1
|
Li S, Zhang Z, Gu W, Gallas M, Jones D, Boulet P, Johnson LM, de Margerie V, Andrews GP. Hot Melt Extruded High-Dose Amorphous Solid Dispersions Containing Lumefantrine and Soluplus. Int J Pharm 2024; 665:124676. [PMID: 39255876 DOI: 10.1016/j.ijpharm.2024.124676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Over the last 15 years, a small number of paediatric artemisinin-based combination therapy products have been marketed. These included Riamet® and Coartem® dispersible tablets, a combination of artemether and lumefantrine, co-developed by the Medicines for Malaria Venture and Novartis. Disappointingly, patient compliance, requirement for high-fat meal, and sporadic drug dissolution behaviours following administration still result in considerable challenges for these products. The first and foremost barrier that needs addressed for successful delivery of the artemether/lumefantrine combination is the poor solubility of lumefantrine within the gastrointestinal fluids. In this work, amorphous solid dispersions of lumefantrine within Soluplus®-based matrices have been manufactured using hot melt extrusion as a potential formulation strategy to achieve enhanced dissolution and apparent solubility. The drug loading capacity of Soluplus® to accommodate amorphous lumefantrine, whilst ensuring improved in-vitro dissolution performance, was investigated. The extrusion process employed a variety of processing parameters, including various temperature profiles and different production scales. The influence of variation in extrusion conditions upon the physical stability of manufactured amorphous solid dispersions was also examined. This allowed for a greater understanding of the role of extrusion processing conditions on the performance of supersaturated amorphous solid dispersions during dissolution and storage. This may allow for the design and manufacture of drug enabled formulations with lower drug dosing and thus a lower risk of adverse effects.
Collapse
Affiliation(s)
- Shu Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, NI UK
| | - Zi'an Zhang
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, NI UK
| | - Wenjie Gu
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, NI UK
| | - Maël Gallas
- Institut Jean Lamour, 2 allée André Guinier 54011 Nancy, France; Rondol Industrie, 2 allée André Guinier 54011 Nancy, France
| | - David Jones
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, NI UK
| | - Pascal Boulet
- Institut Jean Lamour, 2 allée André Guinier 54011 Nancy, France
| | | | | | - Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, NI UK.
| |
Collapse
|
2
|
Queiroz de Souza JC, Penna EA, Chellini PR, Leal de Oliveira MA. Antimalarial analysis of pharmaceutical formulations and biological samples by capillary electrophoresis: the state of the art and applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5751-5776. [PMID: 39143944 DOI: 10.1039/d4ay00860j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Malaria is a serious public health problem, being an endemic disease in 84 countries, mainly in Africa. This review explores the application of capillary electrophoresis (CE) techniques for analyzing antimalarial drugs, highlighting methods from 2000 to 2023 for the analysis of pharmaceutical formulations and human biological samples. The versatility, selectivity, high efficiency, cost-effectiveness, and high analytical frequency of CE techniques have become attractive choices for pharmaceutical analysis, focusing on quality control and impurity analysis applications. The evolution of achiral and chiral electromigration methods has been described based on the features of each mode of separation: capillary zone electrophoresis (CZE), micellar electrokinetic chromatography, microemulsion electrokinetic chromatography, and capillary electrochromatography. As expected, CZE is reported in most articles owing to its compatibility with drug properties and separation mode. However, it is necessary to perform other separation modes for a few drugs that are present in neutral form. After exhaustive research using different databases and statistical analyses, 27 articles using CE techniques for antimalarial drug analysis were found and are mentioned in this review.
Collapse
Affiliation(s)
- Jéssica Cordeiro Queiroz de Souza
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil.
| | - Eduarda Alves Penna
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil.
- Faculdade de Farmácia, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil
| | - Paula Rocha Chellini
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil.
- Faculdade de Farmácia, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil
| | - Marcone Augusto Leal de Oliveira
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil.
