1
|
Lakhani DA, Deng F, Lin DDM. Infectious Diseases of the Brain and Spine: Parasitic and Other Atypical Transmissible Diseases. Magn Reson Imaging Clin N Am 2024; 32:347-361. [PMID: 38555145 DOI: 10.1016/j.mric.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Atypical infections of the brain and spine caused by parasites occur in immunocompetent and immunosuppressed hosts, related to exposure and more prevalently in endemic regions. In the United States, the most common parasitic infections that lead to central nervous system manifestations include cysticercosis, echinococcosis, and toxoplasmosis, with toxoplasmosis being the most common opportunistic infection affecting patients with advanced HIV/AIDS. Another rare but devastating transmittable disease is prion disease, which causes rapidly progressive spongiform encephalopathies. Familiarity and understanding of various infectious agents are a crucial aspect of diagnostic neuroradiology, and recognition of unique features can aid timely diagnosis and treatment.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francis Deng
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Doris D M Lin
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
O'Brien NF, Chetcuti K, Fonseca Y, Vidal L, Raghavan P, Postels DG, Chimalizeni Y, Ray S, Seydel KB, Taylor TE. Cerebral Metabolic Crisis in Pediatric Cerebral Malaria. J Pediatr Intensive Care 2023; 12:278-288. [PMID: 37970136 PMCID: PMC10631841 DOI: 10.1055/s-0041-1732444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 10/20/2022] Open
Abstract
Cerebral metabolic energy crisis (CMEC), often defined as a cerebrospinal fluid (CSF) lactate: pyruvate ratio (LPR) >40, occurs in various diseases and is associated with poor neurologic outcomes. Cerebral malaria (CM) causes significant mortality and neurodisability in children worldwide. Multiple factors that could lead to CMEC are plausible in these patients, but its frequency has not been explored. Fifty-three children with CM were enrolled and underwent analysis of CSF lactate and pyruvate levels. All 53 patients met criteria for a CMEC (median CSF LPR of 72.9 [interquartile range [IQR]: 58.5-93.3]). Half of children met criteria for an ischemic CMEC (median LPR of 85 [IQR: 73-184]) and half met criteria for a nonischemic CMEC (median LPR of 60 [IQR: 54-79]. Children also underwent transcranial doppler ultrasound investigation. Cerebral blood flow velocities were more likely to meet diagnostic criteria for low flow (<2 standard deviation from normal) or vasospasm in children with an ischemic CMEC (73%) than in children with a nonischemic CMEC (20%, p = 0.04). Children with an ischemic CMEC had poorer outcomes (pediatric cerebral performance category of 3-6) than those with a nonischemic CMEC (46 vs. 22%, p = 0.03). CMEC was ubiquitous in this patient population and the processes underlying the two subtypes (ischemic and nonischemic) may represent targets for future adjunctive therapies.
Collapse
Affiliation(s)
- Nicole F. O'Brien
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States
| | - Karen Chetcuti
- Department of Radiology, College of Medicine, Chichiri, Blantyre, Malawi
| | - Yudy Fonseca
- Division of Critical Care Medicine, Department of Pediatrics, University of Maryland Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lorenna Vidal
- Division of Neuroradiology, Department of Radiology Children's Hospital of Philadelphia, Clinical Instructor at Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Douglas G. Postels
- Department of Neurology, George Washington University/Children's National Medical Center, Washington, District of Columbia, United States
| | - Yamikani Chimalizeni
- Department of Pediatrics and Child Health, University of Malawi, Malawi College of Medicine, Chichiri, Blantyre, Malawi
| | - Stephen Ray
- Department of Paediatric, Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Blantyre, Malawi
| | - Terrie E. Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
3
|
Beltagi AE, Elsotouhy A, Al-warqi A, Aker L, Ahmed M. Imaging features of fulminant cerebral malaria: A case report. Radiol Case Rep 2023; 18:3642-3647. [PMID: 37593329 PMCID: PMC10432143 DOI: 10.1016/j.radcr.2023.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 08/19/2023] Open
Abstract
Cerebral malaria is associated with high mortality and morbidity in patients infected with Plasmodium Falciparum. The mechanisms of cerebral malaria include sequestration of parasitized red blood cells in brain capillaries, production of cytokines, immune cell/platelet accumulation, and release of microparticles, resulting in disruption of the blood-brain barrier, which caused brain injuries. The severity of this reflects on neurological findings ranging from simple delirium to profound coma. We herein present unique magnetic resonance imaging findings of a case of fulminant cerebral malaria as computed tomography studies usually underestimate the extent of cerebral involvement in malaria.
