1
|
Greyling N, van der Watt M, Gwarinda H, van Heerden A, Greenhouse B, Leroy D, Niemand J, Birkholtz LM. Genetic complexity alters drug susceptibility of asexual and gametocyte stages of Plasmodium falciparum to antimalarial candidates. Antimicrob Agents Chemother 2024; 68:e0129123. [PMID: 38259087 PMCID: PMC10916389 DOI: 10.1128/aac.01291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.
Collapse
Affiliation(s)
- Nicola Greyling
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Hazel Gwarinda
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Bryan Greenhouse
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Tarannum A, Rodríguez-Almonacid CC, Salazar-Bravo J, Karamysheva ZN. Molecular Mechanisms of Persistence in Protozoan Parasites. Microorganisms 2023; 11:2248. [PMID: 37764092 PMCID: PMC10534552 DOI: 10.3390/microorganisms11092248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protozoan parasites are known for their remarkable capacity to persist within the bodies of vertebrate hosts, which frequently results in prolonged infections and the recurrence of diseases. Understanding the molecular mechanisms that underlie the event of persistence is of paramount significance to develop innovative therapeutic approaches, given that these pathways still need to be thoroughly elucidated. The present article provides a comprehensive overview of the latest developments in the investigation of protozoan persistence in vertebrate hosts. The focus is primarily on the function of persisters, their formation within the host, and the specific molecular interactions between host and parasite while they persist. Additionally, we examine the metabolomic, transcriptional, and translational changes that protozoan parasites undergo during persistence within vertebrate hosts, focusing on major parasites such as Plasmodium spp., Trypanosoma spp., Leishmania spp., and Toxoplasma spp. Key findings of our study suggest that protozoan parasites deploy several molecular and physiological strategies to evade the host immune surveillance and sustain their persistence. Furthermore, some parasites undergo stage differentiation, enabling them to acclimate to varying host environments and immune challenges. More often, stressors such as drug exposure were demonstrated to impact the formation of protozoan persisters significantly. Understanding the molecular mechanisms regulating the persistence of protozoan parasites in vertebrate hosts can reinvigorate our current insights into host-parasite interactions and facilitate the development of more efficacious disease therapeutics.
Collapse
Affiliation(s)
| | | | | | - Zemfira N. Karamysheva
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (A.T.); (C.C.R.-A.); (J.S.-B.)
| |
Collapse
|
3
|
Davies H, Bergmann B, Walloch P, Nerlich C, Hansen C, Wittlin S, Spielmann T, Treeck M, Beitz E. The Plasmodium Lactate/H + Transporter PfFNT Is Essential and Druggable In Vivo. Antimicrob Agents Chemother 2023; 67:e0035623. [PMID: 37428074 PMCID: PMC10433847 DOI: 10.1128/aac.00356-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Malaria parasites in the blood stage express a single transmembrane transport protein for the release of the glycolytic end product l-lactate/H+ from the cell. This transporter is a member of the strictly microbial formate-nitrite transporter (FNT) family and a novel putative drug target. Small, drug-like FNT inhibitors potently block lactate transport and kill Plasmodium falciparum parasites in culture. The protein structure of Plasmodium falciparum FNT (PfFNT) in complex with the inhibitor has been resolved and confirms its previously predicted binding site and its mode of action as a substrate analog. Here, we investigated the mutational plasticity and essentiality of the PfFNT target on a genetic level, and established its in vivo druggability using mouse malaria models. We found that, besides a previously identified PfFNT G107S resistance mutation, selection of parasites at 3 × IC50 (50% inhibitory concentration) gave rise to two new point mutations affecting inhibitor binding: G21E and V196L. Conditional knockout and mutation of the PfFNT gene showed essentiality in the blood stage, whereas no phenotypic defects in sexual development were observed. PfFNT inhibitors mainly targeted the trophozoite stage and exhibited high potency in P. berghei- and P. falciparum-infected mice. Their in vivo activity profiles were comparable to that of artesunate, demonstrating strong potential for the further development of PfFNT inhibitors as novel antimalarials.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Bärbel Bergmann
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Philipp Walloch
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Cornelius Nerlich
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Hansen
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Tobias Spielmann
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
4
|
Keroack CD, Duraisingh MT. Molecular mechanisms of cellular quiescence in apicomplexan parasites. Curr Opin Microbiol 2022; 70:102223. [PMID: 36274498 DOI: 10.1016/j.mib.2022.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Quiescence is a reversible nonproliferative cellular state that allows organisms to persist through unfavorable conditions. Quiescence can be stimulated by a wide range of external or intrinsic factors. Cells undergo a coordinated molecular program to enter and exit from the quiescent state, which is governed by signaling, transcriptional and translational changes, epigenetic mechanisms, metabolic switches, and changes in cellular architecture. These mechanisms have been extensively studied in model organisms, and a growing number of studies have identified conserved mechanisms in apicomplexan parasites. Quiescence in the context of a parasitic infection has significant clinical impact: quiescent forms may underlie treatment failures, relapsing infections, and stress tolerance. Here, we review the latest understanding of quiescence in apicomplexa, synthesizing these studies to highlight conserved mechanisms, and identifying technologies to assist in further characterization of quiescence. Understanding conserved mechanisms of quiescence in apicomplexans will provide avenues for transmission prevention and radical cure of infections.
