1
|
Hussain S, Kanuka H, Rakotondrafara A, Tani M, Aiuchi D. Pathogenicity and sub-lethal activity of orally administered entomopathogenic fungi against two adult mosquito species, Aedes aegypti (Diptera: Culicidae) and Anopheles stephensi (Diptera: Culicidae). J Invertebr Pathol 2024:108233. [PMID: 39521270 DOI: 10.1016/j.jip.2024.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Entomopathogenic fungi (EPF) are known for their efficacy in controlling adult mosquito populations by penetrating through their cuticle. However, the effect of oral administration of EPF on the biological parameters of Aedes aegypti and Anopheles stephensi remains largely unexplored. This study aimed to assess the effect of orally administrated EPF isolates on the survival, feeding behavior, fecundity, fertility, follicle development and host-searching behavior in response to yeast-generated CO2 of Ae. aegypti and An. stephensi. An initial screening of 50 isolates involved exposure of adult Ae. aegypti and An. stephensi by integument inoculation. Subsequently, the entomopathogenic effect of the five highly virulent isolates was confirmed through oral administration revealing Beauveria pseudobassiana 42-51 as a potent mosquito killer. B. pseudobassiana 42-51 was administered orally to evaluate sub-lethal effects. The results showed a 63 % and 43 % reduction in blood feeding of Ae. aegypti and An. stephensi, respectively. Furthermore, a decrease in egg hatching rate was observed, with a reduction of 83% for Ae. aegypti and 74% for An. stephensi on the seventh day following fungal administration, showing decreased hatchability in both species. Poor and abnormal follicle development was observed in both mosquito species. Also, the host-searching behavior was evaluated by attraction to CO2 utilizing a Y-tube olfactometer. A tendency of reduction in the attraction rate towards the odor was observed three days post-fungal administration. These findings underscore the significant impact of oral administration of B. pseudobassiana 42-51 on mosquitoes, highlighting not only its lethal effects but also sub lethal impacts on their biology. Moreover, this fungus may exhibit the potential to simultaneously control both mosquito species and serve as a biocontrol agent for the management of vector-borne diseases.
Collapse
Affiliation(s)
- Sikandar Hussain
- Department of Agro-environmental Science, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | | | - Masayuki Tani
- Department of Agro-environmental Science, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| | - Daigo Aiuchi
- Department of Agro-environmental Science, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan.
| |
Collapse
|
2
|
Katak RDM, Cintra AM, Burini BC, Marinotti O, Souza-Neto JA, Rocha EM. Biotechnological Potential of Microorganisms for Mosquito Population Control and Reduction in Vector Competence. INSECTS 2023; 14:718. [PMID: 37754686 PMCID: PMC10532289 DOI: 10.3390/insects14090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Mosquitoes transmit pathogens that cause human diseases such as malaria, dengue fever, chikungunya, yellow fever, Zika fever, and filariasis. Biotechnological approaches using microorganisms have a significant potential to control mosquito populations and reduce their vector competence, making them alternatives to synthetic insecticides. Ongoing research has identified many microorganisms that can be used effectively to control mosquito populations and disease transmission. However, the successful implementation of these newly proposed approaches requires a thorough understanding of the multipronged microorganism-mosquito-pathogen-environment interactions. Although much has been achieved in discovering new entomopathogenic microorganisms, antipathogen compounds, and their mechanisms of action, only a few have been turned into viable products for mosquito control. There is a discrepancy between the number of microorganisms with the potential for the development of new insecticides and/or antipathogen products and the actual available products, highlighting the need for investments in the intersection of basic research and biotechnology.
