at the Hôpital de Mfilou (P-value <0.001). At the Laboratoire National de Santé Publique, malaria cases and multiplicity of infection were not influenced by different seasons. However, variation of the mean parasite density was statistically significant (P-value <0.01). Higher proportions of malaria cases were found at the end of main rainy season either the beginning of the main dry season at the Hôpital de Mfilou and the CSI «Maman Mboualé»; while, lowest proportions were observed in September and January and in September and March respectively. Higher mean parasite densities were found at the end of rainy seasons with persistence at the beginning of dry seasons. The lowest mean parasite densities were found during dry seasons, with persistence at the beginning of rainy seasons. Fluctuation of the multiplicity of infection throughout the year was observed without significance between seasons. Conclusion The current study suggests that malaria transmission is still variable between the north and south parts of Brazzaville. Seasonal fluctuations of malaria cases and mean parasite densities were observed with some extension to different seasons. Thus, both meteorological and entomological studies are needed to update the season’s periods as well as malaria transmission intensity in Brazzaville.
Collapse
Affiliation(s)
- Pembe Issamou Mayengue
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo. .,Laboratoire National de Santé Publique, Brazzaville, BP 120, République du Congo. .,Centre de Recherche et d'Initiation des Projets de Technologie, Brazzaville, BP 2499, République du Congo.
| | - Dezi Kouhounina Batsimba
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo
| | - Roch Fabien Niama
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo.,Laboratoire National de Santé Publique, Brazzaville, BP 120, République du Congo
| | - Reyna Ibara Ottia
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo
| | - Alida Malonga-Massanga
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo
| | | | - Gabriel Ahombo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo
| | - Simon Charles Kobawila
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo
| | - Henri Joseph Parra
- Laboratoire National de Santé Publique, Brazzaville, BP 120, République du Congo
| |
Collapse
|
18
|
Ajibaye O, Osuntoki AA, Balogun EO, Olukosi YA, Iwalokun BA, Oyebola KM, Hikosaka K, Watanabe YI, Ebiloma GU, Kita K, Amambua-Ngwa A. Genetic polymorphisms in malaria vaccine candidate Plasmodium falciparum reticulocyte-binding protein homologue-5 among populations in Lagos, Nigeria. Malar J 2020; 19:6. [PMID: 31906953 PMCID: PMC6945540 DOI: 10.1186/s12936-019-3096-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/26/2019] [Indexed: 01/26/2023] Open
Abstract
Background Vaccines are the most reliable alternative to elicit sterile immunity against malaria but their development has been hindered by polymorphisms and strain-specificity in previously studied antigens. New vaccine candidates are therefore urgently needed. Highly conserved Plasmodium falciparum reticulocyte-binding protein homologue-5 (PfRH5) has been identified as a potential candidate for anti-disease vaccine development. PfRH5 is essential for erythrocyte invasion by merozoites and crucial for parasite survival. However, there is paucity of data on the extent of genetic variations on PfRH5 in field isolates of Plasmodium falciparum. This study described genetic polymorphisms at the high affinity binding polypeptides (HABPs) 36718, 36727, 36728 of PfRH5 in Nigerian isolates of P. falciparum. This study tested the hypothesis that only specific conserved B and T cell epitopes on PfRH5 HABPs are crucial for vaccine development. Methods One hundred and ninety-five microscopically confirmed P. falciparum samples collected in a prospective cross-sectional study of three different populations in Lagos, Nigeria. Genetic diversity and haplotype construct of Pfrh5 gene were determined using bi-directional sequencing approach. Tajima’s D and the ratio of nonsynonymous vs synonymous mutations were utilized to estimate the extent of balancing and directional selection in the pfrh5 gene. Results Sequence analysis revealed three haplotypes of PfRH5 with negative Tajima’s D and dN/dS value of − 1.717 and 0.011 ± 0.020, respectively. A single nucleotide polymorphism, SNP (G → A) at position 608 was observed, which resulted in a change of the amino acid cysteine at position 203 to tyrosine. Haplotype and nucleotide diversities were 0.318 ± 0.016 and 0.0046 ± 0.0001 while inter-population genetic differentiation ranged from 0.007 to 0.037. Five polypeptide variants were identified, the most frequent being KTKYH with a frequency of 51.3%. One B-cell epitope, 151 major histocompatibility complex (MHC) class II T-cell epitopes, four intrinsically unstructured regions (IURs) and six MHC class I T-cell epitopes were observed in the study. Phylogenetic analysis of the sequences showed clustering and evidence of evolutionary relationship with 3D7, PAS-2 and FCB-2 RH5 sequences. Conclusions This study has revealed low level of genetic polymorphisms in PfRH5 antigen with B- and T-cell epitopes in intrinsically unstructured regions along the PfRH5 gene in Lagos, Nigeria. A broader investigation is however required in other parts of the country to support the possible inclusion of PfRH5 in a cross-protective multi-component vaccine.
Collapse
Affiliation(s)
- Olusola Ajibaye
- Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria. .,Department of Biochemistry, College of Medicine, University of Lagos, Idi-Araba, Lagos, Nigeria.
| | - Akinniyi A Osuntoki
- Department of Biochemistry, College of Medicine, University of Lagos, Idi-Araba, Lagos, Nigeria
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, 2222, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yetunde A Olukosi
- Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Bamidele A Iwalokun
- Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Kolapo M Oyebola
- Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria.,Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yoh-Ichi Watanabe
- Department of Biochemistry, Ahmadu Bello University, 2222, Zaria, Nigeria
| | - Godwin U Ebiloma
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Alfred Amambua-Ngwa
- Medical Research Council at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| |
Collapse
|
19
|
Mohammed H, Hassen K, Assefa A, Mekete K, Tadesse G, Taye G, Commons RJ. Genetic diversity of Plasmodium falciparum isolates from patients with uncomplicated and severe malaria based on msp-1 and msp-2 genes in Gublak, North West Ethiopia. Malar J 2019; 18:413. [PMID: 31823778 PMCID: PMC6905089 DOI: 10.1186/s12936-019-3039-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria infection can present with a wide variety of symptoms, ranging from mild to severe. Plasmodium falciparum isolates in uncomplicated and severe malaria infections may have different parasite genetic profiles. This study was conducted to assess differences in genetic diversity and allelic frequencies in P. falciparum isolates according to malaria severity and age of patients in the Gublack area, northwest Ethiopia. METHODS Cross-sectional health facility-based study conducted in Gublak, Ethiopia between July, 2017 and October, 2017. Symptomatic P. falciparum malaria patients with microscopically-confirmed infection were enrolled. Parasite DNA was extracted from filter paper blood spots and the polymorphic regions of the msp-1 and msp-2 genes were genotyped using allele-specific nested-PCR with fragment analysis by gel electrophoresis. RESULTS A total of 118 patients were enrolled including 95 (80.5%) with uncomplicated infection and 23 (19.5%) with severe disease. In msp-1, the K1 allelic family was similarly prevalent in uncomplicated 42 (44.2%) and severe disease 12 (52.2%). In msp-2, FC27 was detected in 55 (57.9%) of uncomplicated infections and IC/3D7 in 14 (60.9%) of severe infections. 76 (64.4%) of the 118 isolates contained multiple genotypes; 56 (58.9%) in uncomplicated infections and 19 (82.6%) in severe infections. The overall of multiplicity of infection was 2.2 (95% CI 1.98-2.42) with 1.4 (95% CI 1.23-1.55) and 1.7 (95% CI 1.49-1.86) for msp-1 and msp-2, respectively. Multiplicity of infection was significantly higher in severe than uncomplicated infections (3.0 (95% CI 2.61-3.47) versus 2.0 (95% CI 1.83-2.23), respectively, p = 0.001). There was no difference in multiplicity of infection across age groups (p = 0.104). CONCLUSION Patients with severe malaria were more likely to have multiclonal infections. Further studies are needed to describe the association between P. falciparum genotypes and malaria severity in different malaria transmission areas.
Collapse
Affiliation(s)
| | - Kedir Hassen
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | | | - Girum Taye
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Robert J Commons
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Internal Medical Services, Ballarat Health Services, Ballarat, Australia
| |
Collapse
|
20
|
DNA recovery from archived RDTs for genetic characterization of Plasmodium falciparum in a routine setting in Lambaréné, Gabon. Malar J 2019; 18:336. [PMID: 31578142 PMCID: PMC6775649 DOI: 10.1186/s12936-019-2972-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/24/2019] [Indexed: 11/15/2022] Open
Abstract
Background Rapid diagnostic tests (RDTs) have been described as a source of genetic material to analyse malaria parasites in proof-of-concept studies. The increasing use of RDTs (e.g., in focal or mass screening and treatment campaigns) makes this approach particularly attractive for large-scale investigations of parasite populations. In this study, the complexity of Plasmodium falciparum infections, parasite load and chloroquine resistance transporter gene mutations were investigated in DNA samples extracted from positive RDTs, obtained in a routine setting and archived at ambient temperature. Methods A total of 669 archived RDTs collected from malaria cases in urban, semi-urban and rural areas of central Gabon were used for P. falciparum DNA extraction. Performance of RDTs as a source of DNA for PCR was determined using: (i) amplification of a single copy merozoite surface protein 1 (msp1) gene followed by highly sensitive and automated capillary electrophoresis; (ii) genotyping of the pfcrt gene locus 72–76 using haplotype-specific-probe-based real-time PCR to characterize chloroquine resistance; and, (iii) real-time PCR targeting 18S genes to detect and quantify Plasmodium parasites. Results Out of the 669 archived RDTs, amplification of P. falciparum nucleic materials had a success rate of 97% for 18S real-time PCR, and 88% for the msp1 gene. The multiplicity of infections (MOI) of the whole population was 2.6 (95% CI 2.5–2.8). The highest number of alleles detected in one infection was 11. The MOI decreased with increasing age (β = − 0.0046, p = 0.02) and residence in Lambaréné was associated with smaller MOIs (p < 0.001). The overall prevalence of mutations associated with chloroquine resistance was 78.5% and was not associated with age. In Lambaréné, prevalence of chloroquine resistance was lower compared to rural Moyen-Ogooué (β = − 0.809, p-value = 0.011). Conclusion RDT is a reliable source of DNA for P. falciparum detection and genotyping assays. Furthermore, the increasing use of RDTs allows them to be an alternative source of DNA for large-scale genetic epidemiological studies. Parasite populations in the study area are highly diverse and prevalence of chloroquine-resistant P. falciparum remains high, especially in rural areas.