- National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
3
|
Hildebrand A, Merchant M, O'Hare D. Voltammetric methods for electrochemical characterization and quantification of artemether-based antimalarials. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:161-169. [PMID: 38088798 PMCID: PMC10765968 DOI: 10.1039/d3ay01837g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Every year substandard and falsified (SF) artemisinin derivative-based antimalarials are responsible for the loss of 450 000 deaths and billions of GBP. The lack of infrastructure and funds to support pharmaceutical quality control in many low-and-middle-income countries contributes to this problem. This work assesses fitness for purpose of voltammetric methods for identification and quantification of artemether in the presence of excipients. Electrochemical characterization of artemether using cyclic voltammetry shows that the reduction of artemether is chemically irreversible within the potential range of -0.4 V to -1.4 V. A chronocoulometric quantification algorithm for artemether is created and tested with pure artemether, as well as filtered and unfiltered Riamet® tablets. Filtration of Riamet® tablets provides no additional benefit for the quantification of artemether in Riamet®. In addition, artemether's response to pH indicates possible protonation and coupled homogeneous chemistry. Finally, sodium sulfite is an effective means of removing dissolved oxygen and improving artemether signal resolution in air-equilibrated PBS. This concludes that electrochemical analysis is a promising method for artemether identification and quantification.
Collapse
Affiliation(s)
- Anna Hildebrand
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Mariam Merchant
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Kim B, Zhang D, Armstrong MS, Pelczer I, Prud’homme RK. Formulation of pH-Responsive Methacrylate-Based Polyelectrolyte-Stabilized Nanoparticles for Applications in Drug Delivery. ACS APPLIED NANO MATERIALS 2022; 5:18770-18778. [PMID: 36583123 PMCID: PMC9791616 DOI: 10.1021/acsanm.2c04539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
pH-responsive polyelectrolytes, including methacrylate-based anionic copolymers (MACs), are widely used as enteric coatings and matrices in oral drug delivery. Despite their widespread use in these macroscopic applications, the molecular understanding of their use as stabilizers for nanoparticles (NPs) is lacking. Here, we investigate how MACs can be used to create NPs for therapeutic drug delivery and the role of MAC molecular properties on the assembly of NPs via flash nanoprecipitation. The NP size is tuned from 59 to 454 nm by changing the degree of neutralization, ionic strength, total mass concentration, and the core-to-MAC ratio. The NP size is determined by the volume of hydrophilic domains on the surface relative to the volume of hydrophobic domains in the core. We calculate the dimensions of the hydrophobic NP core relative to the thickness of the polyelectrolyte layer over a range of ionizations. Importantly, the results are shown to apply to both high-molecular-weight polymers as core materials and small-molecule drugs. The pH responsiveness of MAC-stabilized NPs is also demonstrated. Future development of polyelectrolyte copolymer-stabilized nanomedicines will benefit from the guiding principles established in this study.
Collapse
Affiliation(s)
- Bumjun Kim
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
| | - Dawei Zhang
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
| | - Madeleine S. Armstrong
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
| | - István Pelczer
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Robert K. Prud’homme
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
5
|
Combining drug salt formation with amorphous solid dispersions - a double edged sword. J Control Release 2022; 352:47-60. [PMID: 36206947 PMCID: PMC9733678 DOI: 10.1016/j.jconrel.2022.09.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Glass transition temperature (Tg) is important for amorphous compounds because it can have implications on their physical and chemical stability. With drugs that possess ionizable acidic or basic groups, salt formation is a potential strategy to reduce re-crystallization tendency through Tg elevation. While salt formation has been reported to impact re-crystallization tendency, it is not known if this holds true for all drugs and if it is useful in the context of amorphous solid dispersion (ASD) formulations. In addition, little information on the impact of salt formation on drug release performance of ASD is available. Herein, the influence of salt formation and Tg elevation on the release performance of lumefantrine (Tg = 19.7 °C) when formulated as an ASD with copovidone (PVPVA) was examined. Lumefantrine salts and lumefantrine salt-PVPVA ASDs with drug loadings (DLs) ranging from 5 to 30% were prepared. The acids used for salt formation were benzoic acid, benzenesulfonic acid, camphorsulfonic acid, hydrochloric acid, p-toluenesulfonic acid, poly(ethylene) glycol 250 diacid (PEG 250 diacid), and sulfuric acid. Salt formation resulted in an elevation of Tg compared to lumefantrine free base, with the largest increase in Tg observed with lumefantrine sulfate. With a lower Tg salt, ASDs could be formulated at higher DLs while ensuring drug release. In contrast, drug release ceased at a DL as low as 5% when Tg of the salt was high. However, ASDs with lower Tgs such as the benzoate and PEG 250 diacid salts showed poor stability against re-crystallization when stored under stress storage conditions. When using a salt in an ASD formulation, attention should be paid to the Tg of the salt, since it may show opposing effects on physical stability and drug release, at least for PVPVA-based ASDs.