Collapse
Affiliation(s)
- Ricardo de Melo Katak
- Malaria and Dengue Laboratory, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus 69060-001, AM, Brazil;
| | - Amanda Montezano Cintra
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Bianca Correa Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA;
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Elerson Matos Rocha
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| |
Collapse
|
3
|
Qin Y, Liu X, Peng G, Xia Y, Cao Y. Recent Advancements in Pathogenic Mechanisms, Applications and Strategies for Entomopathogenic Fungi in Mosquito Biocontrol. J Fungi (Basel) 2023; 9:746. [PMID: 37504734 PMCID: PMC10381795 DOI: 10.3390/jof9070746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Fungal diseases are widespread among insects and play a crucial role in naturally regulating insect populations. Mosquitoes, known as vectors for numerous infectious diseases, pose a significant threat to human health. Entomopathogenic fungi (EPF) have emerged as highly promising alternative agents to chemical mosquitocides for controlling mosquitoes at all stages of their life cycle due to their unique infection pathway through direct contact with the insect's cuticle. In recent years, significant advancements have been made in understanding the infection pathways and pathogenic mechanisms of EPF against mosquitoes. Various strategies involving the use of EPF alone or combinations with other approaches have been employed to target mosquitoes at various developmental stages. Moreover, the application of genetic technologies in fungi has opened up new avenues for enhancing the mosquitocidal efficacy of EPF. This review presents a comprehensive summary of recent advancements in our understanding the pathogenic mechanisms of EPF, their applications in mosquito management, and the combination of EPF with other approaches and employment of transgenic technologies. The biosafety concerns associated with their use and the corresponding approaches are also discussed. The recent progress suggests that EPF have the potential to serve as a future biorational tool for controlling mosquito vectors.
Collapse
Affiliation(s)
- Yujie Qin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Xiaoyu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Guoxiong Peng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
| |
Collapse
|
4
|
Delivery and effectiveness of entomopathogenic fungi for mosquito and tick control: current knowledge and research challenges. Acta Trop 2022; 234:106627. [DOI: 10.1016/j.actatropica.2022.106627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
5
|
Fofana A, Yerbanga RS, Bilgo E, Ouedraogo GA, Gendrin M, Ouedraogo JB. The Strategy of Paratransgenesis for the Control of Malaria Transmission. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.867104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect-borne diseases are responsible for important burdens on health worldwide particularly in Africa. Malaria alone causes close to half a million deaths every year, mostly in developing, tropical and subtropical countries, with 94% of the global deaths in 2019 occurring in the WHO African region. With several decades, vector control measures have been fundamental to fight against malaria. Considering the spread of resistance to insecticides in mosquitoes and to drugs in parasites, the need for novel strategies to inhibit the transmission of the disease is pressing. In recent years, several studies have focused on the interaction of malaria parasites, bacteria and their insect vectors. Their findings suggested that the microbiota of mosquitoes could be used to block Plasmodium transmission. A strategy, termed paratransgenesis, aims to interfere with the development of malaria parasites within their vectors through genetically-modified microbes, which produce antimalarial effectors inside the insect host. Here we review the progress of the paratransgenesis approach. We provide a historical perspective and then focus on the choice of microbial strains and on genetic engineering strategies. We finally describe the different steps from laboratory design to field implementation to fight against malaria.
Collapse
|
6
|
Accoti A, Engdahl CS, Dimopoulos G. Discovery of Novel Entomopathogenic Fungi for Mosquito-Borne Disease Control. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:637234. [PMID: 37744144 PMCID: PMC10512396 DOI: 10.3389/ffunb.2021.637234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 09/26/2023]
Abstract
The increased application of chemical control programs has led to the emergence and spread of insecticide resistance in mosquitoes. Novel environmentally safe control strategies are currently needed for the control of disease vectors. The use of entomopathogenic fungi could be a suitable alternative to chemical insecticides. Currently, Beauveria spp. and Metarhizium spp. are the most widely used entomopathogenic fungi for mosquito control, but increasing the arsenal with additional fungi is necessary to mitigate the emergence of resistance. Entomopathogenic fungi are distributed in a wide range of habitats. We have performed a comprehensive screen for candidate mosquitocidal fungi from diverse outdoor environments in Maryland and Puerto Rico. An initial screening of 22 fungi involving exposure of adult Anopheles gambiae to 2-weeks-old fungal cultures identified five potent pathogenic fungi, one of which is unidentified and the remaining four belonging to the three genera Galactomyces sp., Isaria sp. and Mucor sp. These fungi were then screened against Aedes aegypti, revealing Isaria sp. as a potent mosquito killer. The entomopathogenic effects were confirmed through spore-dipping assays. We also probed further into the killing mechanisms of these fungi and investigated whether the mosquitocidal activities were the result of potential toxic fungus-produced metabolites. Preliminary assays involving the exposure of mosquitoes to sterile filtered fungal liquid cultures showed that Galactomyces sp., Isaria sp. and the unidentified isolate 1 were the strongest producers of factors showing lethality against An. gambiae. We have identified five fungi that was pathogenic for An. gambiae and one for Ae. aegypti, among these fungi, four of them (two strains of Galactomyces sp., Mucor sp., and the unidentified isolate 1) have never previously been described as lethal to insects. Further characterization of these entomopathogenic fungi and their metabolites needs to be done to confirm their potential use in biologic control against mosquitoes.