Collapse
|
21
|
Gnagne AP, Konate A, Bedia-Tanoh AV, Amiah-Droh M, Menan HIE, N'Guetta ASP, Yavo W. Dynamics of Plasmodium falciparum genetic diversity among asymptomatic and symptomatic children in three epidemiological areas in Cote d'Ivoire. Pathog Glob Health 2019; 113:133-142. [PMID: 31144611 DOI: 10.1080/20477724.2019.1624076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Asymptomatic carriers of Plasmodium are considered a reservoir of the parasite in humans. Therefore, in order to be effective, new malaria elimination strategies must take these targets into account. The aim of this study was to analyse genetic diversity of Plasmodium falciparum among schoolchildren in three epidemiological areas in Côte d'Ivoire. This was a cross-sectional study carried out from May 2015 to April 2016 in a primary school in rural and urban areas of San Pedro, Grand-Bassam and Abengourou, during the rainy season and the dry season. A total of 282 Plasmodium falciparum isolates were genotyped using Nested PCR of Pfmsp1 and Pfmsp2 genes. The overall frequency of K1, Mad20 and RO33 alleles was 81.6%, 53.4% and 57% for Pfmsp1 respectively. For Pfmsp2, this frequency was 84.3% and 72.2% for 3D7 and FC27. K1, Mad20 and FC27 Frequencies were significantly higher in Abengourou compared to other sites. Overall, the frequency of MIs was significantly higher in Abengourou for Pfmsp1 and Pfmsp2. However, Mad20 and RO33 alleles were significantly higher in the rainy season. No significant difference was observed between Pfmsp2 alleles in both seasons. Frequency of the 3D7 allele was significantly higher in symptomatic patients. MIs and COI increased with parasitemia for Pfmsp1and Pfmsp2. The data can be added to that available for monitoring and control of P. falciparum malaria. Further studies combining the entomological inoculation rate and the genetic diversity of P. falciparum will allow us to shed light on our understanding of the epidemiology of this parasite.
Collapse
Affiliation(s)
- Akpa Paterne Gnagne
- a Centre de Recherche et de Lutte contre le Paludisme , Institut National de Santé Publique , Abidjan , Côte d'Ivoire.,b Laboratoire de Génétique , Université Félix Houphouët Boigny , Abidjan , Côte d'Ivoire
| | - Abibatou Konate
- a Centre de Recherche et de Lutte contre le Paludisme , Institut National de Santé Publique , Abidjan , Côte d'Ivoire.,c Département de Parasitologie-Mycologie , UFR Sciences Pharmaceutiques et Biologique , Abidjan , Côte d'Ivoire
| | - Akoua Valérie Bedia-Tanoh
- a Centre de Recherche et de Lutte contre le Paludisme , Institut National de Santé Publique , Abidjan , Côte d'Ivoire.,c Département de Parasitologie-Mycologie , UFR Sciences Pharmaceutiques et Biologique , Abidjan , Côte d'Ivoire
| | - Mireille Amiah-Droh
- a Centre de Recherche et de Lutte contre le Paludisme , Institut National de Santé Publique , Abidjan , Côte d'Ivoire.,b Laboratoire de Génétique , Université Félix Houphouët Boigny , Abidjan , Côte d'Ivoire
| | - Hervé Ignace Eby Menan
- c Département de Parasitologie-Mycologie , UFR Sciences Pharmaceutiques et Biologique , Abidjan , Côte d'Ivoire
| | | | - William Yavo
- a Centre de Recherche et de Lutte contre le Paludisme , Institut National de Santé Publique , Abidjan , Côte d'Ivoire.,c Département de Parasitologie-Mycologie , UFR Sciences Pharmaceutiques et Biologique , Abidjan , Côte d'Ivoire
| |
Collapse
|
22
|
Low genetic diversity and complexity of submicroscopic Plasmodium falciparum infections among febrile patients in low transmission areas in Senegal. PLoS One 2019; 14:e0215755. [PMID: 31022221 PMCID: PMC6483351 DOI: 10.1371/journal.pone.0215755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/08/2019] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Submicroscopic Plasmodium infections are common in malaria endemic countries, but very little studies have been done in Senegal. This study investigates the genetic diversity and complexity of submicroscopic P. falciparum infections among febrile patients in low transmission areas in Senegal. MATERIALS AND METHODS Hundred and fifty blood samples were collected from febrile individuals living in Dielmo and Ndiop (Senegal) between August 2014 and January 2015, tested for microscopic and sub-microscopic P. falciparum infections and characterized for their genetic diversity and complexity of infections using msp-1 and msp-2 genotyping. RESULTS Submicroscopic P. falciparum infections were 19.6% and 25% in Dielmo and Ndiop, respectively. K1 and 3D7 were the predominant msp-1 and msp-2 allelic types with respective frequencies of 67.36% and 67.10% in microscopic isolates and 58.24% and 78% in submicroscopic ones. Frequencies of msp-1 allelic types were statistically comparable between the studied groups (p>0.05), and were respectively 93.54% vs 87.5% for K1, 60% vs 54.83% for MAD20 and 41.93% vs 22.5% for RO33 while frequencies of msp-2 allelic types were significantly highest in the microscopy group for FC27 (41.93% vs 10%, Fisher's Exact Test, p = 0.001) and 3D7 (61.29% vs 32.5%, Fisher's Exact Test, p = 0.02). Multiplicities of infection were lowest in submicroscopic P. falciparum isolates. CONCLUSIONS The study revealed a high submicroscopic P. falciparum carriage among patients in the study areas, and that submicroscopic P. falciparum isolates had a lower genetic diversity and complexity of malaria infections.
Collapse
|
23
|
Singana BP, Mayengue PI, Niama RF, Ndounga M. Genetic diversity of Plasmodium falciparum infection among children with uncomplicated malaria living in Pointe-Noire, Republic of Congo. Pan Afr Med J 2019; 32:183. [PMID: 31312296 PMCID: PMC6620066 DOI: 10.11604/pamj.2019.32.183.15694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/12/2018] [Indexed: 01/28/2023] Open
Abstract
Introduction Molecular characterization of malaria parasites from different localities is important to improve understanding of acquisition of natural immunity to Plasmodium falciparum, to assist in identifying the most appropriate strategies for control and to evaluate the impact of control interventions. This study aimed to determine the genetic diversity and the multiplicity of infection in Plasmodium falciparum isolates from Pointe-Noire, Republic of Congo. Methods Plasmodium falciparum isolates were collected from 71 children with uncomplicated malaria; enrolled into the study for evaluating the therapeutic efficacy of artemether-lumefantrine combination. Both msp-1 and msp-2 genes were genotyped. Results From 296 distinct fragments detected, 13 msp-1 and 27 msp-2 different alleles were identified. For msp-1, RO33 family was poorly polymorphic. The K1 family has shown the trend of predominance (41%), followed by Mad20 (35%). Comparatively to msp-2, 49.6% and 48.8% fragments belonged to 3D7 and FC27 respectively. Taking together msp-1 and msp-2 genes, the overall multiplicity of infection has been increased to 2.64 and 86% harbored more than one parasite genotype. Parasite density was not influenced by age as well as the multiplicity of infection which was not influenced neither by age nor by parasite density. Conclusion Genetic diversity of Plasmodium falciparum in isolates from patients with uncomplicated malaria in Pointe-Noire is high and consisted mainly of multiple clones. The overall multiplicity of infection has been largely increased when considering msp-1 and msp-2 genes together. With the changes in malaria epidemiology, the use of both msp-1 and msp-2 genes in the characterization of Plasmodium falciparum infection is recommended.
Collapse
Affiliation(s)
- Brice Pembet Singana
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, République du Congo
| | - Pembe Issamou Mayengue
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, République du Congo.,Laboratoire National de Santé Publique, BP 120 Brazzaville, République du Congo
| | - Roch Fabien Niama
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, République du Congo.,Laboratoire National de Santé Publique, BP 120 Brazzaville, République du Congo
| | - Mathieu Ndounga
- Programme National de Lutte contre le Paludisme, Direction Générale de l'Epidémiologie de la Maladie, Ministère de la Santé et de la Population, République du Congo
| |
Collapse
|
24
|
Diouf B, Diop F, Dieye Y, Loucoubar C, Dia I, Faye J, Sembène M, Perraut R, Niang M, Toure-Balde A. Association of high Plasmodium falciparum parasite densities with polyclonal microscopic infections in asymptomatic children from Toubacouta, Senegal. Malar J 2019; 18:48. [PMID: 30791901 PMCID: PMC6385392 DOI: 10.1186/s12936-019-2684-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a leading cause of mortality and morbidity in tropical countries, especially in sub-Saharan Africa. In Senegal, a control plan implemented in the beginning of the 2000s has enabled a substantial reduction of mortality and morbidity due to malaria. However, eradication of malaria requires a vaccine that protects against Plasmodium falciparum the deadliest species of the parasite that causes this disease. Plasmodium falciparum is characterized by an extensive genetic diversity that makes vaccine development challenging. In this study, the diversity of P. falciparum isolates was analysed from asymptomatic children residing in the district of Toubacouta, Senegal. METHODS A nested PCR approach was used to perform genotyping of the msp-1 and msp-2 loci in samples from 87 asymptomatic children infected with P. falciparum, collected during a cross sectional survey in November and December 2010. Parasite densities in blood samples were determined by microscopic examination and statistical analyses were used to identify association of parasite genotype and parasitaemia. RESULTS Genotyping was successful in 84/87 and 82/87 samples for msp-1 and msp-2, respectively. A strong genetic diversity was found with a total of 15 and 21 different alleles identified for msp-1 and msp-2, respectively. RO33 was the most frequent allelic family of msp-1 followed by MAD20, then by K1. Regarding msp-2 allelic families, 3D7 was more common than FC27. Multiple infections were predominant, since 69% and 89% of the samples genotyped for msp-1 and msp-2 showed more than one clone of P. falciparum with complexity of infection (COI) of 2.5 and 4.7, respectively. Expected heterozygosity (HE) was 0.57 and 0.55 for msp-1 and msp-2, respectively. Interestingly, polyclonal infections were significantly associated with higher parasitaemia. CONCLUSIONS The strong genetic diversity of P. falciparum clones and the association of polyclonal infection with high parasitaemia call for a multi-allelic approach in the design of vaccine candidates for efficient malaria eradication.