Collapse
|
6
|
Srivastava R, Fatima Z, Sahoo J, Joshi P, Tripathi R. Dihydroartemesinin and Curcumin Based Self-Microemulsifying Drug Delivery System for Antimalarial Activity. Drug Res (Stuttg) 2022; 72:500-508. [PMID: 35952683 DOI: 10.1055/a-1879-2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Malaria is a significant global problem which still persists despite the development of various effective antimalarial drugs. It is challenging to treat this disease due to the parasite's complex life cycle and high recrudensce of antimalarial drugs. A new self-micro emulsifying drug delivery system has been developed to improve the solubility of dihydroartemisinin and curcumin. The prepared formulation contained Dihydroartemesinin, curcumin, Groundnut Oil, Cremephor RH, and Tween 80. Self-micro emulsification time, zeta potential, droplet size, polydispersity index, transmission electron microscopy, drug release, and in-vivo studies were performed for characterization. The globule size was found to be 25.59±0.40 nm and the zeta potential was-5.75±0.18 mV. The globules prepared were spherical in shape. The in-vitro dissolution performance of formulation of dihydroartemisinin and curcumin self emulsifying drug delivery system showed significantly (p<0.05, Origin Pro 8.5) higher release as compared to the pure drugs. The results of the study suggested that the prepared self emulsifying drug delivery system combination of Dihydroartemesinin and curcumin has a better potential to cure parasitemia as compared to the individual drug.
Collapse
Affiliation(s)
- Richa Srivastava
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Zeeshan Fatima
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Jagannath Sahoo
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttrakhand, India
| | - Prince Joshi
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Renu Tripathi
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Compatibilized Biopolymer-based Core–shell Nanoparticles: A New Frontier in Malaria Combo-therapy. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Hiew TN, Zemlyanov DY, Taylor LS. Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug-Polymer Interactions. Mol Pharm 2021; 19:392-413. [PMID: 34494842 DOI: 10.1021/acs.molpharmaceut.1c00481] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone-vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid-methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine-PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine-PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Kaur R, Gorki V, Katare OP, Dhingra N, Chauhan M, Kaur R, Nirmalan N, Singh B. Improved biopharmaceutical attributes of lumefantrine using choline mimicking drug delivery system: preclinical investigation on NK-65 P.berghei murine model. Expert Opin Drug Deliv 2021; 18:1533-1552. [PMID: 34176411 DOI: 10.1080/17425247.2021.1946512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Lumefantrine (LMF) is first-line antimalarial drug, possesses activity against almost all human malarial parasites, but the in vivo activity of this molecule gets thwarted due to its low and inconsistent oral bioavailability (i.e. 4-12%) owing to poor biopharmaceutical attributes. METHODS Lumefantrine phospholipid complex (LMF-PC) was prepared by rota-evaporation method following job's plot technique for the selection of apt stoichiometric ratios. Docking studies were carried out to determine the possible interaction(s) of LMF with phosphatidylcholine analogue. Comparative in vitro physiochemical, solid-state characterization, MTT assay, dose-response on P. falciparum, in vivo efficacy studies including pharmacokinetic and chemosuppression on NK-65 P. berghei infected mice were carried out. RESULTS Aqueous solubility was distinctly improved (i.e. 345 times) with phospholipid complex of LMF. Cytotoxicity studies on Hela and fibroblast cell lines demonstrated safety of LMF-PC with selectivity indices of 4395 and 5139, respectively. IC50 value was reduced almost 2.5 folds. Significant enhancement in Cmax (3.3-folds) and AUC (2.7-folds) of rat plasma levels indicated notable pharmacokinetic superiority of LMF-PC over LMF suspension. Differential leukocytic count and cytokine assay delineated plausible immunoregulatory role of LMF-PC with nearly 98% chemosuppression and over 30 days of post-survival. CONCLUSION Superior antimalarial efficacy and survival time with full recovery of infected mice revealed through histopathological studies.
