1
|
Carnaghi M, Mandelli F, Feugère L, Joiner J, Young S, Belmain SR, Hopkins RJ, Hawkes FM. Visual and thermal stimuli modulate mosquito-host contact with implications for improving malaria vector control tools. iScience 2024; 27:108578. [PMID: 38155768 PMCID: PMC10753043 DOI: 10.1016/j.isci.2023.108578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
Malaria prevention relies on mosquito control interventions that use insecticides and exploit mosquito behavior. The rise of insecticide resistance and changing transmission dynamics urgently demand vector control innovation. To identify behavioral traits that could be incorporated into such tools, we investigated the flight and landing response of Anopheles coluzzii to human-like host cues. We show that landing rate is directly proportional to the surface area of thermal stimulus, whereas close-range orientation is modulated by both thermal and visual inputs. We modeled anopheline eye optics to theorize the distance at which visual targets can be detected under a range of conditions, and experimentally established mosquito preference for landing on larger targets, although landing density is greater on small targets. Target orientation does not affect landing rate; however, vertical targets can be resolved at greater distance than horizontal targets of the same size. Mosquito traps for vector control could be significantly enhanced by incorporating these features.
Collapse
Affiliation(s)
- Manuela Carnaghi
- Department of Agriculture, Health, and Environment, Natural Resources Institute, University of Greenwich at Medway, Chatham, Kent, ME4 4TB, UK
- School of Science, University of Greenwich at Medway, Chatham, Kent, ME4 4TB, UK
| | | | - Lionel Feugère
- Department of Agriculture, Health, and Environment, Natural Resources Institute, University of Greenwich at Medway, Chatham, Kent, ME4 4TB, UK
| | - Jillian Joiner
- Department of Agriculture, Health, and Environment, Natural Resources Institute, University of Greenwich at Medway, Chatham, Kent, ME4 4TB, UK
| | - Stephen Young
- Department of Agriculture, Health, and Environment, Natural Resources Institute, University of Greenwich at Medway, Chatham, Kent, ME4 4TB, UK
| | - Steven R. Belmain
- Department of Agriculture, Health, and Environment, Natural Resources Institute, University of Greenwich at Medway, Chatham, Kent, ME4 4TB, UK
| | - Richard J. Hopkins
- Department of Agriculture, Health, and Environment, Natural Resources Institute, University of Greenwich at Medway, Chatham, Kent, ME4 4TB, UK
| | - Frances M. Hawkes
- Department of Agriculture, Health, and Environment, Natural Resources Institute, University of Greenwich at Medway, Chatham, Kent, ME4 4TB, UK
| |
Collapse
|
2
|
Abbott AJ, Matope A, Jones J, Voloshin V, Towers CE, Towers D, McCall PJ. Insecticidal roof barriers mounted on untreated bed nets can be as effective against Anopheles gambiae as regular insecticide-treated bed nets. Sci Rep 2023; 13:22080. [PMID: 38086842 PMCID: PMC10716170 DOI: 10.1038/s41598-023-48499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Barrier bednets (BBnets), regular bednets with a vertical insecticidal panel to target mosquitoes above the bednet roof, where they are most active, have the potential to improve existing Insecticidal Treated Bednets (ITNs), by reducing the quantity of insecticide required per net, reducing the toxic risks to those using the net, potentially increasing insecticide choice. We evaluated the performance of PermaNet 3.0 (P3) and untreated (Ut) bed nets with and without pyrethroid and piperonyl butoxide roof barriers in killing pyrethroid-resistant and susceptible Anopheles gambiae, simultaneously video-recording mosquito flight tracks. Bioassay results showed that treated roof barriers, particularly the longitudinal P3 barrier (P3L) could be an effective addition to a bed net: P3 + P3L were consistently significantly more effective than the reference P3 bednet while performance of untreated nets could be raised to equal that of the reference P3 following the addition of a P3 barrier. The BBnet's potential to augment existing bednets and enhance their performance is considered.
Collapse
Affiliation(s)
- Anthony J Abbott
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Agnes Matope
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jeff Jones
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Vitaly Voloshin
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Catherine E Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - David Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Philip J McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|
3
|
Jones J, Matope A, Barreaux P, Gleave K, Steen K, Ranson H, McCall PJ, Foster GM. Video augmentation of the WHO cone assay to quantify mosquito behavioural responses to insecticide-treated nets. Parasit Vectors 2023; 16:420. [PMID: 37968752 PMCID: PMC10652617 DOI: 10.1186/s13071-023-06029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Insecticide-treated nets (ITNs) using pyrethroids have been the main vector control tools deployed in malaria endemic countries and are responsible for the dramatic reduction in African malaria cases in the early 2000s. The World Health Organization (WHO) cone test was designed to assess the rapid toxicity effects of pyrethroid exposure on mosquito vectors but has yielded no insights beyond 60-min knockdown and 24-h mortality. As dual-active-ingredient (AI) ITNs become more widespread, bioassays that can provide realistic assessment of single- and dual-treated ITNs (i.e. nets with more than one active ingredient) are urgently needed. METHODS We present an augmentation of the cone test that enables accurate quantification of vector behavioural responses (specifically movement, spatial and temporal occupancy) to ITNs using video recording and bespoke software that uses background segmentation methods to detect spatial changes in the movement of mosquitoes within the cone. Four strains of Anopheles gambiae sensu lato (s.l.) were exposed to four ITNs (PermaNet 2.0, PermaNet 3.0, Olyset Net, Interceptor G2) and untreated nets in these modified cone tests. Life history data (post-exposure blood-feeding, blood meal weight, longevity) for individual mosquitoes were recorded. RESULTS All mosquitoes responded to the presence of ITNs, spending from 1.48 to 3.67 times more time in the upper region of the cone, depending on the ITN type. Of all ITNs, PermaNet 2.0 provoked the smallest change in behavioural response. Activity in the cone influenced observed post-exposure longevity, and in resistant strains exposed to Interceptor G2, the higher the activity, the greater the risk of dying, as long as the proportion of activity at the net surface was less than 50%. All ITNs inhibited blood-feeding, and smaller blood meals were taken when mosquitoes fed. CONCLUSIONS The additional mosquito behaviour data obtained by using this modification to the WHO cone test provides unique insight into the innate responses of different mosquito strains on untreated nets and the entomological mode of action of ITNs, important evidence when evaluating ITN characteristics.
Collapse
Affiliation(s)
- Jeff Jones
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Agnes Matope
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Priscille Barreaux
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Katherine Gleave
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Keith Steen
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Hilary Ranson
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Philip J McCall
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Geraldine M Foster
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| |
Collapse
|
4
|
Facchinelli L, Alsharif B, Jones JD, Matope A, Barbosa RMR, Ayres CFJ, McCall PJ. Mapping Aedes aegypti indoor resting behavior reveals a preference vulnerable to householder-led vector control. PNAS NEXUS 2023; 2:pgad226. [PMID: 37497049 PMCID: PMC10368326 DOI: 10.1093/pnasnexus/pgad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/04/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023]
Abstract
Many mosquito vectors rest inside human habitations, a behavioral trait that is exploited for vector control by indoor residual spraying (IRS) of interior walls with insecticide. Although IRS and its refined version targeted IRS are very effective against Aedes aegypti, they are expensive and logistically challenging to deliver in densely populated urban areas where outbreaks of dengue and other arboviruses are the greatest challenge. In experiments in Recife, Brazil, we set out to quantify the indoor resting behavior of Ae. aegypti at a level beyond that previously reported. We found that significantly more Ae. aegypti males, unfed and fed females visited the base of walls (height 0-20 cm, corresponding to 12.3% of the total wall surface) more frequently than upper wall areas, with the difference more pronounced at higher temperatures. When the lowest 20 cm of the walls was treated with an appropriate insecticide and colored black, we recorded up to 85% cumulative mortality after 24-h exposure in the experimental room. The findings are significant because feasibly, householders could treat this small and accessible target zone manually, without the need for visits by costly IRS teams or equipment, reducing insecticide use and enabling communities to actively protect their own indoor environment.