Collapse
Affiliation(s)
- Babacar Diouf
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Fode Diop
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Yakhya Dieye
- Virology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Cheikh Loucoubar
- Epidemiology of Infectious Diseases Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ibrahima Dia
- Entomology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Joseph Faye
- Epidemiology of Infectious Diseases Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mbacké Sembène
- Faculté des Sciences et Techniques, Université Cheikh Anta Diop, P. O. Box 5005, Dakar, Senegal
| | - Ronald Perraut
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Makhtar Niang
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Aïssatou Toure-Balde
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| |
Collapse
|
25
|
Chu R, Zhang X, Xu S, Chen L, Tang J, Li Y, Chen J, Xuan Y, Zhu G, Cao J, Cheng Y. Limited genetic diversity of N-terminal of merozoite surface protein-1 (MSP-1) in Plasmodium ovale curtisi and P. ovale wallikeri imported from Africa to China. Parasit Vectors 2018; 11:596. [PMID: 30446012 PMCID: PMC6240192 DOI: 10.1186/s13071-018-3174-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/25/2018] [Indexed: 11/27/2022] Open
Abstract
Background Plasmodium merozoite surface protein-1 (MSP-1) is released into the bloodstream during merozoite invasion, and thus represents a crucial malarial vaccine target. Although substantial research effort has been devoted to uncovering the genetic diversity of MSP-1 for P. falciparum and P. vivax, there is minimal information available regarding the genetic profiles and structure of P. ovale. Therefore, the aim of the present study was to determine the extent of genetic variation among two subspecies of P. ovale by characterizing the MSP-1 N-terminal sequence at the nucleotide and protein levels. Methods N-terminal of MSP-1 gene were amplified from 126 clinical samples collected from imported cases of malaria in migrant workers returning to Jiangsu Province from Africa using a conventional polymerase chain reaction (PCR) assay. The PCR products were then sequenced and analyzed using the GeneDoc, MegAlign, MEGA7 and DnaSP v.6 programs. Results The average pairwise nucleotide diversities (π) of P. ovale curtisi and P. ovale wallikeri MSP-1 genes (pomsp1) were 0.01043 and 0.01974, respectively, and the haplotype diversity (Hd) were 0.746 and 0.598, respectively. Most of the nucleotide substitutions detected were non-synonymous, indicating that the genetic variations of pomsp1 were maintained by positive diversifying selection, thereby suggesting their role as a potential target of a protective immune response. Amino acid substitutions of P. ovale curtisi and P. ovale wallikeri MSP-1 could be categorized into five and three unique amino acid variants, respectively. Conclusions Low mutational diversity was observed in pomsp1 from the Jiangsu Province imported malaria cases; further studies will be developed such as immunogenicity and functional analysis. Electronic supplementary material The online version of this article (10.1186/s13071-018-3174-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruilin Chu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Xinxin Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Sui Xu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China
| | - Limei Chen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jianxia Tang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China
| | - Yuhong Li
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jing Chen
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China
| | - Yinghua Xuan
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Guoding Zhu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China
| | - Jun Cao
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China. .,Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China.
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Mayengue PI, Niama RF, Kouhounina Batsimba D, Malonga-Massanga A, Louzolo I, Loukabou Bongolo NC, Macosso L, Ibara Ottia R, Kimbassa Ngoma G, Dossou-Yovo LR, Pembet Singana B, Ahombo G, Sekangue Obili G, Kobawila SC, Parra HJ. No polymorphisms in K13-propeller gene associated with artemisinin resistance in Plasmodium falciparum isolated from Brazzaville, Republic of Congo. BMC Infect Dis 2018; 18:538. [PMID: 30373565 PMCID: PMC6206645 DOI: 10.1186/s12879-018-3453-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/19/2018] [Indexed: 11/15/2022] Open
Abstract
Background In the Republic of Congo, artemisinin-based combinations have been recommended for the treatment of uncomplicated malaria since 2006. However, the emergence of resistant parasites again these combinations in Southeast Asia is a threat for the control of this disease, especially in sub-Saharan Africa where the weight of the disease is important. Indeed, polymorphisms in Plasmodium falciparum K13-propeller gene have been involved in variations of drug sensitivity of Plasmodium falciparum to artemisinin-based combinations. The aim of the current study is to determine the prevalence of mutations of this gene in isolates collected in three health centers in Brazzaville. Methods From May 2015 to May 2016, a total of 131, 259 and 416 samples from patients with suspected malaria were collected at the Laboratoire National de Santé Publique, Hôpital de Mfilou, and the CSI «Maman Mboualé» respectively. After DNA isolation, genotyping and sequencing of Plasmodium falciparum K13-propeller were performed in positive Plasmodium falciparum isolates identified after msp-2 gene genotyping. Results All 806 samples collected were msp-2 genotyped and Plasmodium falciparum infections were confirmed in 287 samples with 43, 85, 159 samples from Laboratoire National de Santé Publique, Hôpital de Mfilou, and the CSI «Maman Mboualé» respectively. Of these 287 msp-2 positives samples, K13-propeller nested PCR products were successfully obtained from 145 (50.52%) isolates and sequences were generated from 127(87.58%) nested products. None of mutations that were associated with ACTs resistance in Southeast Asia were detected on the samples from three different study sites from Brazzaville. However, one mutation type was observed at position 578, where alanine was substituted by serine (A578S) in two isolates (1.57%, 2/127), those from the Hôpital de Mfilou. No mutation was found in isolates from the two other sites. Conclusion The current study shows a very limited polymorphism in the K13-propeller gene in isolates from the Republic of Congo and K13 polymorphisms associate with ACT resistance are not present in this country. However, permanent and large surveillance of resistant parasite population using K13-propeller gene is recommended.
Collapse
Affiliation(s)
- Pembe Issamou Mayengue
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo. .,Laboratoire National de Santé Publique, BP 120, Brazzaville, République du Congo.
