1
|
Meena A, Maggu K, De Nardo AN, Sbilordo SH, Eggs B, Al Toma Sho R, Lüpold S. Life stage-specific effects of heat stress on spermatogenesis and oogenesis in Drosophila melanogaster. J Therm Biol 2024; 125:104001. [PMID: 39486108 DOI: 10.1016/j.jtherbio.2024.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Biodiversity is increasingly threatened by unpredictable, frequent, and intense climatic events like heatwaves that pose harmful impacts on ectotherms. Beyond the health and survival of organisms, reduced reproductive performance has emerged as a critical fitness consequence of thermal stress induced by high temperatures. Many studies on these effects expose organisms to heat stress during the adult stage or throughout development, often focusing on cumulative effects across life stages, and they tend to examine one or the other sex. This approach may not reflect the short-term nature of many extreme heat events and limits our understanding of stage- and sex-specific fitness consequences in short-lived organisms. To address this gap, we used Drosophila melanogaster to investigate the sex-specific reproductive performance following short heat stress of varying intensity at different developmental stages. We found the thermal sensitivity to be higher in males than females, and to increase toward adult emergence, leading to nearly complete reproductive failure and substantially slowed recovery. These results highlight how even brief bouts of heat stress during a sensitive phase could affect population dynamics and persistence. Our findings also underscore that incorporating both sex and life stage could improve predictions of species persistence.
Collapse
Affiliation(s)
- Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alessio N De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonja H Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Benjamin Eggs
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rawaa Al Toma Sho
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Mwamba TM, Dahan-Moss Y, Munhenga G, Maposa I, Koekemoer LL. Host Preferences and Impact of Climate on Blood Feeding in Anopheles funestus Group from South Africa. Trop Med Infect Dis 2024; 9:251. [PMID: 39453278 PMCID: PMC11511239 DOI: 10.3390/tropicalmed9100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Anopheles vaneedeni and Anopheles parensis (members of the An. funestus group) are generally not considered malaria vectors. However, both species were recently identified as potential vectors in South Africa. A critical factor needed to determine their role in malaria transmission is their preference for human blood. The human blood index of An. vaneedeni and An. parensis and their potential role in the ongoing residual malaria transmission in South Africa is unknown. This study aimed to identify host blood meals from the wild-caught An. funestus group in a longitudinal study, and to establish the relationship between temperature, relative humidity, and precipitation on host feeding preferences. Anopheles leesoni, An. parensis, An. vaneedeni, and Anopheles rivulorum were collected, and females mainly fed on cattle. Climatic parameters did not influence the host feeding preferences of these four members of the An. funestus group, but impacted the proportion of females that took a blood meal. Significant changes in feeding proportions were driven by relative humidity, temperature, and precipitation. The role of these species in the ongoing residual malaria transmission in South Africa needs further investigation, as no human blood meals were identified. It is recommended that vector surveillance teams incorporate climatic monitoring and host blood meal identification into their routine activities. This information could provide the malaria vector control programmes with scientific evidence to evaluate the importance of the An. funestus group in residual malaria transmission.
Collapse
Affiliation(s)
- Tshiama Miriam Mwamba
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (T.M.M.); (Y.D.-M.); (G.M.)
- Division of the National Health Laboratory Service, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham 2192, South Africa
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (T.M.M.); (Y.D.-M.); (G.M.)
- Division of the National Health Laboratory Service, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham 2192, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (T.M.M.); (Y.D.-M.); (G.M.)
- Division of the National Health Laboratory Service, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham 2192, South Africa
| | - Innocent Maposa
- Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7599, South Africa;
- Division of Epidemiology & Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Lizette Leonie Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (T.M.M.); (Y.D.-M.); (G.M.)
- Division of the National Health Laboratory Service, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham 2192, South Africa
| |
Collapse
|
3
|
Ayele T, Wondale B, Tamiru G, Eligo N, Lindtjørn B, Massebo F. Infectivity of symptomatic Plasmodium vivax cases to different generations of wild-caught and laboratory-adapted Anopheles arabiensis using a membrane feeding assay, Ethiopia. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100137. [PMID: 37637351 PMCID: PMC10457422 DOI: 10.1016/j.crpvbd.2023.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
When measuring human to mosquito transmission of Plasmodium spp., laboratory-adapted (colony) mosquitoes can be utilized. To connect transmission studies to the local epidemiology, it can be important to comprehend the relationship between infectivity in laboratory-adapted (colony) and wild-caught (wild) mosquitoes of the same species. Microscopically confirmed Plasmodium vivax cases were recruited from health facilities in Arba Minch town, and a nested polymerase chain reaction (nPCR) was used for subsequent confirmation. We performed paired membrane-feeding assays using colony An. arabiensis and three generations of wild origin An. arabiensis. Anopheles arabiensis aged 3-6 days were fed after being starved for 8-14 h. Microscopically, the oocyst development was evaluated at day 7 after feeding. Circumsporozoite proteins (CSPs) assay was carried out by enzyme-linked immunosorbent assay (ELISA). In 19 paired feeding experiments, the feeding efficiency was more than doubled in colony (median: 62.5%; interquartile range, IQR: 35-78%) than in wild mosquitoes (median: 28.5%; IQR: 17.5-40%; P < 0.001). Among the 19 P. vivax gametocyte-positive blood samples, 63.2% (n = 12) were infective to wild An. arabiensis and 73.7% (n = 14) were infective to colony An. arabiensis. The median infection rate was twice as high (26%) in the colony than in the wild (13%) An. arabiensis, although the difference was marginally insignificant (P = 0.06). Although the observed difference was not statistically significant (P = 0.19), the median number of oocysts per midgut was more than twice as high (17.8/midgut) in colony than in wild (7.2/midgut) An. arabiensis. The median feeding efficiency was 26.5% (IQR: 18-37%) in F1, 29.3% (IQR: 28-40%) in F2 and 31.2% (IQR: 30-37%) in F3 generations of wild An. arabiensis. Also, no significant difference was observed in oocyst infection rate and load between generations of wild An. arabiensis. CSP rate of P. vivax was 3.1% (3/97; 95% CI: 0.6-8.8%) in wild and 3.6% (3/84; 95% CI: 0.7-10.1%) in colony An. arabiensis. The results of the present study revealed that oocyst infection and load/midgut, and CSP rate were roughly comparable, indicating that colony mosquitoes can be employed for infectivity studies, while larger sample sizes may be necessary in future studies.
Collapse
Affiliation(s)
- Tenaye Ayele
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
- Department of Biology, Wolaita Sodo University, Sodo, Ethiopia
| | - Biniam Wondale
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Girum Tamiru
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Nigatu Eligo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Bernt Lindtjørn
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
- Centre for International Health, University of Bergen, Norway
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
4
|
Charlwood JD, Smith TA, Kampango A, Tomas EVE, Chitnis N. Time series analysis of survival and oviposition cycle duration of Anopheles funestus (Giles) in Mozambique. PeerJ 2023; 11:e15230. [PMID: 37273537 PMCID: PMC10234278 DOI: 10.7717/peerj.15230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/24/2023] [Indexed: 06/06/2023] Open
Abstract
Background Survival and gonotrophic cycle duration are important determinants of the vectorial capacity of malaria vectors but there are a limited number of approaches to estimate these quantities from field data. Time-series of observations of mosquitoes at different stages in the life-cycle are under-used. Methods Anopheles funestus mosquitoes were caught using various methods over a 7.6-year period in Furvela, Mozambique. Survival and oviposition cycle duration were estimated using (i) an existing time-series approach for analysing dissections of mosquitoes caught in light-traps, extended to allow for variability in the duration of the cycle; (ii) an established approach for estimating cycle duration from resting collection data; (iii) a novel time-series approach fitted to numbers and categories of mosquitoes caught in exit-traps. Results Data were available from 7,396, 6,041 and 1,527 trap-nights for exit-traps, light-traps and resting collections respectively. Estimates of cycle duration varied considerably between the different methods. The estimated proportion of female mosquitoes surviving each day of 0.740 (95% credible interval [0.650-0.815]) derived from light-trap data was much lower than the estimated daily survival of male mosquitoes from the model fitted to exit-trap data (0.881, 95% credible interval [0.747-0.987]). There was no tendency for the oviposition cycle to become shorter at higher temperature while the odds of survival of females through the cycle was estimated to be multiplied by 1.021 for every degree of mean weekly temperature increase (95% credible interval [0.991-1.051]). There was negligible temperature dependence and little inter-annual variation in male survival. Discussion The time-series approach fitted to the exit-traps suggests that male An. funestus have higher survival than do females, and that male survival was temperature independent and unaffected by the introduction of long-lasting insecticidal nets (LLINs). The patterns of temperature dependence in females are at variance with results of laboratory studies. Time series approaches have the advantage for estimating survival that they do not depend on representative sampling of mosquitoes over the whole year. However, the estimates of oviposition cycle duration were associated with considerable uncertainty, which appears to be due to variability between insects in the duration of the resting period, and the estimates based on exit-trap data are sensitive to assumptions about relative trapping efficiencies.
Collapse
Affiliation(s)
- Jacques D. Charlwood
- DBL Centre for Health Research and Development, Department for Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
- Mozambican-Danish Rural Malaria Initiative (MOZDAN), Morrumbene, Inhambane Province, Mozambique
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Lisbon, Portugal
| | - Thomas A. Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Ayubo Kampango
- Mozambican-Danish Rural Malaria Initiative (MOZDAN), Morrumbene, Inhambane Province, Mozambique
- Sector de Estudo de Vectores, Instituto Nacional de Saúde, Vila de Marracuene, Província de Maputo, Mozambique
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Erzelia V. E. Tomas
- Mozambican-Danish Rural Malaria Initiative (MOZDAN), Morrumbene, Inhambane Province, Mozambique
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Hardy H, Hopkins R, Mnyone L, Hawkes FM. Manure and mosquitoes: life history traits of two malaria vector species enhanced by larval exposure to cow dung, whilst chicken dung has a strong negative effect. Parasit Vectors 2022; 15:472. [PMID: 36527072 PMCID: PMC9756494 DOI: 10.1186/s13071-022-05601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Malaria vectors have a strong ecological association with rice agroecosystems, which can provide abundant aquatic habitats for larval development. Climate-adapted rice cultivation practices, such as the System of Rice Intensification (SRI), are gaining popularity in malaria-endemic countries seeking to expand rice production; however, the potential impact of these practices on vector populations has not been well characterised. In particular, SRI encourages the use of organic fertilisers (OFs), such as animal manures, as low-cost and environmentally friendly alternatives to industrially produced inorganic fertilisers. We therefore set out to understand the effects of two common manure-based OFs on the life history traits of two major African malaria vectors, Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.). METHODS Larvae of An. arabiensis and An. gambiae s.s. were reared from first instar to emergence in water containing either cow or chicken dung at one of four concentrations (0.25, 0.5, 0.75, and 1.0 g/100 ml), or in a clean water control. Their life history traits were recorded, including survival, development rate, adult production, and adult wing length. RESULTS Exposure to cow dung significantly increased the development rate of An. gambiae s.s. independent of concentration, but did not affect the overall survival and adult production of either species. Chicken dung, however, significantly reduced survival and adult production in both species, with a greater effect as concentration increased. Interestingly, An. arabiensis exhibited a relative tolerance to the lowest chicken dung concentration, in that survival was unaffected and adult production was not reduced to the same extent as in An. gambiae s.s. The effects of chicken dung on development rate were less clear in both species owing to high larval mortality overall, though there was some indication that it may reduce development rate. Adult wing lengths in males and females increased with higher concentrations of both cow and chicken dung. CONCLUSIONS Our findings suggest that manure-based OFs significantly alter the life history traits of An. gambiae s.s. and An. arabiensis. In both species, exposure to cow dung may improve fitness, whereas exposure to chicken dung may reduce it. These findings have implications for understanding vector population dynamics in rice agroecosystems and may inform the use of OFs in SRI, and rice agriculture more widely, to avoid their adverse effects in enhancing vector fitness.