Collapse
Affiliation(s)
| | | | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Insects defend against fungal infection by employing microRNAs to silence virulence-related genes. Proc Natl Acad Sci U S A 2021; 118:2023802118. [PMID: 33941699 DOI: 10.1073/pnas.2023802118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical insecticides remain the main strategy to combat mosquito-borne diseases, but the growing threat of insecticide resistance prompts the urgent need to develop alternative, ecofriendly, and sustainable vector control tools. Entomopathogenic fungi can overcome insecticide resistance and represent promising biocontrol tools for the control of mosquitoes. However, insects have evolved robust defense mechanisms against infection. Better understanding of mosquito defenses against fungal infection is critical for improvement of fungal efficacy. Here, we show that as the pathogenic fungus Beauveria bassiana penetrates into the host hemocoel, mosquitoes increase expression of the let-7 and miR-100 microRNAs (miRNAs). Both miRNAs translocate into fungal hyphae to specifically silence the virulence-related genes sec2p and C6TF, encoding a Rab guanine nucleotide exchange factor and a Zn(II)2Cys6 transcription factor, respectively. Inversely, expression of a let-7 sponge (anti-let-7) or a miR-100 sponge (anti-miR-100) in the fungus efficiently sequesters the corresponding translocated host miRNA. Notably, B. bassiana strains expressing anti-let-7 and anti-miR-100 are markedly more virulent to mosquitoes. Our findings reveal an insect defense strategy that employs miRNAs to induce cross-kingdom silencing of pathogen virulence-related genes, conferring resistance to infection.
Collapse
|
8
|
Baleba SBS, Agbessenou A, Getahun MN, Akutse KS, Subramanian S, Masiga D. Infection of the Stable Fly, Stomoxys calcitrans, L. 1758 (Diptera: Muscidae) by the Entomopathogenic Fungi Metarhizium anisopliae (Hypocreales: Clavicipitaceae) Negatively Affects Its Survival, Feeding Propensity, Fecundity, Fertility, and Fitness Parameters. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:637817. [PMID: 37744116 PMCID: PMC10512350 DOI: 10.3389/ffunb.2021.637817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 09/26/2023]
Abstract
Entomopathogenic fungi can cause substantial mortality in harmful insects. Before killing the insect, these pathogens start by negatively affecting the biological parameters of the host. Prior to our study, the information about how fungal exposure affects the biological parameters of the stable fly, Stomoxys calcitrans was still elusive. Therefore, we aimed to assess the infection of S. calcitrans with some Metarhizium anisopliae strains, and their impact on feeding, fecundity, fertility and other life-history traits of this fly. Among the 11 M. anisopliae strains screened, we identified ICIPE 30 as the most virulent strain against S. calcitrans. We observed that the infectivity of this strain was sex and age-dependent. Infected male S. calcitrans died earlier than their counterpart females. Older infected S. calcitrans died faster than infected young ones. Also, male and female S. calcitrans successfully transmitted ICIPE 30 conidia to their mates. We demonstrated that infection by ICIPE 30 extended the feeding time of S. calcitrans and consequently reduced the feeding probability of the fly and the amount of blood taken. Using a dual test oviposition bioassay, we determined that uninfected gravid female S. calcitrans avoided laying eggs on substrates amended with ICIPE 30 conidia. We showed that these conidia could lower the hatchability of the eggs deposited by gravid females. Using, a no-choice test, we showed that gravid female S. calcitrans infected with ICIPE 30 laid fewer eggs than uninfected females and those eggs hatched less. Using 11 strains of M. anisopliae and four high concentrations of ICIPE 30 conidia, we verified that S. calcitrans larvae were not susceptible to fungal infection. Further, we showed that though these larvae were tolerant to fungal infection, there was a significant effect on their fitness, with contaminated larvae having a small bodyweight coupled with longer developmental time as compared to uncontaminated larvae. Our study provides detailed information on how fungal infection affects the biology of S. calcitrans and the potential of using M. anisopliae ICIPE 30 as a biopesticide to reduce the fly population. Such knowledge can assist in developing fungal-based control strategies against this harmful fly.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
