1
|
Kattenberg JH, Nguyen HV, Nguyen HL, Sauve E, Nguyen NTH, Chopo-Pizarro A, Trimarsanto H, Monsieurs P, Guetens P, Nguyen XX, Esbroeck MV, Auburn S, Nguyen BTH, Rosanas-Urgell A. Novel highly-multiplexed AmpliSeq targeted assay for Plasmodium vivax genetic surveillance use cases at multiple geographical scales. Front Cell Infect Microbiol 2022; 12:953187. [PMID: 36034708 PMCID: PMC9403277 DOI: 10.3389/fcimb.2022.953187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of Plasmodium vivax. Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). P. vivax parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the pvmdr1 and pvcrt genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.
Collapse
Affiliation(s)
| | - Hong Van Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Hieu Luong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Erin Sauve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ngoc Thi Hong Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Ana Chopo-Pizarro
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hidayat Trimarsanto
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Pieter Monsieurs
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xa Xuan Nguyen
- Department of Epidemiology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Marjan Van Esbroeck
- Clinical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Binh Thi Huong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
2
|
Huang F, Cui Y, Yan H, Liu H, Guo X, Wang G, Zhou S, Xia Z. Prevalence of antifolate drug resistance markers in Plasmodium vivax in China. Front Med 2022; 16:83-92. [PMID: 35257293 DOI: 10.1007/s11684-021-0894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
The dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes of Plasmodium vivax, as antifolate resistance-associated genes were used for drug resistance surveillance. A total of 375 P. vivax isolates collected from different geographical locations in China in 2009-2019 were used to sequence Pvdhfr and Pvdhps. The majority of the isolates harbored a mutant type allele for Pvdhfr (94.5%) and Pvdhps (68.2%). The most predominant point mutations were S117T/N (77.7%) in Pvdhfr and A383G (66.8%) in Pvdhps. Amino acid changes were identified at nine residues in Pvdhfr. A quadruple-mutant haplotype at 57, 58, 61, and 117 was the most frequent (57.4%) among 16 distinct Pvdhfr haplotypes. Mutations in Pvdhps were detected at six codons, and the double-mutant A383G/A553G was the most prevalent (39.3%). Pvdhfr exhibited a higher mutation prevalence and greater diversity than Pvdhps in China. Most isolates from Yunnan carried multiple mutant haplotypes, while the majority of samples from temperate regions and Hainan Island harbored the wild type or single mutant type. This study indicated that the antifolate resistance levels of P. vivax parasites were different across China and molecular markers could be used to rapidly monitor drug resistance. Results provided evidence for updating national drug policy and treatment guidelines.
Collapse
Affiliation(s)
- Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China.
| | - Yanwen Cui
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China
| | - He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China
| | - Hui Liu
- Yunnan Institute of Parasitic Diseases, Puer, 665000, China
| | - Xiangrui Guo
- Yingjiang County for Disease Control and Prevention, Yingjiang, 679300, China
| | - Guangze Wang
- Hainan Center for Disease Control & Prevention, Haikou, 570203, China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China
| | - Zhigui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China
| |
Collapse
|
3
|
Ford A, Kepple D, Abagero BR, Connors J, Pearson R, Auburn S, Getachew S, Ford C, Gunalan K, Miller LH, Janies DA, Rayner JC, Yan G, Yewhalaw D, Lo E. Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes. PLoS Negl Trop Dis 2020; 14:e0008234. [PMID: 33044985 PMCID: PMC7581005 DOI: 10.1371/journal.pntd.0008234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/22/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium vivax malaria is much less common in Africa than the rest of the world because the parasite relies primarily on the Duffy antigen/chemokine receptor (DARC) to invade human erythrocytes, and the majority of Africans are Duffy negative. Recently, there has been a dramatic increase in the reporting of P. vivax cases in Africa, with a high number of them being in Duffy negative individuals, potentially indicating P. vivax has evolved an alternative invasion mechanism that can overcome Duffy negativity. Here, we analyzed single nucleotide polymorphism (SNP) and copy number variation (CNV) in Whole Genome Sequence (WGS) data from 44 P. vivax samples isolated from symptomatic malaria patients in southwestern Ethiopia, where both Duffy positive and Duffy negative individuals are found. A total of 123,711 SNPs were detected, of which 22.7% were nonsynonymous and 77.3% were synonymous mutations. The largest number of SNPs were detected on chromosomes 9 (24,007 SNPs; 19.4% of total) and 10 (16,852 SNPs, 13.6% of total). There were particularly high levels of polymorphism in erythrocyte binding gene candidates including merozoite surface protein 1 (MSP1) and merozoite surface protein 3 (MSP3.5, MSP3.85 and MSP3.9). Two genes, MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. Variation in gene copy number was also concentrated in genes involved in host-parasite interactions, including the expansion of the Duffy binding protein gene (PvDBP) on chromosome 6 and MSP3.11 on chromosome 10. Based on the phylogeny constructed from the whole genome sequences, the expansion of these genes was an independent process among the P. vivax lineages in Ethiopia. We further inferred transmission patterns of P. vivax infections among study sites and showed various levels of gene flow at a small geographical scale. The genomic features of P. vivax provided baseline data for future comparison with those in Duffy-negative individuals and allowed us to develop a panel of informative Single Nucleotide Polymorphic markers diagnostic at a micro-geographical scale.