Collapse
Affiliation(s)
- Ripandeep Kaur
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.,School of Science, Engineering & Environment, University of Salford, Manchester, UK.,UGC-Centre of Excellence in Nano Applications (Biomedical Sciences), Panjab University, Chandigarh, India
| | - Varun Gorki
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - O P Katare
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Neelima Dhingra
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Monika Chauhan
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ranjot Kaur
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Niroshini Nirmalan
- School of Science, Engineering & Environment, University of Salford, Manchester, UK
| | - Bhupinder Singh
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.,UGC-Centre of Excellence in Nano Applications (Biomedical Sciences), Panjab University, Chandigarh, India
| |
Collapse
|
10
|
Kaur R, Gorki V, Singh G, Kaur R, Katare O, Nirmalan N, Singh B. Intranasal delivery of polymer-anchored lipid nanoconstructs of artemether-lumefantrine in Plasmodium berghei ANKA murine model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Pawar S, Shende P. A comparative outlook on pharmacokinetics and antimalarial studies of artemether and lumefantrine-loaded microneedle patches and a dry suspension containing nanosponges. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Pawar S, Shende P. Dual drug delivery of cyclodextrin cross-linked artemether and lumefantrine nanosponges for synergistic action using 23 full factorial designs. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Arshad U, Mujahid A, Lieberzeit P, Afzal A, Bajwa SZ, Iqbal N, Roshan S. Molecularly imprinted polymeric coatings for sensitive and selective gravimetric detection of artemether. RSC Adv 2020; 10:34355-34363. [PMID: 35514404 PMCID: PMC9056809 DOI: 10.1039/d0ra04785f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/03/2020] [Indexed: 11/21/2022] Open
Abstract
Monitoring antimalarial drugs is necessary for clinical assays, human health, and routine quality control practices in pharmaceutical industries. Herein, we present the development of sensor coatings based on molecularly imprinted polymers (MIPs) combined with quartz crystal microbalance (QCM) for sensitive and selective gravimetric detection of an antimalarial drug: artemether. The MIP coatings are synthesized by using artemether as the template in a poly(methacrylic acid-co-ethylene glycol dimethacrylate) matrix. Artemether-MIP and the non-imprinted polymer (NIP) control or reference layers are deposited on 10 MHz dual-electrode QCM by spin coating (187 ± 9 nm layer thickness after optimization). The coatings are characterized by FTIR spectroscopy and atomic force microscopy that reveal marked differences among the MIP and NIP. The MIP-QCM sensor exhibits high sensitivity (0.51 Hz ppm-1) with sub-10 ppm detection and quantification limits. The MIP-QCM sensor also exhibits a 6-fold higher sensitivity compared to the NIP-QCM, and a dynamic working range of 30-100 ppm. The response time of MIP-QCM devices for a single cycle of analyte adsorption, signal saturation, and MIP regeneration is less than 2.5 min. The sensor also demonstrates selectivity factors of artemether-MIP of 2.2 and 4.1 compared to artemisinin and lumefantrine, respectively. Reversibility tests reveal less than 5% variation in sensor responses over three cycles of measurements at each tested concentration. The MIP-QCM showed lower detection limits than conventional HPLC-UV, and faster response time compared to HPLC-UV and liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Usman Arshad
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Adnan Mujahid
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Peter Lieberzeit
- Department of Physical Chemistry, University of Vienna Waehringer Strasse 42 Vienna A-1090 Austria
| | - Adeel Afzal
- Department of Chemistry, College of Science, University of Hafr Al Batin PO Box 1803 Hafr Al Batin 39524 Saudi Arabia
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering Jhang Road Faisalabad Pakistan
| | - Naseer Iqbal
- Department of Chemistry, College of Science, University of Hafr Al Batin PO Box 1803 Hafr Al Batin 39524 Saudi Arabia
| | - Sumaira Roshan
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| |
Collapse
|
14
|
Abo-Neima SE, Motaweh HA, Elsehly EM. Antimicrobial activity of functionalised carbon nanotubes against pathogenic microorganisms. IET Nanobiotechnol 2020; 14:457-464. [PMID: 32755954 PMCID: PMC8676267 DOI: 10.1049/iet-nbt.2019.0342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/15/2020] [Accepted: 03/11/2020] [Indexed: 11/20/2022] Open
Abstract
Carbon nanotubes represent one of the best examples of novel nanostructures, exhibit a range of extraordinary physical properties, strong antimicrobial activity and can pierce bacterial cell walls. This investigation handles the antimicrobial activity of functionalised multiwall carbon nanotubes (F-MWNTs) as an alternative antimicrobial material compared to the commercial antibiotics. Antibacterial activities of F-MWNTs are investigated through two different kinds of bacteria, E. coli and S. aureus. The results demonstrate that the best concentration of F-MWNTs for the maximum inhibition and antibacterial functionality is 80 and 60 μg/ml for E. coli and S. aureus, respectively. The transmission electron microscope reveals the morphological changes damage mechanism for the cellular reliability on these microorganisms. F-MWNTs are capable of biologically isolating the cell from their microenvironment, contributing to the development of toxic substances and placing the cell under oxidative stress leading to cellular death. The efficiency of F-MWNTs is compared with the common antibiotics and shows an enhancement in the inhibitory effect with percentages reaches 85%. To account for the bactericidal performance of F-MWNTs towards these pathogens, the dielectric conductivity and the bacterial growth measurements are conducted. The present study endeavour that F-MWNTs could be exploited in biomedical devices and altering systems for hospital and industrial cleaning applications.
