1
|
Golumbeanu M, Briët O, Champagne C, Lemant J, Winkel M, Zogo B, Gerhards M, Sinka M, Chitnis N, Penny M, Pothin E, Smith T. AnophelesModel: An R package to interface mosquito bionomics, human exposure and intervention effects with models of malaria intervention impact. PLoS Comput Biol 2024; 20:e1011609. [PMID: 39269993 PMCID: PMC11424000 DOI: 10.1371/journal.pcbi.1011609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 09/25/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
In recent decades, field and semi-field studies of malaria transmission have gathered geographic-specific information about mosquito ecology, behaviour and their sensitivity to interventions. Mathematical models of malaria transmission can incorporate such data to infer the likely impact of vector control interventions and hence guide malaria control strategies in various geographies. To facilitate this process and make model predictions of intervention impact available for different geographical regions, we developed AnophelesModel. AnophelesModel is an online, open-access R package that quantifies the impact of vector control interventions depending on mosquito species and location-specific characteristics. In addition, it includes a previously published, comprehensive, curated database of field entomological data from over 50 Anopheles species, field data on mosquito and human behaviour, and estimates of vector control effectiveness. Using the input data, the package parameterizes a discrete-time, state transition model of the mosquito oviposition cycle and infers species-specific impacts of various interventions on vectorial capacity. In addition, it offers formatted outputs ready to use in downstream analyses and by other models of malaria transmission for accurate representation of the vector-specific components. Using AnophelesModel, we show how the key implications for intervention impact change for various vectors and locations. The package facilitates quantitative comparisons of likely intervention impacts in different geographical settings varying in vector compositions, and can thus guide towards more robust and efficient malaria control recommendations. The AnophelesModel R package is available under a GPL-3.0 license at https://github.com/SwissTPH/AnophelesModel.
Collapse
Affiliation(s)
- Monica Golumbeanu
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Olivier Briët
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Clara Champagne
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeanne Lemant
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Munir Winkel
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Maximilian Gerhards
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Marianne Sinka
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Melissa Penny
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- The Kids Research Institute Australia, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Tom Smith
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Coleman S, Yihdego Y, Gyamfi F, Kolyada L, Tongren JE, Zigirumugabe S, Dery DB, Badu K, Obiri-Danso K, Boakye D, Szumlas D, Armistead JS, Dadzie SK. Estimating malaria transmission risk through surveillance of human-vector interactions in northern Ghana. Parasit Vectors 2023; 16:205. [PMID: 37337221 DOI: 10.1186/s13071-023-05793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Vector bionomics are important aspects of vector-borne disease control programs. Mosquito-biting risks are affected by environmental, mosquito behavior and human factors, which are important for assessing exposure risk and intervention impacts. This study estimated malaria transmission risk based on vector-human interactions in northern Ghana, where indoor residual spraying (IRS) and insecticide-treated nets (ITNs) have been deployed. METHODS Indoor and outdoor human biting rates (HBRs) were measured using monthly human landing catches (HLCs) from June 2017 to April 2019. Mosquitoes collected were identified to species level, and Anopheles gambiae sensu lato (An. gambiae s.l.) samples were examined for parity and infectivity. The HBRs were adjusted using mosquito parity and human behavioral observations. RESULTS Anopheles gambiae was the main vector species in the IRS (81%) and control (83%) communities. Indoor and outdoor HBRs were similar in both the IRS intervention (10.6 vs. 11.3 bites per person per night [b/p/n]; z = -0.33, P = 0.745) and control communities (18.8 vs. 16.4 b/p/n; z = 1.57, P = 0.115). The mean proportion of parous An. gambiae s.l. was lower in IRS communities (44.6%) than in control communities (71.7%). After adjusting for human behavior observations and parity, the combined effect of IRS and ITN utilization (IRS: 37.8%; control: 57.3%) on reducing malaria transmission risk was 58% in IRS + ITN communities and 27% in control communities with ITNs alone (z = -4.07, P < 0.001). However, this also revealed that about 41% and 31% of outdoor adjusted bites in IRS and control communities respectively, occurred before bed time (10:00 pm). The mean directly measured annual entomologic inoculation rates (EIRs) during the study were 6.1 infective bites per person per year (ib/p/yr) for IRS communities and 16.3 ib/p/yr for control communities. After considering vector survival and observed human behavior, the estimated EIR for IRS communities was 1.8 ib/p/yr, which represents about a 70% overestimation of risk compared to the directly measured EIR; for control communities, it was 13.6 ib/p/yr (16% overestimation). CONCLUSION Indoor residual spraying significantly impacted entomological indicators of malaria transmission. The results of this study indicate that vector bionomics alone do not provide an accurate assessment of malaria transmission exposure risk. By accounting for human behavior parameters, we found that high coverage of ITNs alone had less impact on malaria transmission indices than combining ITNs with IRS, likely due to observed low net use. Reinforcing effective communication for behavioral change in net use and IRS could further reduce malaria transmission.
Collapse
Affiliation(s)
- Sylvester Coleman
- U.S. President's Malaria Initiative VectorLink Project, Accra, Ghana.
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Yemane Yihdego
- U.S. President's Malaria Initiative VectorLink Project, Accra, Ghana
| | - Frank Gyamfi
- U.S. President's Malaria Initiative VectorLink Project, Accra, Ghana
| | - Lena Kolyada
- U.S. President's Malaria Initiative VectorLink Project, Accra, Ghana
| | - Jon Eric Tongren
- U.S. President's Malaria Initiative, Malaria Branch, U.S. Centers for Disease Control and Prevention, Accra, Ghana
| | - Sixte Zigirumugabe
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Accra, Ghana
| | - Dominic B Dery
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Accra, Ghana
| | - Kingsley Badu
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Daniel Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Daniel Szumlas
- Armed Forces Pest Management Board, 172 Forney Road, Forest Glen Annex, Silver Spring, MD, 20910, USA
| | - Jennifer S Armistead
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Samuel K Dadzie
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
3
|
Entomological monitoring data driving decision-making for appropriate and sustainable malaria vector control in Côte d'Ivoire. Malar J 2023; 22:14. [PMID: 36635720 PMCID: PMC9835745 DOI: 10.1186/s12936-023-04439-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Entomological surveillance provides critical information on vectors for appropriate malaria vector control and strategic decision-making. The widely documented insecticide resistance of malaria vectors in Côte d'Ivoire requires that any vector control intervention deployment be driven by entomological data to optimize its effectiveness and appropriate resource allocations. To achieve this goal, this study documents the results of monthly vector surveillance and insecticide susceptibility tests conducted in 2019 and a review of all previous entomological monitoring data used to guide vector control decision making. Furthermore, susceptibility to pirimiphos-methyl and clothianidin was assessed in addition to chlorfenapyr and pyrethroids (intensity and piperonyl butoxide (PBO) synergism) tests previously reported. Vector bionomic data were conducted monthly in four sites (Sakassou, Béoumi, Dabakala and Nassian) that were selected based on their reported high malaria incidence. Adult mosquitoes were collected using human landing catches (HLCs), pyrethrum spray catches (PSCs), and human-baited CDC light traps to assess vector density, behaviour, species composition and sporozoite infectivity. RESULTS Pirimiphos-methyl and clothianidin susceptibility was observed in 8 and 10 sites, respectively, while previous data reported chlorfenapyr (200 µg/bottle) susceptibility in 13 of the sites, high pyrethroid resistance intensity and increased mortality with PBO pre-exposure at all 17 tested sites. Anopheles gambiae sensu lato was the predominant malaria vector collected in all four bionomic sites. Vector density was relatively higher in Sakassou throughout the year with mean biting rates of 278.2 bites per person per night (b/p/n) compared to Béoumi, Dabakala and Nassian (mean of 48.5, 81.4 and 26.6 b/p/n, respectively). The mean entomological inoculation rate (EIR) was 4.44 infective bites per person per night (ib/p/n) in Sakassou, 0.34 ib/p/n in Beoumi, 1.17 ib/p/n in Dabakala and 1.02 ib/p/n in Nassian. The highest EIRs were recorded in October in Béoumi (1.71 ib/p/n) and Nassian (3.22 ib/p/n), in July in Dabakala (4.46 ib/p/n) and in May in Sakassou (15.6 ib/p/n). CONCLUSION Based on all results and data review, the National Malaria Control Programme developed and implemented a stratified insecticide-treated net (ITN) mass distribution in 2021 considering new generation ITNs. These results also supported the selection of clothianidin-based products and an optimal spraying time for the first indoor residual spraying (IRS) campaign in Sakassou and Nassian in 2020.