Collapse
Affiliation(s)
| | - Bashir Alsharif
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fiocruz Pernambuco, 50.740-465 Recife (PE), Brazil
| | - Jeff D Jones
- Vector Biology Department, Liverpool School of Tropical Medicine, L15QA, Liverpool, UK
| | - Agnes Matope
- Vector Biology Department, Liverpool School of Tropical Medicine, L15QA, Liverpool, UK
| | - Rôsangela M R Barbosa
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fiocruz Pernambuco, 50.740-465 Recife (PE), Brazil
| | - Constância F J Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fiocruz Pernambuco, 50.740-465 Recife (PE), Brazil
| | | |
Collapse
|
5
|
Gleave K, Guy A, Mechan F, Emery M, Murphy A, Voloshin V, Towers CE, Towers D, Ranson H, Foster GM, McCall PJ. Impacts of dual active-ingredient bed nets on the behavioural responses of pyrethroid resistant Anopheles gambiae determined by room-scale infrared video tracking. Malar J 2023; 22:132. [PMID: 37088828 PMCID: PMC10122874 DOI: 10.1186/s12936-023-04548-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND The success of insecticide treated bed nets (ITNs) for malaria vector control in Africa relies on the behaviour of various species of Anopheles. Previous research has described mosquito behavioural alterations resulting from widespread ITN coverage, which could result in a decrease in net efficacy. Here, behaviours were compared including timings of net contact, willingness to refeed and longevity post-exposure to two next-generation nets, PermaNet® 3.0 (P3 net) and Interceptor® G2 (IG2 net) in comparison with a standard pyrethroid-only net (Olyset Net™ (OL net)) and an untreated net. METHODS Susceptible and resistant Anopheles gambiae mosquitoes were exposed to the nets with a human volunteer host in a room-scale assay. Mosquito movements were tracked for 2 h using an infrared video system, collecting flight trajectory, spatial position and net contact data. Post-assay, mosquitoes were monitored for a range of sublethal insecticide effects. RESULTS Mosquito net contact was focused predominantly on the roof for all four bed nets. A steep decay in activity was observed for both susceptible strains when P3 net and OL net were present and with IG2 net for one of the two susceptible strains. Total mosquito activity was higher around untreated nets than ITNs. There was no difference in total activity, the number, or duration, of net contact, between any mosquito strain, with similar behaviours recorded in susceptible and resistant strains at all ITNs. OL net, P3 net and IG2 net all killed over 90% of susceptible mosquitoes 24 h after exposure, but this effect was not seen with resistant mosquitoes where mortality ranged from 16 to 72%. All treated nets reduced the willingness of resistant strains to re-feed when offered blood 1-h post-exposure, with a more pronounced effect seen with P3 net and OL net than IG2 net. CONCLUSION These are the first results to provide an in-depth description of the behaviour of susceptible and resistant Anopheles gambiae strains around next-generation bed nets using a room-scale tracking system to capture multiple behaviours. These results indicate that there is no major difference in behavioural responses between mosquito strains of differing pyrethroid susceptibility when exposed to these new ITNs under the experimental conditions used.
Collapse
Affiliation(s)
- Katherine Gleave
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Amy Guy
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Frank Mechan
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mischa Emery
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Annabel Murphy
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - David Towers
- School of Engineering, University of Warwick, Coventry, UK
| | - Hilary Ranson
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Geraldine M Foster
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Philip J McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
6
|
Carrasco-Tenezaca M, Jawara M, Lee DSH, Holmes MS, Ceesay S, McCall P, Pinder M, D'Alessandro U, Knudsen JB, Lindsay SW, Wilson AL. Effect of passive and active ventilation on malaria mosquito house entry and human comfort: an experimental study in rural Gambia. J R Soc Interface 2023; 20:20220794. [PMID: 37015266 PMCID: PMC10072938 DOI: 10.1098/rsif.2022.0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Rural houses in sub-Saharan Africa are typically hot and allow malaria mosquitoes inside. We assessed whether passive or active ventilation can reduce house entry of malaria mosquitoes and cool a bedroom at night in rural Gambia. Two identical experimental houses were used: one ventilated and one unventilated (control). We evaluated the impact of (i) passive ventilation (solar chimney) and (ii) active ventilation (ceiling fan) on the number of mosquitoes collected indoors and environmental parameters (temperature, humidity, CO2, evaporation). Although the solar chimney did not reduce entry of Anopheles gambiae sensu lato, the ceiling fan reduced house entry by 91% compared with the control house. There were no differences in indoor nightly temperature, humidity or CO2 between intervention and control houses in either experiment. The solar chimney did not improve human comfort assessed using psychrometric analysis. While the ceiling fan improved human comfort pre-midnight, in the morning it was too cool compared with the control house, although this could be remedied through provision of blankets. Further improvements to the design of the solar chimney are needed. High air velocity in the ceiling fan house probably reduced mosquito house entry by preventing mosquito flight. Improved ventilation in houses may reduce malaria transmission.
Collapse
Affiliation(s)
| | - Musa Jawara
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Daniel Sang-Hoon Lee
- Architecture, Design and Conservation, The Royal Danish Academy, Philip De Langes Allé 10, Copenhagen 1435, Denmark
| | - Matthew S Holmes
- JDDK Architects, Millmount, Ponteland Rd, Cowgate, Newcastle upon Tyne NE5 3AL, England
| | - Sainey Ceesay
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Phillip McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Margaret Pinder
- Department of Biosciences, Durham University, Stockton Road, Durham, Durham DH1 3LE, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Jakob B Knudsen
- Architecture, Design and Conservation, The Royal Danish Academy, Philip De Langes Allé 10, Copenhagen 1435, Denmark
| | - Steve W Lindsay
- Department of Biosciences, Durham University, Stockton Road, Durham, Durham DH1 3LE, UK
- London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK
| | - Anne L Wilson
- Department of Biosciences, Durham University, Stockton Road, Durham, Durham DH1 3LE, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
7
|
Mbewe NJ, Rowland MW, Snetselaar J, Azizi S, Small G, Nimmo DD, Mosha FW. Efficacy of bednets with dual insecticide-treated netting (Interceptor® G2) on side and roof panels against Anopheles arabiensis in north-eastern Tanzania. Parasit Vectors 2022; 15:326. [PMID: 36109765 PMCID: PMC9479251 DOI: 10.1186/s13071-022-05454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Background Optimising insecticide use and managing insecticide resistance are important to sustain gains against malaria using long-lasting insecticidal nets (LLINs). Restricting insecticides to where mosquitoes are most likely to make multiple contacts could reduce the quantity of insecticide needed to treat the nets. Previous studies have shown that nets partially treated with a pyrethroid insecticide had equivalent mortality compared to a fully treated net. This study compared the efficacy of: (i) whole Interceptor® G2 nets (IG2; a dual-active LLIN containing alpha-cypermethrin and chlorfenapyr), (ii) nets with roof panels made of IG2 netting, (iii) nets with side panels made of IG2 netting and (iv) whole untreated nets as test nets. Methods The study was conducted in cow-baited experimental huts, Moshi Tanzania, using a four-arm Latin square design. Test nets had 30 holes cut in panels to simulate a typical net after 2–3 year use. The trial data were analysed using generalized linear models with mortality, blood-feeding, exophily and deterrence against wild free-flying Anopheles arabiensis as outcomes and test nets as predictors. Results Mortality was significantly higher in the nets with roof IG2 [27%, P = 0.001, odds ratio (OR) = 51.0, 95% CI = 4.8–546.2), side IG2 (44%, P < 0.001, OR = 137.6, 95% CI = 12.2–1553.2] and whole IG2 (53%, P < 0.001, OR = 223.0, 95% CI = 19.07–2606.0) nettings than the untreated (1%) nets. Mortality was also significantly higher in the whole IG2 net compared to the net with roof IG2 netting (P = 0.009, OR = 4.4, 95% CI = 1.4–13.3). Blood feeding was 22% in untreated, 10% in roof IG2, 14% in side IG2 and 19% in whole IG2 nets. Exiting was 92% in untreated, 89% in roof IG2, 97% in side IG2 and 94% whole IG2 nets. Conclusion The results show that although the roof-treated IG2 net induced greater mortality compared to untreated nets, its efficacy was reduced compared to whole IG2 nets. Therefore, there was no benefit to be gained from restricting dual-active ingredient IG2 netting to the roof of nets. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05454-w.
