1
|
Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12:900. [PMID: 37513747 PMCID: PMC10384318 DOI: 10.3390/pathogens12070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successfully developed in 1976, the continuous in vitro culture of Plasmodium falciparum has many applications in the field of malaria research. It has become an important experimental model that directly uses a human pathogen responsible for a high prevalence of morbidity and mortality in many parts of the world and is a major source of biological material for immunological, biochemical, molecular, and pharmacological studies. Until present, the basic techniques described by Trager and Jensen and Haynes et al. remain unchanged in many malaria research laboratories. Nonetheless, different factors, including culture media, buffers, serum substitutes and supplements, sources of erythrocytes, and conditions of incubation (especially oxygen concentration), have been modified by different investigators to adapt the original technique in their laboratories or enhance the in vitro growth of the parasites. The possible effects and benefits of these modifications for the continuous cultivation of asexual intraerythrocytic stages of P. falciparum, as well as future challenges in developing a serum-free cultivation system and axenic cultures, are discussed.
Collapse
Affiliation(s)
- Leonardo K Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Unité Mixte de Recherche (UMR) Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
2
|
Carrasquilla M, Drammeh NF, Rawat M, Sanderson T, Zenonos Z, Rayner JC, Lee MCS. Barcoding Genetically Distinct Plasmodium falciparum Strains for Comparative Assessment of Fitness and Antimalarial Drug Resistance. mBio 2022; 13:e0093722. [PMID: 35972144 PMCID: PMC9600763 DOI: 10.1128/mbio.00937-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
The repeated emergence of antimalarial drug resistance in Plasmodium falciparum, including to the current frontline antimalarial artemisinin, is a perennial problem for malaria control. Next-generation sequencing has greatly accelerated the identification of polymorphisms in resistance-associated genes but has also highlighted the need for more sensitive and accurate laboratory tools to profile current and future antimalarials and to quantify the impact of drug resistance acquisition on parasite fitness. The interplay of fitness and drug response is of fundamental importance in understanding why particular genetic backgrounds are better at driving the evolution of drug resistance in natural populations, but the impact of parasite fitness landscapes on the epidemiology of drug resistance has typically been laborious to accurately quantify in the lab, with assays being limited in accuracy and throughput. Here we present a scalable method to profile fitness and drug response of genetically distinct P. falciparum strains with well-described sensitivities to several antimalarials. We leverage CRISPR/Cas9 genome-editing and barcode sequencing to track unique barcodes integrated into a nonessential gene (pfrh3). We validate this approach in multiplex competitive growth assays of three strains with distinct geographical origins. Furthermore, we demonstrate that this method can be a powerful approach for tracking artemisinin response as it can identify an artemisinin resistant strain within a mix of multiple parasite lines, suggesting an approach for scaling the laborious ring-stage survival assay across libraries of barcoded parasite lines. Overall, we present a novel high-throughput method for multiplexed competitive growth assays to evaluate parasite fitness and drug response. IMPORTANCE The complex interplay between antimalarial resistance and parasite fitness has important implications for understanding the development and spread of drug resistance alleles and the impact of genetic background on transmission. One limitation with current methodologies to measure parasite fitness is the ability to scale this beyond simple head-to-head competition experiments between a wildtype control line and test line, with a need for a scalable approach that allows tracking of parasite growth in complex mixtures. In our study, we have used CRISPR editing to insert unique DNA barcodes into a safe-harbor genomic locus to tag multiple parasite strains and use next-generation sequencing to read out strain dynamics. We observe inherent fitness differences between the strains, as well as sensitive modulation of responses to challenge with clinically relevant antimalarials, including artemisinin.