Collapse
|
5
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Na J, Zhang J, Choe YL, Lim CS, Park YH. An in vitro study on the differentiated metabolic mechanism of chloroquine-resistant Plasmodium falciparum using high-resolution metabolomics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:859-874. [PMID: 34338159 DOI: 10.1080/15287394.2021.1944945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chloroquine (CQ) is an important drug used therapeutically for treatment of malaria. However, due to limited number of studies on metabolic targets of chloroquine (CQ), it is difficult to attribute mechanisms underlying resistance associated with usage of this drug. The present study aimed to investigate the metabolic signatures of CQ-resistant Plasmodium falciparum (PfDd2) compared to CQ-sensitive Plasmodium falciparum (Pf3D7). Both Pf3D7 and PfDd2 were treated with CQ at 200 nM for 48 hr; thereafter, the harvested red blood cells (RBCs) and media were subjected to microscopy and high-resolution metabolomics (HRM). Glutathione, γ-L-glutamyl-L-cysteine, spermidine, inosine monophosphate, alanine, and fructose-1,6-bisphosphate were markedly altered in PfDd2 of RBC. In the media, cysteine, cysteic acid, spermidine, phenylacetaldehyde, and phenylacetic acid were significantly altered in PfDd2. These differential metabolic signatures related signaling pathways of PfDd2, such as oxidative stress pathway and glycolysis may provide evidence for understanding the resistance mechanism and pathogenesis of the CQ-resistant parasite.
Collapse
Affiliation(s)
- Jinhyuk Na
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jian Zhang
- Omics Research Center, Sejong, Republic of Korea
| | - Young Lan Choe
- Department of Laboratory Medicine, Korea University, Seoul, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University, Seoul, Republic of Korea
| | - Youngja Hwang Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Omics Research Center, Sejong, Republic of Korea
| |
Collapse
|
7
|
Yu X, Feng G, Zhang Q, Cao J. From Metabolite to Metabolome: Metabolomics Applications in Plasmodium Research. Front Microbiol 2021; 11:626183. [PMID: 33505389 PMCID: PMC7829456 DOI: 10.3389/fmicb.2020.626183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
Advances in research over the past few decades have greatly improved metabolomics-based approaches in studying parasite biology and disease etiology. This improves the investigation of varied metabolic requirements during life stages or when following transmission to their hosts, and fulfills the demand for improved diagnostics and precise therapeutics. Therefore, this review highlights the progress of metabolomics in malaria research, including metabolic mapping of Plasmodium vertebrate life cycle stages to investigate antimalarials mode of actions and underlying complex host-parasite interactions. Also, we discuss current limitations as well as make several practical suggestions for methodological improvements which could drive metabolomics progress for malaria from a comprehensive perspective.
Collapse
Affiliation(s)
- Xinyu Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Medical College of Soochow University, Suzhou, China
| | - Gaoqian Feng
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Qingfeng Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Lactic Acid Supplementation Increases Quantity and Quality of Gametocytes in Plasmodium falciparum Culture. Infect Immun 2020; 89:IAI.00635-20. [PMID: 33077626 DOI: 10.1128/iai.00635-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Malaria infection by Plasmodium falciparum continues to afflict millions of people worldwide, with transmission being dependent upon mosquito ingestion of the parasite gametocyte stage. These sexually committed stages develop from the asexual stages, yet the factors behind this transition are not completely understood. Here, we found that lactic acid increases gametocyte quantity and quality in P. falciparum culture. Low-passage-number NF54 parasites exposed to 8.2 mM lactic acid for various times were monitored using blood film gametocyte counts and RNA analysis throughout 2 weeks of gametocyte development in vitro for a total of 5 biological cohorts. We found that daily continuous medium exchange and 8.2 mM lactic acid supplementation increased gametocytemia approximately 2- to 6-fold relative to controls after 5 days. In membrane feeding mosquito infection experiments, we found that gametocytes continuously exposed to 8.2 mM lactic acid supplementations were more infectious to Anopheles stephensi mosquitoes, essentially doubling prevalence of infected midguts and oocyst density. Supplementation on days 9 to 16 did not increase the quantity of gametocytes but did increase quality, as measured by oocyst density, by 2.4-fold. Lactic acid did not impact asexual growth, as measured by blood film counts and luciferase quantification, as well as radioactive hypoxanthine incorporation assays. These data indicate a novel role for lactic acid in sexual development of the parasite.
Collapse
|
9
|
Structural, Functional, and Metabolic Alterations in Human Cerebrovascular Endothelial Cells during Toxoplasma gondii Infection and Amelioration by Verapamil In Vitro. Microorganisms 2020; 8:microorganisms8091386. [PMID: 32927732 PMCID: PMC7564162 DOI: 10.3390/microorganisms8091386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii (T. gondii), the causative agent of toxoplasmosis, is a frequent cause of brain infection. Despite its known ability to invade the brain, there is still a dire need to better understand the mechanisms by which this parasite interacts with and crosses the blood–brain barrier (BBB). The present study revealed structural and functional changes associated with infection and replication of T. gondii within human brain microvascular endothelial cells (BMECs) in vitro. T. gondii proliferated within the BMECs and disrupted the integrity of the cerebrovascular barrier through diminishing the cellular viability, disruption of the intercellular junctions and increasing permeability of the BMEC monolayer, as well as altering lipid homeostasis. Proton nuclear magnetic resonance (1H NMR)-based metabolomics combined with multivariate data analysis revealed profiles that can be attributed to infection and variations in the amounts of certain metabolites (e.g., amino acids, fatty acids) in the extracts of infected compared to control cells. Notably, treatment with the Ca2+ channel blocker verapamil rescued BMEC barrier integrity and restricted intracellular replication of the tachyzoites regardless of the time of treatment application (i.e., prior to infection, early- and late-infection). This study provides new insights into the structural and functional changes that accompany T. gondii infection of the BMECs, and sheds light upon the ability of verapamil to inhibit the parasite proliferation and to ameliorate the adverse effects caused by T. gondii infection.