| | - Roch Fabien Niama
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo.,Laboratoire National de Santé Publique, BP 120, Brazzaville, République du Congo
| | - Dezi Kouhounina Batsimba
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo
| | - Alida Malonga-Massanga
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo
| | - Igor Louzolo
- Laboratoire National de Santé Publique, BP 120, Brazzaville, République du Congo
| | | | - Lucette Macosso
- Laboratoire National de Santé Publique, BP 120, Brazzaville, République du Congo
| | - Reyna Ibara Ottia
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo
| | - Ghyslain Kimbassa Ngoma
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo
| | - Louis Régis Dossou-Yovo
- Laboratoire National de Santé Publique, BP 120, Brazzaville, République du Congo.,Ecole Normale Supérieure, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo
| | - Brice Pembet Singana
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo
| | - Gabriel Ahombo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo
| | - Géril Sekangue Obili
- Centre Hospitalier Universitaire de Brazzaville, BP 1846, Brazzaville, République du Congo
| | - Simon Charles Kobawila
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, République du Congo
| | - Henri Joseph Parra
- Laboratoire National de Santé Publique, BP 120, Brazzaville, République du Congo
| |
Collapse
|
27
|
Mohammed H, Kassa M, Mekete K, Assefa A, Taye G, Commons RJ. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates in Northwest Ethiopia. Malar J 2018; 17:386. [PMID: 30359280 PMCID: PMC6203214 DOI: 10.1186/s12936-018-2540-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/20/2018] [Indexed: 11/30/2022] Open
Abstract
Background Determination of the genetic diversity of malaria parasites can inform the intensity of transmission and identify potential deficiencies in malaria control programmes. This study was conducted to characterize the genetic diversity and allele frequencies of Plasmodium falciparum in Northwest Ethiopia along the Eritrea and Sudan border. Methods A total of 90 isolates from patients presenting to the local health centre with uncomplicated P. falciparum were collected from October 2014 to January 2015. DNA was extracted and the polymorphic regions of the msp-1, msp-2 and glurp loci were genotyped by nested polymerase chain reactions followed by gel electrophoresis for fragment analysis. Results Allelic variation in msp-1, msp-2 and glurp were identified in 90 blood samples. A total of 34 msp alleles (12 for msp-1 and 22 for msp-2) were detected. For msp-1 97.8% (88/90), msp-2 82.2% (74/90) and glurp 46.7% (42/90) were detected. In msp-1, MAD20 was the predominant allelic family detected in 47.7% (42/88) of the isolates followed by RO33 and K1. For msp-2, the frequency of FC27 and IC/3D7 were 77% (57/74) and 76% (56/74), respectively. Nine glurp RII region genotypes were identified. Seventy percent of isolates had multiple genotypes and the overall mean multiplicity of infection was 2.6 (95% CI 2.25–2.97). The heterozygosity index was 0.82, 0.62 and 0.20 for msp-1, msp-2 and glurp, respectively. There was no significant association between multiplicity of infection and age or parasite density. Conclusions There was a high degree of genetic diversity with multiple clones in P. falciparum isolates from Northwest Ethiopia suggesting that there is a need for improved malaria control efforts in this region. Electronic supplementary material The online version of this article (10.1186/s12936-018-2540-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hussein Mohammed
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Moges Kassa
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Kalkidan Mekete
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girum Taye
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Robert J Commons
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| |
Collapse
|
28
|
Gueye NSG, Ntoumi F, Vouvoungui C, Kobawila SC, NKombo M, Mouanga AM, Deibert J, Koukouikila-Koussounda F. Plasmodium falciparum merozoite protein-1 genetic diversity and multiplicity of infection in isolates from Congolese children consulting in a pediatric hospital in Brazzaville. Acta Trop 2018; 183:78-83. [PMID: 29626433 DOI: 10.1016/j.actatropica.2018.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/27/2022]
Abstract
As in many sub-Saharan African countries, the burden of malaria has been reduced in the Republic of Congo as a result of massive deployment of insecticide treated nets and availability of artemisinin-combinations therapies (ACTs). High to moderate genetic diversity of msp-1 gene of Plasmodium falciparum (P. falciparum) has been reported from different parts of the world but limited data are available from Central Africa including the Republic of Congo. For this reason, the aim of study was to investigate the P. falciparum genetic diversity and to determine the multiplicity of infection in P. falciparum isolates from Congolese children in order to dispose of an additional parameter to measure the impact malaria control intervention. A total of 229 blood samples were collected from September 2014 to February 2015 in children aged from one to ten years presenting a paediatric hospital Marien NGOUABI located in Northern part of Brazzaville. Inclusion criterion was fever (axillary temperature ≥ 37.5 °C) or history of fever in the preceding 48 h before inclusion in this study. Then thick and thin blood smears were done to detect malaria parasites, to determine parasite density and to identify plasmodial species. Sub-microscopic infection was detected by PCR using the P. falciparum msp-1 gene as molecular marker. The prevalence of microscopic and sub-microscopic infection in this cohort was 10% and 27.5%, respectively. The K1 allelic family was predominant (45% of isolates) whereas the RO33 and MAD20 represented 35% and 20%, respectively of isolates. In this study 48% (38/79) of isolates harbored more than one parasite clone. Overall the multiplicity of infection (MOI) was 1.7. According to type of infection, the MOI was significantly higher in children with microscopic infection (2.5 vs 1.4 for submicroscopic infection, P = .001). When considering age, hemoglobin genotype (AA or AS) and level and parasite density, no association was observed with the MOI. This study reveals that the P. falciparum genetic diversity in isolates from Congolese children is high but with low multiplicity of infection.
Collapse
|
29
|
Ndong Ngomo J, M’Bondoukwe N, Yavo W, Bongho Mavoungou L, Bouyou-Akotet M, Mawili-Mboumba D. Spatial and temporal distribution of Pfmsp1 and Pfmsp2 alleles and genetic profile change of Plasmodium falciparum populations in Gabon. Acta Trop 2018; 178:27-33. [PMID: 28993182 DOI: 10.1016/j.actatropica.2017.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 11/25/2022]
Abstract
Plasmodium population dynamics analysis may help to assess the impact of malaria control strategies deployment. In Gabon, new strategies have been introduced, but malaria is still a public health problem marked by a rebound of the prevalence in 2011. The aim of the study was to investigate the spatial and temporal distribution of P. falciparum strains in different areas in Gabon during a period of malaria transmission transition, between 2008 and 2011. A total of 109P. falciparum isolates were genotyped using nested-PCR of Pfmsp1 and Pfmsp2 genes. 3D7, FC27 and K1 allele frequencies were comparable between sites (p=0.9); those of Ro33 (93.6%; 44/47) and Mad20 (60%; 12/20) were significantly higher in isolates from Oyem (p<0.01) and Port-Gentil (p=0.02), respectively. The frequency of multiples infections (77%) and the complexity of infection (2.66±1.44) were the highest at Oyem. Pfmsp1 gene analysis highlighted a trend of a decreasing frequency of K1 family, in Libreville and Oyem between 2008 and 2011; while that of Ro33 (p<0.01) and Mad20 (p<0.01) increased. The prevalence of multiple infections was comparable between both periods in each site: 42.2% vs 47.6% (p=0.6) in Libreville and 57.7% vs 61.7% in Oyem (p=0.8). In contrast, in 2011, the COI tends to be higher in Libreville and did not vary in Oyem. These data confirm an extended genetic diversity of P. falciparum isolates over time and according to geographic location in Gabon. Nevertheless, the impact of the deployment of malaria control strategies on the parasites genetic profile is not clearly established here.
Collapse
|
30
|
Funwei RI, Thomas BN, Falade CO, Ojurongbe O. Extensive diversity in the allelic frequency of Plasmodium falciparum merozoite surface proteins and glutamate-rich protein in rural and urban settings of southwestern Nigeria. Malar J 2018; 17:1. [PMID: 29291736 PMCID: PMC5749027 DOI: 10.1186/s12936-017-2149-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 01/23/2023] Open
Abstract
Background Nigeria carries a high burden of malaria which makes continuous surveillance for current information on genetic diversity imperative. In this study, the merozoite surface proteins (msp-1, msp-2) and glutamate-rich protein (glurp) of Plasmodium falciparum collected from two communities representing rural and urban settings in Ibadan, southwestern Nigeria were analysed. Methods A total of 511 febrile children, aged 3–59 months, whose parents/guardians provided informed consent, were recruited into the study. Capillary blood was obtained for malaria rapid diagnostic test, thick blood smears for parasite count and blood spots on filter paper for molecular analysis. Results Three-hundred and nine samples were successfully genotyped for msp-1, msp-2 and glurp genes. The allelic distribution of the three genes was not significantly different in the rural and urban communities. R033 and 3D7 were the most prevalent alleles in both rural and urban communities for msp-1 and msp-2, respectively. Eleven of glurp RII region genotypes, coded I–XII, with sizes ranging from 500 to 1100 base pairs were detected in the rural setting. Genotype XI (1000–1050 bp) had the highest prevalence of 41.5 and 38.5% in rural and urban settings, respectively. Overall, 82.1 and 70.0% of samples had multiclonal infection with msp-1 gene resulting in a mean multiplicity of infection (MOI) of 2.8 and 2.6 for rural and urban samples, respectively. Msp-1 and msp-2 genes displayed higher levels of diversity and higher MOI rates than the glurp gene. Conclusion Significant genetic diversity was observed between rural and urban parasite populations in Ibadan, southwestern Nigeria. The results of this study show that malaria transmission intensity in these regions is still high. No significant difference was observed between rural and urban settings, except for a completely different msp-1 allele, compared to previous reports, thereby confirming the changing face of malaria transmission in these communities. This study provides important baseline information required for monitoring the impact of malaria elimination efforts in this region and data points useful in revising current protocols.
Collapse
Affiliation(s)
- Roland I Funwei
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacy Technician Studies, Bayelsa State College of Health Technology, Yenagoa, Nigeria
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA.,Tropical Disease Research Laboratory, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Catherine O Falade
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Institute for Advanced Medical Research and Training, University of Ibadan, Ibadan, Nigeria
| | - Olusola Ojurongbe
- Tropical Disease Research Laboratory, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria. .,Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.
| |
Collapse
|
31
|
Ajibaye O, Osuntoki AA, Ebuehi AO, Iwalokun BA, Balogun EO, Egbuna KN. Pro-inflammatory Cytokine Response and Genetic Diversity in Merozoite Surface Protein 2 of Plasmodium falciparum Isolates from Nigeria. Adv Biomed Res 2017; 6:142. [PMID: 29279840 PMCID: PMC5698975 DOI: 10.4103/2277-9175.192631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Polymorphisms in Plasmodium falciparum merozoite surface protein-2 (msp-2) and associated parasite genetic diversity which varies between malaria-endemic regions remain a limitation in malaria vaccine development. Pro-inflammatory cytokines are important in immunity against malaria, understanding the influence of genetic diversity on cytokine response is important for effective vaccine design. Methods P. falciparum isolates obtained from 300 Nigerians with uncomplicated falciparum malaria at Ijede General Hospital, Ijede (IJE), General Hospital Ajeromi, Ajeromi (AJE) and Saint Kizito Mission Hospital, Lekki, were genotyped by nested polymerase chain reaction of msp-2 block 3 while ELISA was used to determine the pro-inflammatory cytokine response to describe the genetic diversity of P. falciparum. Results Eighteen alleles were observed for msp-2 loci. Of the 195 isolates, 61 (31.0%) had only FC27-type alleles, 38 (19.7%) had only 3D7-type alleles, and 49.3% had multiple parasite lines with both alleles. Band sizes were 275-625 bp for FC27 and 150-425 bp for 3D7. Four alleles were observed from LEK, 2 (375-425 bp) and 2 (275-325 bp) of FC27-and 3D7-types, respectively; 12 alleles from AJE, 9 (275-625 bp) and 3 (325-425 bp) of FC27-types and 3D7-types, respectively; while IJE had a total of 12 alleles, 9 (275-625 bp) and 3 (325-425 bp) of FC27-types and 3D7-types, respectively. Mean multiplicity of infection (MOI) was 1.54. Heterozygosity (HE) ranged from 0.77 to 0.87 and was highest for IJE (0.87). Cytokine response was higher among <5 years and was significantly associated with MOI (P > 0.05) but with neither parasite density nor infection type. Conclusion P. falciparum genetic diversity is extensive in Nigeria, protection via pro-inflammatory cytokines have little or no interplay with infection multiplicity.