Collapse
|
4
|
Fernández Montoya L, Máquina M, Martí-Soler H, Sherrard-Smith E, Alafo C, Opiyo M, Comiche K, Galatas B, Huijben S, Koekemoer LL, Oliver SV, Maartens F, Marrenjo D, Cuamba N, Aide P, Saúte F, Paaijmans KP. The realized efficacy of indoor residual spraying campaigns falls quickly below the recommended WHO threshold when coverage, pace of spraying and residual efficacy on different wall types are considered. PLoS One 2022; 17:e0272655. [PMID: 36190958 PMCID: PMC9529131 DOI: 10.1371/journal.pone.0272655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Indoor residual spraying (IRS) has been and remains an important malaria control intervention in southern Mozambique, South Africa and Eswatini. A better understanding of the effectiveness of IRS campaigns is critical to guide future elimination efforts. We analyze the three IRS campaigns conducted during a malaria elimination demonstration project in southern Mozambique, the "Magude project", and propose a new method to calculate the efficacy of IRS campaigns adjusting for IRS coverage, pace of house spraying and IRS residual efficacy on different wall types. Anopheles funestus sensu lato (s.l.) and An. gambiae s.l. were susceptible to pirimiphos-methyl and DDT. Anopheles funestus s.l. was resistant to pyrethroids, with 24h post-exposure mortality being lower for An. funestus sensu stricto (s.s.) than for An. parensis (collected indoors). The percentage of structures sprayed was above 90% and percentage of people covered above 86% in all three IRS campaigns. The percentage of households sprayed was above 83% in 2015 and 2016, but not assessed in 2017. Mosquito mortality 24h post-exposure stayed above 80% for 196 days after the 2016 IRS campaign and 222 days after the 2017 campaign and was 1.5 months longer on mud walls than on cement walls. This was extended by up to two months when 120h post-exposure mortality was considered. The district-level realized IRS efficacy was 113 days after the 2016 campaign. While the coverage of IRS campaigns in Magude were high, IRS protection did not remain optimal for the entire high malaria transmissions season. The use of a longer-lasting IRS product could have further supported the interruption of malaria transmission in the district. To better estimate the protection afforded by IRS campaigns, National Malaria Control Programs and partners are encouraged to adjust the calculation of IRS efficacy for IRS coverage, pace of house spraying during the campaign and IRS efficacy on different wall types combined with wall type distribution in the sprayed area.
Collapse
Affiliation(s)
- Lucia Fernández Montoya
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Mercy Opiyo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Kiba Comiche
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Silvie Huijben
- ISGlobal, Barcelona, Spain
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | | | | | - Nelson Cuamba
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Krijn P. Paaijmans
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
5
|
Tilak R, Wankhede U, Mukherjee R. Novel pyriproxyfen based treatment for Aedes breeding control through a long-lasting formulation: Laboratory and field trials in Western Maharashtra, India. J Vector Borne Dis 2022; 59:293-297. [PMID: 36511047 DOI: 10.4103/0972-9062.353253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND & OBJECTIVES There is a need to evaluate novel techniques for dengue control in India. Several formulations of pyriproxyfen have been assessed for efficacy and duration of action. Pyriproxyfen is also used as a microencapsulated ready-to-use formulation against the Aedes vector. We evaluated a novel pyriproxyfen-based microencapsulated formulation. This slow-release, ready-to-use aqueous spray is a larvicidal formulation, and we assessed its efficacy and residual action through laboratory and semi-field trials against Aedes immature stages. METHODS The study was carried out as per the guidelines for laboratory and field/small-scale field testing of mosquito larvicides by the World Health Organization. The evaluation was conducted in laboratory and semi-field conditions from August to December 2018. We tested the novel formulation on three materials (plastic, ceramic, and enamel) in the laboratory for its action as an antilarval. Four containers of each kind were sprayed with the formulation and kept as replicates. Four controls were used in the laboratory trials - 120 larvae (third instar) were introduced in the replicates and the controls each. Readings were taken daily till complete adult emergence or larval and pupal mortality. In the semi-field trials, we applied this formulation to the inside of desert coolers and observed larvicidal and pupicidal activity over five months. Data is presented in numbers and percentages, along with mean and standard deviation. Adult emergence and Emergence Inhibition was calculated. RESULTS There was 100% adult emergence inhibition amongst the exposed larvae in the treated containers in the laboratory trials. In the untreated controls, adult emergence ranged from 80-95% in all types of containers. In the semifield trials, Inhibition Emergence was 100% in the treated desert coolers during the five months of the study period. INTERPRETATION & CONCLUSION This advancement in insecticide formulation technology promises to make dengue control more effective and efficient.
Collapse
Affiliation(s)
- Rina Tilak
- Dept of Community Medicine, Armed Forces Medical College, Pune, India
| | - Urmila Wankhede
- Dept of Community Medicine, Armed Forces Medical College, Pune, India
| | | |
Collapse
|
6
|
An evidence synthesis approach for combining different data sources illustrated using entomological efficacy of insecticides for indoor residual spraying. PLoS One 2022; 17:e0263446. [PMID: 35324929 PMCID: PMC8947499 DOI: 10.1371/journal.pone.0263446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/19/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prospective malaria public health interventions are initially tested for entomological impact using standardised experimental hut trials. In some cases, data are collated as aggregated counts of potential outcomes from mosquito feeding attempts given the presence of an insecticidal intervention. Comprehensive data i.e. full breakdowns of probable outcomes of mosquito feeding attempts, are more rarely available. Bayesian evidence synthesis is a framework that explicitly combines data sources to enable the joint estimation of parameters and their uncertainties. The aggregated and comprehensive data can be combined using an evidence synthesis approach to enhance our inference about the potential impact of vector control products across different settings over time. METHODS Aggregated and comprehensive data from a meta-analysis of the impact of Pirimiphos-methyl, an indoor residual spray (IRS) product active ingredient, used on wall surfaces to kill mosquitoes and reduce malaria transmission, were analysed using a series of statistical models to understand the benefits and limitations of each. RESULTS Many more data are available in aggregated format (N = 23 datasets, 4 studies) relative to comprehensive format (N = 2 datasets, 1 study). The evidence synthesis model had the smallest uncertainty at predicting the probability of mosquitoes dying or surviving and blood-feeding. Generating odds ratios from the correlated Bernoulli random sample indicates that when mortality and blood-feeding are positively correlated, as exhibited in our data, the number of successfully fed mosquitoes will be under-estimated. Analysis of either dataset alone is problematic because aggregated data require an assumption of independence and there are few and variable data in the comprehensive format. CONCLUSIONS We developed an approach to combine sources from trials to maximise the inference that can be made from such data and that is applicable to other systems. Bayesian evidence synthesis enables inference from multiple datasets simultaneously to give a more informative result and highlight conflicts between sources. Advantages and limitations of these models are discussed.