Collapse
Affiliation(s)
- Harrison Hardy
- grid.36316.310000 0001 0806 5472Natural Resources Institute, University of Greenwich, London, UK
| | - Richard Hopkins
- grid.36316.310000 0001 0806 5472Natural Resources Institute, University of Greenwich, London, UK
| | - Ladslaus Mnyone
- grid.11887.370000 0000 9428 8105Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania ,grid.463517.20000 0004 0648 0180Department of Science, Technology and Innovation, Ministry of Education, Science and Technology, Dar Es Salaam, Tanzania
| | - Frances M. Hawkes
- grid.36316.310000 0001 0806 5472Natural Resources Institute, University of Greenwich, London, UK
| |
Collapse
|
6
|
Gonzalez VH, Oyen K, Aguilar ML, Herrera A, Martin RD, Ospina R. High thermal tolerance in high-elevation species and laboratory-reared colonies of tropical bumble bees. Ecol Evol 2022; 12:e9560. [PMID: 36479027 PMCID: PMC9720000 DOI: 10.1002/ece3.9560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Bumble bees are key pollinators with some species reared in captivity at a commercial scale, but with significant evidence of population declines and with alarming predictions of substantial impacts under climate change scenarios. While studies on the thermal biology of temperate bumble bees are still limited, they are entirely absent from the tropics where the effects of climate change are expected to be greater. Herein, we test whether bees' thermal tolerance decreases with elevation and whether the stable optimal conditions used in laboratory-reared colonies reduces their thermal tolerance. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of four species at two elevations (2600 and 3600 m) in the Colombian Andes, examined the effect of body size, and evaluated the thermal tolerance of wild-caught and laboratory-reared individuals of Bombus pauloensis. We also compiled information on bumble bees' thermal limits and assessed potential predictors for broadscale patterns of variation. We found that CTMin decreased with increasing elevation, while CTMax was similar between elevations. CTMax was slightly higher (0.84°C) in laboratory-reared than in wild-caught bees while CTMin was similar, and CTMin decreased with increasing body size while CTMax did not. Latitude is a good predictor for CTMin while annual mean temperature, maximum and minimum temperatures of the warmest and coldest months are good predictors for both CTMin and CTMax. The stronger response in CTMin with increasing elevation, and similar CTMax, supports Brett's heat-invariant hypothesis, which has been documented in other taxa. Andean bumble bees appear to be about as heat tolerant as those from temperate areas, suggesting that other aspects besides temperature (e.g., water balance) might be more determinant environmental factors for these species. Laboratory-reared colonies are adequate surrogates for addressing questions on thermal tolerance and global warming impacts.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Kennan Oyen
- Department of Biological Sciences, McMicken College of Arts and SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Andres Herrera
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | | | - Rodulfo Ospina
- Laboratorio de Investigaciones en AbejasUniversidad Nacional de ColombiaSanta Fé de BogotáColombia
| |
Collapse
|
7
|
Villena OC, Ryan SJ, Murdock CC, Johnson LR. Temperature impacts the environmental suitability for malaria transmission by Anopheles gambiae and Anopheles stephensi. Ecology 2022; 103:e3685. [PMID: 35315521 PMCID: PMC9357211 DOI: 10.1002/ecy.3685] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 11/06/2022]
Abstract
Extrinsic environmental factors influence the spatiotemporal dynamics of many organisms, including insects that transmit the pathogens responsible for vector-borne diseases (VBDs). Temperature is an especially important constraint on the fitness of a wide variety of ectothermic insects. A mechanistic understanding of how temperature impacts traits of ectotherms, and thus the distribution of ectotherms and vector-borne infections, is key to predicting the consequences of climate change on transmission of VBDs like malaria. However, the response of transmission to temperature and other drivers is complex, as thermal traits of ectotherms are typically nonlinear, and they interact to determine transmission constraints. In this study, we assess and compare the effect of temperature on the transmission of two malaria parasites, Plasmodium falciparum and Plasmodium vivax, by two malaria vector species, Anopheles gambiae and Anopheles stephensi. We model the nonlinear responses of temperature dependent mosquito and parasite traits (mosquito development rate, bite rate, fecundity, proportion of eggs surviving to adulthood, vector competence, mortality rate, and parasite development rate) and incorporate these traits into a suitability metric based on a model for the basic reproductive number across temperatures. Our model predicts that the optimum temperature for transmission suitability is similar for the four mosquito-parasite combinations assessed in this study, but may differ at the thermal limits. More specifically, we found significant differences in the upper thermal limit between parasites spread by the same mosquito (A. stephensi) and between mosquitoes carrying P. falciparum. In contrast, at the lower thermal limit the significant differences were primarily between the mosquito species that both carried the same pathogen (e.g., A. stephensi and A. gambiae both with P. falciparum). Using prevalence data, we show that the transmission suitability metric S T $$ S(T) $$ calculated from our mechanistic model is consistent with observed P. falciparum prevalence in Africa and Asia but is equivocal for P. vivax prevalence in Asia, and inconsistent with P. vivax prevalence in Africa. We mapped risk to illustrate the number of months various areas in Africa and Asia predicted to be suitable for malaria transmission based on this suitability metric. This mapping provides spatially explicit predictions for suitability and transmission risk.
Collapse
Affiliation(s)
| | - Sadie J. Ryan
- Department of GeographyUniversity of FloridaGainesvilleFloridaUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Courtney C. Murdock
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
- Center for Vaccines and ImmunologyCollege of Veterinary Medicine, University of GeorgiaAthensGeorgiaUSA
- Riverbasin CenterUniversity of GeorgiaAthensGeorgiaUSA
- Department of EntomologyCollege of Agriculture and Life Sciences, Cornell UniversityIthacaNew YorkUSA
| | - Leah R. Johnson
- Department of StatisticsVirginia TechBlacksburgVirginiaUSA
- Computational Modeling and Data AnalyticsVirginia TechBlacksburgVirginiaUSA
- Department of BiologyVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
8
|
Ngowo HS, Okumu FO, Hape EE, Mshani IH, Ferguson HM, Matthiopoulos J. Using Bayesian state-space models to understand the population dynamics of the dominant malaria vector, Anopheles funestus in rural Tanzania. Malar J 2022; 21:161. [PMID: 35658961 PMCID: PMC9166306 DOI: 10.1186/s12936-022-04189-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background It is often assumed that the population dynamics of the malaria vector Anopheles funestus, its role in malaria transmission and the way it responds to interventions are similar to the more elaborately characterized Anopheles gambiae. However, An. funestus has several unique ecological features that could generate distinct transmission dynamics and responsiveness to interventions. The objectives of this work were to develop a model which will: (1) reconstruct the population dynamics, survival, and fecundity of wild An. funestus populations in southern Tanzania, (2) quantify impacts of density dependence on the dynamics, and (3) assess seasonal fluctuations in An. funestus demography. Through quantifying the population dynamics of An. funestus, this model will enable analysis of how their stability and response to interventions may differ from that of An. gambiae sensu lato. Methods A Bayesian State Space Model (SSM) based on mosquito life history was fit to time series data on the abundance of female An. funestus sensu stricto collected over 2 years in southern Tanzania. Prior values of fitness and demography were incorporated from empirical data on larval development, adult survival and fecundity from laboratory-reared first generation progeny of wild caught An. funestus. The model was structured to allow larval and adult fitness traits to vary seasonally in response to environmental covariates (i.e. temperature and rainfall), and for density dependency in larvae. The effects of density dependence and seasonality were measured through counterfactual examination of model fit with or without these covariates. Results The model accurately reconstructed the seasonal population dynamics of An. funestus and generated biologically-plausible values of their survival larval, development and fecundity in the wild. This model suggests that An. funestus survival and fecundity annual pattern was highly variable across the year, but did not show consistent seasonal trends either rainfall or temperature. While the model fit was somewhat improved by inclusion of density dependence, this was a relatively minor effect and suggests that this process is not as important for An. funestus as it is for An. gambiae populations. Conclusion The model's ability to accurately reconstruct the dynamics and demography of An. funestus could potentially be useful in simulating the response of these populations to vector control techniques deployed separately or in combination. The observed and simulated dynamics also suggests that An. funestus could be playing a role in year-round malaria transmission, with any apparent seasonality attributed to other vector species. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04189-4.
Collapse
Affiliation(s)
- Halfan S Ngowo
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania. .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| | - Fredros O Okumu
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,School of Public Health, University of the Witwatersrand, Braamfontein, Republic of South Africa.,School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Emmanuel E Hape
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Issa H Mshani
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Heather M Ferguson
- Department of Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Genetics and immunity of Anopheles response to the entomopathogenic fungus Metarhizium anisopliae overlap with immunity to Plasmodium. Sci Rep 2022; 12:6315. [PMID: 35428783 PMCID: PMC9012835 DOI: 10.1038/s41598-022-10190-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022] Open
Abstract
Entomopathogenic fungi have been explored as a potential biopesticide to counteract the insecticide resistance issue in mosquitoes. However, little is known about the possibility that genetic resistance to fungal biopesticides could evolve in mosquito populations. Here, we detected an important genetic component underlying Anopheles coluzzii survival after exposure to the entomopathogenic fungus Metarhizium anisopliae. A familiality study detected variation for survival among wild mosquito isofemale pedigrees, and genetic mapping identified two loci that significantly influence mosquito survival after fungus exposure. One locus overlaps with a previously reported locus for Anopheles susceptibility to the human malaria parasite Plasmodium falciparum. Candidate gene studies revealed that two LRR proteins encoded by APL1C and LRIM1 genes in this newly mapped locus are required for protection of female A. coluzzii from M. anisopliae, as is the complement-like factor Tep1. These results indicate that natural Anopheles populations already segregate frequent genetic variation for differential mosquito survival after fungal challenge and suggest a similarity in Anopheles protective responses against fungus and Plasmodium. However, this immune similarity raises the possibility that fungus-resistant mosquitoes could also display enhanced resistance to Plasmodium, suggesting an advantage of selecting for fungus resistance in vector populations to promote naturally diminished malaria vector competence.