Collapse
|
8
|
Mechan F, Katureebe A, Tuhaise V, Mugote M, Oruni A, Onyige I, Bumali K, Thornton J, Maxwell K, Kyohere M, Kamya MR, Mutungi P, Kigozi SP, Yeka A, Opigo J, Maiteki-Sebuguzi C, Gonahasa S, Hemingway J, Dorsey G, Reimer LJ, Staedke SG, Donnelly MJ, Lynd A. LLIN evaluation in Uganda project (LLINEUP): The fabric integrity, chemical content and bioefficacy of long-lasting insecticidal nets treated with and without piperonyl butoxide across two years of operational use in Uganda. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100092. [PMID: 35734077 PMCID: PMC9207544 DOI: 10.1016/j.crpvbd.2022.100092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
Long-lasting insecticidal nets (LLINs) supplemented with the synergist piperonyl butoxide have been developed in response to growing pyrethroid resistance; however, their durability in the field remains poorly described. A pragmatic cluster-randomised trial was embedded into Uganda's 2017-2018 LLIN distribution to compare the durability of LLINs with and without PBO. A total of 104 clusters (health sub-districts) were included with each receiving one of four LLIN products, two with pyrethroid + PBO (Olyset Plus and PermaNet 3.0) and two pyrethroid-only (Olyset Net and PermaNet 2.0). Nets were sampled at baseline, 12 and 25 months post-distribution to assess physical condition, chemical content, and bioefficacy. Physical condition was quantified using proportionate Hole Index and chemical content measured using high-performance liquid chromatography. Bioefficacy was assessed with three-minute World Health Organisation (WHO) Cone and Wireball assays using pyrethroid-resistant Anopheles gambiae, with 1-h knockdown and 24-h mortality recorded. There was no difference in physical durability between LLIN products assessed (P = 0.644). The pyrethroid content of all products remained relatively stable across time-points but PBO content declined by 55% (P < 0.001) and 58% (P < 0.001) for Olyset Plus and PermaNet 3.0 respectively. Both PBO LLINs were highly effective against pyrethroid-resistant mosquitoes when new, knocking down all mosquitoes. However, bioefficacy declined over time with Olyset Plus knocking down 45.72% (95% CI: 22.84-68.62%, P = 0.021) and Permanent 3.0 knocking down 78.57% (95% CI: 63.57-93.58%, P < 0.001) after 25 months. Here we demonstrate that both Olyset Plus and PermaNet 3.0 are as durable as their pyrethroid-only equivalents and had superior bioefficacy against pyrethroid-resistant An. gambiae. However, the superiority of PBO-LLINs decreased with operational use, correlating with a reduction in total PBO content. This decline in bioefficacy after just two years is concerning and there is an urgent need to assess the durability of PBO LLINs in other settings.
Collapse
Affiliation(s)
- Frank Mechan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | | - Ambrose Oruni
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Jonathan Thornton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kilama Maxwell
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Mary Kyohere
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Uganda
- Makerere University - Johns Hopkins University (MUJHU) Research Collaboration, Kampala, Uganda
| | | | | | - Adoke Yeka
- Infectious Diseases Research Collaboration, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | | | | | - Janet Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sarah G. Staedke
- Infectious Diseases Research Collaboration, Uganda
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
9
|
Sutcliffe JF, Yin S. Effects of indoor air movement and ambient temperature on mosquito (Anopheles gambiae) behaviour around bed nets: implications for malaria prevention initiatives. Malar J 2021; 20:427. [PMID: 34717652 PMCID: PMC8557611 DOI: 10.1186/s12936-021-03957-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Until recently, relatively little research has been done on how mosquitoes behave around the occupied bed net in the indoor environment. This has been partly remedied in the last few years through laboratory and field studies, most of these using video methods and mosquito flight tracking. Despite these recent advances, understanding of the mosquito-bed net environment system, and the principles that underlie mosquito behaviour within it, is limited. This project aimed to further understand this system by studying the effects of gently moving air (such as might be introduced through room design to make the indoor environment more comfortable and conducive to ITN use) and warmer vs. cooler ambient conditions on mosquito activity around ITNs and other bed nets. Methods The activity of colonized female Anopheles gambiae around an occupied untreated bed net set up in a mosquito-proof tent in a large laboratory space was recorded under different ambient conditions using a laser detection-video recording system. Conditions tested were ‘cool’ (23–25 °C) and ‘warm’ (27–30 °C) air temperatures and the presence or absence of a cross-flow produced by a small central processing unit (CPU) fan pointed at the side of the net so that it produced a ‘low-’ or ‘high-’ speed cross-draught (approx. 0.1 and 0.4 m/s, respectively). Near-net activity in recordings was measured using video image analysis. Results In cool, still air conditions, more than 80% of near-net activity by An. gambiae occurred on the net roof. Introduction of the low-speed or high-speed cross-draught resulted in an almost total drop off in roof activity within 1 to 2 min and, in the case of the high-speed cross-draught, a complementary increase in activity on the net side. In warm, still conditions, near-net activity appeared to be lower overall than in cool, still air conditions and to be relatively less focussed on the roof. Introduction of the high-speed cross-draught in warm conditions resulted in a decrease in roof activity and increase in side activity though neither effect was statistically significant. Conclusions Results are interpreted in terms of the flow of the stimulatory odour plume produced by the net occupant which, consistent with established principles of fluid dynamics, appears to rise quickly and remain more intact above the net occupant in cool, still air than in warm, still air. Cross-draught effects are ascribed to the changes they cause in the flow of the host odour plume as opposed to mosquito flight directly. The implications of these results for house designs that promote indoor air movement, on bed net design, and on other vector control measures are discussed. How mosquitoes approach a net is influenced both by indoor temperature and ventilation and their interaction. This system is in need of further study. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03957-y.
Collapse
Affiliation(s)
- James F Sutcliffe
- Dept. Biology, Trent University, Peterborough, ON, Canada. .,Entomology Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | |
Collapse
|
10
|
Nyangi M, Kigondu E, Irungu B, Nganga M, Gachanja A, Murigi M, Nyangacha R, Muniu E, Kamau L, Gathirwa J. Integrity, use and care of long-lasting insecticidal nets in Kirinyaga County, Kenya. BMC Public Health 2021; 21:856. [PMID: 33941135 PMCID: PMC8091527 DOI: 10.1186/s12889-021-10882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Background Vector control is an essential component in prevention and control of malaria in malaria endemic areas. Insecticide treated nets is one of the standard tools recommended for malaria vector control. The objective of the study was to determine physical integrity and insecticidal potency of long-lasting insecticidal nets (LLINs) used in control of malaria vector in Kirinyaga County, Kenya. Method The study targeted households in an area which had received LLINs during mass net distribution in 2016 from Ministry of Health. A total of 420 households were sampled using systematic sampling method, where the household heads consented to participate in the study. A semi-structured questionnaire was administered to assess care and use while physical examination was used to determine integrity. Chemical concentration was determined by gas chromatography mass spectroscopy (GC-MS). Data analysis was done using Statistical Package for Social Sciences (SPSS) version 19. Results After 18 months of use, 96.9% (95% CI: 95.2–98.6%) of the distributed nets were still available. Regarding net utilization, 94.1% of household heads reported sleeping under an LLIN the previous night. After physical examination, 49.9% (95% CI: 43–52.8%) of the bed nets had at least one hole. The median number of holes of any size was 2[interquartile range (IQR) 1–4], and most holes were located on the lower part of the nets, [median 3 (IQR 2–5)]. Only 15% of the nets with holes had been repaired. The median concentration for α-cypermethrin was 7.15 mg/m2 (IQR 4.25–15.31) and 0.00 mg/g (IQR 0.00–1.99) for permethrin. Based on pHI, Chi-square test varied significantly with the manufacturer (X (6, N = 389) = 29.14, p = 0.04). There was no significant difference between nets with different number of washes (X2(2) = 4.55, p = 0.103). Conclusion More than three-quarters of the nets supplied had survived and insecticidal potency was adequate in vector control. Standard procedure for field evaluation of surface insecticidal content available to a mosquito after landing on a net to rest is recommended. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-021-10882-x.