Collapse
|
10
|
Novel Method for the Separation of Male and Female Gametocytes of the Malaria Parasite Plasmodium falciparum That Enables Biological and Drug Discovery. mSphere 2020; 5:5/4/e00671-20. [PMID: 32817458 PMCID: PMC7426174 DOI: 10.1128/msphere.00671-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The protozoan Plasmodium falciparum causes the most severe form of human malaria. The development of sexual forms (so-called gametocytes) is crucial for disease transmission. However, knowledge of these forms is severely hampered by the paucity of sex-specific markers and the inability to extract single sex gametocytes in high purity. Moreover, the identification of compounds that specifically affect one sex is difficult due to the female bias of the gametocytes. We have developed a system that allows for the separation of male and female gametocytes from the same population. Applying our system, we show that male and female parasites mature at different rates, which might have implications for transmission. We also identified new sex-specific genes that can be used as sex markers or to unravel sex-specific functions. Our system will not only aid in the discovery of much needed gametocidal compounds, but it also represents a valuable tool for exploring malaria transmission biology. We developed a flow-cytometry-based method to separate and collect cocultured male and female Plasmodium falciparum gametocytes responsible for malaria transmission. The purity of the collected cells was estimated at >97% using flow cytometry, and sorted cells were observed by Giemsa-stained thin-smear and live-cell fluorescence microscopy. The expression of validated sex-specific markers corroborated the sorting strategy. Collected male and female gametocytes were used to confirm three novel sex-specific markers by quantitative real-time PCR that were more enriched in sorted male and female gametocyte populations than existing sex-specific markers. We also applied the method as a proof-of-principle drug screen that allows the identification of drugs that kill gametocytes in a sex-specific manner. Since the developed method allowed for the separation of male and female parasites from the same culture, we observed for the first time a difference in development time between the sexes: females developed faster than males. Hence, the ability to separate male and female gametocytes opens the door to a new field of sex-specific P. falciparum gametocyte biology to further our understanding of malaria transmission. IMPORTANCE The protozoan Plasmodium falciparum causes the most severe form of human malaria. The development of sexual forms (so-called gametocytes) is crucial for disease transmission. However, knowledge of these forms is severely hampered by the paucity of sex-specific markers and the inability to extract single sex gametocytes in high purity. Moreover, the identification of compounds that specifically affect one sex is difficult due to the female bias of the gametocytes. We have developed a system that allows for the separation of male and female gametocytes from the same population. Applying our system, we show that male and female parasites mature at different rates, which might have implications for transmission. We also identified new sex-specific genes that can be used as sex markers or to unravel sex-specific functions. Our system will not only aid in the discovery of much needed gametocidal compounds, but it also represents a valuable tool for exploring malaria transmission biology.
Collapse
|
11
|
Malebo HM, D'Alessandro S, Ebstie YA, Sorè H, Tenoh Guedoung AR, Katani SJ, Parapini S, Taramelli D, Habluetzel A. In vitro Multistage Malaria Transmission Blocking Activity of Selected Malaria Box Compounds. Drug Des Devel Ther 2020; 14:1593-1607. [PMID: 32425505 PMCID: PMC7196193 DOI: 10.2147/dddt.s242883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/20/2020] [Indexed: 12/04/2022] Open
Abstract
Purpose Continuous efforts into the discovery and development of new antimalarials are required to face the emerging resistance of the parasite to available treatments. Thus, new effective drugs, ideally able to inhibit the Plasmodium life-cycle stages that cause the disease as well as those responsible for its transmission, are needed. Eight compounds from the Medicines for Malaria Venture (MMV) Malaria Box, potentially interfering with the parasite polyamine biosynthesis were selected and assessed in vitro for activity against malaria transmissible stages, namely mature gametocytes and early sporogonic stages. Methods Compound activity against asexual blood stages of chloroquine-sensitive 3D7 and chloroquine-resistant W2 strains of Plasmodium falciparum was tested measuring the parasite lactate dehydrogenase activity. The gametocytocidal effect was determined against the P. falciparum 3D7elo1-pfs16-CBG99 strain with a luminescent method. The murine P. berghei CTRP.GFP strain was employed to assess compounds activities against early sporogonic stage development in an in vitro assay simulating mosquito midgut conditions. Results Among the eight tested molecules, MMV000642, MMV000662 and MMV006429, containing a 1,2,3,4-tetrahydroisoquinoline-4-carboxamide chemical skeleton substituted at N-2, C-3 and C-4, displayed multi-stage activity. Activity against asexual blood stages of both strains was confirmed with values of IC50 (50% inhibitory concentration) in the range of 0.07–0.13 µM. They were also active against mature stage V gametocytes with IC50 values below 5 µM (range: 3.43–4.42 µM). These molecules exhibited moderate effects on early sporogonic stage development, displaying IC50 values between 20 and 40 µM. Conclusion Given the multi-stage, transmission-blocking profiles of MMV000642, MMV000662, MMV006429, and their chemical characteristics, these compounds can be considered worthy for further optimisation toward a TCP5 or TCP6 target product profile proposed by MMV for transmission-blocking antimalarials.