Collapse
Affiliation(s)
- Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
| | - Beka Raya Abagero
- Tropical Infectious Disease Research Center, Jimma University, Ethiopia
| | - Jordan Connors
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Richard Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United States of America
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Colby Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Julian C. Rayner
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, United Kingdom
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, United States of America
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
| |
Collapse
|
4
|
Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, Quang HH, Anggraeni ND, Laihad F, Liu Y, Sumiwi ME, Trimarsanto H, Coutrier F, Fadila N, Ghanchi N, Johora FT, Puspitasari AM, Tavul L, Trianty L, Utami RAS, Wang D, Wangchuck K, Price RN, Auburn S. Implementing parasite genotyping into national surveillance frameworks: feedback from control programmes and researchers in the Asia-Pacific region. Malar J 2020; 19:271. [PMID: 32718342 PMCID: PMC7385952 DOI: 10.1186/s12936-020-03330-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.
Collapse
Affiliation(s)
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alyssa Barry
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sasha Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Nguyen Thuy-Nhien
- Centre for Tropical Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Vietnam
| | | | | | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | | | | | - Farah Coutrier
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nadia Fadila
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Najia Ghanchi
- Pathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, Bangladesh
| | | | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Kesang Wangchuck
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Ric N Price
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Li Y, Hu Y, Zhao Y, Wang Q, Ngassa Mbenda HG, Kittichai V, Lawpoolsri S, Sattabongkot J, Menezes L, Liu X, Cui L, Cao Y. Dynamics of Plasmodium vivax populations in border areas of the Greater Mekong sub-region during malaria elimination. Malar J 2020; 19:145. [PMID: 32268906 PMCID: PMC7140319 DOI: 10.1186/s12936-020-03221-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Countries within the Greater Mekong Sub-region (GMS) of Southeast Asia have committed to eliminating malaria by 2030. Although the malaria situation has greatly improved, malaria transmission remains at international border regions. In some areas, Plasmodium vivax has become the predominant parasite. To gain a better understanding of transmission dynamics, knowledge on the changes of P. vivax populations after the scale-up of control interventions will guide more effective targeted control efforts. Methods This study investigated genetic diversity and population structures in 206 P. vivax clinical samples collected at two time points in two international border areas: the China-Myanmar border (CMB) (n = 50 in 2004 and n = 52 in 2016) and Thailand-Myanmar border (TMB) (n = 50 in 2012 and n = 54 in 2015). Parasites were genotyped using 10 microsatellite markers. Results Despite intensified control efforts, genetic diversity remained high (HE = 0.66–0.86) and was not significantly different among the four populations (P > 0.05). Specifically, HE slightly decreased from 0.76 in 2004 to 0.66 in 2016 at the CMB and increased from 0.80 in 2012 to 0.86 in 2015 at the TMB. The proportions of polyclonal infections varied significantly among the four populations (P < 0.05), and showed substantial decreases from 48.0% in 2004 to 23.7 at the CMB and from 40.0% in 2012 to 30.7% in 2015 at the TMB, with corresponding decreases in the multiplicity of infection. Consistent with the continuous decline of malaria incidence in the GMS over time, there were also increases in multilocus linkage disequilibrium, suggesting more fragmented and increasingly inbred parasite populations. There were considerable genetic differentiation and sub-division among the four tested populations. Temporal genetic differentiation was observed at each site (FST = 0.081 at the CMB and FST = 0.133 at the TMB). Various degrees of clustering were evident between the older parasite samples collected in 2004 at the CMB and the 2016 CMB and 2012 TMB populations, suggesting some of these parasites had shared ancestry. In contrast, the 2015 TMB population was genetically distinctive, which may reflect a process of population replacement. Whereas the effective population size (Ne) at the CMB showed a decrease from 4979 in 2004 to 3052 in 2016 with the infinite allele model, the Ne at the TMB experienced an increase from 6289 to 10,259. Conclusions With enhanced control efforts on malaria, P. vivax at the TMB and CMB showed considerable spatial and temporal differentiation, but the presence of large P. vivax reservoirs still sustained genetic diversity and transmission. These findings provide new insights into P. vivax transmission dynamics and population structure in these border areas of the GMS. Coordinated and integrated control efforts on both sides of international borders are essential to reach the goal of regional malaria elimination.
Collapse
Affiliation(s)
- Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.,Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Huguette Gaelle Ngassa Mbenda
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Veerayuth Kittichai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saranath Lawpoolsri
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lynette Menezes
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoming Liu
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA. .,Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
6
|
Ventocilla JA, Nuñez J, Tapia LL, Lucas CM, Manock SR, Lescano AG, Edgel KA, Graf PCF. Genetic Variability of Plasmodium vivax in the North Coast of Peru and the Ecuadorian Amazon Basin. Am J Trop Med Hyg 2018; 99:27-32. [PMID: 29761758 DOI: 10.4269/ajtmh.17-0498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the Peruvian North Coast (PNC), the number of Plasmodium vivax malaria cases increased steadily from 2007 to 2010 despite a significant decline in the overall number of cases in Peru during the same period. To better understand the transmission dynamics of P. vivax populations in the PNC and the neighboring Ecuadorian Amazon Basin (EAB), we studied the genetic variability and population structure of P. vivax in these areas. One hundred and twenty P. vivax isolates (58 from Piura and 37 from Tumbes in the PNC collected from 2008 to 2010 and 25 from the EAB collected in Pastaza from 2001 to 2004) were assessed by five polymorphic microsatellite markers. Genetic variability was determined by expected heterozygosity (He) and population structure by Bayesian inference cluster analysis. We found very low genetic diversity in the PNC (He = 0-0.32) but high genetic diversity in the EAB (He = 0.43-0.70). Population structure analysis revealed three distinct populations in the three locations. Six of 37 (16%) isolates from Tumbes had an identical haplotype to that found in Piura, suggesting unidirectional flow from Piura to Tumbes. In addition, one haplotype from Tumbes showed similarity to a haplotype found in Pastaza, suggesting that this could be an imported case from EAB. These findings strongly suggest a minimal population flow and different levels of genetic variability between these two areas divided by the Andes Mountains. This work presents molecular markers that could be used to increase our understanding of regional malaria transmission dynamics, which has implications for the development of strategies for P. vivax control.