9
|
Gnambani EJ, Bilgo E, Sanou A, Dabiré RK, Diabaté A. Infection of highly insecticide-resistant malaria vector Anopheles coluzzii with entomopathogenic bacteria Chromobacterium violaceum reduces its survival, blood feeding propensity and fecundity. Malar J 2020; 19:352. [PMID: 33008454 PMCID: PMC7530970 DOI: 10.1186/s12936-020-03420-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, the impact of Chromobacterium violaceum infections, isolated from both larvae and adult of wild-caught Anopheles gambiae sensu lato mosquitoes in Burkina Faso, was evaluated on mosquito survival, blood feeding and fecundity. METHODS To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays aimed to evaluate the impact of C. violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C. violaceum. RESULTS Chromobacterium violaceum kills pyrethroid resistant Anopheles coluzzii (LT80 of 8.78 days ± 0.18 at 108 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~ 59%, P < 0.001) the mosquito feeding willingness from day 4-post infection (~ 81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~ 16 eggs laid/mosquito with C. violaceum infected mosquitoes vs ~ 129 eggs laid/mosquito with control mosquitoes) and hatching of mosquitoes (a reduction of ~ 22% of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed significantly higher retention rates of immature eggs and follicles. CONCLUSION These data showed important properties of Burkina Faso C. violaceum strains, which are highly virulent against insecticide-resistant An. coluzzii, and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.
Collapse
Affiliation(s)
- Edounou Jacques Gnambani
- Institut de Recherche en Sciences de La Santé (IRSS) / Centre Muraz, Bobo Dioulasso, Burkina Faso.,Université Nazi Boni / Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Etienne Bilgo
- Institut de Recherche en Sciences de La Santé (IRSS) / Centre Muraz, Bobo Dioulasso, Burkina Faso.
| | - Adama Sanou
- Université Nazi Boni / Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS) / Centre Muraz, Bobo Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de La Santé (IRSS) / Centre Muraz, Bobo Dioulasso, Burkina Faso.
| |
Collapse
|
10
|
Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103182. [PMID: 31265904 PMCID: PMC6639037 DOI: 10.1016/j.ibmb.2019.103182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 05/14/2023]
Abstract
The mosquito immune system has evolved in the presence of continuous encounters with fungi that range from food to foes. Herein, we review the field of mosquito-fungal interactions, providing an overview of current knowledge and topics of interest. Mosquitoes encounter fungi in their aquatic and terrestrial habitats. Mosquito larvae are exposed to fungi on plant detritus, within the water column, and at the water surface. Adult mosquitoes are exposed to fungi during indoor and outdoor resting, blood and sugar feeding, mating, and oviposition. Fungi enter the mosquito body through different routes, including ingestion and through active or passive breaches in the cuticle. Oral uptake of fungi can be beneficial to mosquitoes, as yeasts hold nutritional value and support larval development. However, ingestion of or surface contact with fungal entomopathogens leads to colonization of the mosquito with often lethal consequences to the host. The mosquito immune system recognizes fungi and mounts cellular and humoral immune responses in the hemocoel, and possibly epithelial immune responses in the gut. These responses are regulated transcriptionally through multiple signal transduction pathways. Proteolytic protease cascades provide additional regulation of antifungal immunity. Together, these immune responses provide an efficient barrier to fungal infections, which need to be overcome by entomopathogens. Therefore, fungi constitute an excellent tool to examine the molecular underpinnings of mosquito immunity and to identify novel antifungal peptides. In addition, recent advances in mycobiome analyses can now be used to examine the contribution of fungi to various mosquito traits, including vector competence.