Collapse
Affiliation(s)
- Hamisi M Malebo
- Department of Traditional Medicine Research, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Sarah D'Alessandro
- Dipartimento di Scienze Biomediche per la Salute , University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca Sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy
| | | | - Harouna Sorè
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | | | - Shaaban J Katani
- Department of Traditional Medicine Research, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute , University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca Sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy
| | - Donatella Taramelli
- Centro Interuniversitario di Ricerca Sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy.,Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Milan, Italy
| | - Annette Habluetzel
- Centro Interuniversitario di Ricerca Sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy.,School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
12
|
van Biljon R, van Wyk R, Painter HJ, Orchard L, Reader J, Niemand J, Llinás M, Birkholtz LM. Hierarchical transcriptional control regulates Plasmodium falciparum sexual differentiation. BMC Genomics 2019; 20:920. [PMID: 31795940 PMCID: PMC6889441 DOI: 10.1186/s12864-019-6322-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Malaria pathogenesis relies on sexual gametocyte forms of the malaria parasite to be transmitted between the infected human and the mosquito host but the molecular mechanisms controlling gametocytogenesis remains poorly understood. Here we provide a high-resolution transcriptome of Plasmodium falciparum as it commits to and develops through gametocytogenesis. RESULTS The gametocyte-associated transcriptome is significantly different from that of the asexual parasites, with dynamic gene expression shifts characterizing early, intermediate and late-stage gametocyte development and results in differential timing for sex-specific transcripts. The transcriptional dynamics suggest strict transcriptional control during gametocytogenesis in P. falciparum, which we propose is mediated by putative regulators including epigenetic mechanisms (driving active repression of proliferation-associated processes) and a cascade-like expression of ApiAP2 transcription factors. CONCLUSIONS The gametocyte transcriptome serves as the blueprint for sexual differentiation and will be a rich resource for future functional studies on this critical stage of Plasmodium development, as the intraerythrocytic transcriptome has been for our understanding of the asexual cycle.
Collapse
Affiliation(s)
- Riëtte van Biljon
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Heather J Painter
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Review, U.S. Food & Drug Administration, Silver Spring, MD, 20993, USA
| | - Lindsey Orchard
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
13
|
Tanaka TQ, Tokuoka SM, Nakatani D, Hamano F, Kawazu SI, Wellems TE, Kita K, Shimizu T, Tokumasu F. Polyunsaturated fatty acids promote Plasmodium falciparum gametocytogenesis. Biol Open 2019; 8:bio.042259. [PMID: 31221627 PMCID: PMC6679406 DOI: 10.1242/bio.042259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The molecular triggers of sexual differentiation into gametocytes by blood stage Plasmodium falciparum, the most malignant human malaria parasites, are subject of much investigation for potential transmission-blocking strategies. The parasites are readily grown in vitro with culture media supplemented by the addition of human serum (10%) or by a commercially available substitute (0.5% AlbuMAX). We found better gametocytemia with serum than AlbuMAX, suggesting suboptimal concentrations of some components in the commercial product; consistent with this hypothesis, substantial concentration differences of multiple fatty acids were detected between serum- and AlbuMAX-supplemented media. Mass spectroscopy analysis distinguished the lipid profiles of gametocyte- and asexual stage-parasite membranes. Delivery of various combinations of unsaturated fatty-acid-containing phospholipids to AlbuMAX-supported gametocyte cultures improved gametocyte production to the levels achieved with human-serum-supplemented media. Maturing gametocytes readily incorporated externally supplied d5-labeled glycerol with fatty acids into unsaturated phospholipids. Phospholipids identified in this work thus may be taken up from extracellular sources or generated internally for important steps of gametocyte development. Further study of polyunsaturated fatty-acid metabolism and phospholipid profiles will improve understanding of gametocyte development and malaria parasite transmission.
Collapse
Affiliation(s)
- Takeshi Q Tanaka
- International Medical Zoology, Graduate School of Medicine, Kagawa University, Kagawa, 761-0793, Japan.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA.,Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan
| | - Daichi Nakatani
- Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Fumie Hamano
- Lipid Signaling Project, Research Institute National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shin-Ichiro Kawazu
- Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan.,Lipid Signaling Project, Research Institute National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Fuyuki Tokumasu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA .,Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan
| |
Collapse
|
14
|
SADEGHI TAFRESHI A, ZAMANI Z, SABBAGHIAN M, KHAVARI-NEJAD RA, ARJMAND M, SADEGHI S, MOHAMMADI M. A Metabolomic Investigation of the Effect of Eosin B on Game-tocyte of Plasmodium falciparum Using 1HNMR Spectroscopy. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:592-603. [PMID: 32099562 PMCID: PMC7028228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Recently eosin B was shown to have an effect on the asexual stage of Plasmodium falciparum and in this study, its activity against gametocytes and changes in the culture medium metabolites were investigated using an1HNMR-based metabolomics approach. METHODS In the Biochemistry Department of Pasteur Institute of Iran in 2017, parasites were cultured and gametocytogenesis induced by heparin and 5% hematocrit. Sexual stage parasites were tested by eosin B in 90 well plates and IC50 determined using Lactate Dehydrogenase assay. Gametocytes were treated by IC50 dose of eosin B and the medium collected in the two groups: with eosin B and controls and sent for 1HNMR spectroscopy. The spectra were analyzed on MATLAB interface and the altered metabolites in the culture medium and eosin-affected biochemical pathways were identified by Human Metabolome Database and Metabo-analyst website. RESULTS The results revealed eosin B had an effective gametocytocidal activity against P. falciparum. The significant metabolites changed in the medium were thia-mine, Asp, Asn, Tyr, Lys, Ala, Phenylpyruvic acid, NAD+ and lipids. The main pathways identified were aminoacyl-tRNA biosynthesis, Phenylalanine, tyrosine and tryptophan biosynthesis, Alanine, aspartate and glutamate metabolism, Phenylala-nine metabolism, Nicotinate and nicotinamide metabolism, and lysine degradation. CONCLUSION Eosin B exhibited substantial gametocytocidal activity and affected important drug targets in the Plasmodium.