Collapse
Affiliation(s)
| | - Jorge Nuñez
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | - L Lorena Tapia
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | - Carmen M Lucas
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | | | - Andrés G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration Universidad Peruana Cayetano Heredia, Lima, Peru.,U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | | | | |
Collapse
|
7
|
Substantial population structure of Plasmodium vivax in Thailand facilitates identification of the sources of residual transmission. PLoS Negl Trop Dis 2017; 11:e0005930. [PMID: 29036178 PMCID: PMC5658191 DOI: 10.1371/journal.pntd.0005930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/26/2017] [Accepted: 09/04/2017] [Indexed: 11/23/2022] Open
Abstract
Background Plasmodium vivax transmission in Thailand has been substantially reduced over the past 10 years, yet it remains highly endemic along international borders. Understanding the genetic relationship of residual parasite populations can help track the origins of the parasites that are reintroduced into malaria-free regions within the country. Methodology/Results A total of 127 P. vivax isolates were genotyped from two western provinces (Tak and Kanchanaburi) and one eastern province (Ubon Ratchathani) of Thailand using 10 microsatellite markers. Genetic diversity was high, but recent clonal expansion was detected in all three provinces. Substantial population structure and genetic differentiation of parasites among provinces suggest limited gene flow among these sites. There was no haplotype sharing among the three sites, and a reduced panel of four microsatellite markers was sufficient to assign the parasites to their provincial origins. Conclusion/Significance Significant parasite genetic differentiation between provinces shows successful interruption of parasite spread within Thailand, but high diversity along international borders implies a substantial parasite population size in these regions. The provincial origin of P. vivax cases can be reliably determined by genotyping four microsatellite markers, which should be useful for monitoring parasite reintroduction after malaria elimination. This study presents an updated view of the P. vivax populations along the Thai-Myanmar and the Thai-Cambodian borders. Genotyping of parasite samples collected after intensified malaria control demonstrated that despite the decline in overall transmission intensity, the genetic diversity of the P. vivax parasites remained high. Parasite populations from three border provinces showed clear genetic separation. This indicates successful interruption of parasite gene flow within Thailand, but suggests frequent parasite migration across international borders. From the analysis of 10 microsatellite markers, we further refined a set of four that are sufficient for distinguishing the provincial origins of these parasites, which should allow tracking of parasite introduction among these provinces.
Collapse
|
8
|
Lo E, Hemming-Schroeder E, Yewhalaw D, Nguyen J, Kebede E, Zemene E, Getachew S, Tushune K, Zhong D, Zhou G, Petros B, Yan G. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Negl Trop Dis 2017; 11:e0005806. [PMID: 28746333 PMCID: PMC5546713 DOI: 10.1371/journal.pntd.0005806] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/07/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Ethiopia is one of the few African countries where Plasmodium vivax is co-endemic with P. falciparum. Malaria transmission is seasonal and transmission intensity varies mainly by landscape and climate. Although the recent emergence of drug resistant parasites presents a major issue to malaria control in Ethiopia, little is known about the transmission pathways of parasite species and prevalence of resistant markers. This study used microsatellites to determine population diversity and gene flow patterns of P. falciparum (N = 226) and P. vivax (N = 205), as well as prevalence of drug resistant markers to infer the impact of gene flow and existing malaria treatment regimes. Plasmodium falciparum indicated a higher rate of polyclonal infections than P. vivax. Both species revealed moderate genetic diversity and similar population structure. Populations in the northern highlands were closely related to the eastern Rift Valley, but slightly distinct from the southern basin area. Gene flow via human migrations between the northern and eastern populations were frequent and mostly bidirectional. Landscape genetic analyses indicated that environmental heterogeneity and geographical distance did not constrain parasite gene flow. This may partly explain similar patterns of resistant marker prevalence. In P. falciparum, a high prevalence of mutant alleles was detected in codons related to chloroquine (pfcrt and pfmdr1) and sulfadoxine-pyrimethamine (pfdhps and pfdhfr) resistance. Over 60% of the samples showed pfmdr1 duplications. Nevertheless, no mutation was detected in pfK13 that relates to artemisinin resistance. In P. vivax, while sequences of pvcrt-o were highly conserved and less than 5% of the samples showed pvmdr duplications, over 50% of the samples had pvmdr1 976F mutation. It remains to be tested if this mutation relates to chloroquine resistance. Monitoring the extent of malaria spread and markers of drug resistance is imperative to inform policy for evidence-based antimalarial choice and interventions. To effectively reduce malaria burden in Ethiopia, control efforts should focus on seasonal migrant populations.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antimalarials/pharmacology
- Child
- Child, Preschool
- Drug Resistance
- Endemic Diseases
- Ethiopia/epidemiology
- Female
- Gene Flow
- Genes, Protozoan
- Genetics, Population
- Genotype
- Humans
- Infant
- Infant, Newborn
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/epidemiology
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Male
- Microsatellite Repeats
- Middle Aged
- Plasmodium falciparum/drug effects
- Plasmodium falciparum/genetics
- Plasmodium falciparum/isolation & purification
- Plasmodium vivax/drug effects