Collapse
Affiliation(s)
- Mary Nyangi
- Department of Chemistry, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya.
| | - Elizabeth Kigondu
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Beatrice Irungu
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Margaret Nganga
- Department of Chemistry, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Anthony Gachanja
- Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Martin Murigi
- Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Ruth Nyangacha
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Erastus Muniu
- Centre for Public Health and Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Luna Kamau
- Centre for Biotechnology, Research and Development, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Jeremiah Gathirwa
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
11
|
Jones J, Murray GPD, McCall PJ. A minimal 3D model of mosquito flight behaviour around the human baited bed net. Malar J 2021; 20:24. [PMID: 33413370 PMCID: PMC7792054 DOI: 10.1186/s12936-020-03546-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/12/2020] [Indexed: 02/08/2023] Open
Abstract
Background Advances in digitized video-tracking and behavioural analysis have enabled accurate recording and quantification of mosquito flight and host-seeking behaviours, facilitating development of individual (agent) based models at much finer spatial scales than previously possible. Methods Quantified behavioural parameters were used to create a novel virtual testing model, capable of accurately simulating indoor flight behaviour by a virtual population of host-seeking mosquitoes as they interact with and respond to simulated stimuli from a human-occupied bed net. The model is described, including base mosquito behaviour, state transitions, environmental representation and host stimulus representation. Results In the absence of a bed net and human host bait, flight distribution of the model population was relatively uniform throughout the arena. Introducing an unbaited untreated bed net induced a change in distribution with an increase in landing events on the net surface, predominantly on the sides of the net. Adding the presence of a simulated human bait dramatically impacted flight distribution patterns, exploratory foraging and, the number and distribution of landing positions on the net, which were determined largely by the orientation of the human within. The model replicates experimental results with free-flying living mosquitoes at human-occupied bed nets, where contact occurs predominantly on the top surface of the net. This accuracy is important as it quantifies exposure to the lethal insecticide residues that may be unique to the net roof (or theoretically any other surface). Number of net contacts and height of contacts decreased with increasing attractant dispersal noise. Conclusions Results generated by the model are an accurate representation of actual mosquito behaviour recorded at and around a human-occupied bed net in untreated and insecticide-treated nets. This fine-grained model is highly flexible and has significant potential for in silico screening of novel bed net designs, potentially reducing time and cost and accelerating the deployment of new and more effective tools for protecting against malaria in sub-Saharan Africa.
Collapse
Affiliation(s)
- Jeff Jones
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Gregory P D Murray
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK.
| |
Collapse
|
12
|
Tamari N, Minakawa N, Sonye GO, Awuor B, Kongere JO, Hashimoto M, Kataoka M, Munga S. Protective effects of Olyset® Net on Plasmodium falciparum infection after three years of distribution in western Kenya. Malar J 2020; 19:373. [PMID: 33076928 PMCID: PMC7574443 DOI: 10.1186/s12936-020-03444-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background Several types of insecticides, treating technologies and materials are available for long-lasting insecticide-treated nets (LLINs). The variations may result in different efficacies against mosquitoes and correspondingly infection risks for the Plasmodium falciparum malaria parasite. This cross-sectional study investigated whether infection risk varied among children who slept under different LLIN brands in rural villages of western Kenya. Methods Children sleeping under various types of LLINs were tested for P. falciparum infection using a diagnostic polymerase chain reaction (PCR) assay. Data were collected for other potential factors associated with infection risk: sleeping location (with bed/without bed), number of persons sharing the same net, dwelling wall material, gap of eaves (open/close), proportional hole index, socio-economic status, and density of indoor resting anophelines. Bed-net efficacy against the Anopheles gambiae susceptible strain was estimated using the WHO cone test and the tunnel test. The residual insecticide content on nets was measured. Results Seven LLIN brands were identified, and deltamethrin-based DawaPlus® 2.0 was the most popular (48%) followed by permethrin-based Olyset® Net (28%). The former LLIN was distributed in the area about six months before the present study was conducted, and the latter net was distributed at least three years before. Of 254 children analysed, P. falciparum PCR-positive prevalence was 58% for DawaPlus® 2.0 users and 38% for Olyset® users. The multiple regression analysis revealed that the difference was statistically significant (adjusted OR: 0.67, 95% credible interval: 0.45–0.97), whereas the confounders were not statistically important. Among randomly selected net samples, all DawaPlus® 2.0 (n = 20) and 95% of Olyset® (n = 19) passed either the cone test or the tunnel test. Conclusions Olyset® was more effective in reducing infection risk compared with DawaPlus® 2.0. Although the data from the present study were too limited to explain the mechanism clearly, the results suggest that the characteristics of the former brand are more suitable for the conditions, such as vector species composition, of the study area.
Collapse
Affiliation(s)
- Noriko Tamari
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan. .,College of Public Health, The University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA.
| | - Noboru Minakawa
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - George O Sonye
- Ability To Solve By Knowledge Project, Mbita, Homa Bay, Kenya
| | - Beatrice Awuor
- Ability To Solve By Knowledge Project, Mbita, Homa Bay, Kenya
| | - James O Kongere
- Centre for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| | - Muneaki Hashimoto
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, Kagawa, Japan
| | - Masatoshi Kataoka
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, Kagawa, Japan
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| |
Collapse
|
13
|
Barrier bednets target malaria vectors and expand the range of usable insecticides. Nat Microbiol 2019; 5:40-47. [PMID: 31792426 DOI: 10.1038/s41564-019-0607-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/11/2019] [Indexed: 11/08/2022]
Abstract
Transmission of Plasmodium falciparum malaria parasites occurs when nocturnal Anopheles mosquito vectors feed on human blood. In Africa, where malaria burden is highest, bednets treated with pyrethroid insecticide were highly effective in preventing mosquito bites and reducing transmission, and essential to achieving unprecedented reductions in malaria until 2015 (ref. 1). Since then, progress has stalled2, and with insecticidal bednets losing efficacy against pyrethroid-resistant Anopheles vectors3,4, methods that restore performance are urgently needed to eliminate any risk of malaria returning to the levels seen before their widespread use throughout sub-Saharan Africa5. Here, we show that the primary malaria vector Anopheles gambiae is targeted and killed by small insecticidal net barriers positioned above a standard bednet in a spatial region of high mosquito activity but zero contact with sleepers, opening the way for deploying many more insecticides on bednets than is currently possible. Tested against wild pyrethroid-resistant A. gambiae in Burkina Faso, pyrethroid bednets with organophosphate barriers achieved significantly higher killing rates than bednets alone. Treated barriers on untreated bednets were equally effective, without significant loss of personal protection. Mathematical modelling of transmission dynamics predicted reductions in clinical malaria incidence with barrier bednets that matched those of 'next-generation' nets recommended by the World Health Organization against resistant vectors. Mathematical models of mosquito-barrier interactions identified alternative barrier designs to increase performance. Barrier bednets that overcome insecticide resistance are feasible using existing insecticides and production technology, and early implementation of affordable vector control tools is a realistic prospect.