Collapse
Affiliation(s)
| | - Zahra ZAMANI
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran,Correspondence
| | - Marjan SABBAGHIAN
- Department of Andrology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Mohammad ARJMAND
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh SADEGHI
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam MOHAMMADI
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Ng CS, Sinha A, Aniweh Y, Nah Q, Babu IR, Gu C, Chionh YH, Dedon PC, Preiser PR. tRNA epitranscriptomics and biased codon are linked to proteome expression in Plasmodium falciparum. Mol Syst Biol 2018; 14:e8009. [PMID: 30287681 PMCID: PMC6171970 DOI: 10.15252/msb.20178009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/09/2018] [Accepted: 09/07/2018] [Indexed: 12/24/2022] Open
Abstract
Among components of the translational machinery, ribonucleoside modifications on tRNAs are emerging as critical regulators of cell physiology and stress response. Here, we demonstrate highly coordinated behavior of the repertoire of tRNA modifications of Plasmodium falciparum throughout the intra-erythrocytic developmental cycle (IDC). We observed both a synchronized increase in 22 of 28 modifications from ring to trophozoite stage, consistent with tRNA maturation during translational up-regulation, and asynchronous changes in six modifications. Quantitative analysis of ~2,100 proteins across the IDC revealed that up- and down-regulated proteins in late but not early stages have a marked codon bias that directly correlates with parallel changes in tRNA modifications and enhanced translational efficiency. We thus propose a model in which tRNA modifications modulate the abundance of stage-specific proteins by enhancing translation efficiency of codon-biased transcripts for critical genes. These findings reveal novel epitranscriptomic and translational control mechanisms in the development and pathogenesis of Plasmodium parasites.
Collapse
Affiliation(s)
- Chee Sheng Ng
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ameya Sinha
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yaw Aniweh
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Qianhui Nah
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
| | - Indrakanti Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chen Gu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yok Hian Chionh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- Department of Microbiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter R Preiser
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
16
|
Spicer TP, Gardiner DL, Schoenen FJ, Roy S, Griffin PR, Chase P, Scampavia L, Hodder P, Trenholme KR. Identification of Antimalarial Inhibitors Using Late-Stage Gametocytes in a Phenotypic Live/Dead Assay. SLAS DISCOVERY 2018; 24:38-46. [PMID: 30142014 DOI: 10.1177/2472555218796410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malaria remains a major cause of morbidity and mortality worldwide with ~3.3 billion people at risk of contracting malaria and an estimated 450,000 deaths each year. While tools to reduce the infection prevalence to low levels are currently under development, additional efforts will be required to interrupt transmission. Transmission between human host and vector by the malaria parasite involves gametogenesis in the host and uptake of gametocytes by the mosquito vector. This stage is a bottleneck for reproduction of the parasite, making it a target for small-molecule drug discovery. Targeting this stage, we used whole Plasmodium falciparum gametocytes from in vitro culture and implemented them into 1536-well plates to create a live/dead phenotypic antigametocyte assay. Using specialized equipment and upon further validation, we screened ~150,000 compounds from the NIH repository currently housed at Scripps Florida. We identified 100 primary screening hits that were tested for concentration response. Additional follow-up studies to determine specificity, potency, and increased efficacy of the antigametocyte candidate compounds resulted in a starting point for initial medicinal chemistry intervention. From this, 13 chemical analogs were subsequently tested as de novo powders, which confirmed original activity from the initial analysis and now provide a point of future engagement.
Collapse
Affiliation(s)
- Timothy P Spicer
- 1 Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,2 School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Donald L Gardiner
- 2 School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Frank J Schoenen
- 3 The University of Kansas Specialized Chemistry Center, Lawrence, KS,USA
| | - Sudeshna Roy
- 3 The University of Kansas Specialized Chemistry Center, Lawrence, KS,USA.,4 The University of Mississippi, Oxford, MS
| | - Patrick R Griffin
- 1 Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Peter Chase
- 1 Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,5 BMS, Hopewell, NJ
| | - Louis Scampavia
- 1 Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Peter Hodder
- 1 Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,6 Amgen, Inc., Thousand Oaks, CA, USA
| | - Katharine R Trenholme
- 2 School of Medicine, University of Queensland, Herston, Queensland, Australia.,7 Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Li Y, Chen M, Liu C, Xia Y, Xu B, Hu Y, Chen T, Shen M, Tang W. Metabolic changes associated with papillary thyroid carcinoma: A nuclear magnetic resonance-based metabolomics study. Int J Mol Med 2018; 41:3006-3014. [PMID: 29484373 DOI: 10.3892/ijmm.2018.3494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/29/2018] [Indexed: 11/06/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. Nuclear magnetic resonance (NMR)‑based metabolomic technique is the gold standard in metabolite structural elucidation, and can provide different coverage of information compared with other metabolomic techniques. Here, we firstly conducted NMR based metabolomics study regarding detailed metabolic changes especially metabolic pathway changes related to PTC pathogenesis. 1H NMR-based metabolomic technique was adopted in conju-nction with multivariate analysis to analyze matched tumor and normal thyroid tissues obtained from 16 patients. The results were further annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG), and Human Metabolome Database, and then were analyzed using modules of pathway analysis and enrichment analysis of MetaboAnalyst 3.0. Based on the analytical techniques, we established the models of principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal partial least-squares discriminant analysis (OPLS‑DA) which could discriminate PTC from normal thyroid tissue, and found 15 robust differentiated metabolites from two OPLS-DA models. We identified 8 KEGG pathways and 3 pathways of small molecular pathway database which were significantly related to PTC by using pathway analysis and enrichment analysis, respectively, through which we identified metabolisms related to PTC including branched chain amino acid metabolism (leucine and valine), other amino acid metabolism (glycine and taurine), glycolysis (lactate), tricarboxylic acid cycle (citrate), choline metabolism (choline, ethanolamine and glycerolphosphocholine) and lipid metabolism (very-low‑density lipoprotein and low-density lipoprotein). In conclusion, the PTC was characterized with increased glycolysis and inhibited tricarboxylic acid cycle, increased oncogenic amino acids as well as abnormal choline and lipid metabolism. The findings in this study provide new insights into detailed metabolic changes of PTC, and hold great potential in the treatment of PTC.