Collapse
Affiliation(s)
- P Tawidian
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA
| | - V L Rhodes
- Missouri Southern State University, Biology Department, Reynolds Hall 220, 3950 E. Newman Rd., Joplin, MO, 64801-1595, USA
| | - K Michel
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
11
|
Couret J, Huynh‐Griffin L, Antolic‐Soban I, Acevedo‐Gonzalez TS, Gerardo NM. Even obligate symbioses show signs of ecological contingency: Impacts of symbiosis for an invasive stinkbug are mediated by host plant context. Ecol Evol 2019; 9:9087-9099. [PMID: 31463006 PMCID: PMC6706230 DOI: 10.1002/ece3.5454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/29/2019] [Indexed: 11/23/2022] Open
Abstract
ABSTRACT Many species interactions are dependent on environmental context, yet the benefits of obligate, mutualistic microbial symbioses to their hosts are typically assumed to be universal across environments. We directly tested this assumption, focusing on the symbiosis between the sap-feeding insect Megacopta cribraria and its primary bacterial symbiont Candidatus Ishikawaella capsulata. We assessed host development time, survival, and body size in the presence and absence of the symbiont on two alternative host plants and in the insects' new invasive range. We found that association with the symbiont was critical for host survival to adulthood when reared on either host plant, with few individuals surviving in the absence of symbiosis. Developmental differences between hosts with and without microbial symbionts, however, were mediated by the host plants on which the insects were reared. Our results support the hypothesis that benefits associated with this host-microbe interaction are environmentally contingent, though given that few individuals survive to adulthood without their symbionts, this may have minimal impact on ecological dynamics and current evolutionary trajectories of these partners. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.kg4bc56.
Collapse
Affiliation(s)
- Jannelle Couret
- Department of Biological SciencesUniversity of Rhode IslandKingstonRIUSA
- Department of BiologyEmory UniversityAtlantaGAUSA
| | | | | | | | | |
Collapse
|
12
|
Weeks EN, Machtinger ET, Leemon D, Geden CJ. 12. Biological control of livestock pests: entomopathogens. ECOLOGY AND CONTROL OF VECTOR-BORNE DISEASES 2018. [DOI: 10.3920/978-90-8686-863-6_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emma N.I. Weeks
- University of Florida, Entomology and Nematology Dept., 970 Natural Area Drive, Gainesville, FL 32653, USA
| | - Erika T. Machtinger
- Penn State University, Department of Entomology, 501 ASI Building, University Park, State College, PA 16082, USA
| | - Diana Leemon
- Department of Agriculture and Fisheries (Queensland), Agri-Science Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, Queensland, 4001, Australia
| | - Christopher J. Geden
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| |
Collapse
|
13
|
Rhodes VL, Thomas MB, Michel K. The interplay between dose and immune system activation determines fungal infection outcome in the African malaria mosquito, Anopheles gambiae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:125-133. [PMID: 29649553 PMCID: PMC5935592 DOI: 10.1016/j.dci.2018.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 05/27/2023]
Abstract
The Toll pathway is a central regulator of antifungal immunity in insects. In mosquitoes, the Toll pathway affects infections with the fungal entomopathogen, Beauveria bassiana, which is considered a potential mosquito biopesticide. We report here the use of B. bassiana strain I93-825 in Anopheles gambiae to analyze the impact of Toll pathway modulation on mosquito survival. Exposure to a narrow dose range of conidia by direct contact decreased mosquito longevity and median survival. In addition, fungal exposure dose correlated positively and linearly with hazard ratio. Increased Toll signaling by knockdown of its inhibitor, cactus, decreased survivorship of uninfected females, increased mosquito survival after low dose B. bassiana exposure, but had little effect following exposure to higher doses. This observed trade-off could have implications for development of B. bassiana as a prospective vector control tool. On the one hand, selection for small increases in mosquito immune signaling across a narrow dose range could impair efficacy of B. bassiana. On the other hand, costs of immunity and the capacity for higher doses of fungus to overwhelm immune responses could limit evolution of resistance.