Collapse
Affiliation(s)
- Sahar E Abo-Neima
- Physics Department, Damanhour University, El Gomhoureya St, Damanhour, El Beheira, Egypt
| | - Hussein A Motaweh
- Physics Department, Damanhour University, El Gomhoureya St, Damanhour, El Beheira, Egypt
| | - Emad M Elsehly
- Physics Department, Damanhour University, El Gomhoureya St, Damanhour, El Beheira, Egypt.
| |
Collapse
|
15
|
Bhide AR, Surve DH, Guha S, Jindal AB. A sensitive RP-HPLC method for estimation of artemether from polymeric nanoparticles after pre-column acid treatment using UV-visible detector. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1777564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Atharva R. Bhide
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan, India
| | - Dhanashree H. Surve
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan, India
| | - Sonia Guha
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan, India
| | - Anil B. Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan, India
| |
Collapse
|
16
|
Belew S, Suleman S, Duguma M, Teshome H, Wynendaele E, Duchateau L, De Spiegeleer B. Development of a dissolution method for lumefantrine and artemether in immediate release fixed dose artemether/lumefantrine tablets. Malar J 2020; 19:139. [PMID: 32264882 PMCID: PMC7140584 DOI: 10.1186/s12936-020-03209-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/24/2020] [Indexed: 11/22/2022] Open
Abstract
Background Dissolution of artemether (ART) and lumefantrine (LUM) active pharmaceutical ingredients (APIs) in fixed dose combination (FDC) ART/LUM tablets is one of the critical quality attributes. Thus, the verification of the release profile of ART and LUM from FDC ART/LUM tablets using a robust and discriminatory dissolution method is crucial. Therefore, the aim of this study was to develop and validate an appropriate dissolution method for quality control of FDC ART/LUM tablets. Methods The dissolution medium was selected based on saturation solubility data and sink conditions. The effect of agitation speed, pH and surfactant concentration on the release of ART and LUM was evaluated by employing a two-level factorial experiment. The resulting final method was validated for linearity, precision, robustness and API stability. In addition, the discriminatory power of the method was evaluated using expired and unexpired FDC ART/LUM products. Results A suitable dissolution profile of FDC ART/LUM tablets was obtained in 900 ml HCl (0.025 N, pH 1.6) with 1%Myrj 52 using paddle method at 100 rpm and 37 °C. ART and LUM were analysed using a HPLC method with UV detection at wavelengths of 210 and 335 nm, respectively. The results from the stability study showed that ART and LUM were sufficiently stable in HCl (0.025 N, pH 1.6) with 1%Myrj 52 at 37 °C. The method was linear (r2 = 0.999) over the concentration range of 6.25–100 μg/ml. The results for precision were within the acceptance limit (%RSD < 2). The percent relative standard deviation (< 2%) and statistically non-significant (p > 0.05) difference in release of ART and LUM observed between deliberately changed dissolution method settings (pH = 1.6 ± 0.2 or agitation speed = 100 ± 2) and optimized dissolution conditions revealed the robustness of the dissolution method. The method was capable to discriminate among different FDC ART/LUM products with different quality. Conclusions The developed dissolution method is robust and discriminatory. It can be used in the quality evaluation of FDC ART/LUM tablets.