Collapse
Affiliation(s)
- Yanyun Li
- Department of Endocrinology, Jiangyin People's Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu 214400, P.R. China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Cuiping Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yanhui Hu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Ting Chen
- Department of Science and Education Section, Maternity and Child Care Hospital of Nanjing, Nanjing, Jiangsu 210004, P.R. China
| | - Meiping Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Wei Tang
- Department of Endocrinology, Jiangyin People's Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu 214400, P.R. China
| |
Collapse
|
18
|
Affiliation(s)
- Robert E. Sinden
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci Rep 2017; 7:607. [PMID: 28377601 PMCID: PMC5428830 DOI: 10.1038/s41598-017-00687-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/08/2017] [Indexed: 01/24/2023] Open
Abstract
Gene expression in Plasmodia integrates post-transcriptional regulation with epigenetic marking of active genomic regions through histone post-translational modifications (PTMs). To generate insights into the importance of histone PTMs to the entire asexual and sexual developmental cycles of the parasite, we used complementary and comparative quantitative chromatin proteomics to identify and functionally characterise histone PTMs in 8 distinct life cycle stages of P. falciparum parasites. ~500 individual histone PTMs were identified of which 106 could be stringently validated. 46 individual histone PTMs and 30 co-existing PTMs were fully quantified with high confidence. Importantly, 15 of these histone PTMs are novel for Plasmodia (e.g. H3K122ac, H3K27me3, H3K56me3). The comparative nature of the data revealed a highly dynamic histone PTM landscape during life cycle development, with a set of histone PTMs (H3K4ac, H3K9me1 and H3K36me2) displaying a unique and conserved abundance profile exclusively during gametocytogenesis (P < 0.001). Euchromatic histone PTMs are abundant during schizogony and late gametocytes; heterochromatic PTMs mark early gametocytes. Collectively, this data provides the most accurate, complete and comparative chromatin proteomic analyses of the entire life cycle development of malaria parasites. A substantial association between histone PTMs and stage-specific transition provides insights into the intricacies characterising Plasmodial developmental biology.
Collapse
|
20
|
Miao J, Chen Z, Wang Z, Shrestha S, Li X, Li R, Cui L. Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes. Mol Cell Proteomics 2017; 16:537-551. [PMID: 28126901 DOI: 10.1074/mcp.m116.061804] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/08/2016] [Indexed: 11/06/2022] Open
Abstract
The gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum, which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote.
Collapse
Affiliation(s)
- Jun Miao
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802;
| | - Zhao Chen
- §Department of Statistics, The Pennsylvania State University, 413 Thomas Building, University Park, Pennsylvania 16802
| | - Zenglei Wang
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Sony Shrestha
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Xiaolian Li
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Runze Li
- §Department of Statistics, The Pennsylvania State University, 413 Thomas Building, University Park, Pennsylvania 16802
| | - Liwang Cui
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802;
| |
Collapse
|
21
|
Caragata EP, Pais FS, Baton LA, Silva JBL, Sorgine MHF, Moreira LA. The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection. BMC Genomics 2017; 18:6. [PMID: 28049478 PMCID: PMC5210266 DOI: 10.1186/s12864-016-3441-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background Wolbachia is a bacterial endosymbiont that naturally infects a wide range of insect species, and causes drastic changes to host biology. Stable infections of Wolbachia in mosquitoes can inhibit infection with medically important pathogens such as dengue virus and malaria-causing Plasmodium parasites. However, some native Wolbachia strains can enhance infection with certain pathogens, as is the case for the mosquito Aedes fluviatilis, where infection with Plasmodium gallinaceum is enhanced by the native wFlu Wolbachia strain. To better understand the biological interactions between mosquitoes and native Wolbachia infections, and to investigate the process of pathogen enhancement, we used RNA-Seq to generate the transcriptome of Ae. fluviatilis with and without Wolbachia infection. Results In total, we generated 22,280,160 Illumina paired-end reads from Wolbachia-infected and uninfected mosquitoes, and used these to make a de novo transcriptome assembly, resulting in 58,013 contigs with a median sequence length of 443 bp and an N50 of 2454 bp. Contigs were annotated through local alignments using BlastX, and associated with both gene ontology and KEGG orthology terms. Through baySeq, we identified 159 contigs that were significantly upregulated due to Wolbachia infection, and 98 that were downregulated. Critically, we saw no changes to Toll or IMD immune gene transcription, but did see evidence that wFlu infection altered the expression of several bacterial recognition genes, and immune-related genes that could influence Plasmodium infection. wFlu infection also had a widespread effect on a number of host physiological processes including protein, carbohydrate and lipid metabolism, and oxidative stress. We then compared our data set with transcriptomic data for other Wolbachia infections in Aedes aegypti, and identified a core set of 15 gene groups associated with Wolbachia infection in mosquitoes. Conclusions While the scale of transcriptional changes associated with wFlu infection might be small, the scope is rather large, which confirms that native Wolbachia infections maintain intricate molecular relationships with their mosquito hosts even after lengthy periods of co-evolution. We have also identified several potential means through which wFlu infection might influence Plasmodium infection in Ae. fluviatilis, and these genes should form the basis of future investigation into the enhancement of Plasmodium by Wolbachia. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3441-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E P Caragata
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - F S Pais