Collapse
Affiliation(s)
- Ahmed El Beltagi
- Neuroscience Institute, Department of Neuroradiology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine (WCM), Clinical Imaging, Doha, Qatar
| | - Ahmed Elsotouhy
- Neuroscience Institute, Department of Neuroradiology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine (WCM), Clinical Imaging, Doha, Qatar
| | - Akram Al-warqi
- Department of Radiology, Hamad General Hospital, Doha, Qatar
| | - Loai Aker
- Department of Radiology, Hamad General Hospital, Doha, Qatar
| | - Mayada Ahmed
- Weill Cornell Medicine (WCM), Clinical Imaging, Doha, Qatar
| |
Collapse
|
4
|
Beare NAV. Cerebral malaria-using the retina to study the brain. Eye (Lond) 2023; 37:2379-2384. [PMID: 36788363 PMCID: PMC10397347 DOI: 10.1038/s41433-023-02432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Cerebral malaria (CM) remains a common cause of death of children in Africa with annual mortality of 400 000. Malarial retinopathy is a unique set of fundus signs which has diagnostic and prognostic value in CM. Assessment of malarial retinopathy is now widely utilised in clinical care, and routinely incorporated into clinical studies to refine entry criteria. As a visible part of the central nervous system, the retina provides insights into the pathophysiology of this infectious small-vessel vasculitis with adherent parasitised red blood cells. Fluorescein angiography and optical coherence tomography (OCT) have shown that patchy capillary non-perfusion is common and causes ischaemic changes in the retina in CM. It is likely this is mirrored in the brain and may cause global neurological impairments evident on developmental follow up. Three types of blood-retina barrier breakdown are evident: large focal, punctate, and vessel leak. Punctate and large focal leak (haemorrhage in formation) are associated with severe brain swelling and fatal outcome. Vessel leak and capillary non-perfusion are associated with moderate brain swelling and neurological sequelae. These findings imply that death and neurological sequelae have separate mechanisms and are not a continuum of severity. Each haemorrhage causes a temporary uncontrolled outflow of fluid into the tissue. The rapid accumulation of haemorrhages, as evidenced by multiple focal leaks, is a proposed mechanism of severe brain swelling, and death. Current studies aim to use optic nerve head OCT to identify patients with severe brain swelling, and macula OCT to identify those at risk of neurological sequelae.
Collapse
Affiliation(s)
- Nicholas A V Beare
- Department of Eye and Vision Science, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
5
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To discuss the neurological complications and pathophysiology of organ damage following malaria infection. RECENT FINDINGS The principal advancement made in malaria research has been a better understanding of the pathogenesis of cerebral malaria (CM), the most dreaded neurological complication generally caused by Plasmodium falciparum infection. However, no definitive treatment has yet been evolved other than the use of antimalarial drugs and supportive care. The development of severe cerebral edema in CM results from two distinct pathophysiologic mechanisms. First, the development of "sticky" red blood cells (RBCs) leads to cytoadherence, where red blood cells (RBCs) get stuck to the endothelial walls and between themselves, resulting in clogging of the brain microvasculature with resultant hypoxemia and cerebral edema. In addition, the P. falciparum-infected erythrocyte membrane protein 1 (PfEMP1) molecules protrude from the raised knob structures on the RBCs walls and are in themselves made of a combination of human and parasite proteins in a tight complex. Antibodies to surfins, rifins, and stevors from the parasite are also located in the RBC membrane. On the human microvascular side, a range of molecules involved in host-parasite interactions, including CD36 and intracellular adhesion molecule 1, is activated during interaction with other molecules such as endothelial protein C receptor and thrombospondin. As a result, an inflammatory response occurs with the dysregulated release of cytokines (TNF, interleukins 1 and 10) which damage the blood-brain barrier (BBB), causing plasma leakage and brain edema. This second mechanism of CNS injury often involves multiple organs in adult patients in endemic areas but remains localized only to the central nervous system (CNS) among African children. Neurological sequelae may follow both P. falciparum and P. vivax infections. The major brain pathology of CM is brain edema with diffuse brain swelling resulting from the combined effects of reduced perfusion and hypoxemia of cerebral neurons due to blockage of the microvasculature by parasitized RBCs as well as the neurotoxic effect of released cytokines from a hyper-acute immune host reaction. A plethora of additional neurological manifestations have been associated with malaria, including posterior reversible encephalopathy syndrome (PRES), reversible cerebral vasoconstriction syndrome (RCVS), malarial retinopathy, post-malarial neurological syndrome (PMNS), acute disseminated encephalomyelitis (ADEM), Guillain-Barré syndrome (GBS), and cerebellar ataxia. Lastly, the impact of the COVID-19 pandemic on worldwide malaria control programs and the possible threat from co-infections is briefly discussed.