Collapse
|
7
|
Runge M, Thawer SG, Molteni F, Chacky F, Mkude S, Mandike R, Snow RW, Lengeler C, Mohamed A, Pothin E. Sub-national tailoring of malaria interventions in Mainland Tanzania: simulation of the impact of strata-specific intervention combinations using modelling. Malar J 2022; 21:92. [PMID: 35300707 PMCID: PMC8929286 DOI: 10.1186/s12936-022-04099-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background To accelerate progress against malaria in high burden countries, a strategic reorientation of resources at the sub-national level is needed. This paper describes how mathematical modelling was used in mainland Tanzania to support the strategic revision that followed the mid-term review of the 2015–2020 national malaria strategic plan (NMSP) and the epidemiological risk stratification at the council level in 2018. Methods Intervention mixes, selected by the National Malaria Control Programme, were simulated for each malaria risk strata per council. Intervention mixes included combinations of insecticide-treated bed nets (ITN), indoor residual spraying, larval source management, and intermittent preventive therapies for school children (IPTsc). Effective case management was either based on estimates from the malaria indicator survey in 2016 or set to a hypothetical target of 85%. A previously calibrated mathematical model in OpenMalaria was used to compare intervention impact predictions for prevalence and incidence between 2016 and 2020, or 2022. Results For each malaria risk stratum four to ten intervention mixes were explored. In the low-risk and urban strata, the scenario without a ITN mass campaign in 2019, predicted high increase in prevalence by 2020 and 2022, while in the very-low strata the target prevalence of less than 1% was maintained at low pre-intervention transmission intensity and high case management. In the moderate and high strata, IPTsc in addition to existing vector control was predicted to reduce the incidence by an additional 15% and prevalence by 22%. In the high-risk strata, all interventions together reached a maximum reduction of 76%, with around 70% of that reduction attributable to high case management and ITNs. Overall, the simulated revised NMSP was predicted to achieve a slightly lower prevalence in 2020 compared to the 2015–2020 NMSP (5.3% vs 6.3%). Conclusion Modelling supported the choice of intervention per malaria risk strata by providing impact comparisons of various alternative intervention mixes to address specific questions relevant to the country. The use of a council-calibrated model, that reproduces local malaria trends, represents a useful tool for compiling available evidence into a single analytical platform, that complement other evidence, to aid national programmes with decision-making processes. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04099-5.
Collapse
Affiliation(s)
- Manuela Runge
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Sumaiyya G Thawer
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Frank Chacky
- National Malaria Control Programme, Dodoma, Tanzania.,Ministry of Health, Community Development, Gender, Elderly, and Children, Dodoma, Tanzania
| | - Sigsbert Mkude
- National Malaria Control Programme, Dodoma, Tanzania.,Ministry of Health, Community Development, Gender, Elderly, and Children, Dodoma, Tanzania
| | - Renata Mandike
- National Malaria Control Programme, Dodoma, Tanzania.,Ministry of Health, Community Development, Gender, Elderly, and Children, Dodoma, Tanzania
| | - Robert W Snow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Ally Mohamed
- National Malaria Control Programme, Dodoma, Tanzania.,Ministry of Health, Community Development, Gender, Elderly, and Children, Dodoma, Tanzania
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland. .,CHAI, Clinton Health Access Initiative, New York, USA.
| |
Collapse
|
8
|
Ngwej LM, Mashat EM, Mukeng CK, Mundongo HT, Malonga FK, Kashala JCK, Bangs MJ. Variable residual activity of K-Othrine® PolyZone and Actellic® 300 CS in semi-field and natural conditions in the Democratic Republic of the Congo. Malar J 2021; 20:358. [PMID: 34461898 PMCID: PMC8406736 DOI: 10.1186/s12936-021-03892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Indoor Residual Spray (IRS) against vector mosquitoes is a primary means for combating malaria transmission. To combat increased patterns of resistance to chemicals against mosquito vectors, alternative candidate insecticide formulations should be screened. With mortality as the primary endpoint, the persistence of residual efficacy of a polymer-enhanced pyrethroid suspension concentrate containing deltamethrin (K-Othrine® PolyZone—KOPZ) applied at 25 mg active ingredient (ai)/m2 was compared with a microencapsulated organophosphate suspension formulation of pirimiphos-methyl (Actellic® 300CS—ACS) applied at 1 g ai/m2. Methods Following standard spray application, periodic contact bioassays were conducted for at least 38 weeks on four types of wall surfaces (unbaked clay, baked clay, cement, and painted cement) sprayed with either KOPZ or ACS in simulated semi-field conditions. Similarly, two types of existing walls in occupied houses (painted cement and baked clay) were sprayed and examined. A colonized strain of female Anopheles arabiensis mosquitoes were exposed to treated or untreated surfaces (controls) for 30 min. For each wall surface test period, 40 treatment mosquitoes (4 cones × 10) in semi-field and 90 (9 cones × 10) in ‘natural’ house conditions were used per wall. 30 mosquitoes (3 cones × 10) on a matching unsprayed surface served as the control. Insecticide, wall material, and sprayed location on wall (in houses) were compared by final mortality at 24 h. Results Insecticide, wall material, and sprayed location on wall surface produced significant difference for mean final mortality over time. In semi-field conditions, KOPZ produced a 72% mean mortality over a 38-week period, while ACS gave 65% (p < 0.001). Painted cement wall performed better than other wall surfaces throughout the study period (73% mean mortality). In the two occupied houses, KOPZ provided a mean mortality of 88%, significantly higher than ACS (p < 0.001). KOPZ provided an effective residual life (≥ 80% mortality) between 7.3 and 14 weeks on experimental walls and between 18.3 and 47.2 weeks in houses, while ACS persisted between 3 and 7.6 weeks under semi-field conditions and between 7.1 and 17.3 weeks in houses. Household painted cement walls provided a longer effective residual activity compared to baked clay for both formulations. Greater mortality was recorded at the top and middle sections of sprayed wall compared to the bottom portion near the floor. Conclusion KOPZ provided longer residual activity on all surfaces compared to ACS. Painted cement walls provided better residual longevity for both insecticides compared to other surfaces. Insecticides also performed better in an occupied house environment compared to semi-field constructed walls. This study illustrates the importance of collecting field-based observations to determine appropriate product active ingredient formulations and timing for recurring IRS cycles.
Collapse
Affiliation(s)
- Leonard M Ngwej
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo. .,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Emmanuel M Mashat
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo
| | - Clarence K Mukeng
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Henri T Mundongo
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Françoise K Malonga
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Jean-Christophe K Kashala
- Faculty of Veterinary Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Michael J Bangs
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo.,Public Health & Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua, 99920, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
9
|
Medjigbodo AA, Djogbenou LS, Koumba AA, Djossou L, Badolo A, Adoha CJ, Ketoh GK, Mavoungou JF. Phenotypic Insecticide Resistance in Anopheles gambiae (Diptera: Culicidae): Specific Characterization of Underlying Resistance Mechanisms Still Matters. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:730-738. [PMID: 33043968 PMCID: PMC7954100 DOI: 10.1093/jme/tjaa195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 06/11/2023]
Abstract
An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.