Collapse
|
10
|
Hector TE, Sgrò CM, Hall MD. Thermal limits in the face of infectious disease: How important are pathogens? GLOBAL CHANGE BIOLOGY 2021; 27:4469-4480. [PMID: 34170603 DOI: 10.1111/gcb.15761] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The frequency and severity of both extreme thermal events and disease outbreaks are predicted to continue to shift as a consequence of global change. As a result, species persistence will likely be increasingly dependent on the interaction between thermal stress and pathogen exposure. Missing from the intersection between studies of infectious disease and thermal ecology, however, is the capacity for pathogen exposure to directly disrupt a host's ability to cope with thermal stress. Common sources of variation in host thermal performance, which are likely to interact with infection, are also often unaccounted for when assessing either the vulnerability of species or the potential for disease spread during extreme thermal events. Here, we describe how infection can directly alter host thermal limits, to a degree that exceeds the level of variation commonly seen across species large geographic distributions and that equals the detrimental impact of other ecologically relevant stressors. We then discuss various sources of heterogeneity within and between populations that are likely to be important in mediating the impact that infection has on variation in host thermal limits. In doing so we highlight how infection is a widespread and important source of variation in host thermal performance, which will have implications for both the persistence and vulnerability of species and the dynamics and transmission of disease in a more thermally extreme world.
Collapse
Affiliation(s)
- Tobias E Hector
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
- Centre of Geometric Biology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
11
|
Pottier P, Burke S, Drobniak SM, Lagisz M, Nakagawa S. Sexual (in)equality? A meta‐analysis of sex differences in thermal acclimation capacity across ectotherms. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Patrice Pottier
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Samantha Burke
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Szymon M. Drobniak
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Malgorzata Lagisz
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Shinichi Nakagawa
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| |
Collapse
|
12
|
Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG, Nova N, Shocket M, Skinner EB, Uricchio LH, Exposito-Alonso M, Mordecai EA. How will mosquitoes adapt to climate warming? eLife 2021; 10:69630. [PMID: 34402424 PMCID: PMC8370766 DOI: 10.7554/elife.69630] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, United States
| | | | - Jamie M Caldwell
- Department of Biology, Stanford University, Stanford, United States.,Department of Biology, University of Hawaii at Manoa, Honolulu, United States
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, United States
| | - Mallory J Harris
- Department of Biology, Stanford University, Stanford, United States
| | - Devin G Kirk
- Department of Biology, Stanford University, Stanford, United States.,Department of Zoology, University of Toronto, Toronto, Canada
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, United States
| | - Marta Shocket
- Department of Biology, Stanford University, Stanford, United States.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, United States
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, United States.,Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford University, Stanford, United States.,Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
13
|
Agyekum TP, Botwe PK, Arko-Mensah J, Issah I, Acquah AA, Hogarh JN, Dwomoh D, Robins TG, Fobil JN. A Systematic Review of the Effects of Temperature on Anopheles Mosquito Development and Survival: Implications for Malaria Control in a Future Warmer Climate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7255. [PMID: 34299706 PMCID: PMC8306597 DOI: 10.3390/ijerph18147255] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
The rearing temperature of the immature stages can have a significant impact on the life-history traits and the ability of adult mosquitoes to transmit diseases. This review assessed published evidence of the effects of temperature on the immature stages, life-history traits, insecticide susceptibility, and expression of enzymes in the adult Anopheles mosquito. Original articles published through 31 March 2021 were systematically retrieved from Scopus, Google Scholar, Science Direct, PubMed, ProQuest, and Web of Science databases. After applying eligibility criteria, 29 studies were included. The review revealed that immature stages of An. arabiensis were more tolerant (in terms of survival) to a higher temperature than An. funestus and An. quadriannulatus. Higher temperatures resulted in smaller larval sizes and decreased hatching and pupation time. The development rate and survival of An. stephensi was significantly reduced at a higher temperature than a lower temperature. Increasing temperatures decreased the longevity, body size, length of the gonotrophic cycle, and fecundity of Anopheles mosquitoes. Higher rearing temperatures increased pyrethroid resistance in adults of the An. arabiensis SENN DDT strain, and increased pyrethroid tolerance in the An. arabiensis SENN strain. Increasing temperature also significantly increased Nitric Oxide Synthase (NOS) expression and decreased insecticide toxicity. Both extreme low and high temperatures affect Anopheles mosquito development and survival. Climate change could have diverse effects on Anopheles mosquitoes. The sensitivities of Anopeheles mosquitoes to temperature differ from species to species, even among the same complex. Notwithstanding, there seem to be limited studies on the effects of temperature on adult life-history traits of Anopheles mosquitoes, and more studies are needed to clarify this relationship.
Collapse
Affiliation(s)
- Thomas P. Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Paul K. Botwe
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Augustine A. Acquah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Jonathan N. Hogarh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana;
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Accra 00233, Ghana;
| | - Thomas G. Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA;
| | - Julius N. Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| |
Collapse
|
14
|
Konopka JK, Task D, Afify A, Raji J, Deibel K, Maguire S, Lawrence R, Potter CJ. Olfaction in Anopheles mosquitoes. Chem Senses 2021; 46:6246230. [PMID: 33885760 DOI: 10.1093/chemse/bjab021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Katelynn Deibel
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Sarah Maguire
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Randy Lawrence
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| |
Collapse
|
15
|
Kuyucu AC, Chown SL. Time course of acclimation of critical thermal limits in two springtail species (Collembola). JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104209. [PMID: 33609519 DOI: 10.1016/j.jinsphys.2021.104209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Critical thermal limits are one of the most important sources of information on the possible impacts of climate change on soil microarthropods. The extent of plasticity of tolerance limits can provide valuable insights about the likely responses of ectotherms to environmental change. Although many studies have investigated various aspects of the acclimatory response of thermal limits to temperature changes in arthropods, the number of studies focusing on the temporal dynamics of this plastic response is relatively small. Collembola, one of the key microarthropods groups in almost all soil ecosystems around the world, have been the focus of several thermal acclimation studies. Yet the time course of acclimation and its reversal have not been widely studied in this group. Here we investigated the time course of acclimation of critical thermal maxima (CTmax) and minima (CTmin) of two springtail species. We exposed a Cryptopygus species from temperate southern Australia to high and low temperature conditions and Mucrosomia caeca from Sub-Antarctic Macquarie Island to high temperature conditions. Upper thermal limits in both species were found to be highly constrained, as CTmax did not show substantial response to high and low temperature acclimation both in the Cryptopygus species and M. caeca, whereas CTmin showed significant responses to high and low temperature conditions. The acclimation begins to stabilize in approximately seven days in all treatments except for the acclimation of CTmin under high temperature conditions, where the pattern of change suggests that this acclimation might take longer to be completed. Although reversal of this acclimation also begins to stabilize under 7 days, re-acclimation was relatively slow as we did not observe a very clear settling point in 2 of the 3 re-acclimation treatments. The observed limits on the plasticity of CTmax indicate that both of these species may be very limited in their ability to respond plastically to short-term rapid changes in temperature (i.e temperature extremes).
Collapse
Affiliation(s)
- Arda C Kuyucu
- Hacettepe University, Department of Biology, Ankara 06800, Turkey.
| | - Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
16
|
Buxton M, Wasserman RJ, Nyamukondiwa C. Disease Vector Relative Spatio-Temporal Abundances to Water Bodies and Thermal Fitness Across Malaria Endemic Semi-Arid Areas. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:682-691. [PMID: 33107574 DOI: 10.1093/jme/tjaa221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The biophysical environment plays an important role in the spatio-temporal abundance and distribution of mosquitoes. This has implications for the spread of vectors and diseases they cause across diverse landscapes. Here, we assessed vector mosquito abundances in relation to large water bodies, from three malaria districts in a semi-arid environment. Furthermore, we explored thermal limits to activity of the dominant and most medically important malaria vector across malaria-endemic areas. Mosquitoes were trapped near permanent water bodies across different districts. Critical thermal limits (critical thermal-maxima and -minima) to activity of wild adults and 4th instar larvae Anopheles arabiensis (Diptera: Culicidae) were assessed. Our results showed that Anopheles spp. dominate mosquito communities across all three districts, but that their numbers were far greater in Okavango than in other regions. At the Okavango sites, the numbers of Anopheles spp. decreased with distance from main water source. Anopheles spp. sampled in this region comprised Anopheles gambiae (Giles,1902) and Anopheles funestus (Giles, 1900) species complexes, with the former dominating in numbers. Thermal activity assays showed An. arabiensis females had wider thermal tolerance windows than males while larval thermal activity limits differed significantly across space. These results confirm that the Okavango district should be prioritized for vector control measures. Moreover, intervention strategies should consider recommendations for proximity effects to large water bodies, given the differential risk associated with distance from water. The wider thermal window on female vectors has implications for possible future malaria transmission and diverse habitat utilization under changing environments.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
17
|
Pagabeleguem S, Toé AI, Pooda SH, Dera KM, Belem AS, Belem AMG, Ouedraogo/Sanou GMS, Ira M, Kaboré BA, Percoma L, Sidibé I. Optimizing the feeding frequency to maximize the production of sterile males in tsetse mass-rearing colonies. PLoS One 2021; 16:e0245503. [PMID: 33444421 PMCID: PMC7808581 DOI: 10.1371/journal.pone.0245503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/31/2020] [Indexed: 12/03/2022] Open
Abstract
Tsetse flies are cyclical vectors of trypanosomes, the causative agents of sleeping sickness or Human African Trypanosomosis and nagana or African Animal Trypanosomosis in Sub-Saharan Africa. The Insectarium de Bobo-Dioulasso (IBD) was created and equipped in the frame of Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) with the main goal to provide sterile males for the different eradication programs in West Africa which is already the case with the ongoing eradication program in Senegal. The aim of this study was to identify the best feeding regime in mass-rearing colonies of Glossina palpalis gambiensis to optimize the yield of sterile males. We investigated the mortality and fecundity for various feeding regimes and day alternation (3×: Monday-Wednesday-Friday, 4×: Monday-Wednesday-Friday-Saturday, 4×: Monday-Wednesday-Thursday-Friday and 6×: all days except Sunday) on adult tsetse flies in routine rearing over 60 days after emergence. The day alternation in the 4 blood meals per week (feeding regimes 2 and 3) had no effect on tsetse fly mortality and fecundity. The best feeding regime was the regime of 4 blood meals per week which resulted in higher significant fecundity (PPIF = 2.5; P = 0.003) combined with lower mortality of females (P = 0.0003) than the 3 blood meals per week (PPIF = 2.0) and in similar fecundity (PPIF = 2.6; P = 0.70) and mortality (P = 0.51) than the 6 blood meals per week. This feeding regime was extended to the whole colonies, resulting in an improved yield of sterile males for the ongoing eradication program in Senegal and would be more cost-effective for the implementation of the next-coming sterile insect technique (SIT) programs in West Africa.