Collapse
Affiliation(s)
- Olusola Ajibaye
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Lagos, Nigeria.,Department of Biochemistry, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Akinniyi A Osuntoki
- Department of Biochemistry, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Albert Ot Ebuehi
- Department of Biochemistry, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Bamidele A Iwalokun
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Emmanuel O Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.,Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - Kathleen N Egbuna
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Lagos, Nigeria
| |
Collapse
|
32
|
Mohammed H, Kassa M, Assefa A, Tadesse M, Kebede A. Genetic polymorphism of Merozoite Surface Protein-2 (MSP-2) in Plasmodium falciparum isolates from Pawe District, North West Ethiopia. PLoS One 2017; 12:e0177559. [PMID: 28542247 PMCID: PMC5438166 DOI: 10.1371/journal.pone.0177559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background In malaria endemic regions, Plasmodium falciparum infection is characterized by extensive genetic diversity. Describing this diversity provides important information about the local malaria situation. This study was conducted to evaluate the extent of genetic diversity of P. falciparum in Pawe district, North West Ethiopia, using the highly polymorphic merozoite surface protein 2 gene. Methods Atotal of 92 isolates from patients with uncomplicated P. falciparum attending Pawe Health Centre were collected from September to December 2013. Genomic DNA was extracted using the Chelex method and analyzed by length polymorphism following gel electrophoresis of DNA products from nested PCR of msp2 (block 3), targeting allelic families of FC27 and 3D7/IC. Results There were twenty-two different msp2 alleles, 11 corresponding to the 3D7/ IC and 11 to the FC27 allelic family. The frequency of isolates of the msp2 3D7/IC allelic familywas higher (51%) compared to FC27 (49%). The majority of the isolates (76%) contained multiple infections andthe overall mean multiplicity of infection was 2.8 (CI 95% 2.55–3.03). The heterozygosity index was 0.66 for msp2. There was no statically significant difference in the multiplicity of infection by age or parasite density. Conclusions The results of this study show that P.falciparum polymorphismsare extensive in Northwest Ethiopia and most of the infections are composed of multiple clones.
Collapse
Affiliation(s)
- Hussein Mohammed
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- * E-mail:
| | - Moges Kassa
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mekonnen Tadesse
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Amha Kebede
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
33
|
Koukouikila-Koussounda F, Ntoumi F. Malaria epidemiological research in the Republic of Congo. Malar J 2016; 15:598. [PMID: 28010728 PMCID: PMC5180396 DOI: 10.1186/s12936-016-1617-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Reliable and comprehensive information on the burden of malaria is critical for guiding national and international efforts in malaria control. The purpose of this review is to provide an overview of published data and available information on malaria resulting from field studies/investigations conducted in the Republic of Congo (RoC) from 1992 to 2015, as baseline for assisting public health authorities and researchers to define future research priorities as well as interventions. METHODS This review considers data from peer-reviewed articles and information from the National Malaria Control Programme reports, based on field investigations or samples collected from 1992 to 2015. Peer-reviewed papers were searched throughout online bibliographic databases PubMed, HINARI and Google Scholar using the following terms: "malaria", "Congo", "Brazzaville", "prevalence", "antimalarial", "efficacy", "falciparum", "genetic", "diversity". Original articles and reviews were included and selection of relevant papers was made. RESULTS Twenty-eight published articles were included in this review and two additional records from the National Malaria Control Programme were also considered. The majority of studies were conducted in Brazzaville and Pointe-Noire. CONCLUSION The present systematic review reveals that number of studies have been conducted in the RoC with regard to malaria. However, their results cannot formally be generalized at the country level. This suggests a need for implementing regular multisite investigations and surveys that may be representative of the country, calling for the support and lead of the Ministry of Health.
Collapse
Affiliation(s)
| | - Francine Ntoumi
- Fondation Congolaise Pour la Recherche Médicale, Villa D6, WHO AFRO Campus, Brazzaville, Republic of Congo. .,Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of Congo. .,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
34
|
Etoka-Beka MK, Ntoumi F, Kombo M, Deibert J, Poulain P, Vouvoungui C, Kobawila SC, Koukouikila-Koussounda F. Plasmodium falciparum infection in febrile Congolese children: prevalence of clinical malaria 10 years after introduction of artemisinin-combination therapies. Trop Med Int Health 2016; 21:1496-1503. [PMID: 27671736 DOI: 10.1111/tmi.12786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To investigate the proportion of malaria infection in febrile children consulting a paediatric hospital in Brazzaville, to determine the prevalence of submicroscopic malaria infection, to characterise Plasmodium falciparum infection and compare the prevalence of uncomplicated P. falciparum malaria according to haemoglobin profiles. METHODS Blood samples were collected from children aged <10 years with an axillary temperature ≥37.5 °C consulting the paediatric ward of Marien Ngouabi Hospital in Brazzaville. Parasite density was determined and all samples were screened for P. falciparum by nested polymerase chain reaction (PCR) using the P. falciparum msp-2 marker to detect submicroscopic infections and characterise P. falciparum infection. Sickle cell trait was screened by PCR. RESULTS A total of 229 children with fever were recruited, of whom 10% were diagnosed with uncomplicated malaria and 21% with submicroscopic infection. The mean parasite density in children with uncomplicated malaria was 42 824 parasites/μl of blood. The multiplicity of infection (MOI) was 1.59 in children with uncomplicated malaria and 1.69 in children with submicroscopic infection. The mean haemoglobin level was 10.1 ± 1.7 for children with uncomplicated malaria and 12.0 ± 8.6 for children with submicroscopic infection. About 13% of the children harboured the sickle cell trait (HbAS); the rest had normal haemoglobin (HbAA). No difference in prevalence of uncomplicated malaria and submicroscopic infection, parasite density, haemoglobin level, MOI and P. falciparum genetic diversity was observed according to haemoglobin type. CONCLUSION The low prevalence of uncomplicated malaria in febrile Congolese children indicates the necessity to investigate carefully other causes of fever.
Collapse
Affiliation(s)
- Mandingha Kosso Etoka-Beka
- Fondation Congolaise pour la Recherche Médicale, Faculté des Sciences de la Santé, Marien Ngouabi University, Brazzaville, Congo.,Faculté des Sciences et Techniques, Marien Ngouabi University, Brazzaville, Congo
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Faculté des Sciences de la Santé, Marien Ngouabi University, Brazzaville, Congo.,Faculté des Sciences et Techniques, Marien Ngouabi University, Brazzaville, Congo.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Michael Kombo
- Fondation Congolaise pour la Recherche Médicale, Faculté des Sciences de la Santé, Marien Ngouabi University, Brazzaville, Congo
| | - Julia Deibert
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Pierre Poulain
- Fondation Congolaise pour la Recherche Médicale, Faculté des Sciences de la Santé, Marien Ngouabi University, Brazzaville, Congo.,Institut National de la Santé et de la Recherche Médicale U 1134, Paris, France.,UMR_S 1134, DSIMB, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Institut National de la Transfusion Sanguine, DSIMB, Paris, France.,UMR_S 1134, Laboratory of Excellence GR-Ex, DSIMB, Paris, France
| | - Christevy Vouvoungui
- Fondation Congolaise pour la Recherche Médicale, Faculté des Sciences de la Santé, Marien Ngouabi University, Brazzaville, Congo
| | | | - Felix Koukouikila-Koussounda
- Fondation Congolaise pour la Recherche Médicale, Faculté des Sciences de la Santé, Marien Ngouabi University, Brazzaville, Congo.,Faculté des Sciences et Techniques, Marien Ngouabi University, Brazzaville, Congo
| |
Collapse
|
35
|
Genetic diversity and multiplicity of infection of Plasmodium falciparum isolates from Kolkata, West Bengal, India. INFECTION GENETICS AND EVOLUTION 2016; 43:239-44. [PMID: 27259367 DOI: 10.1016/j.meegid.2016.05.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 01/26/2023]
Abstract
The study of genetic diversity of Plasmodium falciparum is necessary to understand the distribution and dynamics of parasite populations. The genetic diversity of P. falciparum merozoite surface protein-1 and 2 has been extensively studied from different parts of world. However, limited data are available from India. This study was aimed to determine the genetic diversity and multiplicity of infection (MOI) of P. falciparum population in Kolkata, West Bengal, India. A total of 80day-zero blood samples from Kolkata were collected during a therapeutic efficacy study in 2008-2009. DNA was extracted; allelic frequency and diversity were investigated by PCR-genotyping method for msp1 and msp2 gene and fragment sizing was done by Bio-Rad Gel-Doc system using Image Lab (version 4.1) software. P. falciparum msp1 and msp2 markers were highly polymorphic with low allele frequencies. In Kolkata, 27 msp1 different genotypes (including 11of K1, 6 of MAD20 and 10 of Ro33 allelic families) and 30 different msp2 genotypes (of which 17 and 13 belonged to the FC27 and 3D7 allelic families, respectively) were recorded. The majority of these genotypes occurred at a frequency below 10%. The mean MOI for msp1 and msp2 gene were 2.05 and 3.72, respectively. The P. falciparum population of Kolkata was genetically diverse. As the frequencies of most of the msp1 and msp2 alleles were low, the probability of new infection with genotype identical to that in pretreatment infection was very rare. This information will serve as baseline data for evaluation of malaria control interventions as well as for monitoring the parasite population structure.