- Plasmodium vivax/genetics
- Plasmodium vivax/isolation & purification
- Prevalence
- Young Adult
Collapse
Affiliation(s)
- Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail: (EL); (GY)
| | | | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Jennifer Nguyen
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Estifanos Kebede
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Endalew Zemene
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kora Tushune
- Department of Health Services Management, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Beyene Petros
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California, United States of America
- * E-mail: (EL); (GY)
| |
Collapse
|
9
|
Htun MW, Mon NCN, Aye KM, Hlaing CM, Kyaw MP, Handayuni I, Trimarsanto H, Bustos D, Ringwald P, Price RN, Auburn S, Thriemer K. Chloroquine efficacy for Plasmodium vivax in Myanmar in populations with high genetic diversity and moderate parasite gene flow. Malar J 2017; 16:281. [PMID: 28693552 PMCID: PMC5504659 DOI: 10.1186/s12936-017-1912-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Plasmodium vivax malaria remains a major public health burden in Myanmar. Resistance to chloroquine (CQ), the first-line treatment for P. vivax, has been reported in the country and has potential to undermine local control efforts. METHODS Patients over 6 years of age with uncomplicated P. vivax mono-infection were enrolled into clinical efficacy studies in Myawaddy in 2014 and Kawthoung in 2012. Study participants received a standard dose of CQ (25 mg/kg over 3 days) followed by weekly review until day 28. Pvmdr1 copy number (CN) and microsatellite diversity were assessed on samples from the patients enrolled in the clinical study and additional cross-sectional surveys undertaken in Myawaddy and Shwegyin in 2012. RESULTS A total of 85 patients were enrolled in the CQ clinical studies, 25 in Myawaddy and 60 in Kawthoung. One patient in Myawaddy (1.2%) had an early treatment failure and two patients (2.3%) in Kawthoung presented with late treatment failures on day 28. The day 28 efficacy was 92.0% (95% CI 71.6-97.9) in Myawaddy and 98.3% (95% CI 88.7-99.8) in Kawthoung. By day 2, 92.2% (23/25) in Myawaddy and 85.0% (51/60) in Kawthoung were aparasitaemic. Genotyping and pvmdr1 CN assessment was undertaken on 43, 52 and 46 clinical isolates from Myawaddy, Kawthoung and Shwegyin respectively. Pvmdr1 amplification was observed in 3.2% (1/31) of isolates in Myawaddy, 0% (0/49) in Kawthoung and 2.5% (1/40) in Shwegyin. Diversity was high in all sites (H E 0.855-0.876), with low inter-population differentiation (F ST 0.016-0.026, P < 0.05). CONCLUSIONS Treatment failures after chloroquine were observed following chloroquine monotherapy, with pvmdr1 amplification present in both Myawaddy and Shwegyin. The results emphasize the importance of ongoing P. vivax drug resistance surveillance in Myanmar, particularly given the potential connectivity between parasite population at different sites.
Collapse
Affiliation(s)
- Myo Win Htun
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Nan Cho Nwe Mon
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Khin Myo Aye
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Chan Myae Hlaing
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Myat Phone Kyaw
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Irene Handayuni
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| | - Hidayat Trimarsanto
- 0000 0004 1795 0993grid.418754.bEijkman Institute for Molecular Biology, Jl. Diponegoro 69, Central Jakarta, 10430 Indonesia ,grid.466915.9The Ministry of Research and Technology (RISTEK), Jakarta, Indonesia ,0000 0001 0746 0534grid.432292.cAgency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340 Indonesia
| | - Dorina Bustos
- 0000 0004 0576 2573grid.415836.dWorld Health Organization, Country Office for Thailand, Ministry of Public Health, Nonthaburi, Thailand
| | - Pascal Ringwald
- 0000000121633745grid.3575.4Global Malaria Programme, World Health Organization, 20 Avenue Appia, 1211 Geneva, 27, Switzerland
| | - Ric N. Price
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia ,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Sarah Auburn
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| | - Kamala Thriemer
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| |
Collapse
|
10
|
VivaxGEN: An open access platform for comparative analysis of short tandem repeat genotyping data in Plasmodium vivax populations. PLoS Negl Trop Dis 2017; 11:e0005465. [PMID: 28362818 PMCID: PMC5389845 DOI: 10.1371/journal.pntd.0005465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/12/2017] [Accepted: 03/07/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The control and elimination of Plasmodium vivax will require a better understanding of its transmission dynamics, through the application of genotyping and population genetics analyses. This paper describes VivaxGEN (http://vivaxgen.menzies.edu.au), a web-based platform that has been developed to support P. vivax short tandem repeat data sharing and comparative analyses. RESULTS The VivaxGEN platform provides a repository for raw data generated by capillary electrophoresis (FSA files), with fragment analysis and standardized allele calling tools. The query system of the platform enables users to filter, select and differentiate samples and alleles based on their specified criteria. Key population genetic analyses are supported including measures of population differentiation (FST), expected heterozygosity (HE), linkage disequilibrium (IAS), neighbor-joining analysis and Principal Coordinate Analysis. Datasets can also be formatted and exported for application in commonly used population genetic software including GENEPOP, Arlequin and STRUCTURE. To date, data from 10 countries, including 5 publicly available data sets have been shared with VivaxGEN. CONCLUSIONS VivaxGEN is well placed to facilitate regional overviews of P. vivax transmission dynamics in different endemic settings and capable to be adapted for similar genetic studies of P. falciparum and other organisms.