Collapse
Affiliation(s)
- Soumaïla Pagabeleguem
- Université de Dédougou (UDDG), Dédougou, Burkina Faso
- Insectarium de Bobo-Dioulasso - Campagne d’Eradication de la mouche Tsé-tsé et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
- * E-mail:
| | - Ange Irénée Toé
- Insectarium de Bobo-Dioulasso - Campagne d’Eradication de la mouche Tsé-tsé et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Sié Hermann Pooda
- Université de Dédougou (UDDG), Dédougou, Burkina Faso
- Insectarium de Bobo-Dioulasso - Campagne d’Eradication de la mouche Tsé-tsé et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Kiswendsida Mikhailou Dera
- Insectarium de Bobo-Dioulasso - Campagne d’Eradication de la mouche Tsé-tsé et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Abdou Salam Belem
- Insectarium de Bobo-Dioulasso - Campagne d’Eradication de la mouche Tsé-tsé et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
- Ecole Privée d’Elevage et de Santé Animale (EPESA), Bobo-Dioulasso, Burkina Faso
| | | | - Gisèle Marie Sophie Ouedraogo/Sanou
- Insectarium de Bobo-Dioulasso - Campagne d’Eradication de la mouche Tsé-tsé et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Mamadou Ira
- Insectarium de Bobo-Dioulasso - Campagne d’Eradication de la mouche Tsé-tsé et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Bénéwendé Aristide Kaboré
- Insectarium de Bobo-Dioulasso - Campagne d’Eradication de la mouche Tsé-tsé et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Lassané Percoma
- Insectarium de Bobo-Dioulasso - Campagne d’Eradication de la mouche Tsé-tsé et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
- Ecole de Lutte Anti Tsé-tsé (ELAT), Bobo-Dioulasso, Burkina Faso
| | - Issa Sidibé
- Insectarium de Bobo-Dioulasso - Campagne d’Eradication de la mouche Tsé-tsé et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
- Centre International de Recherche-Développement sur l’Élevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
18
|
Buxton M, Nyamukondiwa C, Dalu T, Cuthbert RN, Wasserman RJ. Implications of increasing temperature stress for predatory biocontrol of vector mosquitoes. Parasit Vectors 2020; 13:604. [PMID: 33261665 PMCID: PMC7706185 DOI: 10.1186/s13071-020-04479-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Predators play a critical role in regulating larval mosquito prey populations in aquatic habitats. Understanding predator-prey responses to climate change-induced environmental perturbations may foster optimal efficacy in vector reduction. However, organisms may differentially respond to heterogeneous thermal environments, potentially destabilizing predator-prey trophic systems. METHODS Here, we explored the critical thermal limits of activity (CTLs; critical thermal-maxima [CTmax] and minima [CTmin]) of key predator-prey species. We concurrently examined CTL asynchrony of two notonectid predators (Anisops sardea and Enithares chinai) and one copepod predator (Lovenula falcifera) as well as larvae of three vector mosquito species, Aedes aegypti, Anopheles quadriannulatus and Culex pipiens, across instar stages (early, 1st; intermediate, 2nd/3rd; late, 4th). RESULTS Overall, predators and prey differed significantly in CTmax and CTmin. Predators generally had lower CTLs than mosquito prey, dependent on prey instar stage and species, with first instars having the lowest CTmax (lowest warm tolerance), but also the lowest CTmin (highest cold tolerance). For predators, L. falcifera exhibited the narrowest CTLs overall, with E. chinai having the widest and A. sardea intermediate CTLs, respectively. Among prey species, the global invader Ae. aegypti consistently exhibited the highest CTmax, whilst differences among CTmin were inconsistent among prey species according to instar stage. CONCLUSION These results point to significant predator-prey mismatches under environmental change, potentially adversely affecting natural mosquito biocontrol given projected shifts in temperature fluctuations in the study region. The overall narrower thermal breadth of native predators relative to larval mosquito prey may reduce natural biotic resistance to pests and harmful mosquito species, with implications for population success and potentially vector capacity under global change.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.
| | - Tatenda Dalu
- Department of Ecology and Resource Management, University of Venda, Thohoyandou, 0950, South Africa
| | - Ross N Cuthbert
- GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, 24105, Kiel, Germany
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Zoology and Entomology, Rhodes University, Makhanda, 6140, South Africa
| |
Collapse
|
19
|
Laidlaw T, Hector TE, Sgrò CM, Hall MD. Pathogen exposure reduces sexual dimorphism in a host's upper thermal limits. Ecol Evol 2020; 10:12851-12859. [PMID: 33304498 PMCID: PMC7713950 DOI: 10.1002/ece3.6828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
The climate is warming at an unprecedented rate, pushing many species toward and beyond the upper temperatures at which they can survive. Global change is also leading to dramatic shifts in the distribution of pathogens. As a result, upper thermal limits and susceptibility to infection should be key determinants of whether populations continue to persist, or instead go extinct. Within a population, however, individuals vary in both their resistance to both heat stress and infection, and their contributions to vital growth rates. No more so is this true than for males and females. Each sex often varies in their response to pathogen exposure, thermal tolerances, and particularly their influence on population growth, owing to the higher parental investment that females typically make in their offspring. To date, the interplay between host sex, infection, and upper thermal limits has been neglected. Here, we explore the response of male and female Daphnia to bacterial infection and static heat stress. We find that female Daphnia, when uninfected, are much more resistant to static heat stress than males, but that infection negates any advantage that females are afforded. We discuss how the capacity of a population to cope with multiple stressors may be underestimated unless both sexes are considered simultaneously.
Collapse
Affiliation(s)
- Tess Laidlaw
- School of Biological Sciences and Centre for Geometric BiologyMonash UniversityMelbourneVic.Australia
| | - Tobias E. Hector
- School of Biological Sciences and Centre for Geometric BiologyMonash UniversityMelbourneVic.Australia
| | - Carla M. Sgrò
- School of Biological Sciences and Centre for Geometric BiologyMonash UniversityMelbourneVic.Australia
| | - Matthew D. Hall
- School of Biological Sciences and Centre for Geometric BiologyMonash UniversityMelbourneVic.Australia
| |
Collapse
|
20
|
Suh E, Grossman MK, Waite JL, Dennington NL, Sherrard-Smith E, Churcher TS, Thomas MB. The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria. Nat Ecol Evol 2020; 4:940-951. [PMID: 32367033 PMCID: PMC7334094 DOI: 10.1038/s41559-020-1182-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
Insecticide-treated bed nets reduce malaria transmission by limiting contact between mosquito vectors and human hosts when mosquitoes feed during the night. However, malaria vectors can also feed in the early evening and in the morning when people are not protected. Here, we explored how the timing of blood feeding interacts with environmental temperature to influence the capacity of Anopheles mosquitoes to transmit the human malaria parasite Plasmodium falciparum. In laboratory experiments, we found no effect of biting time itself on the proportion of mosquitoes that became infectious (vector competence) at constant temperature. However, when mosquitoes were maintained under more realistic fluctuating temperatures, there was a significant increase in competence for mosquitoes feeding in the evening (18:00), and a significant reduction in competence for those feeding in the morning (06:00), relative to those feeding at midnight (00:00). These effects appear to be due to thermal sensitivity of malaria parasites during the initial stages of parasite development within the mosquito, and the fact that mosquitoes feeding in the evening experience cooling temperatures during the night, whereas mosquitoes feeding in the morning quickly experience warming temperatures that are inhibitory to parasite establishment. A transmission dynamics model illustrates that such differences in competence could have important implications for malaria prevalence, the extent of transmission that persists in the presence of bed nets, and the epidemiological impact of behavioural resistance. These results indicate that the interaction of temperature and feeding behaviour could be a major ecological determinant of the vectorial capacity of malaria mosquitoes.
Collapse
Affiliation(s)
- Eunho Suh
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA.
| | - Marissa K Grossman
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA
| | - Jessica L Waite
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA.,Green Mountain Antibodies, Burlington, VT, USA
| | - Nina L Dennington
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA
| |
Collapse
|
21
|
Chali W, Ashine T, Hailemeskel E, Gashaw A, Tafesse T, Lanke K, Esayas E, Kedir S, Shumie G, Behaksra SW, Bradley J, Yewhalaw D, Mamo H, Petros B, Drakeley C, Gadisa E, Bousema T, Tadesse FG. Comparison of infectivity of Plasmodium vivax to wild-caught and laboratory-adapted (colonized) Anopheles arabiensis mosquitoes in Ethiopia. Parasit Vectors 2020; 13:120. [PMID: 32143713 PMCID: PMC7059271 DOI: 10.1186/s13071-020-3998-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquito-feeding assays that assess transmission of Plasmodium from man-to-mosquito typically use laboratory mosquito colonies. The microbiome and genetic background of local mosquitoes may be different and influence Plasmodium transmission efficiency. In order to interpret transmission studies to the local epidemiology, it is therefore crucial to understand the relationship between infectivity in laboratory-adapted and local mosquitoes. METHODS We assessed infectivity of Plasmodium vivax-infected patients from Adama, Ethiopia, using laboratory-adapted (colony) and wild-caught (wild) mosquitoes raised from larval collections in paired feeding experiments. Feeding assays used 4-6 day-old female Anopheles arabiensis mosquitoes after starvation for 12 h (colony) and 18 h (wild). Oocyst development was assessed microscopically 7 days post-feeding. Wild mosquitoes were identified morphologically and confirmed by genotyping. Asexual parasites and gametocytes were quantified in donor blood by microscopy. RESULTS In 36 paired experiments (25 P. vivax infections and 11 co-infections with P. falciparum), feeding efficiency was higher in colony (median: 62.5%; interquartile range, IQR: 47.0-79.0%) compared to wild mosquitoes (median: 27.8%; IQR: 17.0-38.0%; Z = 5.02; P < 0.001). Plasmodium vivax from infectious individuals (51.6%, 16/31) infected a median of 55.0% (IQR: 6.7-85.7%; range: 5.5-96.7%; n = 14) of the colony and 52.7% (IQR: 20.0-80.0%; range: 3.2-95.0%; n = 14) of the wild mosquitoes. A strong association (ρ(16) = 0.819; P < 0.001) was observed between the proportion of infected wild and colony mosquitoes. A positive association was detected between microscopically detected gametocytes and the proportion of infected colony (ρ(31) = 0.452; P = 0.011) and wild (ρ(31) = 0.386; P = 0.032) mosquitoes. CONCLUSIONS Infectivity assessments with colony and wild mosquitoes yielded similar infection results. This finding supports the use of colony mosquitoes for assessments of the infectious reservoir for malaria in this setting whilst acknowledging the importance of mosquito factors influencing sporogonic development of Plasmodium parasites.