Collapse
|
36
|
Genetic Polymorphism of msp1 and msp2 in Plasmodium falciparum Isolates from Côte d'Ivoire versus Gabon. J Parasitol Res 2016; 2016:3074803. [PMID: 27110390 PMCID: PMC4823507 DOI: 10.1155/2016/3074803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction. The characterization of genetic profile of Plasmodium isolates from different areas could help in better strategies for malaria elimination. This study aimed to compare P. falciparum diversity in two African countries. Methods. Isolates collected from 100 and 73 falciparum malaria infections in sites of Côte d'Ivoire (West Africa) and Gabon (Central Africa), respectively, were analyzed by a nested PCR amplification of msp1 and msp2 genes. Results. The K1 allelic family was widespread in Côte d'Ivoire (64.6%) and in Gabon (56.6%). For msp2, the 3D7 alleles were more prevalent (>70% in both countries) compared to FC27 alleles. In Côte d'Ivoire, the frequencies of multiple infections with msp1 (45.1%) and msp2 (40.3%) were higher than those found for isolates from Gabon, that is, 30.2% with msp1 and 31.4% with msp2. The overall complexity of infection was 1.66 (SD = 0.79) in Côte d'Ivoire and 1.58 (SD = 0.83) in Gabon. It decreased with age in Côte d'Ivoire in contrast to Gabon. Conclusion. Differences observed in some allelic families and in complexity profile may suggest an impact of epidemiological facies as well as immunological response on genetic variability of P. falciparum.
Collapse
|
37
|
Niang M, Loucoubar C, Sow A, Diagne MM, Faye O, Faye O, Diallo M, Toure-Balde A, Sall AA. Genetic diversity of Plasmodium falciparum isolates from concurrent malaria and arbovirus co-infections in Kedougou, southeastern Senegal. Malar J 2016; 15:155. [PMID: 26969623 PMCID: PMC4788873 DOI: 10.1186/s12936-016-1208-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022] Open
Abstract
Background Concurrent malaria and arbovirus infections are common and represent an important public health concern in regions where both diseases are endemic. The present study investigates the genetic diversity and complexity of Plasmodium falciparum infection in concurrent malaria-arbovirus infections in Kedougou region, southeastern Senegal. Methods Parasite DNA was extracted from 60 to 27 sera samples collected from P. falciparum isolates of malaria and concurrent malaria-arbovirus infected patients, respectively, and followed by PCR-genotyping targeting the msp-1 (block2) and msp-2 (block3) allelic families. Results The mean number of genotype per allelic family was comparable between the two groups. K1 was the predominant msp-1 allelic type both in malaria (94.91 %) and arbovirus-malaria (92.59 %) groups, whereas IC/3D7 was the most prevalent msp-2 allelic type in malaria (94.91 %) and arbovirus-malaria (96.29 %) groups. Frequencies of msp-1 and msp-2 allelic types were statistically comparable between the two groups (Fisher exact test, P > 0.05) and were not associated with age. FC27 was strikingly the least prevalent in both groups and was absent in children under 5 years of age. The proportions of P. falciparum isolates from malaria-infected patients carrying the three msp-1 allelic types (67.44 %) or the two msp-2 allelic types (76.47 %) were significantly higher than those from arbovirus-malaria co-infected patients (Exact binomial test, P < 0.05). The multiplicities of infection (MOI) were low and comparable for msp-1 (1.19 vs 1.22) and msp-2 (1.11 vs 1.10), respectively between malaria and arbovirus-malaria groups. Conclusion The study showed no difference in the genetic diversity between P. falciparum isolates from malaria and concurrent malaria-arbovirus infected patients in Kedougou. The MOI was low despite intense malaria transmission in Kedougou. The overall results suggest a limited or no influence of arbovirus infections on P. falciparum diversity and complexity of malaria infection.
Collapse
Affiliation(s)
- Makhtar Niang
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal.
| | - Cheikh Loucoubar
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Abdourahmane Sow
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Moussa Moise Diagne
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Oumar Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Ousmane Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Mawlouth Diallo
- Medical Entomology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | | | - Amadou A Sall
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| |
Collapse
|
38
|
Apinjoh TO, Tata RB, Anchang-Kimbi JK, Chi HF, Fon EM, Mugri RN, Tangoh DA, Nyingchu RV, Ghogomu SM, Nkuo-Akenji T, Achidi EA. Plasmodium falciparum merozoite surface protein 1 block 2 gene polymorphism in field isolates along the slope of mount Cameroon: a cross - sectional study. BMC Infect Dis 2015; 15:309. [PMID: 26242307 PMCID: PMC4526171 DOI: 10.1186/s12879-015-1066-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains a major global health burden despite the intensification of control efforts, due partly to the lack of an effective vaccine. Information on genetic diversity in natural parasite populations constitutes a major impediment to vaccine development efforts and is limited in some endemic settings. The present study characterized diversity by investigating msp1 block 2 polymorphisms and the relationship between the allele families with ethnodemographic indices and clinical phenotype. METHOD Individuals with asymptomatic parasitaemia (AP) or uncomplicated malaria (UM) were enrolled from rural, semi-rural and semi-urban localities at varying altitudes along the slope of mount Cameroon. P. falciparum malaria parasitaemic blood screened by light microscopy was depleted of leucocytes using CF11 cellulose columns and the parasite DNA genotyped by nested PCR. RESULTS Length polymorphism was assessed in 151 field isolates revealing 64 (5) and 274 (22) distinct recombinant and major msp1 allelic fragments (genotypes) respectively. All family specific allelic types (K1, MAD20 and RO33) as well as MR were observed in the different locations, with K1 being most abundant. Eighty seven (60 %) of individuals harbored more than one parasite clone, with a significant proportion (p = 0.009) in rural compared to other settings. AP individuals had higher (p = 0.007) K1 allele frequencies but lower (p = 0.003) mean multiplicity of genotypes per infection (2.00 ± 0.98 vs. 2.56 ± 1.17) compared to UM patients. CONCLUSIONS These results indicate enormous diversity of P. falciparum in the area and suggests that allele specificity and complexity may be relevant for the progression to symptomatic disease.
Collapse
Affiliation(s)
- Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| | - Rolland B Tata
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | | | - Hanesh F Chi
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | - Eleanor M Fon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| | - Regina N Mugri
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | - Delphine A Tangoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon. .,Department of Medical Laboratory Science, University of Buea, Buea, Cameroon.
| | - Robert V Nyingchu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon. .,Department of Medical Laboratory Science, University of Buea, Buea, Cameroon.
| | - Stephen M Ghogomu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| | - Theresa Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | - Eric A Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| |
Collapse
|
39
|
Mohammed H, Mindaye T, Belayneh M, Kassa M, Assefa A, Tadesse M, Woyessa A, Mengesha T, Kebede A. Genetic diversity of Plasmodium falciparum isolates based on MSP-1 and MSP-2 genes from Kolla-Shele area, Arbaminch Zuria District, southwest Ethiopia. Malar J 2015; 14:73. [PMID: 25889847 PMCID: PMC4340489 DOI: 10.1186/s12936-015-0604-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/02/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The genetic diversity of Plasmodium falciparum has been extensively studied in various countries. However, limited data are available from Ethiopia. This study was conducted to evaluate the extent of genetic diversity of P. falciparum in Kolla-Shele, in the southwest of Ethiopia. METHODS A total of 88 isolates from patients with uncomplicated P. falciparum attending Kolla-Shele Health Centre was collected from September to December, 2008. After extraction of DNA by Chelex method, the samples were genotyped by using nested-PCR of msp1 (block 2) and msp2 (block 3) including their allelic families: K1, MAD20, RO33 and FC27, 3D7/IC1, respectively. RESULTS Allelic variation in both msp1 and msp2 were identified in the 88 blood samples. For msp1 67% (59/88) and msp2 44% (39/88) were observed. K1 was the predominant msp1 allelic family observed in 33.9% (20/59) of the samples followed by RO33 and MAD20. Of the msp2 allelic family 3D7/IC1 showed higher frequency (21.5%) compared to FC27 (10.3%). A total of twenty-three alleles were detected; of which, eleven were from msp2 and twelve from msp2 genes. Fifty-nine percent of isolates had multiple genotypes and the overall mean multiplicity of infection was 1.8 (95% CI: 1.48-2.04). The heterozygosity index was 0.79 and 0.54for msp1 and msp2, respectively. There was no statically significant difference in the multiplicity of infection by either age or parasite density (P > 0.05). CONCLUSION This genetic diversity study showed the presence of five allelic types in the study area, with dominance K1 in the msp1 family and 3D7/IC1 in the msp2 family. Multiple infections were observed in nearly 60% of the samples.
Collapse
Affiliation(s)
| | - Tedla Mindaye
- Department of Laboratory Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Meseret Belayneh
- Department of Laboratory Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Moges Kassa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | | | | | - Adugna Woyessa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | | | - Amha Kebede
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| |
Collapse
|
40
|
Congpuong K, Hoonchaiyapoom T, Inorn K. Plasmodium falciparum genotype diversity in artemisinin derivatives treatment failure patients along the Thai-Myanmar border. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:631-7. [PMID: 25548414 PMCID: PMC4277025 DOI: 10.3347/kjp.2014.52.6.631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/09/2014] [Accepted: 09/28/2014] [Indexed: 11/26/2022]
Abstract
Genetic characteristics of Plasmodium falciparum may play a role in the treatment outcome of malaria infection. We have studied the association between diversity at the merozoite surface protein-1 (msp-1), msp-2, and glutamate-rich protein (glurp) loci and the treatment outcome of uncomplicated falciparum malaria patients along the Thai-Myanmar border who were treated with artemisinin derivatives combination therapy. P. falciparum isolates were collected prior to treatment from 3 groups of patients; 50 cases of treatment failures, 50 recrudescences, and 56 successful treatments. Genotyping of the 3 polymorphic markers was analyzed by nested PCR. The distribution of msp-1 alleles was significantly different among the 3 groups of patients but not the msp-2 and glurp alleles. The allelic frequencies of K1 and MAD20 alleles of msp1 gene were higher while RO33 allele was significantly lower in the successful treatment group. Treatment failure samples had a higher median number of alleles as compared to the successful treatment group. Specific genotypes of msp-1, msp-2, and glurp were significantly associated with the treatment outcomes. Three allelic size variants were significantly higher among the isolates from the treatment failure groups, i.e., K1270-290, 3D7610-630, G650-690, while 2 variants, K1150-170, and 3D7670-690 were significantly lower. In conclusion, the present study reports the differences in multiplicity of infection and distribution of specific alleles of msp-1, msp-2, and glurp genes in P. falciparum isolates obtained from treatment failure and successful treatment patients following artemisinin derivatives combination therapy.