Collapse
Affiliation(s)
- Adandé A Medjigbodo
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
- Laboratory of Fundamental and Applied Entomology, University Joseph KI-ZERBO, BP, Burkina Faso, West Africa
| | - Luc S Djogbenou
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Aubin A Koumba
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
- University of Science and Technology of Masuku (USTM), BP, Franceville, Gabon
| | - Laurette Djossou
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, University Joseph KI-ZERBO, BP, Burkina Faso, West Africa
| | - Constantin J Adoha
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
| | | | - Jacques F Mavoungou
- University of Science and Technology of Masuku (USTM), BP, Franceville, Gabon
| |
Collapse
|
10
|
Soma DD, Zogo B, Hien DFDS, Hien AS, Kaboré DA, Kientega M, Ouédraogo AG, Pennetier C, Koffi AA, Moiroux N, Dabiré RK. Insecticide resistance status of malaria vectors Anopheles gambiae (s.l.) of southwest Burkina Faso and residual efficacy of indoor residual spraying with microencapsulated pirimiphos-methyl insecticide. Parasit Vectors 2021; 14:58. [PMID: 33461621 PMCID: PMC7814427 DOI: 10.1186/s13071-020-04563-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. Methods We measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population. Results An. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55–1.12], Tukey’s test p-value = 0.19). Conclusions If data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.![]()
Collapse
Affiliation(s)
- Dieudonné Diloma Soma
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso. .,Université Nazi Boni, BP 109, Bobo-Dioulasso, Burkina Faso. .,MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France.
| | - Barnabas Zogo
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France.,Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | | | - Aristide Sawdetuo Hien
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Université Nazi Boni, BP 109, Bobo-Dioulasso, Burkina Faso
| | - Didier Alexandre Kaboré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Université Nazi Boni, BP 109, Bobo-Dioulasso, Burkina Faso
| | - Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Université Nazi Boni, BP 109, Bobo-Dioulasso, Burkina Faso
| | | | - Cédric Pennetier
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France.,Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | | | - Nicolas Moiroux
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | | |
Collapse
|
11
|
Salako AS, Dagnon F, Sovi A, Padonou GG, Aïkpon R, Ahogni I, Syme T, Govoétchan R, Sagbohan H, Sominahouin AA, Akinro B, Iyikirenga L, Agossa F, Akogbeto MC. Efficacy of Actellic 300 CS-based indoor residual spraying on key entomological indicators of malaria transmission in Alibori and Donga, two regions of northern Benin. Parasit Vectors 2019; 12:612. [PMID: 31888730 PMCID: PMC6937814 DOI: 10.1186/s13071-019-3865-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background The current study shows the results of three years of IRS entomological monitoring (2016, before intervention; 2017 and 2018, after intervention) performed in Alibori and Donga, northern Benin. Methods Mosquito collections were performed on a monthly basis using human landing catches and pyrethrum spray catches in six districts including four treated with Actellic 300 CS (Kandi, Gogounou, Djougou and Copargo) and two untreated (Bembèrèkè and Kouandé) which served as control sites. Key transmission indicators of Anopheles gambiae (s.l.) as well as the residual activity of Actellic 300 CS assessed through WHO cone tests, were determined. Results The residual efficacy duration of Actellic 300 CS after the two IRS campaigns (2017 and 2018) was 4–5 months (May–September). The parity rate and the sporozoite index of An. gambiae (s.l.) were 36.62% and 0.71%, respectively, after the first spray round in treated areas compared to 57.24% and 3.7%, respectively, in the control areas (P < 0.0001). The same trend was observed after the second spray round. After the first spray round, each person received 1.6 infective bites/month (ib/m) in the treated areas against 12.11 ib/m in the control areas, resulting in a reduction rate of 86.78%. Similarly, the entomological inoculation rate was 1.5 ib/m after the second spray round in the treated areas vs 9.75 ib/m in the control areas, corresponding to a reduction of 84.61%. A decrease in the parity rate (46.26%), sporozoite index (85.75%) and EIR (87.27%) was observed for An. gambiae (s.l.) after the first round of IRS (June–October 2017) compared to the pre-intervention period (June–October 2016). The density of An. gambiae (s.l.) ranged between 0.38–0.48 per house in treated areas vs 1.53–1.76 An. gambiae (s.l.) per house respectively after the first and second IRS rounds. Conclusions This study showed the positive impact of IRS in reducing key entomological parameters of malaria transmission in Alibori and Donga. However, the considerable blood-feeding rate of An. gambiae (s.l.) in spray areas, stress the need for the population to sleep under long-lasting insecticidal nets (LLINs) in addition, to prevent from mosquito bites which did not succeed in resting on sprayed walls.
Collapse
Affiliation(s)
- Albert Sourou Salako
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin. .,Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin.
| | - Fortune Dagnon
- USA President's Malaria Initiative, USA Agency for International Development, Cotonou, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin.,Disease Control Department, Faculty of Infectious & Tropical Diseases, The London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Gil Germain Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin
| | - Rock Aïkpon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Abomey, Bénin
| | - Idelphonse Ahogni
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin
| | - Thomas Syme
- Disease Control Department, Faculty of Infectious & Tropical Diseases, The London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Renaud Govoétchan
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin
| | - Herman Sagbohan
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin
| | - André Aimé Sominahouin
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculté des Sciences Humaines et Sociales de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | | | - Fiacre Agossa
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,PMI VectorLink Project, Abt Associates, Kinshasa, Democratic Republic of Congo
| | | |
Collapse
|
12
|
Elanga-Ndille E, Nouage L, Ndo C, Binyang A, Assatse T, Nguiffo-Nguete D, Djonabaye D, Irwing H, Tene-Fossog B, Wondji CS. The G119S Acetylcholinesterase ( Ace-1) Target Site Mutation Confers Carbamate Resistance in the Major Malaria Vector Anopheles gambiae from Cameroon: A Challenge for the Coming IRS Implementation. Genes (Basel) 2019; 10:genes10100790. [PMID: 31614683 PMCID: PMC6826778 DOI: 10.3390/genes10100790] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023] Open
Abstract
Growing resistance is reported to carbamate insecticides in malaria vectors in Cameroon. However, the contribution of acetylcholinesterase (Ace-1) to this resistance remains uncharacterised. Here, we established that the G119S mutation is driving resistance to carbamates in Anopheles gambiae populations from Cameroon. Insecticide bioassay on field-collected mosquitoes from Bankeng, a locality in southern Cameroon, showed high resistance to the carbamates bendiocarb (64.8% ± 3.5% mortality) and propoxur (55.71% ± 2.9%) but a full susceptibility to the organophosphate fenitrothion. The TaqMan genotyping of the G119S mutation in field-collected adults revealed the presence of this resistance allele (39%). A significant correlation was observed between the Ace-1R and carbamate resistance at allelic ((bendiocarb; odds ratio (OR) = 75.9; p < 0.0001) and (propoxur; OR = 1514; p < 0.0001)) and genotypic (homozygote resistant vs. homozygote susceptible (bendiocarb; OR = 120.8; p < 0.0001) and (propoxur; OR = 3277; p < 0.0001)) levels. Furthermore, the presence of the mutation was confirmed by sequencing an Ace-1 portion flanking codon 119. The cloning of this fragment revealed a likely duplication of Ace-1 in Cameroon as mosquitoes exhibited at least three distinct haplotypes. Phylogenetic analyses showed that the predominant Ace-1R allele is identical to that from West Africa suggesting a recent introduction of this allele in Central Africa from the West. The spread of this Ace-1R represents a serious challenge to future implementation of indoor residual spraying (IRS)-based interventions using carbamates or organophosphates in Cameroon.