Collapse
Affiliation(s)
- Wakweya Chali
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Temesgen Ashine
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Elifaged Hailemeskel
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Abrham Gashaw
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Temesgen Tafesse
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Endashaw Esayas
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Soriya Kedir
- Oromia Regional Laboratory, Oromia Regional Health Bureau, Adama, Ethiopia
| | - Girma Shumie
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Sinknesh Wolde Behaksra
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - John Bradley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, P.O.Box 5195, Jimma, Ethiopia
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Endalamaw Gadisa
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Fitsum G. Tadesse
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Institute of Biotechnology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Sasmita HI, Tu WC, Bong LJ, Neoh KB. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Parasit Vectors 2019; 12:578. [PMID: 31823817 PMCID: PMC6905064 DOI: 10.1186/s13071-019-3830-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Producing high quality sterile males is vital in Aedes aegypti rear-and-release birth control strategies. Larval diets, rearing temperatures, and their interactions determine the accumulation rates of essential nutrients in larvae, but these factors have been understudied in relation to mass-rearing techniques for producing eminent males. Methods We compared the effects of two larval diets, a cereal-legume-based diet (Khan’s diet) and a standard larval diet developed in the FAO/IAEA Insect Pest Control Laboratory (IAEA 2 diet). Diets were tested at selected temperatures for both larval and male adult life history traits, adult extreme temperature tolerance, and mating capacity relative to energy reserves of reared male adult Ae. aegypti. Results Khan’s diet resulted in shorter immature development time at each test temperature (except for 25 °C) than an IAEA 2 diet. Larvae reared at 28 °C and 32 °C with Khan’s diet demonstrated low pupation rates (c.80%). We accounted for these phenomena as secondary sex ratio manipulation, because a higher proportion of male adults emerged at 28 °C and 32 °C than that for the IAEA 2 diet. In general, the pupal development time shortened as temperature increased, resulting in higher teneral energy reserves in male mosquitoes. High energy reserves allowed male mosquitoes reared with Khan’s diet to have higher adult longevity (5–6 days longer when sugar-fed and 2–3 days longer when water-fed) and tolerance of heat stress than those fed on the IAEA 2 diet. The IAEA 2 diet produced larger male mosquitoes than Khan’s diet did: mosquitoes fed on Khan’s diet were 1.03–1.05 times smaller than those fed on the IAEA 2 diet at 28 °C and 32 °C. No evidence indicated reduced mating capacity for small mosquitoes fed on Khan’s diet. Conclusions Larvae reared at 28 °C and 32 °C with Khan’s diet were characterized by shorter immature development time compared with those fed on the IAEA 2 diet. Adult mosquitoes produced from that larval rearing condition exhibited a significant male bias, long lifespan, and better endurance against extreme temperatures relative to energy reserves. Thus, the larval diet at rearing temperature of 28 °C and 32 °C optimized rearing techniques for the sterile insect programmes. However, mating competitiveness and flight performance of adult males require further investigation.
Collapse
Affiliation(s)
- Hadian Iman Sasmita
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan.,Center for Isotopes and Radiation Application (CIRA), National Nuclear Energy Agency (BATAN), Jl. Lebak Bulus Raya No. 49, Jakarta, 12440, Indonesia
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan
| | - Lee-Jin Bong
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan.
| |
Collapse
|
23
|
Wang CY, Bong LJ, Neoh KB. Adult Paederus fuscipes (Coleoptera: Staphylinidae) Beetles Overcome Water Loss With Increased Total Body Water Content, Energy Metabolite Storage, and Reduced Cuticular Permeability: Age, Sex-Specific, and Mating Status Effects on Desiccation. ENVIRONMENTAL ENTOMOLOGY 2019; 48:911-922. [PMID: 31177281 DOI: 10.1093/ee/nvz065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 06/09/2023]
Abstract
The ability of Paederus beetles to resist desiccation stress is vital to their adaptability in various ecological niches. How water relations and their response to desiccation vary among adult beetles of different age, sex, and mating status is unclear. We examined the water relations of adult Paederus fuscipes Curtis and the mechanisms used to reduce desiccation stress. One-day-old beetles had an exceptionally high percent total body water (%TBW) content and tolerated a high level of %TBW loss. Newly emerged beetles contained a high level of trehalose and 40 to 60% lipid content of their total dry mass, which allowed them to endure desiccation. Beetles that were 10 wk old and older exhibited reduced cuticular permeability. Glucose, glycogen, and lipid contents were crucial throughout most of the adult life span, as they helped compensate for water loss via increased water vapor absorption and metabolic water. In particular, the accumulation of lipid after mating was significant and may further confer tolerance to water loss. The effect of melanization on the desiccation tolerance of beetles was not significant. Females had better tolerance in response to desiccation stress compared with males. We suggest that the observed differences between sexes likely were a function of water relations and an effect of energy metabolite reserves. However, the mortality of females at 24-h postdesiccating stage was marginally significant compared with males. These results demonstrate that P. fuscipes adults prevent dehydration using multiple mechanisms that collectively reduce desiccation stress and increase dehydration tolerance.
Collapse
Affiliation(s)
- Chia-Yu Wang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Lee-Jin Bong
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
24
|
Zhao F, Xing K, Hoffmann AA, Ma CS. The importance of timing of heat events for predicting the dynamics of aphid pest populations. PEST MANAGEMENT SCIENCE 2019; 75:1866-1874. [PMID: 30663223 DOI: 10.1002/ps.5344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Heatwaves are increasing in frequency and there is growing interest in their impact on pest organisms. Previous work indicates that effects depend on the timing of the stress event, whose impact needs to be characterized across the full set of developmental stages and exposure periods of an organism. Here, we undertake such a detailed assessment using heat stress (20-35 °C diurnal cycle) across the nymph and adult stages of the English grain aphid, Sitobion avenae (Fabricius). RESULTS Stress-related mortality increased with stress duration at all stages; effects were less severe at the late nymphal stage. Effects on longevity adults after stress showed a complex pattern with nymphal heat stress, increasing with stress duration at the late nymphal stage, but decreasing with duration at the early nymphal stage. Longevity was also reduced by adult stress although to a lesser extent, and patterns were not connected to duration. Post-stress productivity decreased following adult and nymphal stress and the decrease tended to be correlated with stress duration. The rate of offspring production was more affected by adult stress than nymphal stress. Productivity and longevity effects, when combined, showed that the largest effect of heat stress occurred at the early nymphal stage. CONCLUSION These findings highlight the complex ways in which heat stress at a particular life stage influences later fitness and they also emphasize the importance of considering multiple fitness components when assessing stress effects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Eikenberry SE, Gumel AB. Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J Math Biol 2018; 77:857-933. [PMID: 29691632 DOI: 10.1007/s00285-018-1229-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Malaria, one of the greatest historical killers of mankind, continues to claim around half a million lives annually, with almost all deaths occurring in children under the age of five living in tropical Africa. The range of this disease is limited by climate to the warmer regions of the globe, and so anthropogenic global warming (and climate change more broadly) now threatens to alter the geographic area for potential malaria transmission, as both the Plasmodium malaria parasite and Anopheles mosquito vector have highly temperature-dependent lifecycles, while the aquatic immature Anopheles habitats are also strongly dependent upon rainfall and local hydrodynamics. A wide variety of process-based (or mechanistic) mathematical models have thus been proposed for the complex, highly nonlinear weather-driven Anopheles lifecycle and malaria transmission dynamics, but have reached somewhat disparate conclusions as to optimum temperatures for transmission, and the possible effect of increasing temperatures upon (potential) malaria distribution, with some projecting a large increase in the area at risk for malaria, but others predicting primarily a shift in the disease's geographic range. More generally, both global and local environmental changes drove the initial emergence of P. falciparum as a major human pathogen in tropical Africa some 10,000 years ago, and the disease has a long and deep history through the present. It is the goal of this paper to review major aspects of malaria biology, methods for formalizing these into mathematical forms, uncertainties and controversies in proper modeling methodology, and to provide a timeline of some major modeling efforts from the classical works of Sir Ronald Ross and George Macdonald through recent climate-focused modeling studies. Finally, we attempt to place such mathematical work within a broader historical context for the "million-murdering Death" of malaria.
Collapse
Affiliation(s)
- Steffen E Eikenberry
- Global Security Initiative, Arizona State University, Tempe, AZ, USA. .,School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA.
| | - Abba B Gumel
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
26
|
Asale A, Duchateau L, Devleesschauwer B, Huisman G, Yewhalaw D. Zooprophylaxis as a control strategy for malaria caused by the vector Anopheles arabiensis (Diptera: Culicidae): a systematic review. Infect Dis Poverty 2017; 6:160. [PMID: 29157310 PMCID: PMC5697156 DOI: 10.1186/s40249-017-0366-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
Background Zooprophylaxis is the use of wild or domestic animals, which are not the reservoir host of a given disease, to divert the blood-seeking malaria vectors from human hosts. In this paper, we systematically reviewed zooprophylaxis to assess its efficacy as a malaria control strategy and to evaluate the possible methods of its application. Methods The electronic databases, PubMed Central®, Web of Science, Science direct, and African Journals Online were searched using the key terms: “zooprophylaxis” or “cattle and malaria”, and reports published between January 1995 and March 2016 were considered. Thirty-four reports on zooprophylaxis were retained for the systematic review. Results It was determined that Anopheles arabiensis is an opportunistic feeder. It has a strong preference for cattle odour when compared to human odour, but feeds on both hosts. Its feeding behaviour depends on the available hosts, varying from endophilic and endophagic to exophilic and exophagic. There are three essential factors for zooprophylaxis to be effective in practice: a zoophilic and exophilic vector, habitat separation between human and host animal quarters, and augmenting zooprophylaxis with insecticide treatment of animals or co-intervention of long-lasting insecticide-treated nets and/or indoor residual spraying. Passive zooprophylaxis can be applied only in malaria vector control if cattle and human dwellings are separated in order to avoid the problem of zoopotentiation. Conclusions The outcomes of using zooprophylaxis as a malaria control strategy varied across locations. It is therefore advised to conduct a site-specific evaluation of its effectiveness in vector control before implementing zooprophylaxis as the behaviour of Anopheles arabiensis mosquitoes varies across localities and circumstances. Electronic supplementary material The online version of this article (10.1186/s40249-017-0366-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abebe Asale
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia.