Collapse
Affiliation(s)
- Victoria L Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Matthew B Thomas
- Department of Entomology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
14
|
Ramirez JL, Muturi EJ, Dunlap C, Rooney AP. Strain-specific pathogenicity and subversion of phenoloxidase activity in the mosquito Aedes aegypti by members of the fungal entomopathogenic genus Isaria. Sci Rep 2018; 8:9896. [PMID: 29967469 PMCID: PMC6028645 DOI: 10.1038/s41598-018-28210-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
Development of alternative vector control strategies are becoming more pressing given the rapid evolution of insecticide resistance and the rise of vector borne pathogens affecting public health such as dengue, chikungunya and Zika. Fungal-based biopesticides are promising alternatives to synthetic insecticides because they are ecofriendly and are highly effective at infecting insects through contact. This study evaluated the susceptibility of the yellow fever mosquito Ae. aegypti to a range of entomopathogenic fungal strains from the genus Isaria. We observed a diverse variation in the virulence of the Isaria strains tested, with two strains showing high pathogenicity towards adult mosquitoes. Mosquito susceptibility to fungal infection was further corroborated through the molecular quantification of fungal loads and the transcript evaluation of a fungal-specific pathogen recognition molecule in the mosquito body. Moreover, quantitative analysis of transcript abundance coupled with enzymatic assays revealed strain-specific subversion of the melanization cascade, an important immune response component. Our study contributes critical insights for a better understanding of fungal-mosquito interactions.
Collapse
Affiliation(s)
- José L Ramirez
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA.
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA
| |
Collapse
|
15
|
Meepagala KM, Estep AS, Clausen BM, Becnel JJ. Mosquitocidal Activity of a Naturally Occurring Isochroman and Synthetic Analogs from the Plant Pathogenic Fungus, Diaporthe eres Against Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:969-974. [PMID: 29474636 DOI: 10.1093/jme/tjy016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 06/08/2023]
Abstract
The culture filtrate of a plant pathogenic fungus that infects English ivy (Hedera helix L., Araliaceae) was investigated for mosquitocidal constituents by bioassay-guided isolation. The fungus responsible for pathogenic effects on the plant H. helix has been identified as Diaporthe eres Nitschke by molecular techniques. The mosquito adulticidal constituent in the culture filtrate was identified as 3,4-dihydro-8-hydroxy-3,5-dimethylisocoumarin (1) by spectroscopic techniques. Laboratory bioassays showed that (1) had larvicidal activity against permethrin-susceptible and -resistant Aedes aegypti strains. This compound was not active as an adulticide when tested by topical bioassay. Several analogs of (1) were synthesized and had better mosquitocidal activities than the naturally occurring (1) constituent.
Collapse
Affiliation(s)
| | - Alden S Estep
- USDA, ARS, CMAVE, Gainesville, FL
- Navy Entomology Center of Excellence, CMAVE Detachment, Gainesville, FL
| | - Brandon M Clausen
- USDA-ARS, Natural Products Utilization Research Unit, University, MS
| | | |
Collapse
|
16
|
Evans HC, Elliot SL, Barreto RW. Entomopathogenic fungi and their potential for the management of Aedes aegypti (Diptera: Culicidae) in the Americas. Mem Inst Oswaldo Cruz 2018; 113:206-214. [PMID: 29412361 PMCID: PMC5804314 DOI: 10.1590/0074-02760170369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
Classical biological control has been used extensively for the management of exotic weeds and agricultural pests, but never for alien insect vectors of medical importance. This simple but elegant control strategy involves the introduction of coevolved natural enemies from the centre of origin of the target alien species. Aedes aegypti - the primary vector of the dengue, yellow fever and Zika flaviviruses - is just such an invasive alien in the Americas where it arrived accidentally from its West African home during the slave trade. Here, we introduce the concept of exploiting entomopathogenic fungi from Africa for the classical biological control of Ae. aegypti in the Americas. Fungal pathogens attacking arthropods are ubiquitous in tropical forests and are important components in the natural balance of arthropod populations. They can produce a range of specialised spore forms, as well as inducing a variety of bizarre behaviours in their hosts, in order to maximise infection. The fungal groups recorded as specialised pathogens of mosquito hosts worldwide are described and discussed. We opine that similar fungal pathogens will be found attacking and manipulating Ae. aegypti in African forests and that these could be employed for an economic, environmentally-safe and long-term solution to the flavivirus pandemics in the Americas.