Collapse
Affiliation(s)
- Manuela Carrasquilla
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Ndey F. Drammeh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Mukul Rawat
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Zenon Zenonos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biologics Engineering, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
3
|
Gnangnon B, Duraisingh MT, Buckee CO. Deconstructing the parasite multiplication rate of Plasmodium falciparum. Trends Parasitol 2021; 37:922-932. [PMID: 34119440 DOI: 10.1016/j.pt.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Epidemiological indicators describing population-level malaria transmission dynamics are widely used to guide policy recommendations. However, the determinants of malaria outcomes within individuals are still poorly understood. This conceptual gap partly reflects the fact that there are few indicators that robustly predict the trajectory of individual infections or clinical outcomes. The parasite multiplication rate (PMR) is a widely used indicator for the Plasmodium intraerythrocytic development cycle (IDC), for example, but its relationship to clinical outcomes is complex. Here, we review its calculation and use in P. falciparum malaria research, as well as the parasite and host factors that impact it. We also provide examples of metrics that can help to link within-host dynamics to malaria clinical outcomes when used alongside the PMR.
Collapse
Affiliation(s)
- Bénédicte Gnangnon
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caroline O Buckee
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Tirrell AR, Vendrely KM, Checkley LA, Davis SZ, McDew-White M, Cheeseman IH, Vaughan AM, Nosten FH, Anderson TJC, Ferdig MT. Pairwise growth competitions identify relative fitness relationships among artemisinin resistant Plasmodium falciparum field isolates. Malar J 2019; 18:295. [PMID: 31462253 PMCID: PMC6714446 DOI: 10.1186/s12936-019-2934-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background Competitive outcomes between co-infecting malaria parasite lines can reveal fitness disparities in blood stage growth. Blood stage fitness costs often accompany the evolution of drug resistance, with the expectation that relatively fitter parasites will be more likely to spread in populations. With the recent emergence of artemisinin resistance, it is important to understand the relative competitive fitness of the metabolically active asexual blood stage parasites. Genetically distinct drug resistant parasite clones with independently evolved sets of mutations are likely to vary in asexual proliferation rate, contributing to their chance of transmission to the mosquito vector. Methods An optimized in vitro 96-well plate-based protocol was used to quantitatively measure-head-to-head competitive fitness during blood stage development between seven genetically distinct field isolates from a hotspot of emerging artemisinin resistance and the laboratory strain, NF54. These field isolates were isolated from patients in Southeast Asia carrying different alleles of kelch13 and included both artemisinin-sensitive and artemisinin-resistant isolates. Fluorescent labeled microsatellite markers were used to track the relative densities of each parasite throughout the co-growth period of 14–60 days. All-on-all competitions were conducted for the panel of eight parasite lines (28 pairwise competitions) to determine their quantitative competitive fitness relationships. Results Twenty-eight pairwise competitive growth outcomes allowed for an unambiguous ranking among a set of seven genetically distinct parasite lines isolated from patients in Southeast Asia displaying a range of both kelch13 alleles and clinical clearance times and a laboratory strain, NF54. This comprehensive series of assays established the growth relationships among the eight parasite lines. Interestingly, a clinically artemisinin resistant parasite line that carries the wild-type form of kelch13 outcompeted all other parasites in this study. Furthermore, a kelch13 mutant line (E252Q) was competitively more fit without drug than lines with other resistance-associated kelch13 alleles, including the C580Y allele that has expanded to high frequencies under drug pressure in Southeast Asian resistant populations. Conclusions This optimized competitive growth assay can be employed for assessment of relative growth as an index of fitness during the asexual blood stage growth between natural lines carrying different genetic variants associated with artemisinin resistance. Improved understanding of the fitness costs of different parasites proliferating in human blood and the role different resistance mutations play in the context of specific genetic backgrounds will contribute to an understanding of the potential for specific mutations to spread in populations, with the potential to inform targeted strategies for malaria therapy.