| | - Luc Duchateau
- Department of Animal Physiology and Biometry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Brecht Devleesschauwer
- Department of Animal Physiology and Biometry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Gerdien Huisman
- Department of Animal Physiology and Biometry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
27
|
Using eco-physiological traits to understand the realized niche: the role of desiccation tolerance in Chagas disease vectors. Oecologia 2017; 185:607-618. [DOI: 10.1007/s00442-017-3986-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/11/2017] [Indexed: 01/15/2023]
|
28
|
Wiebe A, Longbottom J, Gleave K, Shearer FM, Sinka ME, Massey NC, Cameron E, Bhatt S, Gething PW, Hemingway J, Smith DL, Coleman M, Moyes CL. Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance. Malar J 2017; 16:85. [PMID: 28219387 PMCID: PMC5319841 DOI: 10.1186/s12936-017-1734-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/10/2017] [Indexed: 12/22/2022] Open
Abstract
Background Many of the mosquito species responsible for malaria transmission belong to a sibling complex; a taxonomic group of morphologically identical, closely related species. Sibling species often differ in several important factors that have the potential to impact malaria control, including their geographical distribution, resistance to insecticides, biting and resting locations, and host preference. The aim of this study was to define the geographical distributions of dominant malaria vector sibling species in Africa so these distributions can be coupled with data on key factors such as insecticide resistance to aid more focussed, species-selective vector control. Results Within the Anopheles gambiae species complex and the Anopheles funestus subgroup, predicted geographical distributions for Anopheles coluzzii, An. gambiae (as now defined) and An. funestus (distinct from the subgroup) have been produced for the first time. Improved predicted geographical distributions for Anopheles arabiensis, Anopheles melas and Anopheles merus have been generated based on records that were confirmed using molecular identification methods and a model that addresses issues of sampling bias and past changes to the environment. The data available for insecticide resistance has been evaluated and differences between sibling species are apparent although further analysis is required to elucidate trends in resistance. Conclusions Sibling species display important variability in their geographical distributions and the most important malaria vector sibling species in Africa have been mapped here for the first time. This will allow geographical occurrence data to be coupled with species-specific data on important factors for vector control including insecticide resistance. Species-specific data on insecticide resistance is available for the most important malaria vectors in Africa, namely An. arabiensis, An. coluzzii, An. gambiae and An. funestus. Future work to combine these data with the geographical distributions mapped here will allow more focussed and resource-efficient vector control and provide information to greatly improve and inform existing malaria transmission models. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1734-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antoinette Wiebe
- Malaria Atlas Project, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Joshua Longbottom
- Malaria Atlas Project, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Katherine Gleave
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Freya M Shearer
- Malaria Atlas Project, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Marianne E Sinka
- Oxford Long Term Ecology Laboratory, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - N Claire Massey
- Oxford Long Term Ecology Laboratory, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Ewan Cameron
- Malaria Atlas Project, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Samir Bhatt
- Department of Infectious Disease Epidemiology, Imperial College, St Mary's Hospital, London, W2 1NY, UK
| | - Peter W Gething
- Malaria Atlas Project, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Janet Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA
| | - Michael Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Catherine L Moyes
- Malaria Atlas Project, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
29
|
Oliver SV, Brooke BD. The effect of elevated temperatures on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Malar J 2017; 16:73. [PMID: 28193292 PMCID: PMC5307775 DOI: 10.1186/s12936-017-1720-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Temperature plays a crucial role in the life history of insects. Recent climate change research has highlighted the importance of elevated temperature on malaria vector distribution. This study aims to examine the role of elevated temperatures on epidemiologically important life-history traits in the major malaria vector, Anopheles arabiensis. Specifically, the differential effects of temperature on insecticide-resistant and susceptible strains were examined. METHODS Two laboratory strains of A. arabiensis, the insecticide-susceptible SENN and the insecticide-resistant SENN DDT strains, were used to examine the effect of elevated temperatures on larval development and adult longevity. The effects of various elevated temperatures on insecticide resistance phenotypes were also examined and the biochemical basis of the changes in insecticide resistance phenotype was assessed. RESULTS SENN and SENN DDT larvae developed at similar rates at elevated temperatures. SENN DDT adult survivorship did not vary between control and elevated temperatures, while the longevity of SENN adults at constantly elevated temperatures was significantly reduced. SENN DDT adults lived significantly longer than SENN at constantly elevated temperatures. Elevated rearing temperatures, as well as a short-term exposure to 37 and 39 °C as adults, augmented pyrethroid resistance in adult SENN DDT, and increased pyrethroid tolerance in SENN. Detoxification enzyme activity was not implicated in this phenotypic effect. Quercertin-induced synergism of inducible heat shock proteins negated this temperature-mediated augmentation of pyrethroid resistance. CONCLUSION Insecticide-resistant A. arabiensis live longer than their susceptible counterparts at elevated temperatures. Exposure to heat shock augments pyrethroid resistance in both resistant and susceptible strains. This response is potentially mediated by inducible heat shock proteins.
Collapse
Affiliation(s)
- Shüné V Oliver
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham, Johannesburg, South Africa. .,Faculty of Health Sciences, Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa.
| | - Basil D Brooke
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham, Johannesburg, South Africa.,Faculty of Health Sciences, Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa
| |
Collapse
|
30
|
Onyango EA, Sahin O, Awiti A, Chu C, Mackey B. An integrated risk and vulnerability assessment framework for climate change and malaria transmission in East Africa. Malar J 2016; 15:551. [PMID: 27835976 PMCID: PMC5105305 DOI: 10.1186/s12936-016-1600-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/04/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Malaria is one of the key research concerns in climate change-health relationships. Numerous risk assessments and modelling studies provide evidence that the transmission range of malaria will expand with rising temperatures, adversely impacting on vulnerable communities in the East African highlands. While there exist multiple lines of evidence for the influence of climate change on malaria transmission, there is insufficient understanding of the complex and interdependent factors that determine the risk and vulnerability of human populations at the community level. Moreover, existing studies have had limited focus on the nature of the impacts on vulnerable communities or how well they are prepared to cope. In order to address these gaps, a systems approach was used to present an integrated risk and vulnerability assessment framework for studies of community level risk and vulnerability to malaria due to climate change. RESULTS Drawing upon published literature on existing frameworks, a systems approach was applied to characterize the factors influencing the interactions between climate change and malaria transmission. This involved structural analysis to determine influential, relay, dependent and autonomous variables in order to construct a detailed causal loop conceptual model that illustrates the relationships among key variables. An integrated assessment framework that considers indicators of both biophysical and social vulnerability was proposed based on the conceptual model. CONCLUSIONS A major conclusion was that this integrated assessment framework can be implemented using Bayesian Belief Networks, and applied at a community level using both quantitative and qualitative methods with stakeholder engagement. The approach enables a robust assessment of community level risk and vulnerability to malaria, along with contextually relevant and targeted adaptation strategies for dealing with malaria transmission that incorporate both scientific and community perspectives.
Collapse
Affiliation(s)
- Esther Achieng Onyango
- Centre for Environment and Population Health, Griffith University, School of Environment, 170 Kessels Road, Nathan, 4111 Australia
| | - Oz Sahin
- School of Engineering, Griffith University, Gold Coast, 4222 Australia
- Griffith Climate Change Response Program, Griffith University, Gold Coast, 4222 Australia
| | - Alex Awiti
- East African Institute, Aga Khan University East Africa, 2nd Parklands Avenue, Nairobi, 00100 Kenya
| | - Cordia Chu
- Centre for Environment and Population Health, Griffith University, School of Environment, 170 Kessels Road, Nathan, 4111 Australia
| | - Brendan Mackey
- Griffith Climate Change Response Program, Griffith University, Gold Coast, 4222 Australia
| |
Collapse
|
31
|
Levy K. Reducing Health Regrets in a Changing Climate. J Infect Dis 2016; 215:14-16. [PMID: 27811321 DOI: 10.1093/infdis/jiw522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022] Open
Affiliation(s)
- Karen Levy
- Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, Georgia
| |
Collapse
|
32
|
Arum SO, Weldon CW, Orindi B, Tigoi C, Musili F, Landmann T, Tchouassi DP, Affognon HD, Sang R. Plant resting site preferences and parity rates among the vectors of Rift Valley Fever in northeastern Kenya. Parasit Vectors 2016; 9:310. [PMID: 27245579 PMCID: PMC4886391 DOI: 10.1186/s13071-016-1601-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mosquito lifespan can influence the circulation of disease causing pathogens because it affects the time available for infection and transmission. The life-cycle of mosquitoes is determined by intrinsic and environmental factors, which can include the availability of hosts and suitable resting environments that shelter mosquitoes from extreme temperature and desiccating conditions. This study determined the parity rates (an indirect measure of survival) and plant resting preference of vectors of Rift Valley fever (RVF) in northeastern Kenya. METHODS Resting mosquitoes were trapped during the rainy and the dry season using a Prokopack aspirator from vegetation, whereas general adult populations were trapped using CDC light traps. At each site, sampling was conducted within a 1 km(2) area, subdivided into 500 × 500 m quadrants and four 250 × 250 m sub-quadrants from which two were randomly selected as sampling units. In each sampling unit, plants were randomly selected for aspiration of mosquitoes. Only Aedes mcintoshi and Ae. ochraceus were dissected to determine parity rates while all mosquito species were used to assess plant resting preference. RESULTS Overall, 1124 (79 %, 95 % CI = 76.8-81.1 %) mosquitoes were parous. There was no significant difference in the number of parous Ae. mcintoshi and Ae. ochraceus. Parity was higher in the rainy season than in the dry season. Daily survival rate was estimated to be 0.93 and 0.92 among Ae. ochraceus and Ae. mcintoshi, respectively. Duosperma kilimandscharicum was the most preferred plant species with the highest average capture of primary (3.64) and secondary (5.83) vectors per plant, while Gisekia africana was least preferred. CONCLUSION Survival rate of each of the two primary vectors of RVF reported in this study may provide an indication that these mosquitoes can potentially play important roles in the circulation of diseases in northern Kenya. Resting preference of the mosquitoes in vegetation may influence their physiology and enhance longevity. Thus, areas with such vegetation may be associated with an increased risk of transmission of arboviruses to livestock and humans.
Collapse
Affiliation(s)
- Samwel O Arum
- International Centre of Insect Physiology and Ecology, Nairobi, P. O. Box 30772-00100, Nairobi, Kenya.
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0083, South Africa.
