1
|
Pietsch E, Niedermüller K, Andrews M, Meyer BS, Lenz TL, Wilson DW, Gilberger TW, Burda PC. Disruption of a Plasmodium falciparum patatin-like phospholipase delays male gametocyte exflagellation. Mol Microbiol 2024; 121:529-542. [PMID: 38131156 DOI: 10.1111/mmi.15211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
An essential process in transmission of the malaria parasite to the Anopheles vector is the conversion of mature gametocytes into gametes within the mosquito gut, where they egress from the red blood cell (RBC). During egress, male gametocytes undergo exflagellation, leading to the formation of eight haploid motile microgametes, while female gametes retain their spherical shape. Gametocyte egress depends on sequential disruption of the parasitophorous vacuole membrane and the host cell membrane. In other life cycle stages of the malaria parasite, phospholipases have been implicated in membrane disruption processes during egress, however their importance for gametocyte egress is relatively unknown. Here, we performed comprehensive functional analyses of six putative phospholipases for their role during development and egress of Plasmodium falciparum gametocytes. We localize two of them, the prodrug activation and resistance esterase (PF3D7_0709700) and the lysophospholipase 1 (PF3D7_1476700), to the parasite plasma membrane. Subsequently, we show that disruption of most of the studied phospholipase genes does neither affect gametocyte development nor egress. The exception is the putative patatin-like phospholipase 3 (PF3D7_0924000), whose gene deletion leads to a delay in male gametocyte exflagellation, indicating an important, albeit not essential, role of this enzyme in male gametogenesis.
Collapse
Affiliation(s)
- Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Korbinian Niedermüller
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Mia Andrews
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Britta S Meyer
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
3
|
Hui L, Chen J, Kafley P, Liu H. Capture and Kill: Selective Eradication of Target Bacteria by a Flexible Bacteria-Imprinted Chip. ACS Biomater Sci Eng 2021; 7:90-95. [PMID: 33338373 DOI: 10.1021/acsbiomaterials.0c01568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper reports an antibacterial chip that can selectively capture bacteria and kill them using low-voltage DC electricity. We prepared a bacteria-imprinted, flexible PDMS chip that can separate target bacteria from suspensions with high selectivity. The chip contained integrated electrodes that can kill the captured bacteria within 10 min by applying a low DC voltage. The used chip could be easily regenerated by solution immersion. Meanwhile, the PDMS chip showed good biocompatibility and inhibited adhesion of human blood cells. Our work points to a new strategy to address pathogenic bacterial contamination and infection.
Collapse
Affiliation(s)
- Liwei Hui
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jun Chen
- Petersen Institute of NanoScience and Engineering, and Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Parmila Kafley
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Bouyer G, Barbieri D, Dupuy F, Marteau A, Sissoko A, N'Dri ME, Neveu G, Bedault L, Khodabux N, Roman D, Houzé S, Siciliano G, Alano P, Martins RM, Lopez-Rubio JJ, Clain J, Duval R, Egée S, Lavazec C. Plasmodium falciparum sexual parasites regulate infected erythrocyte permeability. Commun Biol 2020; 3:726. [PMID: 33262483 PMCID: PMC7708629 DOI: 10.1038/s42003-020-01454-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022] Open
Abstract
To ensure the transport of nutrients necessary for their survival, Plasmodium falciparum parasites increase erythrocyte permeability to diverse solutes. These new permeation pathways (NPPs) have been extensively characterized in the pathogenic asexual parasite stages, however the existence of NPPs has never been investigated in gametocytes, the sexual stages responsible for transmission to mosquitoes. Here, we show that NPPs are still active in erythrocytes infected with immature gametocytes and that this activity declines along gametocyte maturation. Our results indicate that NPPs are regulated by cyclic AMP (cAMP) signaling cascade, and that the decrease in cAMP levels in mature stages results in a slowdown of NPP activity. We also show that NPPs facilitate the uptake of artemisinin derivatives and that phosphodiesterase (PDE) inhibitors can reactivate NPPs and increase drug uptake in mature gametocytes. These processes are predicted to play a key role in P. falciparum gametocyte biology and susceptibility to antimalarials. Bouyer et al. report that the new permeation pathways (NPP), responsible of modulating erythrocyte permeability to diverse solutes and considered only to be in pathogenic asexual stages of P. falciparum, are also active in erythrocytes infected with immature gametocytes and this activity declines with gametocyte maturation. NPPs are regulated by the cAMP signalling cascade, and the decrease in cAMP levels in mature stages slows NPP activity.