Collapse
Affiliation(s)
- Abigail R Tirrell
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Katelyn M Vendrely
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sage Z Davis
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | | | - Michael T Ferdig
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
5
|
Schneider KA. Large and finite sample properties of a maximum-likelihood estimator for multiplicity of infection. PLoS One 2018; 13:e0194148. [PMID: 29630605 PMCID: PMC5890990 DOI: 10.1371/journal.pone.0194148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/26/2018] [Indexed: 12/30/2022] Open
Abstract
Reliable measures of transmission intensities can be incorporated into metrics for monitoring disease-control interventions. Genetic (molecular) measures like multiplicity of infection (MOI) have several advantages compared with traditional measures, e.g., R0. Here, we investigate the properties of a maximum-likelihood approach to estimate MOI and pathogen-lineage frequencies. By verifying regulatory conditions, we prove asymptotical unbiasedness, consistency and efficiency of the estimator. Finite sample properties concerning bias and variance are evaluated over a comprehensive parameter range by a systematic simulation study. Moreover, the estimator's sensitivity to model violations is studied. The estimator performs well for realistic sample sizes and parameter ranges. In particular, the lineage-frequency estimates are almost unbiased independently of sample size. The MOI estimate's bias vanishes with increasing sample size, but might be substantial if sample size is too small. The estimator's variance matrix agrees well with the Cramér-Rao lower bound, even for small sample size. The numerical and analytical results of this study can be used for study design. This is exemplified by a malaria data set from Venezuela. It is shown how the results can be used to determine the necessary sample size to achieve certain performance goals. An implementation of the likelihood method and a simulation algorithm for study design, implemented as an R script, is available as S1 File alongside a documentation (S2 File) and example data (S3 File).
Collapse
|
6
|
Murray L, Stewart LB, Tarr SJ, Ahouidi AD, Diakite M, Amambua-Ngwa A, Conway DJ. Multiplication rate variation in the human malaria parasite Plasmodium falciparum. Sci Rep 2017; 7:6436. [PMID: 28743888 PMCID: PMC5527095 DOI: 10.1038/s41598-017-06295-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/09/2017] [Indexed: 11/09/2022] Open
Abstract
It is important to understand intrinsic variation in asexual blood stage multiplication rates of the most virulent human malaria parasite, Plasmodium falciparum. Here, multiplication rates of long-term laboratory adapted parasite clones and new clinical isolates were measured, using a newly standardised assay of growth from low starting density in replicate parallel cultures with erythrocytes from multiple different donors, across multiple cycles. Multiplication rates of long-term established clones were between 7.6 and 10.5 fold per 48 hours, with clone Dd2 having a higher rate than others (clones 3D7, HB3 and D10). Parasite clone-specific growth was then analysed in co-culture assays with all possible heterologous pairwise combinations. This showed that co-culture of different parasites did not affect their replication rates, indicating that there were no suppressive interactions operating between parasites. Multiplication rates of eleven new clinical isolates were measured after a few weeks of culture, and showed a spectrum of replication rates between 2.3 and 6.0 fold per 48 hours, the entire range being lower than for the long-term laboratory adapted clones. Multiplication rate estimates remained stable over time for several isolates tested repeatedly up to three months after culture initiation, indicating considerable persistence of this important trait variation.
Collapse
Affiliation(s)
- Lee Murray
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Lindsay B Stewart
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Sarah J Tarr
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | | | - Mahamadou Diakite
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | | | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
7
|
McCarthy JS, Baker M, O'Rourke P, Marquart L, Griffin P, Hooft van Huijsduijnen R, Möhrle JJ. Efficacy of OZ439 (artefenomel) against early Plasmodium falciparum blood-stage malaria infection in healthy volunteers. J Antimicrob Chemother 2016; 71:2620-7. [PMID: 27272721 PMCID: PMC4992851 DOI: 10.1093/jac/dkw174] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/14/2016] [Indexed: 12/16/2022] Open
Abstract
Objectives OZ439, or artefenomel, is an investigational synthetic ozonide antimalarial with similar potency, but a significantly improved pharmacokinetic profile, compared with artemisinins. We wished to measure key pharmacokinetic and pharmacodynamic parameters and the pharmacokinetic/pharmacodynamic relationship of artefenomel in humans to guide the drug's further development as combination therapy in patients. Patients and methods We tested artefenomel in the human induced blood-stage malaria (IBSM) model. Plasmodium infection was monitored by quantitative PCR (qPCR) and upon reaching 1000 parasites/mL single doses of 100, 200 and 500 mg of artefenomel were administered orally with evaluation of drug exposure and parasitaemia until rescue treatment after 16 days or earlier, if required. Results A single 100 mg dose had only a transient effect, while the 200 mg dose resulted in a significant reduction in parasitaemia before early recrudescence. At the highest (500 mg) dose, initial clearance of parasites below the limit of detection of qPCR was observed, with a 48 h parasite reduction ratio (PRR48) >10 000 and a parasite clearance half-life of 3.6 h (95% CI 3.4–3.8 h). However, at this dose, recrudescence was seen in four of eight subjects 6–10 days after treatment. Pharmacokinetic/pharmacodynamic modelling predicted an MIC of 4.1 ng/mL. Conclusions These results confirm the antimalarial potential of artefenomel for use in a single-exposure combination therapy. The observations from this study support and will assist further clinical development of artefenomel.