Collapse
Affiliation(s)
- Sweety Trivedi
- Department of Neurology, Sanjay Gandhi Post-graduate Institute of Medical Science, Lucknow, India
| | - Ambar Chakravarty
- Department of Neurology, Vivekananda Institute of Medical Science, Kolkata, India.
| |
Collapse
|
7
|
Gupta H, Wassmer SC. Harnessing the Potential of miRNAs in Malaria Diagnostic and Prevention. Front Cell Infect Microbiol 2021; 11:793954. [PMID: 34976869 PMCID: PMC8716737 DOI: 10.3389/fcimb.2021.793954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Despite encouraging progress over the past decade, malaria remains a major global health challenge. Its severe form accounts for the majority of malaria-related deaths, and early diagnosis is key for a positive outcome. However, this is hindered by the non-specific symptoms caused by malaria, which often overlap with those of other viral, bacterial and parasitic infections. In addition, current tools are unable to detect the nature and degree of vital organ dysfunction associated with severe malaria, as complications develop silently until the effective treatment window is closed. It is therefore crucial to identify cheap and reliable early biomarkers of this wide-spectrum disease. microRNAs (miRNAs), a class of small non-coding RNAs, are rapidly released into the blood circulation upon physiological changes, including infection and organ damage. The present review details our current knowledge of miRNAs as biomarkers of specific organ dysfunction in patients with malaria, and both promising candidates identified by pre-clinical models and important knowledge gaps are highlighted for future evaluation in humans. miRNAs associated with infected vectors are also described, with a view to expandind this rapidly growing field of research to malaria transmission and surveillance.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
8
|
Patel H, Dunican C, Cunnington AJ. Predictors of outcome in childhood Plasmodium falciparum malaria. Virulence 2020; 11:199-221. [PMID: 32063099 PMCID: PMC7051137 DOI: 10.1080/21505594.2020.1726570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum malaria is classified as either uncomplicated or severe, determining clinical management and providing a framework for understanding pathogenesis. Severe malaria in children is defined by the presence of one or more features associated with adverse outcome, but there is wide variation in the predictive value of these features. Here we review the evidence for the usefulness of these features, alone and in combination, to predict death and other adverse outcomes, and we consider the role that molecular biomarkers may play in augmenting this prediction. We also examine whether a more personalized approach to predicting outcome for specific presenting syndromes of severe malaria, particularly cerebral malaria, has the potential to be more accurate. We note a general need for better external validation in studies of outcome predictors and for the demonstration that predictors can be used to guide clinical management in a way that improves survival and long-term health.