Collapse
|
14
|
Toé KH, Mechan F, Tangena JAA, Morris M, Solino J, Tchicaya EFS, Traoré A, Ismail H, Maas J, Lissenden N, Pinder M, Lindsay SW, Tiono AB, Ranson H, Sagnon N. Assessing the impact of the addition of pyriproxyfen on the durability of permethrin-treated bed nets in Burkina Faso: a compound-randomized controlled trial. Malar J 2019; 18:383. [PMID: 31791332 PMCID: PMC6889366 DOI: 10.1186/s12936-019-3018-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) treated with pyrethroids are the foundation of malaria control in sub-Saharan Africa. Rising pyrethroid resistance in vectors, however, has driven the development of alternative net formulations. Here the durability of polyethylene nets with a novel combination of a pyrethroid, permethrin, and the insect juvenile hormone mimic, pyriproxyfen (PPF), compared to a standard permethrin LLIN, was assessed in rural Burkina Faso. METHODS A compound-randomized controlled trial was completed in two villages. In one village 326 of the PPF-permethrin nets (Olyset Duo) and 327 standard LLINs (Olyset) were distributed to assess bioefficacy. In a second village, 170 PPF-permethrin nets and 376 LLINs were distributed to assess survivorship. Nets were followed at 6-monthly intervals for 3 years. Bioefficacy was assessed by exposing permethrin-susceptible and resistant Anopheles gambiae sensu lato mosquito strains to standard World Health Organization (WHO) cone and tunnel tests with impacts on fertility measured in the resistant strain. Insecticide content was measured using high-performance liquid chromatography. LLIN survivorship was recorded with a questionnaire and assessed by comparing the physical integrity using the proportionate hole index (pHI). RESULTS The PPF-permethrin net met WHO bioefficacy criteria (≥ 80% mortality or ≥ 95% knockdown) for the first 18 months, compared to 6 months for the standard LLIN. Mean mosquito mortality for PPF-permethrin nets, across all time points, was 8.6% (CI 2.6-14.6%) higher than the standard LLIN. Fertility rates were reduced after PPF-permethrin net exposure at 1-month post distribution, but not later. Permethrin content of both types of nets remained within the target range of 20 g/kg ± 25% for 242/248 nets tested. The pyriproxyfen content of PPF-permethrin nets declined by 54%, from 10.4 g/kg (CI 10.2-10.6) to 4.7 g/kg (CI 3.5-6.0, p < 0.001) over 36 months. Net survivorship was poor, with only 13% of PPF-permethrin nets and 12% of LLINs still present in the original household after 36 months. There was no difference in the fabric integrity or survivorship between the two net types. CONCLUSION The PPF-permethrin net, Olyset Duo, met or exceeded the performance of the WHO-recommended standard LLIN (Olyset) in the current study but both net types failed the 3-year WHO bioefficacy criteria.
Collapse
Affiliation(s)
- Kobié H Toé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Frank Mechan
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Marion Morris
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Joanna Solino
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emile F S Tchicaya
- Swiss Centre for Scientific Research in Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Alphonse Traoré
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Hanafy Ismail
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - James Maas
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Natalie Lissenden
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Margaret Pinder
- Department of Biosciences, Durham University, Durham, UK.,Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Hilary Ranson
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - N'Falé Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| |
Collapse
|
15
|
Staedke SG, Kamya MR, Dorsey G, Maiteki-Sebuguzi C, Gonahasa S, Yeka A, Lynd A, Opigo J, Hemingway J, Donnelly MJ. LLIN Evaluation in Uganda Project (LLINEUP) - Impact of long-lasting insecticidal nets with, and without, piperonyl butoxide on malaria indicators in Uganda: study protocol for a cluster-randomised trial. Trials 2019; 20:321. [PMID: 31159887 PMCID: PMC6547536 DOI: 10.1186/s13063-019-3382-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/24/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) are a key malaria control intervention, but their effectiveness is threatened by resistance to pyrethroid insecticides. Some new LLINs combine pyrethroids with piperonyl butoxide (PBO), a synergist that can overcome P450-based metabolic resistance to pyrethroids in mosquitoes. In 2017-2018, the Ugandan Ministry of Health distributed LLINs with and without PBO through a national mass-distribution campaign, providing a unique opportunity to rigorously evaluate PBO LLINs across different epidemiological settings. METHODS/DESIGN Together with the Ministry of Health, we embedded a cluster-randomised trial to evaluate the impact of LLINs delivered in the 2017-2018 national campaign. A total of 104 clusters (health sub-districts) in Eastern and Western Uganda were involved, covering 48 of 121 (40%) districts. Using adaptive randomisation driven by the number of LLINs available, clusters were assigned to receive one of four types of LLINs, including two brands with PBO: 1) PermaNet 3.0 (n = 32) and 2) Olyset Plus (n = 20); and two without PBO: 3) PermaNet 2.0 (n = 37) and 4) Olyset Net (n = 15). We are conducting cross-sectional community surveys in 50 randomly selected households per cluster (5200 households per survey) and entomological surveillance for insecticide resistance in up to 10 randomly selected households enrolled in the community surveys per cluster (1040 households per survey) at baseline and 6, 12, and 18 months after LLIN distribution. Net durability and bio-efficacy will be assessed in 400 nets withdrawn from households with replacement at 12 months. The primary trial outcome is parasite prevalence as measured by microscopy in children aged 2-10 years in the follow-up surveys. DISCUSSION PBO LLINs are a promising new tool to reduce the impact of pyrethroid resistance on malaria control. The World Health Organization has issued a preliminary endorsement of PBO LLINs, but additional epidemiological evidence of the effect of PBO LLINs is urgently needed. The results of this innovative, large-scale trial embedded within a routine national distribution campaign will make an important contribution to the malaria control policy in Uganda and throughout Africa, where pyrethroid resistance in malaria vectors has increased dramatically. This model of evaluation could be a paradigm for future assessment of malaria control interventions. TRIAL REGISTRATION ISRCTN, ISRCTN17516395 . Registered on 14 February 2017. WORLD HEALTH ORGANIZATION TRIAL REGISTRATION DATA SET See Additional file 1.
Collapse
Affiliation(s)
- Sarah G. Staedke
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Moses R. Kamya
- Makerere University College of Health Sciences, Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110 USA
| | - Catherine Maiteki-Sebuguzi
- National Malaria Control Division, Uganda Ministry of Health, Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Samuel Gonahasa
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Adoke Yeka
- Makerere University School of Public Health, Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Amy Lynd
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Jimmy Opigo
- National Malaria Control Division, Uganda Ministry of Health, Kampala, Uganda
| | - Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Martin J. Donnelly
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
16
|
Spitzen J, Takken W. Keeping track of mosquitoes: a review of tools to track, record and analyse mosquito flight. Parasit Vectors 2018; 11:123. [PMID: 29499744 PMCID: PMC5834890 DOI: 10.1186/s13071-018-2735-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
The health impact of mosquito-borne diseases causes a huge burden on human societies. Recent vector control campaigns have resulted in promising declines in incidence and prevalence of these diseases, notably malaria, but resistance to insecticides and drugs are on the rise, threatening to overturn these gains. Moreover, several vector-borne diseases have re-emerged, requiring prompt and effective response measures. To improve and properly implement vector control interventions, the behaviour of the vectors must be well understood with detailed examination of mosquito flight being an essential component. Current knowledge on mosquito behaviour across its life history is briefly presented, followed by an overview of recent developments in automated tracking techniques for detailed interpretation of mosquito behaviour. These techniques allow highly accurate recording and observation of mating, feeding and oviposition behaviour. Software programmes built with specific algorithms enable quantification of these behaviours. For example, the crucial role of heat on host landing and the multimodal integration of carbon dioxide (CO2) with other host cues, has been unravelled based on three-dimensional tracking of mosquito flight behaviour. Furthermore, the behavioural processes underlying house entry and subsequent host searching and finding can be better understood by analysis of detailed flight recordings. Further potential of these technologies to solve knowledge gaps is discussed. The use of tracking techniques can support or replace existing monitoring tools and provide insights on mosquito behaviour that can lead to innovative and more effective vector-control measures.
Collapse
Affiliation(s)
- Jeroen Spitzen
- Laboratory of Entomology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
17
|
Minta AA, Landman KZ, Mwandama DA, Shah MP, Eng JLV, Sutcliffe JF, Chisaka J, Lindblade KA, Mathanga DP, Steinhardt LC. The effect of holes in long-lasting insecticidal nets on malaria in Malawi: results from a case-control study. Malar J 2017; 16:394. [PMID: 28969632 PMCID: PMC5625742 DOI: 10.1186/s12936-017-2033-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) are a cornerstone of malaria prevention. Holes develop in LLINs over time and compromise their physical integrity, but how holes affect malaria transmission risk is not well known. METHODS After a nationwide mass LLIN distribution in July 2012, a study was conducted to assess the relationship between LLIN damage and malaria. From March to September 2013, febrile children ages 6-59 months who consistently slept under LLINs (every night for 2 weeks before illness onset) were enrolled in a case-control study at Machinga District Hospital outpatient department. Cases were positive for Plasmodium falciparum asexual parasites by microscopy while controls were negative. Digital photographs of participants' LLINs were analysed using an image-processing programme to measure holes. Total hole area was classified by quartiles and according to the World Health Organization's proportionate hole index (pHI) cut-offs [< 79 cm2 (good), 80-789 cm2 (damaged), and > 790 cm2 (too torn)]. Number of holes by location and size, and total hole area, were compared between case and control LLINs using non-parametric analyses and logistic regression. RESULTS Of 248 LLINs analysed, 97 (39%) were from cases. Overall, 86% of LLINs had at least one hole. The median number of holes of any size was 9 [interquartile range (IQR) 3, 22], and most holes were located in the lower halves of the nets [median 7 (IQR 2, 16)]. There were no differences in number or location of holes between LLINs used by cases and controls. The median total hole area was 10 cm2 (IQR 2, 125) for control LLINs and 8 cm2 (IQR 2, 47) for case LLINs (p = 0.10). Based on pHI, 109 (72%) control LLINs and 83 (86%) case LLINs were in "good" condition. Multivariable modeling showed no association between total hole area and malaria, controlling for child age, caregiver education, and iron versus thatched roof houses. CONCLUSIONS LLIN holes were not associated with increased odds of malaria in this study. However, most of the LLINs were in relatively good condition 1 year after distribution. Future studies should examine associations between LLIN holes and malaria risk with more damaged nets.