Collapse
Affiliation(s)
- James S McCarthy
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane, QLD 4006, Australia University of Queensland, Brisbane, St Lucia, QLD 4006, Australia
| | - Mark Baker
- Department of Translational Medicine, Medicines for Malaria Venture, Route de Pré-Bois 20, 1215 Meyrin, Geneva, Switzerland
| | - Peter O'Rourke
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane, QLD 4006, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane, QLD 4006, Australia
| | - Paul Griffin
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane, QLD 4006, Australia University of Queensland, Brisbane, St Lucia, QLD 4006, Australia QPharm Pty Ltd, Brisbane, 300 Herston Rd, Herston, QLD 4006, Australia Mater Health Services, Raymond Terrace, South Brisbane, QLD 4101, Australia
| | - Rob Hooft van Huijsduijnen
- Department of Translational Medicine, Medicines for Malaria Venture, Route de Pré-Bois 20, 1215 Meyrin, Geneva, Switzerland
| | - Jörg J Möhrle
- Department of Translational Medicine, Medicines for Malaria Venture, Route de Pré-Bois 20, 1215 Meyrin, Geneva, Switzerland
| |
Collapse
|
8
|
Birger RB, Kouyos RD, Cohen T, Griffiths EC, Huijben S, Mina MJ, Volkova V, Grenfell B, Metcalf CJE. The potential impact of coinfection on antimicrobial chemotherapy and drug resistance. Trends Microbiol 2015; 23:537-544. [PMID: 26028590 DOI: 10.1016/j.tim.2015.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
Across a range of pathogens, resistance to chemotherapy is a growing problem in both public health and animal health. Despite the ubiquity of coinfection, and its potential effects on within-host biology, the role played by coinfecting pathogens on the evolution of resistance and efficacy of antimicrobial chemotherapy is rarely considered. In this review, we provide an overview of the mechanisms of interaction of coinfecting pathogens, ranging from immune modulation and resource modulation, to drug interactions. We discuss their potential implications for the evolution of resistance, providing evidence in the rare cases where it is available. Overall, our review indicates that the impact of coinfection has the potential to be considerable, suggesting that this should be taken into account when designing antimicrobial drug treatments.
Collapse
Affiliation(s)
- Ruthie B Birger
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.,Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Emily C Griffiths
- Department of Entomology, Gardner Hall, Derieux Place, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Silvie Huijben
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic -Universitat de Barcelona, Barcelona, Spain
| | - Michael J Mina
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
| | - Victoriya Volkova
- Department of Diagnostic Medicine/Pathobiology, Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bryan Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Schneider KA, Escalante AA. A likelihood approach to estimate the number of co-infections. PLoS One 2014; 9:e97899. [PMID: 24988302 PMCID: PMC4079681 DOI: 10.1371/journal.pone.0097899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/24/2014] [Indexed: 11/25/2022] Open
Abstract
The number of co-infections of a pathogen (multiplicity of infection or MOI) is a relevant parameter in epidemiology as it relates to transmission intensity. Notably, such quantities can be built into a metric in the context of disease control and prevention. Having applications to malaria in mind, we develop here a maximum-likelihood (ML) framework to estimate the quantities of interest at low computational and no additional costs to study designs or data collection. We show how the ML estimate for the quantities of interest and corresponding confidence-regions are obtained from multiple genetic loci. Assuming specifically that infections are rare and independent events, the number of infections per host follows a conditional Poisson distribution. Under this assumption, we show that a unique ML estimate for the parameter () describing MOI exists which is found by a simple recursion. Moreover, we provide explicit formulas for asymptotic confidence intervals, and show that profile-likelihood-based confidence intervals exist, which are found by a simple two-dimensional recursion. Based on the confidence intervals we provide alternative statistical tests for the MOI parameter. Finally, we illustrate the methods on three malaria data sets. The statistical framework however is not limited to malaria.