Collapse
Affiliation(s)
- Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
9
|
Maschke M. Diagnostik und Therapie neurologischer Reiseerkrankungen. DNP - DER NEUROLOGE & PSYCHIATER 2020. [PMCID: PMC7386239 DOI: 10.1007/s15202-020-2850-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Maschke
- Klinik für Neurologie und Neurophysiologie, Brüderkrankenhaus Trier, Nordallee 1, 54292 Trier, Deutschland
| |
Collapse
|
10
|
Hoffmann A, Wassmer SC. New Syndromes Identified by Neuroimaging during Cerebral Malaria. Am J Trop Med Hyg 2018; 98:349-350. [PMID: 29313484 PMCID: PMC5929216 DOI: 10.4269/ajtmh.17-0926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Samuel C Wassmer
- Department of Infection & Immunity, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Magnetic Resonance Imaging of Cerebral Malaria Patients Reveals Distinct Pathogenetic Processes in Different Parts of the Brain. mSphere 2017; 2:mSphere00193-17. [PMID: 28596990 PMCID: PMC5463026 DOI: 10.1128/msphere.00193-17] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 12/02/2022] Open
Abstract
The pathophysiology and molecular mechanisms underlying cerebral malaria (CM) are still poorly understood. Recent neuroimaging studies demonstrated that brain swelling is a common feature in CM and a major contributor to death in pediatric patients. Consequently, determining the precise mechanisms responsible for this swelling could open new adjunct therapeutic avenues in CM patients. Using an MRI scanner with a higher resolution than the ones used in previous reports, we identified two distinct origins of brain swelling in both adult and pediatric patients from India, occurring in distinct parts of the brain. Our results support the hypothesis that both endothelial dysfunction and microvascular obstruction by Plasmodium falciparum-infected erythrocytes make independent contributions to the pathogenesis of CM, providing opportunities for novel therapeutic interventions. The mechanisms underlying the rapidly reversible brain swelling described in patients with cerebral malaria (CM) are unknown. Using a 1.5-Tesla (T) magnetic resonance imaging (MRI) scanner, we undertook an observational study in Rourkela, India, of 11 Indian patients hospitalized with CM and increased brain volume. Among the 11 cases, there were 5 adults and 6 children. All patients had reduced consciousness and various degrees of cortical swelling at baseline. The latter was predominately posterior in distribution. The findings on diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps were consistent with vasogenic edema in all cases. Reversibility after 48 to 72 h was observed in >90% of cases. DWI/ADC mismatch suggested the additional presence of cytotoxic edema in the basal nuclei of 5 patients; all of these had perfusion parameters consistent with vascular engorgement and not with ischemic infarcts. Our results suggest that an impairment of the blood-brain barrier is responsible for the brain swelling in CM. In 5 cases, vasogenic edema occurred in conjunction with changes in the basal nuclei consistent with venous congestion, likely to be caused by the sequestration of Plasmodium falciparum-infected erythrocytes. While both mechanisms have been individually postulated to play an important role in the development of CM, this is the first demonstration of their concurrent involvement in different parts of the brain. The clinical and radiological characteristics observed in the majority of our patients are consistent with posterior reversible encephalopathy syndrome (PRES), and we show for the first time a high frequency of PRES in the context of CM. IMPORTANCE The pathophysiology and molecular mechanisms underlying cerebral malaria (CM) are still poorly understood. Recent neuroimaging studies demonstrated that brain swelling is a common feature in CM and a major contributor to death in pediatric patients. Consequently, determining the precise mechanisms responsible for this swelling could open new adjunct therapeutic avenues in CM patients. Using an MRI scanner with a higher resolution than the ones used in previous reports, we identified two distinct origins of brain swelling in both adult and pediatric patients from India, occurring in distinct parts of the brain. Our results support the hypothesis that both endothelial dysfunction and microvascular obstruction by Plasmodium falciparum-infected erythrocytes make independent contributions to the pathogenesis of CM, providing opportunities for novel therapeutic interventions.
Collapse
|
12
|
Unexpected hosts: imaging parasitic diseases. Insights Imaging 2016; 8:101-125. [PMID: 27882478 PMCID: PMC5265192 DOI: 10.1007/s13244-016-0525-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/08/2016] [Accepted: 09/28/2016] [Indexed: 12/28/2022] Open
Abstract
Radiologists seldom encounter parasitic diseases in their daily practice in most of Europe, although the incidence of these diseases is increasing due to migration and tourism from/to endemic areas. Moreover, some parasitic diseases are still endemic in certain European regions, and immunocompromised individuals also pose a higher risk of developing these conditions. This article reviews and summarises the imaging findings of some of the most important and frequent human parasitic diseases, including information about the parasite's life cycle, pathophysiology, clinical findings, diagnosis, and treatment. We include malaria, amoebiasis, toxoplasmosis, trypanosomiasis, leishmaniasis, echinococcosis, cysticercosis, clonorchiasis, schistosomiasis, fascioliasis, ascariasis, anisakiasis, dracunculiasis, and strongyloidiasis. The aim of this review is to help radiologists when dealing with these diseases or in cases where they are suspected. Teaching Points • Incidence of parasitic diseases is increasing due to migratory movements and travelling. • Some parasitic diseases are still endemic in certain regions in Europe. • Parasitic diseases can have complex life cycles often involving different hosts. • Prompt diagnosis and treatment is essential for patient management in parasitic diseases. • Radiologists should be able to recognise and suspect the most relevant parasitic diseases.