Collapse
Affiliation(s)
- Harry C Evans
- Centre for Agriculture and Biosciences International, Egham, Surrey, UK.,Universidade Federal de Viçosa, Departamento de Entomologia, Viçosa, MG, Brasil.,Universidade Federal de Viçosa, Departamento de Fitopatologia, Viçosa, MG, Brasil
| | - Simon L Elliot
- Universidade Federal de Viçosa, Departamento de Entomologia, Viçosa, MG, Brasil
| | - Robert W Barreto
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Viçosa, MG, Brasil
| |
Collapse
|
17
|
Bartholomay LC, Michel K. Mosquito Immunobiology: The Intersection of Vector Health and Vector Competence. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:145-167. [PMID: 29324042 DOI: 10.1146/annurev-ento-010715-023530] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As holometabolous insects that occupy distinct aquatic and terrestrial environments in larval and adult stages and utilize hematophagy for nutrient acquisition, mosquitoes are subjected to a wide variety of symbiotic interactions. Indeed, mosquitoes play host to endosymbiotic, entomopathogenic, and mosquito-borne organisms, including protozoa, viruses, bacteria, fungi, fungal-like organisms, and metazoans, all of which trigger and shape innate infection-response capacity. Depending on the infection or interaction, the mosquito may employ, for example, cellular and humoral immune effectors for septic infections in the hemocoel, humoral infection responses in the midgut lumen, and RNA interference and programmed cell death for intracellular pathogens. These responses often function in concert, regardless of the infection type, and provide a robust front to combat infection. Mosquito-borne pathogens and entomopathogens overcome these immune responses, employing avoidance or suppression strategies. Burgeoning methodologies are capitalizing on this concerted deployment of immune responses to control mosquito-borne disease.
Collapse
Affiliation(s)
- Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin 53706;
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, Kansas 66506;
| |
Collapse
|
18
|
Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents. J Fungi (Basel) 2017; 3:jof3020030. [PMID: 29371548 PMCID: PMC5715920 DOI: 10.3390/jof3020030] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/28/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
Chemical insecticides have been commonly used to control agricultural pests, termites, and biological vectors such as mosquitoes and ticks. However, the harmful impacts of toxic chemical insecticides on the environment, the development of resistance in pests and vectors towards chemical insecticides, and public concern have driven extensive research for alternatives, especially biological control agents such as fungus and bacteria. In this review, the mode of infection of Metarhizium fungus on both terrestrial and aquatic insect larvae and how these interactions have been widely employed will be outlined. The potential uses of Metarhizium anisopliae and Metarhizium acridum biological control agents and molecular approaches to increase their virulence will be discussed.
Collapse
|
19
|
Heinig RL, Thomas MB. Interactions between a fungal entomopathogen and malaria parasites within a mosquito vector. Malar J 2015; 14:22. [PMID: 25626485 PMCID: PMC4318179 DOI: 10.1186/s12936-014-0526-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/21/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mosquitoes are becoming increasingly resistant to the chemical insecticides currently available for malaria vector control, spurring interest in alternative management tools. One promising technology is the use of fungal entomopathogens. Fungi have been shown to impact the potential for mosquitoes to transmit malaria by reducing mosquito longevity and altering behaviour associated with flight and host location. Additionally, fungi could impact the development of malaria parasites within the mosquito via competition for resources or effects on the mosquito immune system. This study evaluated whether co-infection or superinfection with the fungal entomopathogen Beauveria bassiana affected malaria infection progress in Anopheles stephensi mosquitoes. METHODS The study used two parasite species to examine possible effects of fungal infection at different parasite development stages. First, the rodent malaria model Plasmodium yoelii was used to explore interactions at the oocyst stage. Plasmodium yoelii produces high oocyst densities in infected mosquitoes and thus was expected to maximize host immunological and resource demands. Second, fungal interactions with mature sporozoites were evaluated by infecting mosquitoes with the human malaria species Plasmodium falciparum, which is highly efficient at invading mosquito salivary glands. RESULTS With P. yoelii, there was no evidence that fungal co-infection (on the same day as the blood meal) or superinfection (during a subsequent gonotrophic cycle after parasite infection) affected the proportion of mosquitoes with oocysts, the number of oocysts per infected mosquito or the number of sporozoites per oocyst. Similarly, for P. falciparum, there was no evidence that fungal infection affected sporozoite prevalence. Furthermore, there was no impact of infection with either malaria species on fungal virulence as measured by mosquito survival time. CONCLUSIONS These results suggest that the impact of fungus on malaria control potential is limited to the well-established effects on mosquito survival and transmission behaviour. Direct or indirect interactions between fungus and malaria parasites within mosquitoes appear to have little additional influence.