Collapse
Affiliation(s)
- Guillaume Bouyer
- Sorbonne Université, CNRS UMR 8227, Station Biologique de Roscoff, Roscoff, France.,Laboratoire d'excellence GR-Ex, Paris, France
| | - Daniela Barbieri
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, Inserm U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Florian Dupuy
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, Inserm U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Anthony Marteau
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, Inserm U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Abdoulaye Sissoko
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, IRD 261, MERIT, Paris, France
| | - Marie-Esther N'Dri
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, Inserm U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Gaelle Neveu
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, Inserm U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Laurianne Bedault
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, Inserm U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Nabiha Khodabux
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, Inserm U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Diana Roman
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, IRD 261, MERIT, Paris, France
| | - Sandrine Houzé
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, IRD 261, MERIT, Paris, France
| | | | | | - Rafael M Martins
- Université de Montpellier 1 & 2, CNRS 5290, IRD 224, MIVEGEC, Montpellier, France
| | | | - Jérome Clain
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, IRD 261, MERIT, Paris, France
| | - Romain Duval
- Laboratoire d'excellence GR-Ex, Paris, France.,Université de Paris, IRD 261, MERIT, Paris, France
| | - Stéphane Egée
- Sorbonne Université, CNRS UMR 8227, Station Biologique de Roscoff, Roscoff, France.,Laboratoire d'excellence GR-Ex, Paris, France
| | - Catherine Lavazec
- Laboratoire d'excellence GR-Ex, Paris, France. .,Université de Paris, Inserm U1016, CNRS UMR 8104, Institut Cochin, Paris, France.
| |
Collapse
|
5
|
Ararat-Sarria M, Prado CC, Camargo M, Ospina LT, Camargo PA, Curtidor H, Patarroyo MA. Sexual forms obtained in a continuous in vitro cultured Colombian strain of Plasmodium falciparum (FCB2). Malar J 2020; 19:57. [PMID: 32014000 PMCID: PMC6998264 DOI: 10.1186/s12936-020-3142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 01/25/2020] [Indexed: 12/03/2022] Open
Abstract
Background The epidemiological control of malaria has been hampered by the appearance of parasite resistance to anti-malarial drugs and by the resistance of mosquito vectors to control measures. This has also been associated with weak transmission control, mostly due to poor control of asymptomatic patients associated with host-vector transmission. This highlights the importance of studying the parasite’s sexual forms (gametocytes) which are involved in this phase of the parasite’s life-cycle. Some African and Asian strains of Plasmodium falciparum have been fully characterized regarding sexual forms’ production; however, few Latin-American strains have been so characterized. This study was aimed at characterizing the Colombian FCB2 strain as a gametocyte producer able to infect mosquitoes. Methods Gametocyte production was induced in in vitro cultured P. falciparum FCB2 and 3D7 strains. Pfap2g and Pfs25 gene expression was detected in FCB2 strain gametocyte culture by RT-PCR. Comparative analysis of gametocytes obtained from both strains was made (counts and morphological changes). In vitro zygote formation from FCB2 gametocytes was induced by incubating a gametocyte culture sample at 27 °C for 20 min. A controlled Anopheles albimanus infection was made using an artificial feed system with cultured FCB2 gametocytes (14–15 days old). Mosquito midgut dissection was then carried out for analyzing oocysts. Results The FCB2 strain expressed Pfap2g, Pfs16, Pfg27/25 and Pfs25 sexual differentiation-related genes after in vitro sexual differentiation induction, producing gametocytes that conserved the expected morphological features. The amount of FCB2 gametocytes produced was similar to that from the 3D7 strain. FCB2 gametocytes were differentiated into zygotes and ookinetes after an in vitro low-temperature stimulus and infected An. albimanus mosquitoes, developing to oocyst stage. Conclusions Even with the history of long-term FCB2 strain in vitro culture maintenance, it has retained its sexual differentiation ability. The gametocytes produced here preserved these parasite forms’ usual characteristics and An. albimanus infection capability, thus enabling its use as a tool for studying sexual form biology, An. albimanus infection comparative analysis and anti-malarial drug and vaccine development.