Collapse
Affiliation(s)
- Anna A Minta
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA. .,Epidemic Intelligence Service, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| | - Keren Z Landman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Dyson A Mwandama
- Malaria Alert Centre, University of Malawi College of Medicine, Private Bag 360, Blantyre, Malawi
| | - Monica P Shah
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Jodi L Vanden Eng
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - James F Sutcliffe
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Joseph Chisaka
- Malaria Alert Centre, University of Malawi College of Medicine, Private Bag 360, Blantyre, Malawi
| | - Kim A Lindblade
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Don P Mathanga
- Malaria Alert Centre, University of Malawi College of Medicine, Private Bag 360, Blantyre, Malawi
| | - Laura C Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| |
Collapse
|
18
|
Sutcliffe J, Ji X, Yin S. How many holes is too many? A prototype tool for estimating mosquito entry risk into damaged bed nets. Malar J 2017; 16:304. [PMID: 28764726 PMCID: PMC5540337 DOI: 10.1186/s12936-017-1951-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/20/2017] [Indexed: 11/18/2022] Open
Abstract
Background Insecticide-treated bed nets (ITNs) have played an integral role in malaria reduction but how insecticide depletion and accumulating physical damage affect ITN performance is poorly understood. More accurate methods are needed to assess damage to bed nets so that they can be designed, deployed and replaced optimally. Methods Video recordings of female Anopheles gambiae in near approach (1–½ cm) to occupied untreated rectangular bed nets in a laboratory study were used to quantify the amount of mosquito activity (appearances over time) around different parts of the net, the per-appearance probability of a mosquito coming close to holes of different sizes (hole encounter) and the per-encounter probability of mosquitoes passing through holes of different sizes (hole passage). Results Appearance frequency on different parts of the net reflected previously reported patterns: the area of the net under greatest mosquito pressure was the roof, followed by the bottom 30 cm of the sides, followed by the 30 cm area immediately above this, followed by the upper two-thirds of the sides. The ratio of activity in these areas was (respectively) 250:33:5:1. Per-appearance probability of hole encounter on all parts of the net was strongly predicted by a factor combining hole perimeter and area. Per-encounter probability of hole passage, in turn, was strongly predicted by hole width. For a given width, there was a 20% greater risk of passage through holes on the roof than holes on the sides. Discussion Appearance, encounter and passage predictors correspond to various mosquito behaviours that have previously been described and are combined into a prototype mosquito entry risk tool that predicts mosquito entry rates for nets with various amounts of damage. Scenarios that use the entry risk tool to test the recommendations of the WHOPES proportionate hole index (pHI) suggest that the pHI hole size categories and failure to account for hole location likely sometimes lead to incorrect conclusions about net serviceability that could be avoided by using an entry risk tool of the form presented here instead. Practical methods of collecting hole position, shape and size information for bed net assessments using the tool in the field are discussed and include using image analysis and on-line geometric analysis tools. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1951-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Sutcliffe
- Department of Biology, Trent University, Peterborough, ON, Canada. .,Entomology Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Xin Ji
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
19
|
Parker JEA, Angarita Jaimes NC, Gleave K, Mashauri F, Abe M, Martine J, Towers CE, Towers D, McCall PJ. Host-seeking activity of a Tanzanian population of Anopheles arabiensis at an insecticide treated bed net. Malar J 2017; 16:270. [PMID: 28676092 PMCID: PMC5496219 DOI: 10.1186/s12936-017-1909-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/26/2017] [Indexed: 01/02/2023] Open
Abstract
Background Understanding how mosquitoes respond to long lasting insecticide treated nets (LLINs) is fundamental to sustaining the effectiveness of this essential control tool. We report on studies with a tracking system to investigate behaviour of wild anophelines at an LLIN, in an experimental hut at a rural site in Mwanza, Tanzania. Methods Groups of adult female mosquitoes (n = 10 per replicate) reared from larvae of a local population, identified as predominantly (95%) Anopheles arabiensis, were released in the hut. An infrared video tracking system recorded flight and net contact activity over 1 h as the mosquitoes attempted to reach a supine human volunteer within a bed net (either a deltamethrin-treated LLIN or an untreated control net). A range of activities, including flight path, position in relation to the bed net and duration of net contact, were quantified and compared between treatments. Results The total time that female An. arabiensis spent in flight around LLINs was significantly lower than at untreated nets [F(1,10) = 9.26, p = 0.012], primarily due to a substantial reduction in the time mosquitoes spent in persistent ‘bouncing’ flight [F(1,10) = 18.48, p = 0.002]. Most activity occurred at the net roof but significantly less so with LLINs (56.8% of total) than untreated nets [85.0%; Χ2 (15) = 234.69, p < 0.001]. Activity levels at the bed net directly above the host torso were significantly higher with untreated nets (74.2%) than LLINs [38.4%; Χ2 (15) = 33.54, p = 0.004]. ‘Visiting’ and ‘bouncing’ rates were highest above the volunteer’s chest in untreated nets (39.9 and 50.4%, respectively) and LLINs [29.9 and 42.4%; Χ2 (13) = 89.91, p < 0.001; Χ2 (9) = 45.73, p < 0.001]. Highest resting rates were above the torso in untreated nets [77%; Χ2 (9) = 63.12, p < 0.001], but in LLINs only 33.2% of resting occurred here [Χ2 (9) = 27.59, p = 0.001], with resting times spread between the short vertical side of the net adjacent to the volunteer’s head (21.8%) and feet (16.2%). Duration of net contact by a single mosquito was estimated at 204–290 s on untreated nets and 46–82 s on LLINs. While latency to net contact was similar in both treatments, the reduction in activity over 60 min was significantly more rapid for LLINs [F(1,10) = 6.81, p = 0.026], reiterating an ‘attract and kill’ rather than a repellent mode of action. Conclusions The study has demonstrated the potential for detailed investigations of behaviour of wild mosquito populations under field conditions. The results validate the findings of earlier laboratory studies on mosquito activity at LLINs, and reinforce the key role of multiple brief contacts at the net roof as the critical LLIN mode of action. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1909-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josephine E A Parker
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - Katherine Gleave
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Fabian Mashauri
- National Institute for Medical Research, Mwanza Medical Research Centre, PO Box 1462, Mwanza, Tanzania
| | - Mayumi Abe
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jackline Martine
- National Institute for Medical Research, Mwanza Medical Research Centre, PO Box 1462, Mwanza, Tanzania
| | - Catherine E Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - David Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
20
|
Angarita-Jaimes NC, Parker JEA, Abe M, Mashauri F, Martine J, Towers CE, McCall PJ, Towers DP. A novel video-tracking system to quantify the behaviour of nocturnal mosquitoes attacking human hosts in the field. J R Soc Interface 2016; 13:rsif.2015.0974. [PMID: 27075002 PMCID: PMC4874425 DOI: 10.1098/rsif.2015.0974] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/21/2016] [Indexed: 11/27/2022] Open
Abstract
Many vectors of malaria and other infections spend most of their adult life within human homes, the environment where they bloodfeed and rest, and where control has been most successful. Yet, knowledge of peri-domestic mosquito behaviour is limited, particularly how mosquitoes find and attack human hosts or how insecticides impact on behaviour. This is partly because technology for tracking mosquitoes in their natural habitats, traditional dwellings in disease-endemic countries, has never been available. We describe a sensing device that enables observation and recording of nocturnal mosquitoes attacking humans with or without a bed net, in the laboratory and in rural Africa. The device addresses requirements for sub-millimetre resolution over a 2.0 × 1.2 × 2.0 m volume while using minimum irradiance. Data processing strategies to extract individual mosquito trajectories and algorithms to describe behaviour during host/net interactions are introduced. Results from UK laboratory and Tanzanian field tests showed that Culex quinquefasciatus activity was higher and focused on the bed net roof when a human host was present, in colonized and wild populations. Both C. quinquefasciatus and Anopheles gambiae exhibited similar behavioural modes, with average flight velocities varying by less than 10%. The system offers considerable potential for investigations in vector biology and many other fields.