- Grupo de Informática de Biossistemas e Genômica, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - L A Baton
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - J B L Silva
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - M H F Sorgine
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L A Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Fletcher S, Lucantoni L, Sykes ML, Jones AJ, Holleran JP, Saliba KJ, Avery VM. Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway. Parasit Vectors 2016; 9:589. [PMID: 27855724 PMCID: PMC5114727 DOI: 10.1186/s13071-016-1860-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023] Open
Abstract
Background In the fight against malaria, the discovery of chemical compounds with a novel mode of action and/or chemistry distinct from currently used drugs is vital to counteract the parasite’s known ability to develop drug resistance. Another desirable aspect is efficacy against gametocytes, the sexual developmental stage of the parasite which enables the transmission through Anopheles vectors. Using a chemical rescue approach, we previously identified compounds targeting Plasmodium falciparum coenzyme A (CoA) synthesis or utilization, a promising target that has not yet been exploited in anti-malarial drug development. Results We report on the outcomes of a series of biological tests that help to define the species- and stage-specificity, as well as the potential targets of these chemically diverse compounds. Compound activity against P. falciparum gametocytes was determined to assess stage-specificity and transmission-reducing potential. Against early stage gametocytes IC50 values ranging between 60 nM and 7.5 μM were obtained. With the exception of two compounds with sub-micromolar potencies across all intra-erythrocytic stages, activity against late stage gametocytes was lower. None of the compounds were specific pantothenate kinase inhibitors. Chemical rescue profiling with CoA pathway intermediates demonstrated that most compounds acted on either of the two final P. falciparum CoA synthesis enzymes, phosphopantetheine adenylyltransferase (PPAT) or dephospho CoA kinase (DPCK). The most active compound targeted either phosphopantothenoylcysteine synthetase (PPCS) or phosphopantothenoylcysteine decarboxylase (PPCDC). Species-specificity was evaluated against Trypanosoma cruzi and Trypanosoma brucei brucei. No specific activity against T. cruzi amastigotes was observed; however three compounds inhibited the viability of trypomastigotes with sub-micromolar potencies and were confirmed to act on T. b. brucei CoA synthesis. Conclusions Utilizing the compounds we previously identified as effective against asexual P. falciparum, we demonstrate for the first time that gametocytes, like the asexual stages, depend on CoA, with two compounds exhibiting sub-micromolar potencies across asexual forms and all gametocytes stages tested. Furthermore, three compounds inhibited the viability of T. cruzi and T. b. brucei trypomastigotes with sub-micromolar potencies and were confirmed to act on T. b. brucei CoA synthesis, indicating that the CoA synthesis pathway might represent a valuable new drug target in these parasite species. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1860-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabine Fletcher
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Melissa L Sykes
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Amy J Jones
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - John P Holleran
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Kevin J Saliba
- Medical School and Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
23
|
Abstract
This article attempts to draw together current knowledge on the biology of Plasmodium and experience gained from past control campaigns to interpret and guide current efforts to discover and develop exciting new strategies targeting the parasite with the objective of interrupting transmission. Particular note is made of the advantages of targeting often unappreciated small, yet vital, bottleneck populations to enhance both the impact and the useful lifetime of hard-won interventions. A case is made for the standardization of methods to measure transmission blockade to permit the rational comparison of how diverse interventions (drugs, vaccines, insecticides, Genetically Modified technologies) targeting disparate aspects of parasite biology may impact upon the commonly used parameter of parasite prevalence in the human population.
Collapse
Affiliation(s)
- R E Sinden
- The Jenner Institute, Oxford, United Kingdom.
| |
Collapse
|
24
|
Bargieri DY, Thiberge S, Tay CL, Carey AF, Rantz A, Hischen F, Lorthiois A, Straschil U, Singh P, Singh S, Triglia T, Tsuboi T, Cowman A, Chitnis C, Alano P, Baum J, Pradel G, Lavazec C, Ménard R. Plasmodium Merozoite TRAP Family Protein Is Essential for Vacuole Membrane Disruption and Gamete Egress from Erythrocytes. Cell Host Microbe 2016; 20:618-630. [PMID: 27832590 PMCID: PMC5104695 DOI: 10.1016/j.chom.2016.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/16/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022]
Abstract
Surface-associated TRAP (thrombospondin-related anonymous protein) family proteins are conserved across the phylum of apicomplexan parasites. TRAP proteins are thought to play an integral role in parasite motility and cell invasion by linking the extracellular environment with the parasite submembrane actomyosin motor. Blood stage forms of the malaria parasite Plasmodium express a TRAP family protein called merozoite-TRAP (MTRAP) that has been implicated in erythrocyte invasion. Using MTRAP-deficient mutants of the rodent-infecting P. berghei and human-infecting P. falciparum parasites, we show that MTRAP is dispensable for erythrocyte invasion. Instead, MTRAP is essential for gamete egress from erythrocytes, where it is necessary for the disruption of the gamete-containing parasitophorous vacuole membrane, and thus for parasite transmission to mosquitoes. This indicates that motor-binding TRAP family members function not just in parasite motility and cell invasion but also in membrane disruption and cell egress.
Collapse
Affiliation(s)
- Daniel Y Bargieri
- Malaria Biology and Genetics Unit, Pasteur Institute, Paris 75015, France; Department of Parasitology, University of São Paulo-USP, São Paulo 05508-000, SP, Brazil.