Collapse
Affiliation(s)
| | - Lynda Nouage
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Cyrille Ndo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.
| | - Achille Binyang
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Tatiane Assatse
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Daniel Nguiffo-Nguete
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Doumani Djonabaye
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Helen Irwing
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Billy Tene-Fossog
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| |
Collapse
|
13
|
Corrêa APSA, Galardo AKR, Lima LA, Câmara DCP, Müller JN, Barroso JFS, Lapouble OMM, Rodovalho CM, Ribeiro KAN, Lima JBP. Efficacy of insecticides used in indoor residual spraying for malaria control: an experimental trial on various surfaces in a "test house". Malar J 2019; 18:345. [PMID: 31601226 PMCID: PMC6785876 DOI: 10.1186/s12936-019-2969-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a public health problem in the Brazilian Amazon region. In integrated vector management for malaria (anopheline) control, indoor residual spraying (IRS) represents one of the main tools in the basic strategy applied in the Amazonian states. It is essential to understand the residual efficacy of insecticides on different surfaces to determine spray cycles, ensure their rational use, and prevent wastage. This study aimed to evaluate the residual efficacy of six insecticide formulations used in the National Malaria Control Programme on four different types of walls in a field simulation at a “test house”. Methods The tests were performed as a field-simulating evaluation at a “test house” built in the municipality of Macapá. Six insecticide formulations comprising four pyrethroids, a carbamate, and an organophosphate were used, and evaluated when applied on different wall surfaces: painted wood, unpainted wood, plastered cement, and unplastered cement. The insecticides were applied to the interior walls of the “test house” by a trained technician. Results In the bioassays performed with pyrethroids, deltamethrin water-dispersible granules (WG) performed particularly well, presenting residual bioefficacy of 8 months on both wood surfaces after the IRS, whereas alpha-cypermethrin suspension concentrate (SC) and etofenprox wettable powder (WP) demonstrated residual bioefficacy of 4 months on at least one of the wood surfaces; however, the pyrethroid lambda-cyhalothrin WP showed a low residual bioefficacy (< 3 months) on all tested surfaces, demonstrating its inefficiency for areas with a long transmission cycle of malaria. For the carbamate-bendiocarb WP, residual bioefficacy for 3 months was achieved only on wood surfaces. In general, the organophosphate pirimifos-methyl capsule suspension (CS) demonstrated the best result, with a mortality rate < 80% over a period of 6 months on all surfaces tested. Conclusion Insecticide efficiency varies among different types of surface; therefore, a “test house” is a valuable evaluation tool. This work highlights the usefulness of associating the residual efficacy of insecticides on the surfaces commonly found in houses in endemic areas, together with knowledge about the transmission cycle duration of the transmission cycle and the insecticide susceptibility of the vector. This association helps in the decision-making for the malaria control intervention regarding.
Collapse
Affiliation(s)
- Ana Paula S A Corrêa
- Laboratório de Fisiologia e Controle de Artrópodes Vetores-Fundação Oswaldo Cruz, Rio de Janeiro, Brazil. .,Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas e Tecnológicas do Estado de Amapá-IEPA, Macapá, Brazil.
| | - Allan K R Galardo
- Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas e Tecnológicas do Estado de Amapá-IEPA, Macapá, Brazil
| | - Luana A Lima
- Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas e Tecnológicas do Estado de Amapá-IEPA, Macapá, Brazil
| | - Daniel C P Câmara
- Núcleo Operacional Sentinela de Mosquitos Vetores - Laboratório de Mosquitos Transmissores de Hematozoários, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Josiane N Müller
- Laboratório de Fisiologia e Controle de Artrópodes Vetores-Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas e Tecnológicas do Estado de Amapá-IEPA, Macapá, Brazil
| | - Jéssica Fernanda S Barroso
- Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas e Tecnológicas do Estado de Amapá-IEPA, Macapá, Brazil
| | - Oscar M M Lapouble
- Pan-American Health Organization/World Health Organization (PAHO/WHO), Paramaribo, Suriname.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Cynara M Rodovalho
- Laboratório de Fisiologia e Controle de Artrópodes Vetores-Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - José Bento P Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores-Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nat Commun 2018; 9:4982. [PMID: 30478327 PMCID: PMC6255894 DOI: 10.1038/s41467-018-07357-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022] Open
Abstract
Indoor residual spraying (IRS) is an important part of malaria control. There is a growing list of insecticide classes; pyrethroids remain the principal insecticide used in bednets but recently, novel non-pyrethroid IRS products, with contrasting impacts, have been introduced. There is an urgent need to better assess product efficacy to help decision makers choose effective and relevant tools for mosquito control. Here we use experimental hut trial data to characterise the entomological efficacy of widely-used, novel IRS insecticides. We quantify their impact against pyrethroid-resistant mosquitoes and use a Plasmodium falciparum transmission model to predict the public health impact of different IRS insecticides. We report that long-lasting IRS formulations substantially reduce malaria, though their benefit over cheaper, shorter-lived formulations depends on local factors including bednet use, seasonality, endemicity and pyrethroid resistance status of local mosquito populations. We provide a framework to help decision makers evaluate IRS product effectiveness.
Collapse
|
15
|
Dengela D, Seyoum A, Lucas B, Johns B, George K, Belemvire A, Caranci A, Norris LC, Fornadel CM. Multi-country assessment of residual bio-efficacy of insecticides used for indoor residual spraying in malaria control on different surface types: results from program monitoring in 17 PMI/USAID-supported IRS countries. Parasit Vectors 2018; 11:71. [PMID: 29382388 PMCID: PMC5791726 DOI: 10.1186/s13071-017-2608-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is the application of insecticide to the interior walls of household structures that often serve as resting sites for mosquito vectors of malaria. Human exposure to malaria vectors is reduced when IRS involves proper application of pre-determined concentrations of the active ingredient specific to the insecticide formulation of choice. The impact of IRS can be affected by the dosage of insecticide, spray coverage, vector behavior, vector susceptibility to insecticides, and the residual efficacy of the insecticide applied. This report compiles data on the residual efficacy of insecticides used in IRS campaigns implemented by the United States President's Malaria Initiative (PMI)/United States Agency for International Development (USAID) in 17 African countries and compares observed length of efficacy to ranges proposed in World Health Organization (WHO) guidelines. Additionally, this study provides initial analysis on variation of mosquito mortality depending on the surface material of sprayed structures, country spray program, year of implementation, source of tested mosquitoes, and type of insecticide. METHODS Residual efficacy of the insecticides used for PMI/USAID-supported IRS campaigns was measured in Benin, Burkina Faso, Ethiopia, Ghana, Kenya, Liberia, Madagascar, Malawi, Mali, Mozambique, Nigeria, Rwanda, Senegal, Tanzania, Uganda, Zambia and Zimbabwe. The WHO cone bioassay tests were used to assess the mortality rate of mosquitoes exposed to insecticide-treated mud, wood, cement, and other commonly used housing materials. Baseline tests were performed within weeks of IRS application and follow-up tests were continued until the mortality of exposed mosquitoes dropped below 80% or the program monitoring period ended. Residual efficacy in months was then evaluated with respect to WHO guidelines that provide suggested ranges of residual efficacy for insecticide formulations recommended for use in IRS. Where the data allowed, direct comparisons of mosquito mortality rates were then made to determine any significant differences when comparing insecticide formulation, country, year, surface type, and the source of the mosquitoes used in testing. RESULTS The residual efficacy of alpha-cypermethrin ranged from 4 to 10 months (average = 6.4 months), with no reported incidents of underperformance when compared to the efficacy range provided in WHO guidelines. Deltamethrin residual efficacy results reported a range of 1 to 10 months (average = 4.9 months), with two instances of underperformance. The residual efficacy of bendiocarb ranged from 2 weeks to 7 months (average = 2.8 months) and failed to achieve proposed minimum efficacy on 14 occasions. Lastly, long-lasting pirimiphos-methyl efficacy ranged from 2 months to 9 months (average = 5.3 months), but reported 13 incidents of underperformance. CONCLUSIONS Much of the data used to determine application rate and expected efficacy of insecticides approved for use in IRS programs are collected in controlled laboratory or pilot field studies. However, the generalizability of the results obtained under controlled conditions are limited and unlikely to account for variation in locally sourced housing materials, climate, and the myriad other factors that may influence the bio-efficacy of insecticides. Here, data are presented that confirm the variation in residual efficacy observed when monitoring household surfaces sprayed during PMI/USAID-supported IRS campaigns. All insecticides except alpha-cypermethrin showed evidence of failing to meet the minimum range of residual efficacy proposed in WHO criteria at least once. However, this initial effort in characterizing program-wide insecticide bio-efficacy indicates that some insecticides, such as bendiocarb and pirimiphos-methyl, may be vulnerable to variations in the local environment. Additionally, the comparative analysis performed in this study provides evidence that mosquito mortality rates differ with respect to factors including: the types of insecticide sprayed, surface material, geographical location, year of spraying, and tested mosquitoes. It is, therefore, important to locally assess the residual efficacy of insecticides on various surfaces to inform IRS programming.