Collapse
Affiliation(s)
- Rebecca L Heinig
- Merkle Laboratory, The Pennsylvania State University, University Park, PA, 16803, USA.
| | - Matthew B Thomas
- Merkle Laboratory, The Pennsylvania State University, University Park, PA, 16803, USA.
| |
Collapse
|
20
|
Couret J, Benedict MQ. A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae). BMC Ecol 2014; 14:3. [PMID: 24495345 PMCID: PMC3916798 DOI: 10.1186/1472-6785-14-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development rates of Aedes aegypti are known to vary with respect to many abiotic and biotic factors including temperature, resource availability, and intraspecific competition. The relative importance of these factors and their interactions are not well established across populations. We performed meta-analysis on a dataset of development rate estimates from 49 studies. RESULTS Meta-analytic results indicated that the environmental factor of temperature is sufficient to explain development rate variability in Ae. aegypti. While diet and density may greatly impact other developmental phenotypes, these results suggest that for development rate these factors should never be considered to the exclusion of temperature. The effect of temperature on development rate is not homogenous or constant. The sources of heterogeneity of the effect of temperature are difficult to analyze due to lack of consistent reporting of larval rearing methods. CONCLUSIONS Temperature is the most important ecological determinant of development rate in Ae. aegypti, but its effect is heterogeneous. Ignoring this heterogeneity is problematic for models of vector population and vector-borne disease transmission.
Collapse
Affiliation(s)
- Jannelle Couret
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | | |
Collapse
|
21
|
Prospective malaria control using entomopathogenic fungi: comparative evaluation of impact on transmission and selection for resistance. Malar J 2012; 11:383. [PMID: 23171286 PMCID: PMC3519523 DOI: 10.1186/1475-2875-11-383] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/03/2012] [Indexed: 12/18/2022] Open
Abstract
Background Chemical insecticides against adult mosquitoes are a key element in most malaria management programmes, but their efficacy is threatened by the evolution of insecticide-resistant mosquitoes. By killing only older mosquitoes, entomopathogenic fungi can in principle significantly impact parasite transmission while imposing much less selection for resistance. Here an assessment is made as to which of the wide range of possible virulence characteristics for fungal biopesticides best realise this potential. Methods With mathematical models that capture relevant timings and survival probabilities within successive feeding cycles, transmission and resistance-management metrics are used to compare susceptible and resistant mosquitoes exposed to no intervention, to conventional instant-kill interventions, and to delayed-action biopesticides with a wide range of virulence characteristics. Results Fungal biopesticides that generate high rates of mortality at around the time mosquitoes first become able to transmit the malaria parasite offer potential for large reductions in transmission while imposing low fitness costs. The best combinations of control and resistance management are generally accessed at high levels of coverage. Strains which have high virulence in malaria-infected mosquitoes but lower virulence in malaria-free mosquitoes offer the ultimate benefit in terms of minimizing selection pressure whilst maximizing impact on transmission. Exploiting this phenotype should be a target for product development. For indoor residual spray programmes, biopesticides may offer substantial advantages over the widely used pyrethroid-based insecticides. Not only do fungal biopesticides provide substantial resistance management gains in the long term, they may also provide greater reductions in transmission before resistance has evolved. This is because fungal spores do not have contact irritancy, reducing the chances that a blood-fed mosquito can survive an encounter and thus live long enough to transmit malaria. Conclusions Delayed-action products, such as fungal biopesticides, have the potential to achieve reductions in transmission comparable with those achieved with existing instant-kill insecticides, and to sustain this control for substantially longer once resistant alleles arise. Given the current insecticide resistance crisis, efforts should continue to fully explore the operational feasibility of this alternative approach.
Collapse
|