Collapse
Affiliation(s)
- Kristan A. Schneider
- Department MNI, University of Applied Sciences Mittweida, Mittweida, Germany
- * E-mail:
| | - Ananias A. Escalante
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
10
|
Zhao W, Cai B, Qi Y, Liu S, Hong L, Lu M, Chen X, Qiu C, Peng W, Li J, Su XZ. Multi-strain infections and 'relapse' of Leucocytozoon sabrazesi gametocytes in domestic chickens in southern China. PLoS One 2014; 9:e94877. [PMID: 24728499 PMCID: PMC3984278 DOI: 10.1371/journal.pone.0094877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/20/2014] [Indexed: 11/20/2022] Open
Abstract
Leucocytozoon parasites infect many species of avian hosts, including domestic chicken, and can inflict heavy economic loss to the poultry industry. Although the prevalence and distribution of two Leucocytozoon species (L. sabrazesi and L. caulleryi) have been reported in China previously, there are many questions related to the parasite infection that remain unanswered, including population diversity and transmission dynamics in domestic chickens. Here we surveyed chicken blood samples from seven sites in four provinces of China to identify Leucocytozoon infection, characterized parasite diversity within individual infected hosts and between sampling sites, and investigated the dynamics of gametocytemia in chickens over time. We found high infection rates in three of the seven sites. Clustering parasite sequences of the mitochondrial cytochrome oxidase III (coxIII) and cytochrome b (cytb) genes showed lack of grouping according to geographic origins and individual hosts carrying large numbers of L. sabrazesi strains. Monitoring gametocytemia in blood samples from infected chickens over time showed ‘relapse’ or persistence of low-level gametocytemia for 4–5 months, which could be explored as an in vivo model for testing drugs against liver stages of Apicomplexan parasites. This study provides important information on population diversity and transmission dynamics of L. sabrazesi and for disease control.
Collapse
Affiliation(s)
- Wenting Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, the People's Republic of China
| | - Baowei Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, the People's Republic of China
| | - Yanwei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, the People's Republic of China
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Shengfa Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, the People's Republic of China
| | - Lingxian Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, the People's Republic of China
| | - Mingke Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, the People's Republic of China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, the People's Republic of China
| | - Chunhui Qiu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, the People's Republic of China
| | - Wenfeng Peng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, the People's Republic of China
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, the People's Republic of China
- * E-mail: (XZS); (JL)
| | - Xin-zhuan Su
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, the People's Republic of China
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail: (XZS); (JL)
| |
Collapse
|
11
|
Babiker HA, Gadalla AAH, Ranford-Cartwright LC. The role of asymptomatic P. falciparum parasitaemia in the evolution of antimalarial drug resistance in areas of seasonal transmission. Drug Resist Updat 2013; 16:1-9. [PMID: 23510592 DOI: 10.1016/j.drup.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/11/2013] [Indexed: 01/15/2023]
Abstract
In areas with seasonal transmission, proper management of acute malaria cases that arise in the transmission season can markedly reduce the disease burden. However, asymptomatic carriage of Plasmodium falciparum sustains a long-lasting reservoir in the transmission-free dry season that seeds cyclical malaria outbreaks. Clinical trials targeting asymptomatic parasitaemia in the dry season failed to interrupt the malaria epidemics that follow annual rains. These asymptomatic infections tend to carry multiple-clones, capable of producing gametocytes and infecting Anopheles mosquitoes. Different clones within an infection fluctuate consistently, indicative of interaction between clones during the long course of asymptomatic carriage. However, the therapy-free environment that prevails in the dry season dis-advantages the drug resistant lineages and favors the wild-type parasites. This review highlights some biological and epidemiological characteristics of asymptomatic parasitaemia and calls for consideration of policies to diminish parasite exposure to drugs "therapy-free" and allow natural selection to curb drug resistance in the above setting.
Collapse
Affiliation(s)
- Hamza A Babiker
- Biochemistry Department, Faculty of Medicine, Sultan Qaboos University, Oman.
| | | | | |
Collapse
|