Collapse
Affiliation(s)
- Monica Ararat-Sarria
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Cesar Camilo Prado
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Milena Camargo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Laura Tatiana Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Paola Andrea Camargo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Hernando Curtidor
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
6
|
Ishino T, Tachibana M, Baba M, Iriko H, Tsuboi T, Torii M. Observation of morphological changes of female osmiophilic bodies prior to Plasmodium gametocyte egress from erythrocytes. Mol Biochem Parasitol 2020; 236:111261. [PMID: 31981605 DOI: 10.1016/j.molbiopara.2020.111261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Plasmodium parasites cause malaria in mammalian hosts and are transmitted by Anopheles mosquitoes. Gametocytes, which differentiate from asexual-stage parasites, are activated by environmental changes when ingested into the mosquito midgut, and are rapidly released from erythrocytes prior to fertilization. Secretory proteins localized to osmiophilic bodies (OBs), organelles unique to gametocytes, have been reported to be involved in female gametocyte egress. In this study, we investigate the dynamics of OBs in activated gametocytes of Plasmodium falciparum and Plasmodium yoelii using the female OB-specific marker protein, G377. After activation, female gametocyte OBs migrate to the parasite surface and fuse to form large vesicles beneath the parasite plasma membrane. At the marginal region of female gametocytes, fused vesicles secrete contents by exocytosis into the parasitophorous vacuole space, prior to parasite egress via the break-down of the erythrocyte membrane. This is the first detailed description of how proteins are transported through osmiophilic bodies.
Collapse
Affiliation(s)
- Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan; Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
7
|
Bancells C, Llorà-Batlle O, Poran A, Nötzel C, Rovira-Graells N, Elemento O, Kafsack BFC, Cortés A. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nat Microbiol 2019; 4:144-154. [PMID: 30478286 PMCID: PMC6294672 DOI: 10.1038/s41564-018-0291-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/11/2018] [Indexed: 01/01/2023]
Abstract
Human to vector transmission of malaria requires that some blood-stage parasites abandon asexual growth and convert into non-replicating sexual forms called gametocytes. The initial steps of gametocytogenesis remain largely uncharacterized. Here, we study this part of the malaria life cycle in Plasmodium falciparum using PfAP2-G, the master regulator of sexual conversion, as a marker of commitment. We demonstrate the existence of PfAP2-G-positive sexually committed parasite stages that precede the previously known committed schizont stage. We also found that sexual conversion can occur by two different routes: the previously described route in which PfAP2-G-expressing parasites complete a replicative cycle as committed forms before converting into gametocytes upon re-invasion, or a direct route with conversion within the same cycle as initial PfAP2-G expression. The latter route is linked to early PfAP2-G expression in ring stages. Reanalysis of published single-cell RNA-sequencing (RNA-seq) data confirmed the presence of both routes. Consistent with these results, using plaque assays we observed that, in contrast to the prevailing model, many schizonts produced mixed plaques containing both asexual parasites and gametocytes. Altogether, our results reveal unexpected features of the initial steps of sexual development and extend the current view of this part of the malaria life cycle.
Collapse
Affiliation(s)
- Cristina Bancells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Asaf Poran
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Nötzel
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | | | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Björn F C Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Alfred Cortés
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
8
|
Andreadaki M, Hanssen E, Deligianni E, Claudet C, Wengelnik K, Mollard V, McFadden GI, Abkarian M, Braun-Breton C, Siden-Kiamos I. Sequential Membrane Rupture and Vesiculation during Plasmodium berghei Gametocyte Egress from the Red Blood Cell. Sci Rep 2018; 8:3543. [PMID: 29476099 PMCID: PMC5824807 DOI: 10.1038/s41598-018-21801-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/02/2018] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites alternate between intracellular and extracellular stages and successful egress from the host cell is crucial for continuation of the life cycle. We investigated egress of Plasmodium berghei gametocytes, an essential process taking place within a few minutes after uptake of a blood meal by the mosquito. Egress entails the rupture of two membranes surrounding the parasite: the parasitophorous vacuole membrane (PVM), and the red blood cell membrane (RBCM). High-speed video microscopy of 56 events revealed that egress in both genders comprises four well-defined phases, although each event is slightly different. The first phase is swelling of the host cell, followed by rupture and immediate vesiculation of the PVM. These vesicles are extruded through a single stabilized pore of the RBCM, and the latter is subsequently vesiculated releasing the free gametes. The time from PVM vesiculation to completion of egress varies between events. These observations were supported by immunofluorescence microscopy using antibodies against proteins of the RBCM and PVM. The combined results reveal dynamic re-organization of the membranes and the cortical cytoskeleton of the erythrocyte during egress.