Collapse
|
11
|
Auburn S, Barry AE. Dissecting malaria biology and epidemiology using population genetics and genomics. Int J Parasitol 2016; 47:77-85. [PMID: 27825828 DOI: 10.1016/j.ijpara.2016.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Molecular approaches have an increasingly recognized utility in surveillance of malaria parasite populations, not only in defining prevalence and incidence with higher sensitivity than traditional methods, but also in monitoring local and regional parasite transmission patterns. In this review, we provide an overview of population genetic and genomic studies of human-infecting Plasmodium species, highlighting recent advances in the field. In accordance with the renewed impetus for malaria eradication, many studies are now using genetic and genomic epidemiology to support local evidence-based intervention strategies. Microsatellite genotyping remains a popular approach for both Plasmodium falciparum and Plasmodium vivax. However, with the increasing availability of whole genome sequencing data enabling effective single nucleotide polymorphism-based panels tailored to a given study question and setting, this approach is gaining popularity. The availability of new reference genomes for Plasmodium malariae and Plasmodium ovale should see a surge in similar molecular studies on these currently neglected species. Genomic studies are revealing new insights into important adaptive mechanisms of the parasite including antimalarial drug resistance. The advent of new methodologies such as selective whole genome amplification for dealing with extensive human DNA in low density field isolates should see genome-wide approaches becoming routine for parasite surveillance once the economic costs outweigh the current cost benefits of targeted approaches.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Alyssa E Barry
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
12
|
Auburn S, Serre D, Pearson RD, Amato R, Sriprawat K, To S, Handayuni I, Suwanarusk R, Russell B, Drury E, Stalker J, Miotto O, Kwiatkowski DP, Nosten F, Price RN. Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand. J Infect Dis 2016; 214:1235-42. [PMID: 27456706 PMCID: PMC5034950 DOI: 10.1093/infdis/jiw323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/20/2016] [Indexed: 01/13/2023] Open
Abstract
In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6-kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003-2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research institute, Ohio
| | - Richard D. Pearson
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics
| | - Roberto Amato
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - Rossarin Suwanarusk
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | - Olivo Miotto
- Wellcome Trust Sanger Institute, Hinxton,Medical Research Council Centre for Genomics and Global Health,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dominic P. Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics,Medical Research Council Centre for Genomics and Global Health
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, United Kingdom,Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, United Kingdom
| |
Collapse
|
13
|
Wangchuk S, Drukpa T, Penjor K, Peldon T, Dorjey Y, Dorji K, Chhetri V, Trimarsanto H, To S, Murphy A, von Seidlein L, Price RN, Thriemer K, Auburn S. Where chloroquine still works: the genetic make-up and susceptibility of Plasmodium vivax to chloroquine plus primaquine in Bhutan. Malar J 2016; 15:277. [PMID: 27176722 PMCID: PMC4866075 DOI: 10.1186/s12936-016-1320-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/30/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bhutan has made substantial progress in reducing malaria incidence. The national guidelines recommend chloroquine (CQ) and primaquine (PQ) for radical cure of uncomplicated Plasmodium vivax, but the local efficacy has not been assessed. The impact of cases imported from India on the genetic make-up of the local vivax populations is currently unknown. METHODS Patients over 4 years of age with uncomplicated P. vivax mono-infection were enrolled into a clinical efficacy study and molecular survey. Study participants received a standard dose of CQ (25 mg/kg over 3 days) followed by weekly review until day 28. On day 28 a 14-day regimen of PQ (0.25 mg/kg/day) was commenced under direct observation. After day 42, patients were followed up monthly for a year. The primary and secondary endpoints were risk of treatment failure at day 28 and at 1 year. Parasite genotyping was undertaken at nine tandem repeat markers, and standard population genetic metrics were applied to examine population diversity and structure in infections thought to be acquired inside or outside of Bhutan. RESULTS A total of 24 patients were enrolled in the clinical study between April 2013 and October 2015. Eight patients (33.3 %) were lost to follow-up in the first 6 months and another eight patients lost between 6 and 12 months. No (0/24) treatment failures occurred by day 28 and no (0/8) parasitaemia was detected following PQ treatment. Some 95.8 % (23/24) of patients were aparasitaemic by day 2. There were no haemolytic or serious events. Genotyping was undertaken on parasites from 12 autochthonous cases and 16 suspected imported cases. Diversity was high (H E 0.87 and 0.90) in both populations. There was no notable differentiation between the autochthonous and imported populations. CONCLUSIONS CQ and PQ remains effective for radical cure of P. vivax in Bhutan. The genetic analyses indicate that imported infections are sustaining the local vivax population, with concomitant risk of introducing drug-resistant strains.