Collapse
Affiliation(s)
- Dereje Dengela
- U.S. PMI Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 N, Bethesda, MD, 20814, USA.
| | - Aklilu Seyoum
- U.S. PMI Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 N, Bethesda, MD, 20814, USA
| | - Bradford Lucas
- U.S. PMI Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 N, Bethesda, MD, 20814, USA
| | - Benjamin Johns
- U.S. PMI Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 N, Bethesda, MD, 20814, USA
| | - Kristen George
- U.S. President's Malaria Initiative USAID, 1300 Pennsylvania Avenue NW, Washington, DC, 20523, USA
| | - Allison Belemvire
- U.S. President's Malaria Initiative USAID, 1300 Pennsylvania Avenue NW, Washington, DC, 20523, USA
| | - Angela Caranci
- U.S. President's Malaria Initiative USAID, 1300 Pennsylvania Avenue NW, Washington, DC, 20523, USA
| | - Laura C Norris
- U.S. President's Malaria Initiative USAID, 1300 Pennsylvania Avenue NW, Washington, DC, 20523, USA
| | - Christen M Fornadel
- U.S. President's Malaria Initiative USAID, 1300 Pennsylvania Avenue NW, Washington, DC, 20523, USA
| |
Collapse
|
16
|
Wagman J, Gogue C, Tynuv K, Mihigo J, Bankineza E, Bah M, Diallo D, Saibu A, Richardson JH, Kone D, Fomba S, Bernson J, Steketee R, Slutsker L, Robertson M. An observational analysis of the impact of indoor residual spraying with non-pyrethroid insecticides on the incidence of malaria in Ségou Region, Mali: 2012-2015. Malar J 2018; 17:19. [PMID: 29316917 PMCID: PMC5761159 DOI: 10.1186/s12936-017-2168-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background Ségou Region in Central Mali is an area of high malaria burden with seasonal transmission, high access to and use of long-lasting insecticidal nets (LLINs), and resistance to pyrethroids and DDT well documented in Anopheles gambiae s.l. (the principal vector of malaria in Mali). Ségou has recently received indoor residual spraying (IRS) supported by Mali’s collaboration with the US President’s Malaria Initiative/Africa Indoor Residual Spraying programme. From 2012 to 2015, two different non-pyrethroid insecticides: bendiocarb in 2012 and 2013 and pirimiphos-methyl in 2014 and 2015, were used for IRS in two districts. This report summarizes the results of observational analyses carried out to assess the impact of these IRS campaigns on malaria incidence rates reported through local and district health systems before and after spraying. Methods A series of retrospective time series analyses were performed on 1,382,202 rapid diagnostic test-confirmed cases of malaria reported by district routine health systems in Ségou Region from January 2012 to January 2016. Malaria testing, treatment, surveillance and reporting activities remained consistent across districts and years during the study period, as did LLIN access and use estimates as well as An. gambiae s.l. insecticide resistance patterns. Districts were stratified by IRS implementation status and all-age monthly incidence rates were calculated and compared across strata from 2012 to 2014. In 2015 a regional but variable scale-up of seasonal malaria chemoprevention complicated the region-wide analysis; however IRS operations were suspended in Bla District that year so a difference in differences approach was used to compare 2014 to 2015 changes in malaria incidence at the health facility level in children under 5-years-old from Bla relative to changes observed in Barouéli, where IRS operations were consistent. Results During 2012–2014, rapid reductions in malaria incidence were observed during the 6 months following each IRS campaign, though most of the reduction in cases (70% of the total) was concentrated in the first 2 months after each campaign was completed. Compared to non-IRS districts, in which normal seasonal patterns of malaria incidence were observed, an estimated 286,745 total fewer cases of all-age malaria were observed in IRS districts. The total cost of IRS in Ségou was around 9.68 million USD, or roughly 33.75 USD per case averted. Further analysis suggests that the timing of the 2012–2014 IRS campaigns (spraying in July and August) was well positioned to maximize public health impact. Suspension of IRS in Bla District after the 2014 campaign resulted in a 70% increase in under-5-years-old malaria incidence rates from 2014 to 2015, significantly greater (p = 0.0003) than the change reported from Barouéli District, where incidence rates remained the same. Conclusions From 2012 to 2015, the annual IRS campaigns in Ségou are associated with several hundred thousand fewer cases of malaria. This work supports the growing evidence that shows that IRS with non-pyrethroid insecticides is a wise public health investment in areas with documented pyrethroid resistance, high rates of LLIN coverage, and where house structures and population densities are appropriate. Additionally, this work highlights the utility of quality-assured and validated routine surveillance and well defined observational analyses to rapidly assess the impact of malaria control interventions in operational settings, helping to empower evidence-based decision making and to further grow the evidence base needed to better understand when and where to utilize new vector control tools as they become available. Electronic supplementary material The online version of this article (10.1186/s12936-017-2168-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Diakalkia Kone
- Programme National de Lutte Contre le Paludisme, Bamako, Mali
| | - Seydou Fomba
- Programme National de Lutte Contre le Paludisme, Bamako, Mali
| | | | | | | | | |
Collapse
|
17
|
Ngufor C, Fongnikin A, Rowland M, N’Guessan R. Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide) and deltamethrin provides improved control and long residual activity against pyrethroid resistant Anopheles gambiae sl in Southern Benin. PLoS One 2017; 12:e0189575. [PMID: 29252986 PMCID: PMC5734732 DOI: 10.1371/journal.pone.0189575] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 11/14/2017] [Indexed: 11/18/2022] Open
Abstract
Introduction There is an urgent need for new insecticides for indoor residual spraying (IRS) which can provide improved and prolonged control of malaria vectors that have developed resistance to existing insecticides. The neonicotinoid, clothianidin represents a class of chemistry new to public health. Clothianidin acts as an agonist on nicotinic acetyl choline receptors. IRS with a mixture of Clothianidin and another WHO approved insecticide such as deltamethrin could provide improved control of insecticide resistant malaria vector populations and serve as a tool for insecticide resistance management. Methods The efficacy and residual activity of a novel IRS mixture of deltamethrin and clothianidin was evaluated against wild pyrethroid resistant An. gambiae sl in experimental huts in Cove, Benin. Two application rates of the mixture were tested and comparison was made with clothianidin and deltamethrin applied alone. To assess the residual efficacy of the treatments on different local wall substrates, the inner walls of the experimental huts were covered with either cement, mud or plywood. Results Clothianidin demonstrated a clear delayed expression in mortality of wild pyrethroid resistant An. gambiae sl in the experimental huts which reached its full effect 120 hours after exposure. Overall mortality over the 12-month hut trial was 15% in the control hut and 24–29% in the deltamethrin-treated huts. The mixture of clothianidin 200mg/m2 and deltamethrin 25mg/m2 induced high overall hut mortality rates (87% on mud walls, 82% on cement walls and 61% on wooden walls) largely due to the clothianidin component and high hut exiting rates (67–76%) mostly due to the deltamethrin component. Mortality rates remained >80% for 8–9 months on mud and cement walls. The residual activity trend was confirmed by results from monthly in situ cone bioassays with laboratory susceptible An. gambiae Kisumu strain. Conclusion IRS campaigns with the mixture of clothianidin plus deltamethrin have the potential to provide prolonged control of malaria transmitted by pyrethroid resistant mosquito populations.