Collapse
Affiliation(s)
- N C Angarita-Jaimes
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - J E A Parker
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - M Abe
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - F Mashauri
- National Institute for Medical Research, Mwanza Medical Research Centre, PO Box 1462, Mwanza, Tanzania
| | - J Martine
- National Institute for Medical Research, Mwanza Medical Research Centre, PO Box 1462, Mwanza, Tanzania
| | - C E Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - P J McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - D P Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
21
|
Parker JEA, Angarita-Jaimes N, Abe M, Towers CE, Towers D, McCall PJ. Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact. Sci Rep 2015; 5:13392. [PMID: 26323965 PMCID: PMC4642575 DOI: 10.1038/srep13392] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/24/2015] [Indexed: 11/11/2022] Open
Abstract
Long-lasting insecticidal bed nets (LLINs) protect humans from malaria transmission and are fundamental to malaria control worldwide, but little is known of how mosquitoes interact with nets. Elucidating LLIN mode of action is essential to maintain or improve efficacy, an urgent need as emerging insecticide resistance threatens their future. Tracking multiple free-flying Anopheles gambiae responding to human-occupied bed nets in a novel large-scale system, we characterised key behaviours and events. Four behavioural modes with different levels of net contact were defined: swooping, visiting, bouncing and resting. Approximately 75% of all activity occurred at the bed net roof where multiple brief contacts were focussed above the occupant’s torso. Total flight and net contact times were lower at LLINs than untreated nets but the essential character of the response was unaltered. LLINs did not repel mosquitoes but impacted rapidly: LLIN contact of less than 1 minute per mosquito during the first ten minutes reduced subsequent activity; after thirty minutes, activity at LLINs was negligible. Velocity measurements showed that mosquitoes detected nets, including unbaited untreated nets, prior to contact. This is the most complete characterisation of mosquito-LLIN interactions to date, and reveals many aspects of LLIN mode of action, important for developing the next generation of LLINs.
Collapse
Affiliation(s)
- Josephine E A Parker
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Natalia Angarita-Jaimes
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Mayumi Abe
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Catherine E Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - David Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Philip J McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
22
|
Randriamaherijaona S, Briët OJT, Boyer S, Bouraima A, N'Guessan R, Rogier C, Corbel V. Do holes in long-lasting insecticidal nets compromise their efficacy against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus? Results from a release-recapture study in experimental huts. Malar J 2015; 14:332. [PMID: 26310788 PMCID: PMC4551388 DOI: 10.1186/s12936-015-0836-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022] Open
Abstract
Background Resistance of malaria vectors to pyrethroids threatens the effectiveness of long-lasting insecticidal nets (LLINs) as a tool for malaria control. Recent experimental hut and observational studies in Benin show that pyrethroid resistance reduces the insecticidal effect and personal protection of LLINs especially when they become torn. The World Health Organization has proposed a threshold for when nets are “too torn” at 1,000 cm2 for rectangular holes and 790 cm2 for round holes. This study examines whether there is a threshold above which LLINs no longer reduce malaria transmission. Methods Intact and artificially-holed LLINs under three months old and untreated nets were tested by releasing mosquitoes from a susceptible Anopheles gambiae colony, a pyrethroid-resistant An. gambiae population and a resistant Culex quinquefasciatus population in closed experimental huts in Southern Benin, West Africa. The efficacy of LLINs and untreated nets was evaluated in terms of protection against blood feeding, insecticidal effect and potential effect on malaria transmission. Results Personal protection by both LLINs and untreated nets decreased exponentially with increasing holed surface area, without evidence for a specific threshold beyond which LLINs could be considered as ineffective. The insecticidal effect of LLINs was lower in resistant mosquitoes than in susceptible mosquitoes, but holed surface area had little or no impact on the insecticidal effect of LLINs. LLINs with 22,500 cm2 holed surface area and target insecticide content provided a personal protection of 0.60 (95 % CI 0.44–0.73) and a low insecticidal effect of 0.20 (95 % CI 0.12–0.30) against resistant An. gambiae. Nevertheless, mathematical models suggested that if 80 % of the population uses such nets, they could still prevent 94 % (95 % CI 89–97 %) of transmission by pyrethroid-resistant An. gambiae. Conclusions Even though personal protection by LLINs against feeding mosquitoes is strongly reduced by holes, the insecticidal effect of LLINs is independent of the holed surface area, but strongly dependent on insecticide resistance. Badly torn nets that still contain insecticide have potential to reduce malaria transmission. The relationship between LLIN integrity and efficacy needs to be understood in order to guide LLIN distribution policy. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0836-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Olivier J T Briët
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | | | - Aziz Bouraima
- Centre de Recherches Entomologiques de Cotonou (CREC), 06 BP 2604, Cotonou, Republic of Benin.
| | - Raphael N'Guessan
- Centre de Recherches Entomologiques de Cotonou (CREC), 06 BP 2604, Cotonou, Republic of Benin. raphael.n'.,Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel street, London, WC1E 7HT, UK. raphael.n'
| | - Christophe Rogier
- Institut Pasteur de Madagascar, Antananarivo, Madagascar. .,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, INSERM 1095, Aix Marseille Université, Marseille, France. .,Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.
| | - Vincent Corbel
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 5290 UM1-UM2), Montpellier, France. .,Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kamphaeng Saen Campus, Kasetsart University, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
23
|
Sutcliffe J, Colborn KL. Video studies of passage by Anopheles gambiae mosquitoes through holes in a simulated bed net: effects of hole size, hole orientation and net environment. Malar J 2015; 14:199. [PMID: 25962596 PMCID: PMC4457991 DOI: 10.1186/s12936-015-0713-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Holes in netting provide potential routes for mosquitoes to enter ITNs. Despite this, there is little information on how mosquitoes respond to holes in bed nets and how their responses are affected by hole size, shape and orientation or by ambient conditions around the net. METHODS Female Anopheles gambiae (G3) were recorded in a simulated bed net consisting of two sizes of untreated netting-covered behavioural arenas placed above and beside (to simulate the bed net roof and sides respectively) the experimenter who was a source of host cues from 'inside' the net. A round hole of 9 mm or 13 mm diameter was cut into the centre of the netting of each arena. Videos of unfed female mosquitoes in arenas were analysed for time spent flying, walking and standing still and for exit through the hole. The effects of the experimenter on temperature and relative humidity around the simulated net were also measured. RESULTS Mosquitoes were significantly more active in overhead arenas than in arenas to the side. Hole passage was significantly more likely in smaller arenas than larger ones and for larger holes than smaller ones. In arenas to the side, hole passage rate through small holes was about 50% less likely than what could be explained by area alone. Passage rate through holes in overhead arenas was consistent with hole area. Temperature in arenas did not strongly reflect the experimenter's presence in the simulated net. Relative humidity and absolute humidity in overhead arenas, but not in arenas to the side, were immediately affected by experimenter presence. CONCLUSIONS Higher levels of activity in overhead arenas than in arenas to the side were likely due to the rising heat and humidity plume from the experimenter. Lower than expected passage rates through smaller vertically oriented holes may have been be due to an edge effect that does not apply to horizontally oriented holes. Results suggest that current methods of assessing the importance of physical damage to ITNs may not accurately reflect mosquito entry risk in all cases.