Collapse
Affiliation(s)
- Sileshi Belew
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, PO Box 378, Jimma, Ethiopia.,Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Sultan Suleman
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, PO Box 378, Jimma, Ethiopia.
| | - Markos Duguma
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, PO Box 378, Jimma, Ethiopia
| | - Henok Teshome
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, PO Box 378, Jimma, Ethiopia
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
17
|
Feng J, Markwalter CE, Tian C, Armstrong M, Prud'homme RK. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale. J Transl Med 2019; 17:200. [PMID: 31200738 PMCID: PMC6570894 DOI: 10.1186/s12967-019-1945-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND "Nanomedicine" is the application of purposely designed nano-scale materials for improved therapeutic and diagnostic outcomes, which cannot be otherwise achieved using conventional delivery approaches. While "translation" in drug development commonly encompasses the steps from discovery to human clinical trials, a different set of translational steps is required in nanomedicine. Although significant development effort has been focused on nanomedicine, the translation from laboratory formulations up to large scale production has been one of the major challenges to the success of such nano-therapeutics. In particular, scale-up significantly alters momentum and mass transfer rates, which leads to different regimes for the formation of nanomedicines. Therefore, unlike the conventional definition of translational medicine, a key component of "bench-to-bedside" translational research in nanomedicine is the scale-up of the synthesis and processing of the nano-formulation to achieve precise control of the nanoscale properties. This consistency requires reproducibility of size, polydispersity and drug efficacy. METHODS Here we demonstrate that Flash NanoPrecipitation (FNP) offers a scalable and continuous technique to scale up the production rate of nanoparticles from a laboratory scale to a pilot scale. FNP is a continuous, stabilizer-directed rapid precipitation process. Lumefantrine, an anti-malaria drug, was chosen as a representative drug that was processed into 200 nm nanoparticles with enhanced bioavailability and dissolution kinetics. Three scales of mixers, including a small-scale confined impinging jet mixer, a mid-scale multi-inlet vortex mixer (MIVM) and a large-scale multi-inlet vortex mixer, were utilized in the formulation. The production rate of nanoparticles was varied from a few milligrams in a laboratory batch mode to around 1 kg/day in a continuous large-scale mode, with the size and polydispersity similar at all scales. RESULTS Nanoparticles of 200 nm were made at all three scales of mixers by operating at equivalent Reynolds numbers (dynamic similarity) in each mixer. Powder X-ray diffraction and differential scanning calorimetry demonstrated that the drugs were encapsulated in an amorphous form across all production rates. Next, scalable and continuous spray drying was applied to obtain dried powders for long-term storage stability. For dissolution kinetics, spray dried samples produced by the large-scale MIVM showed 100% release in less than 2 h in both fasted and fed state intestinal fluids, similar to small-batch low-temperature lyophilization. CONCLUSIONS These results validate the successful translation of a nanoparticle formulation from the discovery scale to the clinical scale. Coupling nanoparticle production using FNP processing with spray drying offers a continuous nanofabrication platform to scale up nanoparticle synthesis and processing into solid dosage forms.