Collapse
|
9
|
Tachibana M, Ishino T, Takashima E, Tsuboi T, Torii M. A male gametocyte osmiophilic body and microgamete surface protein of the rodent malaria parasite Plasmodium yoelii (PyMiGS) plays a critical role in male osmiophilic body formation and exflagellation. Cell Microbiol 2018; 20:e12821. [PMID: 29316140 PMCID: PMC5901010 DOI: 10.1111/cmi.12821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 01/18/2023]
Abstract
Anopheles mosquitoes transmit Plasmodium parasites of mammals, including the species that cause malaria in humans. Malaria pathology is caused by rapid multiplication of parasites in asexual intraerythrocytic cycles. Sexual stage parasites are also produced during the intraerythrocytic cycle and are ingested by the mosquito, initiating gametogenesis and subsequent sporogonic stage development. Here, we present a Plasmodium protein, termed microgamete surface protein (MiGS), which has an important role in male gametocyte osmiophilic body (MOB) formation and microgamete function. MiGS is expressed exclusively in male gametocytes and microgametes, in which MiGS localises to the MOB and microgamete surface. Targeted gene disruption of MiGS in a rodent malaria parasite Plasmodium yoelii 17XNL generated knockout parasites (ΔPyMiGS) that proliferate normally in erythrocytes and form male and female gametocytes. The number of MOB in male gametocyte cytoplasm is markedly reduced and the exflagellation of microgametes is impaired in ΔPyMiGS. In addition, anti‐PyMiGS antibody severely blocked the parasite development in the Anopheles stephensi mosquito. MiGS might thus be a potential novel transmission‐blocking vaccine target candidate.
Collapse
Affiliation(s)
- Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| |
Collapse
|
10
|
Suárez-Cortés P, Sharma V, Bertuccini L, Costa G, Bannerman NL, Sannella AR, Williamson K, Klemba M, Levashina EA, Lasonder E, Alano P. Comparative Proteomics and Functional Analysis Reveal a Role of Plasmodium falciparum Osmiophilic Bodies in Malaria Parasite Transmission. Mol Cell Proteomics 2016; 15:3243-3255. [PMID: 27432909 DOI: 10.1074/mcp.m116.060681] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/06/2022] Open
Abstract
An essential step in the transmission of the malaria parasite to the Anopheles vector is the transformation of the mature gametocytes into gametes in the mosquito gut, where they egress from the erythrocytes and mate to produce a zygote, which matures into a motile ookinete. Osmiophilic bodies are electron dense secretory organelles of the female gametocytes which discharge their contents during gamete formation, suggestive of a role in gamete egress. Only one protein with no functional annotation, Pfg377, is described to specifically reside in osmiophilic bodies in Plasmodium falciparum Importantly, Pfg377 defective gametocytes lack osmiophilic bodies and fail to infect mosquitoes, as confirmed here with newly produced pfg377 disrupted parasites. The unique feature of Pfg377 defective gametocytes of lacking osmiophilic bodies was here exploited to perform comparative, label free, global and affinity proteomics analyses of mutant and wild type gametocytes to identify components of these organelles. Subcellular localization studies with fluorescent reporter gene fusions and specific antibodies revealed an osmiophilic body localization for four out of five candidate gene products analyzed: the proteases PfSUB2 (subtilisin 2) and PfDPAP2 (Dipeptidyl aminopeptidase 2), the ortholog of the osmiophilic body component of the rodent malaria gametocytes PbGEST and a previously nonannotated 13 kDa protein. These results establish that osmiophilic bodies and their components are dispensable or marginally contribute (PfDPAP2) to gamete egress. Instead, this work reveals a previously unsuspected role of these organelles in P. falciparum development in the mosquito vector.
Collapse
Affiliation(s)
- Pablo Suárez-Cortés
- From the ‡Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Roma, Italy
| | - Vikram Sharma
- §School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth, Devon, UK
| | - Lucia Bertuccini
- ¶Dipartimento Tecnologie e Salute, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Roma, Italy
| | - Giulia Costa
- ‖Department of Vector Biology, Max-Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Naa-Lamiley Bannerman
- §School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth, Devon, UK
| | - Anna Rosa Sannella
- From the ‡Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Roma, Italy
| | - Kim Williamson
- **Department of Biology, Loyola University, 1032 West Sheridan Road, Chicago, Illinois 60660
| | - Michael Klemba
- ‡‡Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Elena A Levashina
- ‖Department of Vector Biology, Max-Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Edwin Lasonder
- §School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth, Devon, UK
| | - Pietro Alano
- From the ‡Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Roma, Italy;
| |
Collapse
|
11
|
Bennink S, Kiesow MJ, Pradel G. The development of malaria parasites in the mosquito midgut. Cell Microbiol 2016; 18:905-18. [PMID: 27111866 PMCID: PMC5089571 DOI: 10.1111/cmi.12604] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023]
Abstract
The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take-up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co-adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote-to-ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Meike J Kiesow
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|