Collapse
Affiliation(s)
- Corine Ngufor
- London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- * E-mail:
| | | | - Mark Rowland
- London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | - Raphael N’Guessan
- London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
| |
Collapse
|
18
|
Yewhalaw D, Balkew M, Shililu J, Suleman S, Getachew A, Ashenbo G, Chibsa S, Dissanayake G, George K, Dengela D, Ye-Ebiyo Y, Irish SR. Determination of the residual efficacy of carbamate and organophosphate insecticides used for indoor residual spraying for malaria control in Ethiopia. Malar J 2017; 16:471. [PMID: 29162113 PMCID: PMC5697437 DOI: 10.1186/s12936-017-2122-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022] Open
Abstract
Background Indoor residual spraying is one of the key vector control interventions for malaria control in Ethiopia. As malaria transmission is seasonal in most parts of Ethiopia, a single round of spraying can usually provide effective protection against malaria, provided the insecticide remains effective over the entire malaria transmission season. This experiment was designed to evaluate the residual efficacy of bendiocarb, pirimiphos-methyl, and two doses of propoxur on four different wall surfaces (rough mud, smooth mud, dung, and paint). Filter papers affixed to wall surfaces prior to spraying were analyzed to determine the actual concentration applied. Cone bioassays using a susceptible Anopheles arabiensis strain were done monthly to determine the time for which insecticides were effective in killing mosquitoes. Results The mean insecticide dosage of bendiocarb applied to walls was 486 mg/m2 (target 400/mg). This treatment lasted 1 month or less on rough mud, smooth mud, and dung, but 4 months on painted surfaces. Pirimiphos-methyl was applied at 1854 mg/m2 (target 1000 mg/m2), and lasted between 4 and 6 months on all wall surfaces. Propoxur with a target dose of 1000 mg/m2 was applied at 320 mg/m2, and lasted 2 months or less on all surfaces, except painted surfaces (4 months). Propoxur with a target dose of 2000 mg/m2, was applied at 638 mg/m2, and lasted 3 months on rough mud, but considerably longer (5–7 months) on the other substrates. Conclusions It would appear that the higher dose of propoxur and pirimiphos-methyl correspond best to the Ethiopian transmission season, although interactions between insecticide and the substrate should be taken into account as well. However, the insecticide quantification revealed that the dosages actually applied differed considerably from the target dosages, even though care was taken in the mixing of insecticide formulations and spraying of the walls. It is unclear whether this variability is due to initial concentrations of insecticides, poor application, or other factors. Further work is needed to ensure that target doses are correctly applied, both operationally and in insecticide evaluations. Electronic supplementary material The online version of this article (10.1186/s12936-017-2122-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia.,Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Meshesha Balkew
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Josephat Shililu
- The President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Gerji Road, Sami Building, 1st Floor, Addis Ababa, Ethiopia
| | - Sultan Suleman
- Department of Pharmacy, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Alemayehu Getachew
- The President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Gerji Road, Sami Building, 1st Floor, Addis Ababa, Ethiopia
| | - Gedeon Ashenbo
- The President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Gerji Road, Sami Building, 1st Floor, Addis Ababa, Ethiopia
| | - Sheleme Chibsa
- U.S. Agency for International Development (USAID), Entoto Street, Addis Ababa, Ethiopia
| | | | - Kristen George
- President's Malaria Initiative, Bureau for Global Health, Office of Infectious Disease, United States Agency for International Development, 1300 Pennsylvania Ave NW, Washington, DC, 20523, USA
| | - Dereje Dengela
- The President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave., Suite 800 North, Bethesda, MD, 20814, USA
| | - Yemane Ye-Ebiyo
- The President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Gerji Road, Sami Building, 1st Floor, Addis Ababa, Ethiopia
| | - Seth R Irish
- The US President's Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329-4027, USA.
| |
Collapse
|
19
|
Nardini L, Hunt RH, Dahan-Moss YL, Christie N, Christian RN, Coetzee M, Koekemoer LL. Malaria vectors in the Democratic Republic of the Congo: the mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus. Malar J 2017; 16:448. [PMID: 29115954 PMCID: PMC5678590 DOI: 10.1186/s12936-017-2099-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/28/2017] [Indexed: 11/22/2022] Open
Abstract
Background The Democratic Republic of the Congo (DRC) is characterized as a holoendemic malaria area with the main vectors being Anopheles funestus and members of the Anopheles gambiae complex. Due to political instability and socio-economic challenges in the region, knowledge of insecticide resistance status and resistance mechanisms in these vectors is limited. Mosquitoes were collected from a mining site in the north-eastern part of the country and, following identification, were subjected to extensive testing for the target-site and biochemical basis of resistance. Quantitative real-time PCR was used to assess a suite of 10 genes frequently involved in pyrethroid and dichlorodiphenyltrichloroethane (DDT) resistance in An. gambiae females and males. In An. funestus, gene expression microarray analysis was carried out on female mosquitoes. Results In both species, deltamethrin resistance was recorded along with high resistance and suspected resistance to DDT in An. gambiae and An. funestus, respectively. A total of 85% of An. gambiae carried the kdr mutations as either homozygous resistant (RR) (L1014S, L1014F or both) or heterozygous (RS), however only 3% carried the rdl mutant allele (RS) and no ace-1 mutations were recorded. Synergist assays indicated a strong role for P450s in deltamethrin resistance in both species. In An. gambiae, analysis of transcription levels showed that the glutathione-S-transferase, GSTS1-2, produced the highest fold change in expression (7.6-fold in females and 31-fold in males) followed by GSTE2, thioredoxin peroxidase (TPX2), and cytochrome oxidases (CYP6M2 and CYP6P1). All other genes tested produced fold change values below 2. Microarray analysis revealed significant over-transcription of cuticular proteins as well as CYP6M7, CYP6P9a and CYP6P9b in insecticide resistant An. funestus. Conclusions These data show that high levels of deltamethrin resistance in the main malaria vector species, conferred by enzymatic detoxification, are present in the DRC. Electronic supplementary material The online version of this article (10.1186/s12936-017-2099-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luisa Nardini
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Richard H Hunt
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Yael L Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Riann N Christian
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa.