Collapse
Affiliation(s)
- Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Chester E Markwalter
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Chang Tian
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Madeleine Armstrong
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
18
|
Javed S, Ahsan W. Microemulsion based chromatographic techniques: Past lessons and future directions. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1584746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
19
|
Ch JR, Rao T B, Kumar Goud P S, J S, K R. Development and validation of liquid chromatography method using the principles of QbD for antimalarials used in Artemisinin based combination therapy. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1492936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jaya Raju Ch
- Department of Chemistry, K. L. Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
- Analytical Research and Development, United States Pharmacopeial Convention-India (P) Ltd., Shameerpet, Hyderabad, India
| | - Bhaskara Rao T
- Department of Chemistry, K. L. Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Sanath Kumar Goud P
- Analytical Research and Development, United States Pharmacopeial Convention-India (P) Ltd., Shameerpet, Hyderabad, India
| | - Satish J
- Analytical Research and Development, United States Pharmacopeial Convention-India (P) Ltd., Shameerpet, Hyderabad, India
| | - Rajashekhar K
- Analytical Research and Development, United States Pharmacopeial Convention-India (P) Ltd., Shameerpet, Hyderabad, India
| |
Collapse
|
20
|
Rivelli GG, Ricoy LBM, César IC, Fernandes C, Pianetti GA. Level A in vitro-in vivo correlation: Application to establish a dissolution test for artemether and lumefantrine tablets. J Pharm Biomed Anal 2018; 155:262-269. [DOI: 10.1016/j.jpba.2018.03.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
|
21
|
Schiavetti B, Wynendaele E, De Spiegeleer B, Mbinze GJ, Kalenda N, Marini R, Melotte V, Hasker E, Meessen B, Ravinetto R, Van der Elst J, Mutolo Ngeleka D. The Quality of Medicines Used in Children and Supplied by Private Pharmaceutical Wholesalers in Kinshasa, Democratic Republic of Congo: A Prospective Survey. Am J Trop Med Hyg 2018; 98:894-903. [PMID: 29313479 PMCID: PMC5930909 DOI: 10.4269/ajtmh.17-0732] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poor-quality medicines are a threat to public health in many low- and middle-income countries, and prospective surveys are needed to inform corrective actions. Therefore, we conducted a cross-sectional survey on a sample of products used for children and available in the private market in Kinshasa, Democratic Republic Congo: amoxicillin (AX) and artemether/lumefantrine (AL), powders for suspension, and paracetamol (PC) tablets 500 mg. Overall, 417 products were covertly purchased from 61 wholesalers. To obtain a representative sample, the products were weighted on their market shares and a subset of 239 samples was randomly extracted to undergo in-depth visual inspection locally, and they were chemically assessed at two accredited laboratories in Belgium. Samples were defined of “poor-quality” if they failed to comply with at least one specification of the International Pharmacopoeia (for AL) or United States Pharmacopoeia 37 (for AX and PC). Results are reported according to the Medicine Quality Assessment Reporting Guideline. The visual inspection detected nonconformities in the aspects of antimalarial powders for suspension, and poor-quality labels across all medicine types. According to chemical analysis, 27.2% samples were of poor quality and 59.5% of AL samples were underdosed in artemether. Poor quality was more frequent for locally manufactured antimalarials (83.3%, P = 0.021; 86.4%, P = 0.022) and PC (4.8%, P = 0.000). The poor quality of the surveyed products may decrease the treatment’s efficacy and favor the development of resistances to antimalarials. It is hoped that these findings may guide the corrective actions of the Democratic Republic of Congo Regulatory Authority, which was the main partner in the research.
Collapse
Affiliation(s)
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Geremie J Mbinze
- Faculty of Pharmaceutical Sciences, Laboratory of Drug Analysis, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Nicodème Kalenda
- Faculty of Pharmaceutical Sciences, Laboratory of Drug Analysis, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Roland Marini
- Department of Pharmacy, CIRM, Laboratory of Analytical Chemistry, University of Liege (ULg), Liege, Belgium
| | - Vera Melotte
- Belgian Technical Cooperation (BTC), Bruxelles, Belgium
| | - Epco Hasker
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bruno Meessen
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Raffaella Ravinetto
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Josiane Van der Elst
- Belgian Federal Agency for Medicines and Health Products (FAGG-AFMPS), Bruxelles, Belgium
| | - Daniel Mutolo Ngeleka
- Direction de la Pharmacie et du Médicament (DPM), Kinshasa, Democratic Republic of Congo
| |
Collapse
|
22
|
Shakeel K, Raisuddin S, Ali S, Imam SS, Rahman MA, Jain GK, Ahmad FJ. Development and in vitro/in vivo evaluation of artemether and lumefantrine co-loaded nanoliposomes for parenteral delivery. J Liposome Res 2017; 29:35-43. [DOI: 10.1080/08982104.2017.1410173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kashif Shakeel
- Department of Pharmaceutics, Jamia Hamdard, New Delhi, India
- Faculty of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, India