Collapse
Affiliation(s)
- James Sutcliffe
- Department of Biology, Trent University, Peterborough, ON, K9J 7B2, Canada. .,Entomology Branch, US Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA.
| | - Kathryn L Colborn
- Graduate Group in Biostatistics, University of California, Berkeley, CA, USA.
| |
Collapse
|
24
|
Lorenz LM, Overgaard HJ, Massue DJ, Mageni ZD, Bradley J, Moore JD, Mandike R, Kramer K, Kisinza W, Moore SJ. Investigating mosquito net durability for malaria control in Tanzania - attrition, bioefficacy, chemistry, degradation and insecticide resistance (ABCDR): study protocol. BMC Public Health 2014; 14:1266. [PMID: 25495268 PMCID: PMC4301422 DOI: 10.1186/1471-2458-14-1266] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Long-Lasting Insecticidal Nets (LLINs) are one of the major malaria vector control tools, with most countries adopting free or subsidised universal coverage campaigns of populations at-risk from malaria. It is essential to understand LLIN durability so that public health policy makers can select the most cost effective nets that last for the longest time, and estimate the optimal timing of repeated distribution campaigns. However, there is limited knowledge from few countries of the durability of LLINs under user conditions. Methods/Design This study investigates LLIN durability in eight districts of Tanzania, selected for their demographic, geographic and ecological representativeness of the country as a whole. We use a two-stage approach: First, LLINs from recent national net campaigns will be evaluated retrospectively in 3,420 households. Those households will receive one of three leading LLIN products at random (Olyset®, PermaNet®2.0 or Netprotect®) and will be followed up for three years in a prospective study to compare their performance under user conditions. LLIN durability will be evaluated by measuring Attrition (the rate at which nets are discarded by households), Bioefficacy (the insecticidal efficacy of the nets measured by knock-down and mortality of mosquitoes), Chemical content (g/kg of insecticide available in net fibres) and physical Degradation (size and location of holes). In addition, we will extend the current national mosquito insecticide Resistance monitoring program to additional districts and use these data sets to provide GIS maps for use in health surveillance and decision making by the National Malaria Control Program (NMCP). Discussion The data will be of importance to policy makers and vector control specialists both in Tanzania and the SSA region to inform best practice for the maintenance of high and cost-effective coverage and to maximise current health gains in malaria control. Electronic supplementary material The online version of this article (doi:10.1186/1471-2458-14-1266) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Hans J Overgaard
- Norwegian University of Life Sciences, P,O, Box 5003, Ås 1432, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Irish SR. The behaviour of mosquitoes in relation to humans under holed bednets: the evidence from experimental huts. Mem Inst Oswaldo Cruz 2014; 109:905-11. [PMID: 25410994 PMCID: PMC4296495 DOI: 10.1590/0074-0276140159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/15/2014] [Indexed: 11/22/2022] Open
Abstract
The physical integrity of bednets is a concern of national malaria control programs,
as it is a key factor in determining the rate of replacement of bednets. It is
largely assumed that increased numbers of holes will result in a loss of protection
of sleepers from potentially infective bites. Experimental hut studies are valuable
in understanding mosquito behaviour indoors, particularly as it relates to blood
feeding and mortality. This review summarises findings from experimental hut studies,
focusing on two issues: (i) the effect of different numbers or sizes of holes in
bednets and (ii) feeding behaviour and mortality with holed nets as compared with
unholed nets. As might be expected, increasing numbers and area of holes resulted in
increased blood feeding by mosquitoes on sleepers. However, the presence of holes did
not generally have a large effect on the mortality of mosquitoes. Successfully
entering a holed mosquito net does not necessarily mean that mosquitoes spend less
time in contact with the net, which could explain the lack in differences in
mortality. Further behavioural studies are necessary to understand mosquito behaviour
around nets and the importance of holed nets on malaria transmission.
Collapse
Affiliation(s)
- Seth R Irish
- Entomology Branch, Department of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Center for Global Health, Atlanta, GA, USA
| |
Collapse
|
26
|
Arifin SMN, Zhou Y, Davis GJ, Gentile JE, Madey GR, Collins FH. An agent-based model of the population dynamics of Anopheles gambiae. Malar J 2014; 13:424. [PMID: 25373418 PMCID: PMC4233045 DOI: 10.1186/1475-2875-13-424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/26/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Agent-based models (ABMs) have been used to model the behaviour of individual mosquitoes and other aspects of malaria. In this paper, a conceptual entomological model of the population dynamics of Anopheles gambiae and the agent-based implementations derived from it are described. Hypothetical vector control interventions (HVCIs) are implemented to target specific activities in the mosquito life cycle, and their impacts are evaluated. METHODS The core model is described in terms of the complete An. gambiae mosquito life cycle. Primary features include the development and mortality rates in different aquatic and adult stages, the aquatic habitats and oviposition. The density- and age-dependent larval and adult mortality rates (vector senescence) allow the model to capture the age-dependent aspects of the mosquito biology. Details of hypothetical interventions are also described. RESULTS Results show that with varying coverage and temperature ranges, the hypothetical interventions targeting the gonotrophic cycle stages produce higher impacts than the rest in reducing the potentially infectious female (PIF) mosquito populations, due to their multi-hour mortality impacts and their applicability at multiple gonotrophic cycles. Thus, these stages may be the most effective points of target for newly developed and novel interventions. A combined HVCI with low coverage can produce additive synergistic impacts and can be more effective than isolated HVCIs with comparatively higher coverages. It is emphasized that although the model described in this paper is designed specifically around the mosquito An. gambiae, it could effectively apply to many other major malaria vectors in the world (including the three most efficient nominal anopheline species An. gambiae, Anopheles coluzzii and Anopheles arabiensis) by incorporating a variety of factors (seasonality cycles, rainfall, humidity, etc.). Thus, the model can essentially be treated as a generic Anopheles model, offering an excellent framework for such extensions. The utility of the core model has also been demonstrated by several other applications, each of which investigates well-defined biological research questions across a variety of dimensions (including spatial models, insecticide resistance, and sterile insect techniques).
Collapse
Affiliation(s)
- SM Niaz Arifin
- />Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Ying Zhou
- />Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Gregory J Davis
- />Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - James E Gentile
- />Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Gregory R Madey
- />Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Frank H Collins
- />Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- />Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences Center, Notre Dame, IN 46556 USA
| |
Collapse
|
27
|
Sutcliffe JF, Yin S. Behavioural responses of females of two anopheline mosquito species to human-occupied, insecticide-treated and untreated bed nets. Malar J 2014; 13:294. [PMID: 25080389 PMCID: PMC4121435 DOI: 10.1186/1475-2875-13-294] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background Insecticide-treated bed nets (ITNs), used extensively to reduce human exposure to malaria, work through physical and chemical means to block or deter host-seeking mosquitoes. Despite the importance of ITNs, very little is known about how host-seeking mosquitoes behave around occupied bed nets. As a result, evidence-based evaluations of the effects of physical damage on bed net effectiveness are not possible and there is a dearth of knowledge on which to base ITN design. Methods The dispersion of colony-raised female Anopheles gambiae and Anopheles albimanus was observed in 2-hr laboratory experiments in which up to 200 mosquitoes were released inside a mosquito-proof 3 m × 3 m tent housing a bed net arrayed with 18 30 cm × 30 cm sticky screen squares on the sides, ends and roof. Numbers of mosquitoes caught on the sticky squares were interpreted as the ‘mosquito pressure’ on that part of the net. Results Presence of a human subject in the bed net significantly increased total mosquito pressure on the net for both species and significantly re-oriented An. gambiae to the roof of the net. Anopheles albimanus pressure was greatest on the bed net roof in both host-present and no-host conditions. The effects of different human subjects in the bed net, of different ambient conditions (dry, cool conditions vs warm, humid conditions) and of bed net treatment (deltamethrin-treated or no insecticide) on mosquito pressure patterns were tested for both species. Species-specific pressure patterns did not vary greatly as a result of any of these factors though some differences were noted that may be due the size of the different human subjects. Conclusions As a result of the interaction between host-seeking responses and the convective plume from the net occupant, species-specific mosquito pressure patterns manifest more or less predictably on the bed net. This has implications for bed net design and suggests that current methods of assessing damaged bed nets, which do not take damage location into account, should be modified.
Collapse
Affiliation(s)
- James F Sutcliffe
- Department of Biology, Trent University, Peterborough, Ontario K9J 7B8, Canada.
| | | |
Collapse
|