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0083, South Africa
| | - Benedict Orindi
- International Centre of Insect Physiology and Ecology, Nairobi, P. O. Box 30772-00100, Nairobi, Kenya
| | - Caroline Tigoi
- International Centre of Insect Physiology and Ecology, Nairobi, P. O. Box 30772-00100, Nairobi, Kenya
| | - Francis Musili
- International Centre of Insect Physiology and Ecology, Nairobi, P. O. Box 30772-00100, Nairobi, Kenya
| | - Tobias Landmann
- International Centre of Insect Physiology and Ecology, Nairobi, P. O. Box 30772-00100, Nairobi, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, Nairobi, P. O. Box 30772-00100, Nairobi, Kenya
| | - Hippolyte D Affognon
- International Centre of Insect Physiology and Ecology, Nairobi, P. O. Box 30772-00100, Nairobi, Kenya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 320, Bamako, Mali
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology, Nairobi, P. O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
33
|
Sinka ME, Golding N, Massey NC, Wiebe A, Huang Z, Hay SI, Moyes CL. Modelling the relative abundance of the primary African vectors of malaria before and after the implementation of indoor, insecticide-based vector control. Malar J 2016; 15:142. [PMID: 26945997 PMCID: PMC4779559 DOI: 10.1186/s12936-016-1187-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/23/2016] [Indexed: 11/16/2022] Open
Abstract
Background Malaria remains a heavy burden across sub-Saharan Africa where transmission is maintained by some of the world’s most efficient vectors. Indoor insecticide-based control measures have significantly reduced transmission, yet elimination remains a distant target. Knowing the relative abundance of the primary vector species can provide transmission models with much needed information to guide targeted control measures. Moreover, understanding how existing interventions are impacting on these relative abundances highlights where alternative control (e.g., larval source management) is needed. Methods Using the habitat suitability probabilities generated by predictive species distribution models combined with data collated from the literature, a multinomial generalized additive model was applied to produce relative abundance estimates for Anopheles arabiensis, Anopheles funestus and Anopheles gambiae/Anopheles coluzzii. Using pre- and post-intervention abundance data, estimates of the effect of indoor insecticide-based interventions on these relative abundances were made and are illustrated in post-intervention maps. Results Conditional effect plots and relative abundance maps illustrate the individual species’ predicted habitat suitability and how they interact when in sympatry. Anopheles arabiensis and An. funestus show an affinity in habitat preference at the expense of An. gambiae/An. coluzzii, whereas increasing habitat suitability for An. gambiae/An. coluzzii is conversely less suitable for An. arabiensis but has little effect on An. funestus. Indoor insecticide-based interventions had a negative impact on the relative abundance of An. funestus, and a lesser effect on An. arabiensis. Indoor residual spraying had the greatest impact on the relative abundance of An. funestus, and a lesser effect on An. gambiae/An. coluzzii. Insecticide-treated bed nets reduced the relative abundance of both species equally. These results do not indicate changes in the absolute abundance of these species, which may be reduced for all species overall. Conclusions The maps presented here highlight the interactions between the primary vector species in sub-Saharan Africa and demonstrate that An. funestus is more susceptible to certain indoor-based insecticide interventions than An. gambiae/An. coluzzii, which in turn, is more susceptible than An. arabiensis. This may provide An. arabiensis with a competitive advantage where it is found in sympatry with other more endophilic vectors, and potentially increase the need for outdoor-based vector interventions to deal with any residual transmission barring the way to malaria elimination. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1187-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marianne E Sinka
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Nick Golding
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| | - N Claire Massey
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Antoinette Wiebe
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| | - Zhi Huang
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Simon I Hay
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK. .,Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA. .,Fogarty International Center, National Institutes of Health, Bethesda, MD, 20892-2220, USA.
| | - Catherine L Moyes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
34
|
Lyons CL, Oliver SV, Hunt RH, Coetzee M. The Influence of Insecticide Resistance, Age, Sex, and Blood Feeding Frequency on Thermal Tolerance of Wild and Laboratory Phenotypes of Anopheles funestus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:394-400. [PMID: 26718714 DOI: 10.1093/jme/tjv196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Resistance to insecticides is a global phenomenon and is increasing at an unprecedented rate. How resistant and susceptible strains of malaria vectors might differ in terms of life history and basic biology is often overlooked, despite the potential importance of such information in light of changing climates. Here, we investigated the upper thermal limits (ULT50) of wild and laboratory strains of Anopheles funestus Giles mosquitoes, including resistance status, sex, age, and blood feeding status as potential factors influencing ULT50. No significant differences in ULT50 were observed between strains displaying different resistance patterns, nor was there a significant difference between wild and laboratory strains. In some instances, strains showed a senescence response, displaying decreased ULT50 with an increase in age, and differences between males and females (females displaying higher ULT50 than males). Blood feeding did not seem to influence ULT50 in any way. For An. funestus, it seems evident that there is no cost to resistance despite what is displayed in other anopheline species. This could have significant impacts for vector control, with resistant populations of An. funestus performing just as well, if not better, than susceptible strains, especially under changing environmental conditions such as those expected to occur with climate change.
Collapse
|
35
|
Slotsbo S, Schou MF, Kristensen TN, Loeschcke V, Sørensen JG. Reversibility of developmental heat and cold plasticity is asymmetric and has long lasting consequences for adult thermal tolerance. J Exp Biol 2016; 219:2726-32. [DOI: 10.1242/jeb.143750] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022]
Abstract
The ability of insects to cope with stressful temperatures through adaptive plasticity has allowed them to thrive under a wide range of thermal conditions. Developmental plasticity is generally considered as non-reversible phenotypic changes, e.g. in morphological traits, while adult acclimation responses are often considered to be reversible physiological responses. However, physiologically mediated thermal acclimation might not follow this general prediction. We investigated the magnitude and rate of reversibility of developmental thermal plasticity responses in heat and cold tolerance of adult flies, using a full factorial design with two developmental and two adult temperatures (15°C and 25°C). We show that cold tolerance attained during development is readily adjusted to the prevailing conditions during adult acclimation with a symmetric rate of decrease or increase. In contrast, heat tolerance is only partly reversible during acclimation and thus constrained by the temperature during development. The effect of adult acclimation on heat tolerance was asymmetrical, with a general loss of heat tolerance with age. Surprisingly, the decline in adult heat tolerance at 25°C was decelerated in flies developed at low temperatures. This result was supported by correlated responses in two senescence associated traits and in accordance with a lower rate of ageing after low temperature development, suggesting that physiological age is not reset at eclosion. The results have profound ecological consequences for populations, as optimal developmental temperatures will be dependent on the thermal conditions faced in the adult stage and the age at which they occur.
Collapse
Affiliation(s)
- Stine Slotsbo
- Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark
| | - Mads F. Schou
- Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark
| | - Torsten N. Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Volker Loeschcke
- Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark
| | - Jesper G. Sørensen
- Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark
| |
Collapse
|
36
|
Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest. Oecologia 2015; 179:947-57. [DOI: 10.1007/s00442-015-3409-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
|
37
|
Zhang W, Chang XQ, Hoffmann A, Zhang S, Ma CS. Impact of hot events at different developmental stages of a moth: the closer to adult stage, the less reproductive output. Sci Rep 2015; 5:10436. [PMID: 26000790 PMCID: PMC5377051 DOI: 10.1038/srep10436] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/14/2015] [Indexed: 01/16/2023] Open
Abstract
Hot days in summer (involving a few hours at particularly high temperatures) are expected to become more common under climate change. How such events at different life stages affect survival and reproduction remains unclear in most organisms. Here, we investigated how an exposure to 40 °C at different life stages in the global insect pest, Plutella xylostella, affects immediate survival, subsequent survival and reproductive output. First-instar larvae showed the lowest survival under heat stress, whereas 3rd-instar larvae were relatively heat resistant. Heat exposure at the 1(st)-instar or egg stage did not influence subsequent maturation success, while exposure at the 3rd-instar larval stage did have an effect. We found that heat stress at developmental stages closer to adult stage caused greater detrimental effects on reproduction than heat stress experienced at earlier life stages. The effects of hot events on insect populations can therefore depend critically on the timing of the event relative to an organism's life-cycle.
Collapse
Affiliation(s)
- Wei Zhang
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang-Qian Chang
- Hubei Province Key Laboratory for Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection &Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - AryA Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Shu Zhang
- Hubei Province Key Laboratory for Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection &Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Lyons CL, Coetzee M, Terblanche JS, Chown SL. Desiccation tolerance as a function of age, sex, humidity and temperature in adults of the African malaria vectors Anopheles arabiensis and Anopheles funestus. ACTA ACUST UNITED AC 2014; 217:3823-33. [PMID: 25267846 DOI: 10.1242/jeb.104638] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Adult mosquito survival is strongly temperature and moisture dependent. Few studies have investigated the interacting effects of these variables on adult survival and how this differs among the sexes and with age, despite the importance of such information for population dynamic models. For these reasons, the desiccation tolerance of Anopheles arabiensis Patton and Anopheles funestus Giles males and females of three different ages was assessed under three combinations of temperature and humidity. Females were more desiccation tolerant than males, surviving for longer periods than males under all experimental conditions. In addition, younger adults were more tolerant of desiccation than older groups. Both species showed reduced water loss rate (WLR) as the primary mechanism by which they tolerate desiccation. Although A. arabiensis is often considered to be the more arid-adapted of the two species, it showed lower survival times and higher WLR than A. funestus. The current information could improve population dynamic models of these vectors, given that adult survival information for such models is relatively sparse.
Collapse
Affiliation(s)
- Candice L Lyons
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland 7602, South Africa
| | - Steven L Chown
- School of Biological Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|
39
|
Verhoef FA, Venter GJ, Weldon CW. Thermal limits of two biting midges, Culicoides imicola Kieffer and C. bolitinos Meiswinkel (Diptera: Ceratopogonidae). Parasit Vectors 2014; 7:384. [PMID: 25142029 PMCID: PMC4150952 DOI: 10.1186/1756-3305-7-384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/08/2014] [Indexed: 01/16/2023] Open
Abstract
Background Culicoides imicola Kieffer and Culicoides bolitinos Meiswinkel (Diptera: Ceratopogonidae) are both of veterinary importance, being vectors of Schmallenberg, bluetongue and African horse sickness (AHS) viruses. Within South Africa, these Culicoides species show a marked difference in their abundances according to altitude, with C. imicola highly abundant in lower altitudes, but being replaced as the dominant species by C. bolitinos in cooler, high-altitude regions. Methods The thermal physiology of field collected adults of each species was determined to evaluate whether it could account for differences in their distribution and abundance. Critical thermal maxima (CTmax) and minima (CTmin), as well as upper and lower lethal temperatures (ULT and LLT) were assessed after acclimation temperatures of 19ˌC, 24ˌC and 29ˌC. Critical thermal limits were determined using an ecologically relevant rate of temperature change of 0.06ˌC.min−1. Results Significant differences in CTmin and CTmax were found between acclimation temperatures for C. imicola and C. bolitinos. In C. bolitinos, the LLT of individuals acclimated at 24ˌC was significantly improved (LLT50 = −6.01ˌC) compared with those acclimated at the other temperatures (LLT50 = −4ˌC). Acclimation had a weak (difference in LLT50 of only 1ˌC) but significant effect on the LLT of C. imicola. When CTmin, CTmax, LLT and ULT were superimposed on daily maximum and minimum temperature records from locations where each tested Culicoides species is dominant, it was found that temperatures frequently declined below the CTmin and LLT of C. imicola at the location where C. bolitinos was dominant. Conclusions The distribution and abundance of C. imicola is likely directly constrained by their relatively poor tolerance of lower temperatures. Results for C. bolitinos suggest that the adult phase is hardy, and it is hypothesised that the thermal biology of other life stages could determine their range. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-384) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Arné Verhoef
- Flies of Economic Significance Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | | | | |
Collapse
|
40
|
Sternberg ED, Thomas MB. Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol 2014; 30:115-22. [DOI: 10.1016/j.pt.2013.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/24/2013] [Accepted: 12/28/2013] [Indexed: 12/29/2022]
|
41
|
Gimonneau G, Brossette L, Mamaï W, Dabiré RK, Simard F. Larval competition between An. coluzzii and An. gambiae in insectary and semi-field conditions in Burkina Faso. Acta Trop 2014; 130:155-61. [PMID: 24269743 DOI: 10.1016/j.actatropica.2013.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/01/2013] [Accepted: 11/09/2013] [Indexed: 12/20/2022]
Abstract
Competition in mosquito larvae is common and different ecological context could change competitive advantage between species. Here, larval competition between the widely sympatric African malaria mosquitoes, Anopheles coluzzii and Anopheles gambiae were investigated in controlled insectary conditions using individuals from laboratory colonies and under ambient conditions using wild mosquitoes in a semi-field enclosure in western Burkina Faso. Larvae of both species were reared in trays at the same larval density and under the same feeding regimen in either single-species or mixed-species populations at varying species ratios reflecting 0%, 25%, 50% and 75% of competitor species. In the insectaries, where environmental variations are controlled, larvae of the An. coluzzii colony developed faster and with lower mortality than larvae of the An. gambiae colony (8.8±0.1 days and 21±3% mortality vs. 9.5±0.1 days and 32±3% mortality, respectively). Although there was no significant effect of competition on these phenotypic traits in any species, there was a significant trend for higher fitness of the An. coluzzii colony when competing with An. gambiae under laboratory conditions (i.e. lower development time and increased wing length at emergence, Cuzik's tests, P<0.05). In semi-field experiments, competition affected the life history traits of both species in a different way. Larvae of An. gambiae tended to reduce development time when in competition with An. coluzzii (Cuzick's test, P=0.002) with no impact either on mortality or size at emergence. On the other hand, An. coluzzii showed a significant trend for reduced larval mortality with increasing competition pressure (Cuzick's test, P=0.037) and production of smaller females when grown together with An. gambiae (Cuzick's test, P=0.002). Our results hence revealed that competitive interactions between larvae of the two species are context dependent. They further call for caution when exploring ecological processes using inbred laboratory colonies in this system of utmost medical importance.