Collapse
Affiliation(s)
| | - Thirasak Hoonchaiyapoom
- Bureau of Vector Borne Disease, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Kornnarin Inorn
- Bansomdejchaopraya Rajabhat University, Bangkok 10600, Thailand
| |
Collapse
|
41
|
Oyebola MK, Idowu ET, Olukosi YA, Iwalokun BA, Agomo CO, Ajibaye OO, Tola M, Otubanjo AO. Genetic diversity and complexity of Plasmodium falciparum infections in Lagos, Nigeria. Asian Pac J Trop Biomed 2014; 4:S87-91. [PMID: 25183154 DOI: 10.12980/apjtb.4.2014c1301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To analyse the genetic diversity of Plasmodium falciparum (P. falciparum) using msp-1 and msp-2 as antigenic markers. METHODS Parasite DNA was extracted from 100 blood samples collected from P. falciparum-positive patients confirmed by microscopy, and followed by PCR-genotyping targeting the msp-1 (block2) and msp-2 (block 3) allelic families. RESULTS All the families of msp-1 (K1, MAD20 and R033) and msp-2 (FC27 and 3D7) locus were observed. Results revealed that K1 (60/100) was the most predominant genotype of msp-1 allelic family followed by the genotypes of MAD20 (50/100) and R033 (45/100). In the msp-2 locus, FC27 genotype (62/100) showed higher frequency than 3D7 genotype (55/100). The allelic families were detected either alone or in combination with other families. However, no R033/MAD20 combination was observed. Multiplicity of infection (MOI) with msp-1 was higher in the locality of Ikorodu (1.50) than in Lekki (1.39). However, MOI with msp-2 was lower in the locality of Ikorodu (1.14) than in Lekki (1.76). There was no significant difference in the mean MOI between the two study areas (P=0.427). CONCLUSIONS The observation of limited diversity of malaria parasites may imply that the use of antigenic markers as genotyping tools for distinguishing recrudescence and re-infections with P. falciparum during drug trials is subjective.
Collapse
Affiliation(s)
- Muyiwa K Oyebola
- Parasitology and Bioinformatics, Faculty of Science University of Lagos, Nigeria ; Malaria Research Laboratory, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Emmanuel T Idowu
- Parasitology and Bioinformatics, Faculty of Science University of Lagos, Nigeria
| | - Yetunde A Olukosi
- Malaria Research Laboratory, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Bamidele A Iwalokun
- Malaria Research Laboratory, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Chimere O Agomo
- Malaria Research Laboratory, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Olusola O Ajibaye
- Malaria Research Laboratory, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Monday Tola
- Malaria Research Laboratory, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Adetoro O Otubanjo
- Parasitology and Bioinformatics, Faculty of Science University of Lagos, Nigeria
| |
Collapse
|
42
|
Congpuong K, Sukaram R, Prompan Y, Dornae A. Genetic diversity of the msp-1, msp-2, and glurp genes of P lasmodium falciparum isolates along the Thai-Myanmar borders. Asian Pac J Trop Biomed 2014; 4:598-602. [DOI: 10.12980/apjtb.4.2014apjtb-2014-0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/27/2014] [Indexed: 10/24/2022] Open
|
43
|
Kuesap J, Chaijaroenkul W, Ketprathum K, Tattiyapong P, Na-Bangchang K. Evolution of genetic polymorphisms of Plasmodium falciparum merozoite surface protein (PfMSP) in Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:105-9. [PMID: 24623892 PMCID: PMC3948986 DOI: 10.3347/kjp.2014.52.1.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/30/2013] [Accepted: 11/12/2013] [Indexed: 11/23/2022]
Abstract
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Wanna Chaijaroenkul
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Kanchanok Ketprathum
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Puntanat Tattiyapong
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| |
Collapse
|
44
|
Oyedeji SI, Awobode HO, Anumudu C, Kun J. Genetic diversity of Plasmodium falciparum isolates from naturally infected children in north-central Nigeria using the merozoite surface protein-2 as molecular marker. ASIAN PAC J TROP MED 2014; 6:589-94. [PMID: 23790328 DOI: 10.1016/s1995-7645(13)60102-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 12/15/2012] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To characterize the genetic diversity of Plasmodium falciparum (P. falciparum) field isolates in children from Lafia, North-central Nigeria, using the highly polymorphic P. falciparum merozoite surface protein 2 (MSP-2) gene as molecular marker. METHODS Three hundred and twenty children were enrolled into the study between 2005 and 2006. These included 140 children who presented with uncomplicated malaria at the Dalhatu Araf Specialist Hospital, Lafia and another 180 children from the study area with asymptomatic infection. DNA was extracted from blood spot on filter paper and MSP-2 genes were genotyped using allele-specific nested PCR in order to analyze the genetic diversity of parasite isolates. RESULTS A total of 31 and 34 distinct MSP-2 alleles were identified in the asymptomatic and uncomplicated malaria groups respectively. No difference was found between the multiplicity of infection in the asymptomatic group and that of the uncomplicated malaria group (P>0.05). However, isolates of the FC27 allele type were dominant in the asymptomatic group whereas isolates of the 3D7 allele type were dominant in the uncomplicated malaria group. CONCLUSIONS This study showed a high genetic diversity of P. falciparum isolates in North-central Nigeria and is comparable to reports from similar areas with high malaria transmission intensity.
Collapse
|
45
|
Adukpo S, Kusi KA, Ofori MF, Tetteh JKA, Amoako-Sakyi D, Goka BQ, Adjei GO, Edoh DA, Akanmori BD, Gyan BA, Dodoo D. High plasma levels of soluble intercellular adhesion molecule (ICAM)-1 are associated with cerebral malaria. PLoS One 2013; 8:e84181. [PMID: 24386348 PMCID: PMC3873986 DOI: 10.1371/journal.pone.0084181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/12/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is responsible for most of the malaria-related deaths in children in sub-Saharan Africa. Although, not well understood, the pathogenesis of CM involves parasite and host factors which contribute to parasite sequestration through cytoadherence to the vascular endothelium. Cytoadherence to brain microvasculature is believed to involve host endothelial receptor, CD54 or intercellular adhesion molecule (ICAM)-1, while other receptors such as CD36 are generally involved in cytoadherence of parasites in other organs. We therefore investigated the contributions of host ICAM-1 expression and levels of antibodies against ICAM-1 binding variant surface antigen (VSA) on parasites to the development of CM. METHODOLOGY/PRINCIPAL FINDINGS Paediatric malaria patients, 0.5 to 13 years were recruited and grouped into CM and uncomplicated malaria (UM) patients, based on well defined criteria. Standardized ELISA protocol was used to measure soluble ICAM-1 (sICAM-1) levels from acute plasma samples. Levels of IgG to CD36- or ICAM-1-binding VSA were measured by flow cytometry during acute and convalescent states. Wilcoxon sign rank-test analysis to compare groups revealed association between sICAM-1 levels and CM (p<0.0037). Median levels of antibodies to CD36-binding VSA were comparable in the two groups at the time of admission and 7 days after treatment was initiated (p>0.05). Median levels of antibodies to CD36-binding VSAs were also comparable between acute and convalescent samples within any patient group. Median levels of antibodies to ICAM-1-binding VSAs were however significantly lower at admission time than during recovery in both groups. CONCLUSIONS/SIGNIFICANCE High levels of sICAM-1 were associated with CM, and the sICAM-1 levels may reflect expression levels of the membrane bound form. Anti-VSA antibody levels to ICAM-binding parasites was more strongly associated with both UM and CM than antibodies to CD36 binding parasites. Thus, increasing host sICAM-1 levels were associated with CM whilst antibodies to parasite expressing non-ICAM-1-binding VSAs were not.
Collapse
Affiliation(s)
- Selorme Adukpo
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Animal Biology and Conservation Science, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| | - Kwadwo A. Kusi
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Michael F. Ofori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - John K. A. Tetteh
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Amoako-Sakyi
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Bamenla Q. Goka
- Department of Child Health, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - George O. Adjei
- Department of Child Health, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Dominic A. Edoh
- Department of Animal Biology and Conservation Science, University of Ghana, Legon, Accra, Ghana
| | - Bartholomew D. Akanmori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ben A. Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dodoo
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
46
|
Ogouyèmi-Hounto A, Ndam NT, Fadégnon G, Azagnandji C, Bello M, Moussiliou A, Chippaux JP, Kinde Gazard D, Massougbodji A. Low prevalence of the molecular markers of Plasmodium falciparum resistance to chloroquine and sulphadoxine/pyrimethamine in asymptomatic children in Northern Benin. Malar J 2013; 12:413. [PMID: 24225351 PMCID: PMC3834525 DOI: 10.1186/1475-2875-12-413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/10/2013] [Indexed: 12/18/2022] Open
Abstract
Background In Benin, very few studies have been done on the genetics of Plasmodium falciparum and the resistance markers of anti-malarial drugs, while malaria treatment policy changed in 2004. Chloroquine (CQ) and sulphadoxine pyrimethamine (SP) have been removed and replaced by artemisinin-combination therapy (ACT). The objective of this study was to determine the genetic diversity of P. falciparum and the prevalence of P. falciparum molecular markers that are associated with resistance to CQ and SP in northern Benin seven years after the new policy was instituted. Methods The study was conducted in northern Benin, a region characterized by a seasonal malaria transmission. Blood samples were collected in 2012 from children presenting with asymptomatic P. falciparum infections. Samples collected in filter paper were genotyped by primary and nested PCR in block 2 of msp-1 and block 3 of msp-2 to analyse the diversity of P. falciparum. The prevalence of critical point mutations in the genes of Pfcrt (codon 76), Pfmdr1 (codon 86), Pfdhfr (codons, 51, 59 and 108) and Pfdhps (codons 437, 540) was examined in parasite isolates by mutation-specific restriction enzyme digestion. Results Genotyping of 195 isolates from asymptomatic children showed 34 msp-1 and 38 msp-2 genotypes. The multiplicity of infection was 4.51 ± 0.35 for msp-1 and 4.84 ± 0.30 for msp-2. Only the codon 51 of Pfdhfr and codon 437 of Pfdhps showed a high mutation rate: I51: 64.4% (57.3; 71.2); G437: 47.4% (40.2; 54.7), respectively. The prevalence of Pfdhfr triple mutant IRN (I51, R59 and N108) was 1.5% (0.3; 3.9), and Pfdhfr/Pfdhps quadruple mutant IRNG (PfdhfrI51, R59, N108, and PfdhpsG437): 0. 5% (0; 2.5). No mutation was found with codon 540 of Pfdhps. Analysis of mutation according to age (younger or older than ten years) showed similar frequencies in each category without significant difference between the two groups. Conclusions This study showed a high diversity of P. falciparum in northern Benin with a very low prevalence of resistance markers to CQ and SP that dramatically contrasted with the pattern observed in southern Benin. No influence of age on genetic diversity of P. falciparum and on distribution of the mutations was observed.