- Azad Institute of Pharmacy and Research, Lucknow, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Sadath Ali
- Azad Institute of Pharmacy and Research, Lucknow, India
| | - Syed Sarim Imam
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | | | | | | |
Collapse
|
23
|
Moles E, Moll K, Ch'ng JH, Parini P, Wahlgren M, Fernàndez-Busquets X. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J Control Release 2016; 241:57-67. [PMID: 27620073 DOI: 10.1016/j.jconrel.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022]
Abstract
Parasite proteins exported to the surface of Plasmodium falciparum-parasitized red blood cells (pRBCs) have a major role in severe malaria clinical manifestation, where pRBC cytoadhesion and rosetting processes have been strongly linked with microvascular sequestration while avoiding both spleen filtration and immune surveillance. The parasite-derived and pRBC surface-exposed PfEMP1 protein has been identified as one of the responsible elements for rosetting and, therefore, considered as a promising vaccine candidate for the generation of rosette-disrupting antibodies against severe malaria. However, the potential role of anti-rosetting antibodies as targeting molecules for the functionalization of antimalarial drug-loaded nanovectors has never been studied. Our manuscript presents a proof-of-concept study where the activity of an immunoliposomal vehicle with a dual performance capable of specifically recognizing and disrupting rosettes while simultaneously eliminating those pRBCs forming them has been assayed in vitro. A polyclonal antibody against the NTS-DBL1α N-terminal domain of a rosetting PfEMP1 variant has been selected as targeting molecule and lumefantrine as the antimalarial payload. After 30min incubation with 2μM encapsulated drug, a 70% growth inhibition for all parasitic forms in culture (IC50: 414nM) and a reduction in ca. 60% of those pRBCs with a rosetting phenotype (IC50: 747nM) were achieved. This immunoliposomal approach represents an innovative combination therapy for the improvement of severe malaria therapeutics having a broader spectrum of activity than either anti-rosetting antibodies or free drugs on their own.
Collapse
Affiliation(s)
- Ernest Moles
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jun-Hong Ch'ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden; Department of Microbiology, National University of Singapore, Singapore
| | - Paolo Parini
- Department of Laboratory Medicine (LABMED), H5, Division of Clinical Chemistry, Karolinska Institutet, Huddinge, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| |
Collapse
|
24
|
Suleman S, Verheust Y, Dumoulin A, Wynendaele E, D'Hondt M, Vandercruyssen K, Veryser L, Duchateau L, De Spiegeleer B. Gas chromatographic method for the determination of lumefantrine in antimalarial finished pharmaceutical products. J Food Drug Anal 2015; 23:552-559. [PMID: 28911715 PMCID: PMC9351795 DOI: 10.1016/j.jfda.2015.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- Sultan Suleman
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; School of Pharmacy, Jimma University, Jimma, Ethiopia
| | | | - Ann Dumoulin
- Research Group EnBiChem, Ghent University, Kortrijk, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Matthias D'Hondt
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kirsten Vandercruyssen
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Lieselotte Veryser
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
25
|
Parashar D, Aditya NP, Murthy RSR. Development of artemether and lumefantrine co-loaded nanostructured lipid carriers: physicochemical characterization and in vivo antimalarial activity. Drug Deliv 2014; 23:123-9. [PMID: 24786480 DOI: 10.3109/10717544.2014.905883] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CONTEXT Artemether and lumefantrine combination therapy is well-accepted for uncomplicated malaria treatment. However, the current available formulation has several pharmacokinetic mismatches such as drug degradation in gastrointestinal tract, erratic absorption, etc. Hence, need of the hour is the injectable formulation, which can overcome the pharmacokinetic mismatch associated with current available formulation in the market. OBJECTIVE To fabricate artemether and lumefantrine co-loaded injectable nanostructured lipid carriers (NLCs) formulation. MATERIALS AND METHODS Artemether and lumefantrine co-loaded NLCs were fabricated using homogenization followed by ultra-sonication method. Fabricated NLCs were evalauated for their physicochemical characteristics, and suitability of the formulation for malaria treatment was evaluated using in vivo animal model (Plasmodium berghei-infected mice). Results, discussion and conclusion: Artemether and lumefantrine co-loaded NLCs had a hydrodynamic diameter of ∼ 145 nm with the surface charge of -66 mV. Due to the lipophilic nature of both antimalarial drugs, both single drugs-loaded and co-loaded NLCs have shown high encapsulation efficiency, which is 84% for artemether and 79% for lumefantrine. In vitro drug release study has shown a biphasic drug release pattern, which has shown 63% artemether release and 45% of lumefantrine release over a time period of 30 h. Plasmodium berghei-infected mice treated with artemether and lumefantrine co-loaded NLCs showed better antimalarial activity with respect to parasitemia progression and survivability period.
Collapse
Affiliation(s)
| | - N P Aditya
- a ISF College of Pharmacy , Moga , India
| | | |
Collapse
|