| | - Sabine Thiberge
- Malaria Biology and Genetics Unit, Pasteur Institute, Paris 75015, France
| | - Chwen L Tay
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Alison F Carey
- Malaria Biology and Genetics Unit, Pasteur Institute, Paris 75015, France; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alice Rantz
- Malaria Biology and Genetics Unit, Pasteur Institute, Paris 75015, France
| | - Florian Hischen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen 52074, Germany
| | - Audrey Lorthiois
- Inserm U1016, CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris 75014, France
| | - Ursula Straschil
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Pallavi Singh
- Malaria Parasite Biology and Vaccines Unit, Pasteur Institute, Paris 75015, France
| | - Shailja Singh
- Malaria Parasite Biology and Vaccines Unit, Pasteur Institute, Paris 75015, France
| | - Tony Triglia
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Alan Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3052, VIC, Australia
| | - Chetan Chitnis
- Malaria Parasite Biology and Vaccines Unit, Pasteur Institute, Paris 75015, France
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen 52074, Germany
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris 75014, France
| | - Robert Ménard
- Malaria Biology and Genetics Unit, Pasteur Institute, Paris 75015, France
| |
Collapse
|
25
|
Tay CL, Jones ML, Hodson N, Theron M, Choudhary JS, Rayner JC. Study of Plasmodium falciparum DHHC palmitoyl transferases identifies a role for PfDHHC9 in gametocytogenesis. Cell Microbiol 2016; 18:1596-1610. [PMID: 27060339 PMCID: PMC5091645 DOI: 10.1111/cmi.12599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 11/26/2022]
Abstract
Palmitoylation is the post-translational reversible addition of the acyl moiety, palmitate, to cysteine residues of proteins and is involved in regulating protein trafficking, localization, stability and function. The Aspartate-Histidine-Histidine-Cysteine (DHHC) protein family, named for their highly conserved DHHC signature motif, is thought to be responsible for catalysing protein palmitoylation. Palmitoylation is widespread in all eukaryotes, including the malaria parasite, Plasmodium falciparum, where over 400 palmitoylated proteins are present in the asexual intraerythrocytic schizont stage parasites, including proteins involved in key aspects of parasite maturation and development. The P. falciparum genome includes 12 proteins containing the conserved DHHC motif. In this study, we adapted a palmitoyl-transferase activity assay for use with P. falciparum proteins and demonstrated for the first time that P. falciparum DHHC proteins are responsible for the palmitoylation of P. falciparum substrates. This assay also reveals that multiple DHHCs are capable of palmitoylating the same substrate, indicating functional redundancy at least in vitro. To test whether functional redundancy also exists in vivo, we investigated the endogenous localization and essentiality of a subset of schizont-expressed PfDHHC proteins. Individual PfDHHC proteins localized to distinct organelles, including parasite-specific organelles such as the rhoptries and inner membrane complex. Knock-out studies identified individual DHHCs that may be essential for blood-stage growth and others that were functionally redundant in the blood stages but may have functions in other stages of parasite development. Supporting this hypothesis, disruption of PfDHHC9 had no effect on blood-stage growth but reduced the formation of gametocytes, suggesting that this protein could be exploited as a transmission-blocking target. The localization and stage-specific expression of the DHHC proteins may be important for regulating their substrate specificity and thus may provide a path for inhibitor development.
Collapse
Affiliation(s)
- Chwen L Tay
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Matthew L Jones
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Nicola Hodson
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Michel Theron
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
26
|
Routine in vitro culture of P. falciparum gametocytes to evaluate novel transmission-blocking interventions. Nat Protoc 2016; 11:1668-80. [DOI: 10.1038/nprot.2016.096] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Glennon EKK, Adams LG, Hicks DR, Dehesh K, Luckhart S. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission. Am J Trop Med Hyg 2016; 94:1266-75. [PMID: 27001761 DOI: 10.4269/ajtmh.15-0904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 01/20/2023] Open
Abstract
Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - L Garry Adams
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - Derrick R Hicks
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - Katayoon Dehesh
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| |
Collapse
|
28
|
Dantzler KW, Ravel DB, Brancucci NM, Marti M. Ensuring transmission through dynamic host environments: host-pathogen interactions in Plasmodium sexual development. Curr Opin Microbiol 2015; 26:17-23. [PMID: 25867628 DOI: 10.1016/j.mib.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
Abstract
A renewed global commitment to malaria elimination lends urgency to understanding the biology of Plasmodium transmission stages. Recent progress toward uncovering the mechanisms underlying Plasmodium falciparum sexual differentiation and maturation reveals potential targets for transmission-blocking drugs and vaccines. The identification of parasite factors that alter sexual differentiation, including extracellular vesicles and a master transcriptional regulator, suggest that parasites make epigenetically controlled developmental decisions based on environmental cues. New insights into sexual development, especially host cell remodeling and sequestration in the bone marrow, highlight open questions regarding parasite homing to the tissue, transmigration across the vascular endothelium, and maturation in the parenchyma. Novel molecular and translational tools will provide further opportunities to define host-parasite interactions and design effective transmission-blocking therapeutics.
Collapse
Affiliation(s)
- Kathleen W Dantzler
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Deepali B Ravel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicolas Mb Brancucci
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Sinden RE. The cell biology of malaria infection of mosquito: advances and opportunities. Cell Microbiol 2015; 17:451-66. [PMID: 25557077 PMCID: PMC4409862 DOI: 10.1111/cmi.12413] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023]
Abstract
Recent reviews (Feachem et al.; Alonso et al.) have concluded that in order to have a sustainable impact on the global burden of malaria, it is essential that we knowingly reduce the global incidence of infected persons. To achieve this we must reduce the basic reproductive rate of the parasites to < 1 in diverse epidemiological settings. This can be achieved by impacting combinations of the following parameters: the number of mosquitoes relative to the number of persons, the mosquito/human biting rate, the proportion of mosquitoes carrying infectious sporozoites, the daily survival rate of the infectious mosquito and the ability of malaria-infected persons to infect mosquito vectors. This paper focuses on our understanding of parasite biology underpinning the last of these terms: infection of the mosquito. The article attempts to highlight central issues that require further study to assist in the discovery of useful transmission-blocking measures.
Collapse
Affiliation(s)
- R E Sinden
- Department of Life Sciences, Imperial College London and the Jenner Institute, The University of Oxford, Oxford, UK
| |
Collapse
|