Collapse
Affiliation(s)
- Geoffrey Gimonneau
- Institut de Recherche pour le Développement (IRD), UMR 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Genetique, Evolution et Contrôle), team BEES (Biology, Ecology and Evolution of vector Systems), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France; Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545 Bobo Dioulasso, Burkina Faso.
| | - Lou Brossette
- Institut de Recherche pour le Développement (IRD), UMR 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Genetique, Evolution et Contrôle), team BEES (Biology, Ecology and Evolution of vector Systems), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France.
| | - Wadaka Mamaï
- Institut de Recherche pour le Développement (IRD), UMR 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Genetique, Evolution et Contrôle), team BEES (Biology, Ecology and Evolution of vector Systems), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France; Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545 Bobo Dioulasso, Burkina Faso.
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545 Bobo Dioulasso, Burkina Faso.
| | - Frédéric Simard
- Institut de Recherche pour le Développement (IRD), UMR 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Genetique, Evolution et Contrôle), team BEES (Biology, Ecology and Evolution of vector Systems), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France; Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545 Bobo Dioulasso, Burkina Faso.
| |
Collapse
|
42
|
Temporal and micro-spatial heterogeneity in the distribution of Anopheles vectors of malaria along the Kenyan coast. Parasit Vectors 2013; 6:311. [PMID: 24330615 PMCID: PMC3843567 DOI: 10.1186/1756-3305-6-311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing—in a single coherent statistical framework—the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed. Methods Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs). Results Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days, negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households. A significant degree of mosquito clustering within households was identified. Conclusions The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria.
Collapse
|
43
|
Survival and hsp70 gene expression in Plutella xylostella and its larval parasitoid Diadegma insulare varied between slowly ramping and abrupt extreme temperature regimes. PLoS One 2013; 8:e73901. [PMID: 24040110 PMCID: PMC3765401 DOI: 10.1371/journal.pone.0073901] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/23/2013] [Indexed: 01/01/2023] Open
Abstract
Background In nature, insects have evolved behavioural and physiological adaptations to cope with short term exposure to extreme temperatures. Extreme heat events may increase as a result of climate change; this in turn will affect insect population dynamics. We examined the effect of abrupt and ecologically relevant gradual exposure to high temperatures on the survival and hsp70 gene expression in diamondback moth (DBM) adults and the parasitoid Diadegmainsulare, as well as in parasitized and non-parasitized DBM larvae. Principal Findings Tolerance to high temperatures in DBM adults was higher than in D. insulare adults. There was no difference in the survival of DBM adults between abrupt and ramped increases from 25 to 38°C; however, at 40°C survival was higher when the temperature increased gradually. In contrast, more D. insulare adults survived when the temperature was ramped rather than shifted abruptly to both 38 and 40°C. There was no heat stress effect of up to 40°C on the survival of either parasitized or non-parasitized DBM larvae. In adults of both species, more hsp70 expression was observed when temperatures increased abruptly to 38°C compared to ramping. In contrast, at 40°C significantly more expression was found in insects exposed to the ramping rather than the abrupt regime. Hsp70 expression level was in agreement with adult survival data and appears to be a good indicator of stress levels. In parasitized and non-parasitized larvae, hsp70 expression was significantly higher after abrupt shifts compared to ramping at both temperatures. Conclusions/Significance Hsp70 gene expression was responsive to extreme temperatures in both DBM and D. insulare, which may underlie the ability of these insects to survive in extreme temperatures. Survival and hsp70 expression upon abrupt changes are distinctly different from those after ramping indicating that experimental protocol must be considered before extrapolating laboratory results to natural field situations.
Collapse
|
44
|
Kellermann V, Overgaard J, Loeschcke V, Kristensen TN, Hoffmann AA. Trait associations across evolutionary time within a drosophila phylogeny: correlated selection or genetic constraint? PLoS One 2013; 8:e72072. [PMID: 24015206 PMCID: PMC3756044 DOI: 10.1371/journal.pone.0072072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/11/2013] [Indexed: 01/11/2023] Open
Abstract
Traits do not evolve independently. To understand how trait changes under selection might constrain adaptive changes, phenotypic and genetic correlations are typically considered within species, but these capture constraints across a few generations rather than evolutionary time. For longer-term constraints, comparisons are needed across species but associations may arise because of correlated selection pressures rather than genetic interactions. Implementing a unique approach, we use known patterns of selection to separate likely trait correlations arising due to correlated selection from those reflecting genetic constraints. We examined the evolution of stress resistance in >90 Drosophila species adapted to a range of environments, while controlling for phylogeny. Initially we examined the role of climate and phylogeny in shaping the evolution of starvation and body size, two traits previously not examined in this context. Following correction for phylogeny only a weak relationship between climate and starvation resistance was detected, while all of the variation in the relationship between body size and climate could be attributed to phylogeny. Species were divided into three environmental groups (hot and dry, hot and wet, cold) with the expectation that, if genetic correlations underpin trait correlations, these would persist irrespective of the environment, whereas selection-driven evolution should produce correlations dependent on the environment. We found positive associations between most traits in hot and dry environments coupled with high trait means. In contrast few trait correlations were observed in hot/wet and cold environments. These results suggest trait associations are primarily driven by correlated selection rather than genetic interactions, highlighting that such interactions are unlikely to limit evolution of stress resistance.
Collapse
Affiliation(s)
- Vanessa Kellermann
- Department of Bioscience, Aarhus University, Aarhus, Denmark
- Department of Biological Sciences, Monash University, Victoria, Australia
- * E-mail:
| | | | | | - Torsten Nygaard Kristensen
- Department of Bioscience, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
- NordGen - Nordic Genetic Resource Center, Ås, Norway
| | - Ary A. Hoffmann
- Department of Genetics, Bio21 Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science 2013; 341:514-9. [PMID: 23908230 DOI: 10.1126/science.1239401] [Citation(s) in RCA: 651] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Scientists have long predicted large-scale responses of infectious diseases to climate change, giving rise to a polarizing debate, especially concerning human pathogens for which socioeconomic drivers and control measures can limit the detection of climate-mediated changes. Climate change has already increased the occurrence of diseases in some natural and agricultural systems, but in many cases, outcomes depend on the form of climate change and details of the host-pathogen system. In this review, we highlight research progress and gaps that have emerged during the past decade and develop a predictive framework that integrates knowledge from ecophysiology and community ecology with modeling approaches. Future work must continue to anticipate and monitor pathogen biodiversity and disease trends in natural ecosystems and identify opportunities to mitigate the impacts of climate-driven disease emergence.
Collapse
Affiliation(s)
- Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
46
|
Lefèvre T, Vantaux A, Dabiré KR, Mouline K, Cohuet A. Non-genetic determinants of mosquito competence for malaria parasites. PLoS Pathog 2013; 9:e1003365. [PMID: 23818841 PMCID: PMC3688545 DOI: 10.1371/journal.ppat.1003365] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies.
Collapse
Affiliation(s)
- Thierry Lefèvre
- MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR Universités Montpellier 1 & 2, CNRS 5290, IRD 224, Montpellier, France.
| | | | | | | | | |
Collapse
|
47
|
Lyons CL, Coetzee M, Chown SL. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasit Vectors 2013; 6:104. [PMID: 23590860 PMCID: PMC3637585 DOI: 10.1186/1756-3305-6-104] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/11/2013] [Indexed: 01/18/2023] Open
Abstract
Background Understanding the biology of malaria vector mosquitoes is crucial to understanding many aspects of the disease, including control and future outcomes. The development rates and survival of two Afrotropical malaria vectors, Anopheles arabiensis and Anopheles funestus, are investigated here under conditions of constant and fluctuating temperatures. These data can provide a good starting point for modelling population level consequences of temperature change associated with climate change. For comparative purposes, these data were considered explicitly in the context of those available for the third African malaria vector, Anopheles gambiae. Methods Twenty five replicates of 20–30 eggs were placed at nine constant and two fluctuating temperatures for development rate experiments and survival estimates. Various developmental parameters were estimated from the data, using standard approaches. Results Lower development threshold (LDT) for both species was estimated at 13-14°C. Anopheles arabiensis developed consistently faster than An. funestus. Optimum temperature (Topt) and development rate at this temperature (μmax) differed significantly between species for overall development and larval development. However, Topt and μmax for pupal development did not differ significantly between species. Development rate and survival of An. funestus was negatively influenced by fluctuating temperatures. By contrast, development rate of An. arabiensis at fluctuating temperatures either did not differ from constant temperatures or was significantly faster. Survival of this species declined by c. 10% at the 15°C to 35°C fluctuating temperature regime, but was not significantly different between the constant 25°C and the fluctuating 20°C to 30°C treatment. By comparison, previous data for An. gambiae indicated fastest development at a constant temperature of 28°C and highest survival at 24°C. Conclusions The three most important African malaria vectors all differ significantly in development rates and survival under different temperature treatments, in keeping with known distribution data, though differences among M and S molecular forms of An. gambiae likely complicate the picture. Increasing temperatures associated with climate change favour all three species, but fluctuations in temperatures are detrimental to An. funestus and may also be for An. gambiae. This may have significant implications for disease burden in areas where each species is the main malaria vector.
Collapse
Affiliation(s)
- Candice L Lyons
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | |
Collapse
|