Collapse
Affiliation(s)
- Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Tobgyel Drukpa
- Vector Borne Disease Control Programme in Gelephu, Communicable Disease Division, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Kinley Penjor
- Sarpang District Hospital, Ministry of Health, Sarpang District, Bhutan
| | - Tashi Peldon
- Gelephu Regional Referral Hospital, Ministry of Health, Gelephu, Bhutan
| | - Yeshey Dorjey
- Yebilaptsa Hospital, Ministry of Health, Zhemgang District, Bhutan
| | - Kunzang Dorji
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Vishal Chhetri
- Gelephu Regional Referral Hospital, Ministry of Health, Gelephu, Bhutan
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta Pusat, 10430, Indonesia.,The Ministry of Research and Technology (RISTEK), Jakarta, Indonesia.,Agency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340, Indonesia
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia
| | - Amanda Murphy
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.,Faculty of Medicine and Biomedical Sciences, School of Population Health, The University of Queensland, Brisbane, Australia
| | - Lorenz von Seidlein
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.
| |
Collapse
|
14
|
Kim JY, Goo YK, Zo YG, Ji SY, Trimarsanto H, To S, Clark TG, Price RN, Auburn S. Further Evidence of Increasing Diversity of Plasmodium vivax in the Republic of Korea in Recent Years. PLoS One 2016; 11:e0151514. [PMID: 26990869 PMCID: PMC4798397 DOI: 10.1371/journal.pone.0151514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/29/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Vivax malaria was successfully eliminated from the Republic of Korea (ROK) in the late 1970s but re-emerged in 1993. Two decades later as the ROK enters the final stages of malaria elimination, dedicated surveillance of the local P. vivax population is critical. We apply a population genetic approach to gauge P. vivax transmission dynamics in the ROK between 2010 and 2012. METHODOLOGY/PRINCIPAL FINDINGS P. vivax positive blood samples from 98 autochthonous cases were collected from patients attending health centers in the ROK in 2010 (n = 27), 2011 (n = 48) and 2012 (n = 23). Parasite genotyping was undertaken at 9 tandem repeat markers. Although not reaching significance, a trend of increasing population diversity was observed from 2010 (HE = 0.50 ± 0.11) to 2011 (HE = 0.56 ± 0.08) and 2012 (HE = 0.60 ± 0.06). Conversely, linkage disequilibrium declined during the same period: IAS = 0.15 in 2010 (P = 0.010), 0.09 in 2011 (P = 0.010) and 0.05 in 2012 (P = 0.010). In combination with data from other ROK studies undertaken between 1994 and 2007, our results are consistent with increasing parasite divergence since re-emergence. Polyclonal infections were rare (3% infections) suggesting that local out-crossing alone was unlikely to explain the increased divergence. Cases introduced from an external reservoir may therefore have contributed to the increased diversity. Aside from one isolate, all infections carried a short MS20 allele (142 or 149 bp), not observed in other studies in tropical endemic countries despite high diversity, inferring that these regions are unlikely reservoirs. CONCLUSIONS Whilst a number of factors may explain the observed population genetic trends, the available evidence suggests that an external geographic reservoir with moderate diversity sustains the majority of P. vivax infection in the ROK, with important implications for malaria elimination.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC, Osong Saeng-myeong, 2 ro, Osong Health Technology Administration, Osong, Republic of Korea
| | - Youn-Kyoung Goo
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC, Osong Saeng-myeong, 2 ro, Osong Health Technology Administration, Osong, Republic of Korea
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu, 700–422, Republic of Korea
| | - Young-Gun Zo
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Institute, Suwon, Gyeonggi-do 440–746, Republic of Korea
| | - So-Young Ji
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC, Osong Saeng-myeong, 2 ro, Osong Health Technology Administration, Osong, Republic of Korea
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta Pusat, 10430, Indonesia
- Agency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340, Indonesia
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810, Australia
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810, Australia
| |
Collapse
|
15
|
Targeting vivax malaria in the Asia Pacific: The Asia Pacific Malaria Elimination Network Vivax Working Group. Malar J 2015; 14:484. [PMID: 26627892 PMCID: PMC4667409 DOI: 10.1186/s12936-015-0958-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/21/2015] [Indexed: 11/17/2022] Open
Abstract
The Asia Pacific Malaria Elimination Network (APMEN) is a collaboration of 18 country partners committed to eliminating malaria from within their borders. Over the past 5 years, APMEN has helped to build the knowledge, tools and in-country technical expertise required to attain this goal. At its inaugural meeting in Brisbane in 2009, Plasmodium vivax infections were identified across the region as a common threat to this ambitious programme; the APMEN Vivax Working Group was established to tackle specifically this issue. The Working Group developed a four-stage strategy to identify knowledge gaps, build regional consensus on shared priorities, generate evidence and change practice to optimize malaria elimination activities. This case study describes the issues faced and the solutions found in developing this robust strategic partnership between national programmes and research partners within the Working Group. The success of the approach adopted by the group may facilitate similar applications in other regions seeking to deploy evidence-based policy and practice.