Collapse
Affiliation(s)
- Aurore Ogouyèmi-Hounto
- Unité d'Enseignement et de Recherche en Parasitologie Mycologie de la Faculté des Sciences de la Santé 01 BP188, Bénin.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ogouyèmi-Hounto A, Gazard DK, Ndam N, Topanou E, Garba O, Elegbe P, Hountohotegbe T, Massougbodji A. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum isolates from children in South of Benin. ACTA ACUST UNITED AC 2013; 20:37. [PMID: 24135216 PMCID: PMC3798888 DOI: 10.1051/parasite/2013039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/06/2013] [Indexed: 01/22/2023]
Abstract
The aim of this study was to determine the genetic diversity of Plasmodium falciparum by analyzing the polymorphism of the msp-1 and msp-2 genes and the multiplicity of infection in children with uncomplicated malaria in southern Benin. Blood samples of children with fever or history of fever with thick smear positive P. falciparum were collected on filter paper. After extraction of DNA by Chelex®, the samples underwent nested PCR. 93 isolates from children were genotyped. For the msp-1 gene, the K1 and R033 sequences were the most represented in the study population with 85.2% and 83% prevalence, respectively. Regarding the msp-2 gene, the FC27 family was more highly represented with 99% prevalence against 81.5% for 3D7. Mixed infections accounted for 80.4% of the samples. Twenty-five alleles were identified for msp-1 and 28 for msp-2. Fourteen and ten alleles belonged to the K1 (100-500 bp) and MAD20 (100-500 bp) families, respectively. The RO33 sequence did not show any polymorphism, with only one variant (160 bp) detected. The msp-2 gene was present as 16 FC27 family fragments (250-800 bp) and 12 of the 3D7 family (350-700 bp). The multiplicity of infection was estimated at 3.8 for msp-1 and 3.9 for msp-2 with 77 (87.5%) and 84 (91.3%) samples harboring more than one parasite genotype for msp-1 and msp-2, respectively. The multiplicity of infection (MOI) was influenced neither by age nor by parasite density. This study shows a significant diversity of P. falciparum in southern Benin with an MOI unaffected by age or by parasite density.
Collapse
Affiliation(s)
- Aurore Ogouyèmi-Hounto
- Unité d'Enseignement et de Recherche en Parasitologie-Mycologie de la Faculté des Sciences de la Santé, 01BP188 Cotonou, Bénin - Laboratoire du Centre de Lutte Intégrée contre le Paludisme, 01BP188 Cotonou, Bénin
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hamid MMA, Mohammed SB, El Hassan IM. Genetic Diversity of Plasmodium falciparum Field Isolates in Central Sudan Inferred by PCR Genotyping of Merozoite Surface Protein 1 and 2. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2013; 5:95-101. [PMID: 23641369 PMCID: PMC3624726 DOI: 10.4103/1947-2714.107524] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Characterization of Plasmodium falciparum diversity is commonly achieved by amplification of the polymorphic regions of the merozoite surface proteins 1 (MSP1) and 2 (MSP2) genes. AIMS The present study aimed to determine the allelic variants distribution of MSP1 and MSP2 and multiplicity of infection in P. falciparum field isolates from Kosti, central Sudan, an area characterized by seasonal malaria transmission. MATERIALS AND METHODS Total 121 samples (N = 121) were collected during a cross-sectional survey between March and April 2003. DNA was extracted and MSP1 and MSP2 polymorphic loci were genotyped. RESULTS The total number of alleles identified in MSP1 block 2 was 11, while 16 alleles were observed in MSP2 block 3. In MSP1, RO33 was found to be the predominant allelic type, carried alone or in combination with MAD20 and K1 types, whereas FC27 family was the most prevalent in MSP2. Sixty two percent of isolates had multiple genotypes and the overall mean multiplicity of infection was 1.93 (CI 95% 1.66-2.20). Age correlated with parasite density (P = 0.017). In addition, a positive correlation was observed between parasite densities and the number of alleles (P = 0.022). CONCLUSION Genetic diversity in P. falciparum field isolates in central Sudan was high and consisted of multiple clones.
Collapse
Affiliation(s)
- Muzamil M Abdel Hamid
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | | |
Collapse
|
49
|
Ntoumi F, Vouvoungui JC, Ibara R, Landry M, Sidibé A. Malaria burden and case management in the Republic of Congo: limited use and application of rapid diagnostic tests results. BMC Public Health 2013; 13:135. [PMID: 23409963 PMCID: PMC3586348 DOI: 10.1186/1471-2458-13-135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There have been few investigations evaluating the burden of malaria disease at district level in the Republic of Congo since the introduction of artemisinin-based combination therapies (ACTs). The main objective of this study was to document laboratory-confirmed cases of malaria using microscopy and/or rapid diagnostic tests (RDTs) in children and pregnant women attending selected health facilities in Brazzaville and Pointe Noire, the two main cities of the country. Secondly, P. falciparum genetic diversity and multiplicity of infection during the malaria transmission season of October 2011 to February 2012 in these areas were described. METHODS Three and one health facilities were selected in Brazzaville and Pointe-Noire as sentinel sites for malaria surveillance. Children under 15 years of age and pregnant women were enrolled if study criteria were met and lab technicians used RDT and/or microscopy to diagnose malaria. In order to determine the multiplicity of infection, parasite DNA was extracted from RDT cassette and msp2 P.falciparum genotyped. RESULTS Malaria prevalence among more than 3,000 children and 700 pregnant women ranged from 8 to 29%, and 8 to 24% respectively depending on health center locality. While health workers did not optimize use of RDTs, microscopy remained a reference diagnostic tool. Quality control of malaria diagnosis at the reference laboratory showed acceptable health centre performances. P. falciparum genetic diversity determination using msp2 gene marker ranged from 9 to 20 alleles and remains stable while multiplicity of infection (mean of 1.7clone/infected individual) and parasite densities in clinical isolates were lower than previously reported. CONCLUSIONS These findings are consistent with a reduction of malaria transmission in the two areas. This study raises the issue of targeted training for health workers and sustained availability of RDTs in order to improve quality of care through optimal use of RDTs.
Collapse
Affiliation(s)
- Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.
| | | | | | | | | |
Collapse
|
50
|
Ndounga M, Mayengue PI, Casimiro PN, Loumouamou D, Basco LK, Ntoumi F, Brasseur P. Artesunate-amodiaquine efficacy in Congolese children with acute uncomplicated falciparum malaria in Brazzaville. Malar J 2013; 12:53. [PMID: 23384005 PMCID: PMC3568728 DOI: 10.1186/1475-2875-12-53] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/29/2013] [Indexed: 11/10/2022] Open
Abstract
Background Congo-Brazzaville adopted artemisinin-based combination therapy (ACT) in 2006. Artesunate-amodiaquine (AS + AQ) and artemether-lumefantrine are the first-line and second-line anti-malarial drugs to treat uncomplicated Plasmodium falciparum malaria, respectively. The baseline efficacy of AS + AQ was evaluated from February to August 2005 in patients living in Brazzaville, the capital city of the Republic of Congo. Methods One hundred and ninety-seven patients (96 ≤5 years old and 101 >5 years old, including adults) were recruited in a non-randomized study, treated under supervision with AS + AQ, and were followed up for 28 days in accordance with the 2003 World Health Organization protocol. Plasmodium falciparum recrudescent isolates from day 7 to day 28 were compared to pretreatment isolates by polymerase chain reaction (PCR) to distinguish between re-infection and recrudescence. Results The overall efficacy of AS + AQ after PCR correction on day 28 was 94.4%. An adequate clinical and parasitological response was observed in 94.3% and 94.4% of children aged ≤5 years old and those aged >5 years old (including adults), respectively. The main reported adverse events were dizziness, vomiting, diarrhoea, pruritus, headache, anorexia, and abdominal pain. Conclusion This study has shown the high efficacy of AS + AQ in Congolese patients of all ages with acute uncomplicated falciparum malaria and serves as the baseline efficacy and tolerance of this ACT in Brazzaville.
Collapse
Affiliation(s)
- Mathieu Ndounga
- Unité de Recherche sur le Paludisme, Centre d'Etudes sur les Ressources Végétales (CERVE), Brazzaville BP 1249, République du Congo.
| | | | | | | | | | | | | |
Collapse
|