Collapse
|
13
|
Endothelin-1 Treatment Induces an Experimental Cerebral Malaria-Like Syndrome in C57BL/6 Mice Infected with Plasmodium berghei NK65. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2957-2969. [PMID: 27640146 DOI: 10.1016/j.ajpath.2016.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 06/06/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium berghei ANKA infection of C57BL/6 mice is a widely used model of experimental cerebral malaria (ECM). By contrast, the nonneurotropic P. berghei NK65 (PbN) causes severe malarial disease in C57BL/6 mice but does not cause ECM. Previous studies suggest that endothelin-1 (ET-1) contributes to the pathogenesis of ECM. In this study, we characterize the role of ET-1 on ECM vascular dysfunction. Mice infected with 106 PbN-parasitized red blood cells were treated with either ET-1 or saline from 2 to 8 days postinfection (dpi). Plasmodium berghei ANKA-infected mice served as the positive control. ET-1-treated PbN-infected mice exhibited neurological signs, hypothermia, and behavioral alterations characteristic of ECM, dying 4 to 8 dpi. Parasitemia was not affected by ET-1 treatment. Saline-treated PbN-infected mice did not display ECM, surviving until 12 dpi. ET-1-treated PbN-infected mice displayed leukocyte adhesion to the vascular endothelia and petechial hemorrhages throughout the brain at 6 dpi. Intravital microscopic images demonstrated significant brain arteriolar vessel constriction, decreased functional capillary density, and increased blood-brain barrier permeability. These alterations were not present in either ET-1-treated uninfected or saline-treated PbN-infected mice. In summary, ET-1 treatment of PbN-infected mice induced an ECM-like syndrome, causing brain vasoconstriction, adherence of activated leukocytes in the cerebral microvasculature, and blood-brain barrier leakage, indicating that ET-1 is involved in the genesis of brain microvascular alterations that are the hallmark of ECM.
Collapse
|
14
|
Hasegawa C, Inagaki A, Yamada G, Morita K, Kitamura I, Ariyoshi K. Steroid Pulse Therapy May Mitigate Prolonged Neurological Manifestations after Eradication of Severe Plasmodium falciparum Parasitemia. Intern Med 2016; 55:3393-3398. [PMID: 27853090 PMCID: PMC5173515 DOI: 10.2169/internalmedicine.55.7069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A 58-year-old Japanese man with a high parasitemia of Plasmodium falciparum, returning from Uganda, was admitted to our hospital since his consciousness level rapidly deteriorated after the initial dose of mefloquine. Despite the parasitemia was cleared by quinine by day 7, the coma remained unchanged and diffuse leukoencephalopathy was detected on magnetic resonance image. Steroid pulse therapy was initiated on day 8. Subsequently, the neurological manifestations improved and he was discharged on day 73 without any sequelae. Pathogenesis of P. falciparum causing cerebral malaria is diverse and complex. If neurological symptoms unusually prolong, steroid may be an effective treatment option.