| |
Collapse
|
20
|
Korenromp E, Mahiané G, Hamilton M, Pretorius C, Cibulskis R, Lauer J, Smith TA, Briët OJT. Malaria intervention scale-up in Africa: effectiveness predictions for health programme planning tools, based on dynamic transmission modelling. Malar J 2016; 15:417. [PMID: 27538889 PMCID: PMC4991118 DOI: 10.1186/s12936-016-1461-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022] Open
Abstract
Background Scale-up of malaria prevention and treatment needs to continue to further important gains made in the past decade, but national strategies and budget allocations are not always evidence-based. Statistical models were developed summarizing dynamically simulated relations between increases in coverage and intervention impact, to inform a malaria module in the Spectrum health programme planning tool. Methods The dynamic Plasmodiumfalciparum transmission model OpenMalaria was used to simulate health effects of scale-up of insecticide-treated net (ITN) usage, indoor residual spraying (IRS), management of uncomplicated malaria cases (CM) and seasonal malaria chemoprophylaxis (SMC) over a 10-year horizon, over a range of settings with stable endemic malaria. Generalized linear regression models (GLMs) were used to summarize determinants of impact across a range of sub-Sahara African settings. Results Selected (best) GLMs explained 94–97 % of variation in simulated post-intervention parasite infection prevalence, 86–97 % of variation in case incidence (three age groups, three 3-year horizons), and 74–95 % of variation in malaria mortality. For any given effective population coverage, CM and ITNs were predicted to avert most prevalent infections, cases and deaths, with lower impacts for IRS, and impacts of SMC limited to young children reached. Proportional impacts were larger at lower endemicity, and (except for SMC) largest in low-endemic settings with little seasonality. Incremental health impacts for a given coverage increase started to diminish noticeably at above ~40 % coverage, while in high-endemic settings, CM and ITNs acted in synergy by lowering endemicity. Vector control and CM, by reducing endemicity and acquired immunity, entail a partial rebound in malaria mortality among people above 5 years of age from around 5–7 years following scale-up. SMC does not reduce endemicity, but slightly shifts malaria to older ages by reducing immunity in child cohorts reached. Conclusion Health improvements following malaria intervention scale-up vary with endemicity, seasonality, age and time. Statistical models can emulate epidemiological dynamics and inform strategic planning and target setting for malaria control. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1461-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Richard Cibulskis
- World Health Organization Global Malaria Programme, Geneva, Switzerland
| | - Jeremy Lauer
- World Health Organization Health Systems Governance and Financing dept., Geneva, Switzerland
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Olivier J T Briët
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Haji KA, Thawer NG, Khatib BO, Mcha JH, Rashid A, Ali AS, Jones C, Bagi J, Magesa SM, Ramsan MM, Garimo I, Greer G, Reithinger R, Ngondi JM. Efficacy, persistence and vector susceptibility to pirimiphos-methyl (Actellic 300CS) insecticide for indoor residual spraying in Zanzibar. Parasit Vectors 2015; 8:628. [PMID: 26652708 PMCID: PMC4674920 DOI: 10.1186/s13071-015-1239-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background Indoor residual spraying (IRS) of households with insecticide is a principal malaria vector control intervention in Zanzibar. In 2006, IRS using the pyrethroid lambda-cyhalothrine was introduced in Zanzibar. Following detection of pyrethroid resistance in 2010, an insecticide resistance management plan was proposed, and IRS using bendiocarb was started in 2011. In 2014, bendiocarb was replaced by pirimiphos methyl. This study investigated the residual efficacy of pirimiphos methyl (Actellic® 300CS) sprayed on common surfaces of human dwellings in Zanzibar. Methods The residual activity of Actellic 300CS was determined over 9 months through bioassay tests that measured the mortality of female Anopheles mosquitoes, exposed to sprayed surfaces under a WHO cone. The wall surfaces included; mud wall, oil or water painted walls, lime washed wall, un-plastered cement block wall and stone blocks. Insecticide susceptibility testing was done to investigate the resistance status of local malaria vectors against Actellic 300CS using WHO protocols; Anopheline species were identified using PCR methods. Results Baseline tests conducted one-day post-IRS revealed 100 % mortality on all sprayed surfaces. The residual efficacy of Actellic 300CS was maintained on all sprayed surfaces up to 8 months post-IRS. However, the bioassay test conducted 9 months post-IRS showed the 24 h mortality rate to be ≤80 % for lime wash, mud wall, water paint and stone block surfaces. Only oil paint surface retained the recommended residual efficacy beyond 9 months post-IRS, with mortality maintained at ≥97 %. Results of susceptibility tests showed that malaria vectors in Zanzibar were fully (100 %) susceptible to Actellic 300CS. The predominant mosquito vector species was An. arabiensis (76.0 %) in Pemba and An. gambiae (83.5 %) in Unguja. Conclusion The microencapsulated formulation of pirimiphos methyl (Actellic 300CS) is a highly effective and appropriate insecticide for IRS use in Zanzibar as it showed a relatively prolonged residual activity compared to other products used for the same purpose. The insecticide extends the residual effect of IRS thereby making it possible to effectively protect communities with a single annual spray round reducing overall costs. The insecticide proved to be a useful alternative in insecticide resistance management plans.
Collapse
Affiliation(s)
- Khamis A Haji
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania.
| | | | | | - Juma H Mcha
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania.
| | | | - Abdullah S Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania.
| | | | - Judit Bagi
- Liverpool School of Tropical Medicine, Liverpool, UK.
| | | | | | | | - George Greer
- President's Malaria Initiative/United States Agency for International Development, Dar es Salaam, Tanzania.
| | | | | |
Collapse
|
22
|
Ngufor C, Tungu P, Malima R, Kirby M, Kisinza W, Rowland M. Insecticide-treated net wall hangings for malaria vector control: an experimental hut study in north-eastern Tanzania. Malar J 2014; 13:366. [PMID: 25231168 PMCID: PMC4180361 DOI: 10.1186/1475-2875-13-366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/15/2014] [Indexed: 12/04/2022] Open
Abstract
Background Alternative long-lasting, practical and effective tools for applying insecticides on home walls against malaria vectors need to be developed. The use of wall hangings made from netting on interior walls for aesthetic purposes is a common practice in rural communities. Insecticide-treated net wall hangings can be produced in a long-lasting format and used in an approach that simulates indoor residual spraying (IRS). Methods The efficacy of net wall hangings (NWH) treated with the residual organophosphate insecticide, pirimiphos methyl (1 g/sq m), was evaluated in experimental huts against malaria vectors in Muheza, Tanzania. To determine the optimum level of wall coverage required, NWH were tested on ceiling only, two walls, four walls, or four walls plus ceiling. Comparison was made with deltamethrin-treated NWH on two walls. Results Pirimiphos methyl (p-methyl)-treated NWH (on two walls) killed significantly higher proportions of anophelines (92% of Anopheles gambiae and 79% of Anopheles funestus) than the deltamethrin-treated NWH (15% of An. gambiae and 17% of An. funestus) (P < 0.001). WHO susceptibility tests showed that the local vector population was susceptible to the organophosphates but resistant to pyrethroids. Mortality rates were significantly higher in huts with p-methyl NWH on two walls (92% for An. gambiae and 79% for An. funestus) than on ceiling only (61% for An. gambiae and 62% for An. funestus, P < 0.05). There was no improvement in mortality when wall coverage with p-methyl NWH increased beyond two walls. Blood-feeding rates with p-methyl NWH were generally high across all the treatments (52-77%) and did not differ significantly from the control (64-67%). There was no evidence of reduced blood-feeding or increased exiting with increase in wall coverage with p-methyl NWH. Conclusions Net wall hangings are an effective means of delivering insecticides in the domestic environment against malaria vectors. They could be more practical and acceptable than IRS thus showing enormous potential for malaria vector control. Appropriate binding or incorporation technology needs to be developed to enable the production of p-methyl NWH with residual activity lasting over a number of years.
Collapse
Affiliation(s)
- Corine Ngufor
- London School of Hygiene and Tropical Medicine (LSHTM), London WC1E 7HT, UK.
| | | | | | | | | | | |
Collapse
|