Collapse
Affiliation(s)
- The Vivax Working Group
- The APMEN Vivax Working Group, Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| |
Collapse
|
16
|
Variation in Complexity of Infection and Transmission Stability between Neighbouring Populations of Plasmodium vivax in Southern Ethiopia. PLoS One 2015; 10:e0140780. [PMID: 26468643 PMCID: PMC4607408 DOI: 10.1371/journal.pone.0140780] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Background P. vivax is an important public health burden in Ethiopia, accounting for almost half of all malaria cases. Owing to heterogeneous transmission across the country, a stronger evidence base on local transmission dynamics is needed to optimise allocation of resources and improve malaria interventions. Methodology and Principal Findings In a pilot evaluation of local level P. vivax molecular surveillance in southern Ethiopia, the diversity and population structure of isolates collected between May and November 2013 were investigated. Blood samples were collected from microscopy positive P. vivax patients recruited to clinical and cross-sectional surveys from four sites: Arbaminch, Halaba, Badawacho and Hawassa. Parasite genotyping was undertaken at nine tandem repeat markers. Eight loci were successfully genotyped in 197 samples (between 36 and 59 per site). Heterogeneity was observed in parasite diversity and structure amongst the sites. Badawacho displayed evidence of unstable transmission, with clusters of identical clonal infections. Linkage disequilibrium in Badawacho was higher (IAS = 0.32, P = 0.010) than in the other populations (IAS range = 0.01–0.02) and declined markedly after adjusting for identical infections (IAS = 0.06, P = 0.010). Other than Badawacho (HE = 0.70), population diversity was equivalently high across the sites (HE = 0.83). Polyclonal infections were more frequent in Hawassa (67%) than the other populations (range: 8–44%). Despite the variable diversity, differentiation between the sites was low (FST range: 5 x 10−3–0.03). Conclusions Marked variation in parasite population structure likely reflects differing local transmission dynamics. Parasite genotyping in these heterogeneous settings has potential to provide important complementary information with which to optimise malaria control interventions.
Collapse
|
17
|
Robinson LJ, Wampfler R, Betuela I, Karl S, White MT, Li Wai Suen CSN, Hofmann NE, Kinboro B, Waltmann A, Brewster J, Lorry L, Tarongka N, Samol L, Silkey M, Bassat Q, Siba PM, Schofield L, Felger I, Mueller I. Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model. PLoS Med 2015; 12:e1001891. [PMID: 26505753 PMCID: PMC4624431 DOI: 10.1371/journal.pmed.1001891] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 09/17/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The undetectable hypnozoite reservoir for relapsing Plasmodium vivax and P. ovale malarias presents a major challenge for malaria control and elimination in endemic countries. This study aims to directly determine the contribution of relapses to the burden of P. vivax and P. ovale infection, illness, and transmission in Papua New Guinean children. METHODS AND FINDINGS From 17 August 2009 to 20 May 2010, 524 children aged 5-10 y from East Sepik Province in Papua New Guinea (PNG) participated in a randomised double-blind placebo-controlled trial of blood- plus liver-stage drugs (chloroquine [CQ], 3 d; artemether-lumefantrine [AL], 3 d; and primaquine [PQ], 20 d, 10 mg/kg total dose) (261 children) or blood-stage drugs only (CQ, 3 d; AL, 3 d; and placebo [PL], 20 d) (263 children). Participants, study staff, and investigators were blinded to the treatment allocation. Twenty children were excluded during the treatment phase (PQ arm: 14, PL arm: 6), and 504 were followed actively for 9 mo. During the follow-up time, 18 children (PQ arm: 7, PL arm: 11) were lost to follow-up. Main primary and secondary outcome measures were time to first P. vivax infection (by qPCR), time to first clinical episode, force of infection, gametocyte positivity, and time to first P. ovale infection (by PCR). A basic stochastic transmission model was developed to estimate the potential effect of mass drug administration (MDA) for the prevention of recurrent P. vivax infections. Targeting hypnozoites through PQ treatment reduced the risk of having at least one qPCR-detectable P. vivax or P. ovale infection during 8 mo of follow-up (P. vivax: PQ arm 0.63/y versus PL arm 2.62/y, HR = 0.18 [95% CI 0.14, 0.25], p < 0.001; P. ovale: 0.06 versus 0.14, HR = 0.31 [95% CI 0.13, 0.77], p = 0.011) and the risk of having at least one clinical P. vivax episode (HR = 0.25 [95% CI 0.11, 0.61], p = 0.002). PQ also reduced the molecular force of P. vivax blood-stage infection in the first 3 mo of follow-up (PQ arm 1.90/y versus PL arm 7.75/y, incidence rate ratio [IRR] = 0.21 [95% CI 0.15, 0.28], p < 0.001). Children who received PQ were less likely to carry P. vivax gametocytes (IRR = 0.27 [95% CI 0.19, 0.38], p < 0.001). PQ had a comparable effect irrespective of the presence of P. vivax blood-stage infection at the time of treatment (p = 0.14). Modelling revealed that mass screening and treatment with highly sensitive quantitative real-time PCR, or MDA with blood-stage treatment alone, would have only a transient effect on P. vivax transmission levels, while MDA that includes liver-stage treatment is predicted to be a highly effective strategy for P. vivax elimination. The inclusion of a directly observed 20-d treatment regime maximises the efficiency of hypnozoite clearance but limits the generalisability of results to real-world MDA programmes. CONCLUSIONS These results suggest that relapses cause approximately four of every five P. vivax infections and at least three of every five P. ovale infections in PNG children and are important in sustaining transmission. MDA campaigns combining blood- and liver-stage treatment are predicted to be a highly efficacious intervention for reducing P. vivax and P. ovale transmission. TRIAL REGISTRATION ClinicalTrials.gov NCT02143934.