Collapse
Affiliation(s)
- Chihiro Hasegawa
- Department of Infectious Disease, Nagoya City East Medical Center, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, Duraisingh MT, Smith JD. Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. Am J Trop Med Hyg 2015; 93:42-56. [PMID: 26259939 PMCID: PMC4574273 DOI: 10.4269/ajtmh.14-0841] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/10/2015] [Indexed: 01/14/2023] Open
Abstract
More than a century after the discovery of Plasmodium spp. parasites, the pathogenesis of severe malaria is still not well understood. The majority of malaria cases are caused by Plasmodium falciparum and Plasmodium vivax, which differ in virulence, red blood cell tropism, cytoadhesion of infected erythrocytes, and dormant liver hypnozoite stages. Cerebral malaria coma is one of the most severe manifestations of P. falciparum infection. Insights into its complex pathophysiology are emerging through a combination of autopsy, neuroimaging, parasite binding, and endothelial characterizations. Nevertheless, important questions remain regarding why some patients develop life-threatening conditions while the majority of P. falciparum-infected individuals do not, and why clinical presentations differ between children and adults. For P. vivax, there is renewed recognition of severe malaria, but an understanding of the factors influencing disease severity is limited and remains an important research topic. Shedding light on the underlying disease mechanisms will be necessary to implement effective diagnostic tools for identifying and classifying severe malaria syndromes and developing new therapeutic approaches for severe disease. This review highlights progress and outstanding questions in severe malaria pathophysiology and summarizes key areas of pathogenesis research within the International Centers of Excellence for Malaria Research program.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joseph D. Smith
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
17
|
Shih RY, Koeller KK. Bacterial, Fungal, and Parasitic Infections of the Central Nervous System: Radiologic-Pathologic Correlation and Historical Perspectives. Radiographics 2015; 35:1141-69. [PMID: 26065933 DOI: 10.1148/rg.2015140317] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite remarkable progress in prevention and treatment, infectious diseases affecting the central nervous system remain an important source of morbidity and mortality, particularly in less-developed countries and in immunocompromised persons. Bacterial, fungal, and parasitic pathogens are derived from living organisms and affect the brain, spinal cord, or meninges. Infections due to these pathogens are associated with a variety of neuroimaging patterns that can be appreciated at magnetic resonance imaging in most cases. Bacterial infections, most often due to Streptococcus, Haemophilus, and Neisseria species, cause significant meningitis, whereas the less common cerebritis and subsequent abscess formation have well-documented progression, with increasingly prominent altered signal intensity and corresponding contrast enhancement. Atypical bacterial infections are characterized by the development of a granulomatous response, classically seen in tuberculosis, in which the tuberculoma is the most common parenchymal form of the disease; spirochetal and rickettsial diseases are less common. Fungal infections predominate in immunocompromised hosts and are caused by yeasts, molds, and dimorphic fungi. Cryptococcal meningitis is the most common fungal infection, whereas candidiasis is the most common nosocomial infection. Mucormycosis and aspergillosis are characterized by angioinvasiveness and are associated with high morbidity and mortality among immunocompromised patients. In terms of potential exposure in the worldwide population, parasitic infections, including neurocysticercosis, toxoplasmosis, echinococcosis, malaria, and schistosomiasis, are the greatest threat. Rare amebic infections are noteworthy for their extreme virulence and high mortality. The objective of this article is to highlight the characteristic neuroimaging manifestations of bacterial, fungal, and parasitic diseases, with emphasis on radiologic-pathologic correlation and historical perspectives.
Collapse
Affiliation(s)
- Robert Y Shih
- From the Department of Neuroradiology, American Institute for Radiologic Pathology, 1010 Wayne Ave, Suite 320, Silver Spring, MD 20910 (R.Y.S., K.K.K.); Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (R.Y.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (K.K.K.)
| | - Kelly K Koeller
- From the Department of Neuroradiology, American Institute for Radiologic Pathology, 1010 Wayne Ave, Suite 320, Silver Spring, MD 20910 (R.Y.S., K.K.K.); Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (R.Y.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (K.K.K.)
| |
Collapse
|
18
|
Taylor TE, Molyneux ME. The pathogenesis of pediatric cerebral malaria: eye exams, autopsies, and neuroimaging. Ann N Y Acad Sci 2015; 1342:44-52. [PMID: 25708306 DOI: 10.1111/nyas.12690] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/02/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022]
Abstract
Several advances in our understanding of pediatric cerebral malaria (CM) have been made over the past 25 years. Accurate clinical diagnosis is enhanced by the identification of a characteristic retinopathy, visible by direct or indirect ophthalmoscopy, the retinal changes (retinal whitening, vessel color changes, white-centered hemorrhages) being consistently associated with intracerebral sequestration of parasites in autopsy studies. Autopsies have yielded information at tissue levels in fatal CM, but new insights into critical pathogenetic processes have emerged from neuroimaging studies, which, unlike autopsy-based studies, permit serial observations over time and allow comparisons between fatal cases and survivors. Brain swelling has emerged as the major risk factor for death, and, among survivors, brain volume diminishes spontaneously over 24-48 hours. Studies of life-threatening and fatal malaria are suggesting new approaches to identifying and caring for those at highest risk; potential adjuvants should be evaluated and implemented where they are most needed.
Collapse
Affiliation(s)
- Terrie E Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | | |
Collapse
|