Collapse
Affiliation(s)
- Leanne J. Robinson
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang and Maprik, Papua New Guinea
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rahel Wampfler
- Molecular Diagnostics Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Inoni Betuela
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang and Maprik, Papua New Guinea
| | - Stephan Karl
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael T. White
- MRC Centre for Outbreak Analysis and Modelling, Imperial College London, London, United Kingdom
| | - Connie S. N. Li Wai Suen
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Natalie E. Hofmann
- Molecular Diagnostics Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Benson Kinboro
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang and Maprik, Papua New Guinea
| | - Andreea Waltmann
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Brewster
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Lina Lorry
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang and Maprik, Papua New Guinea
| | - Nandao Tarongka
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang and Maprik, Papua New Guinea
| | - Lornah Samol
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang and Maprik, Papua New Guinea
| | - Mariabeth Silkey
- Molecular Diagnostics Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Quique Bassat
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Peter M. Siba
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang and Maprik, Papua New Guinea
- School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland, Australia
| | - Louis Schofield
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ingrid Felger
- Molecular Diagnostics Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic–University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
18
|
Koepfli C, Rodrigues PT, Antao T, Orjuela-Sánchez P, Van den Eede P, Gamboa D, van Hong N, Bendezu J, Erhart A, Barnadas C, Ratsimbasoa A, Menard D, Severini C, Menegon M, Nour BYM, Karunaweera N, Mueller I, Ferreira MU, Felger I. Plasmodium vivax Diversity and Population Structure across Four Continents. PLoS Negl Trop Dis 2015; 9:e0003872. [PMID: 26125189 PMCID: PMC4488360 DOI: 10.1371/journal.pntd.0003872] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/02/2015] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. Plasmodium vivax is the predominant malaria parasite in Latin America, Asia and the South Pacific. Different factors are expected to shape diversity and population structure across continents, e.g. transmission intensity which is much lower in South America as compared to Southeast-Asia and the South Pacific, or geographical isolation of P. vivax populations in the South Pacific. We have compiled data from 841 isolates from South and Central America, Africa, Central Asia, Southeast-Asia and the South Pacific typed with a panel of 11 microsatellite markers. Diversity was highest in Southeast-Asia, where transmission is intermediate-high and migration of infected hosts is high, and lowest in South America and Central Asia where malaria transmission is low and focal. Reducing the panel of microsatellites showed that 2–6 markers are sufficient for genotyping for most drug trials and epidemiological studies, as these markers can identify >90% of all haplotypes. Parasites clustered according to continental origin, with high population differentiation between South American and Central Asian populations and the other populations, and lowest differences between Southeast-Asia and the South Pacific. Current attempts to reduce malaria transmission might change this pattern, but only after transmission is reduced for an extended period of time.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago Antao
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Pamela Orjuela-Sánchez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nguyen van Hong
- National Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Jorge Bendezu
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Céline Barnadas
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Arsène Ratsimbasoa
- Immunology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Didier Menard
- Institut Pasteur de Cambodge, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Bakri Y. M. Nour
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Medani, Sudan
| | - Nadira Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Contrasting Transmission Dynamics of Co-endemic Plasmodium vivax and P. falciparum: Implications for Malaria Control and Elimination. PLoS Negl Trop Dis 2015; 9:e0003739. [PMID: 25951184 PMCID: PMC4423885 DOI: 10.1371/journal.pntd.0003739] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/05/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Outside of Africa, P. falciparum and P. vivax usually coexist. In such co-endemic regions, successful malaria control programs have a greater impact on reducing falciparum malaria, resulting in P. vivax becoming the predominant species of infection. Adding to the challenges of elimination, the dormant liver stage complicates efforts to monitor the impact of ongoing interventions against P. vivax. We investigated molecular approaches to inform the respective transmission dynamics of P. falciparum and P. vivax and how these could help to prioritize public health interventions. METHODOLOGY/PRINCIPAL FINDINGS Genotype data generated at 8 and 9 microsatellite loci were analysed in 168 P. falciparum and 166 P. vivax isolates, respectively, from four co-endemic sites in Indonesia (Bangka, Kalimantan, Sumba and West Timor). Measures of diversity, linkage disequilibrium (LD) and population structure were used to gauge the transmission dynamics of each species in each setting. Marked differences were observed in the diversity and population structure of P. vivax versus P. falciparum. In Bangka, Kalimantan and Timor, P. falciparum diversity was low, and LD patterns were consistent with unstable, epidemic transmission, amenable to targeted intervention. In contrast, P. vivax diversity was higher and transmission appeared more stable. Population differentiation was lower in P. vivax versus P. falciparum, suggesting that the hypnozoite reservoir might play an important role in sustaining local transmission and facilitating the spread of P. vivax infections in different endemic settings. P. vivax polyclonality varied with local endemicity, demonstrating potential utility in informing on transmission intensity in this species. CONCLUSIONS/SIGNIFICANCE Molecular approaches can provide important information on malaria transmission that is not readily available from traditional epidemiological measures. Elucidation of the transmission dynamics circulating in a given setting will have a major role in prioritising malaria control strategies, particularly against the relatively neglected non-falciparum species.
Collapse
|