1
|
Saavedra-Samillán M, Burgos F, García Huamán F, Valdivia HO, Gamboa D, Chenet SM. Spatiotemporal dynamics of malaria and climate influence on its incidence in Condorcanqui Province, 2005-2022. Malar J 2024; 23:380. [PMID: 39695645 DOI: 10.1186/s12936-024-05193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Amazonas is a region in northern Peru with the second-highest incidence of malaria. Approximately 95% of the cases are reported in the Condorcanqui province, where native communities living along the banks of Santiago River lack access to potable water, sewage, and electricity. This study aimed to analyse malaria's spatial, temporal, and climatic characteristics in Condorcanqui to guide future studies and prevention strategies. METHODS A database provided by DIRESA-Amazonas was evaluated. Database included cases from 44 health facilities serving 112 native communities. According to the malaria control programs implemented in Peru, the study was divided into three periods: 2005-2010, 2011-2016, and 2017-2022. A Spearman correlation analysis was also conducted to assess the relationship between malaria incidence and climate variables. RESULTS During the study periods, 10,632 cases were reported, including Plasmodium vivax (84.87%), Plasmodium falciparum (14.91%) and Plasmodium malariae (0.23%) infections. Annual incidence rates (AIRs) significantly varied across the study periods (p < 0.001). A significant reduction in malaria incidence occurred during the first period, largely attributed to PAMAFRO programme interventions. Subsequent periods, showed a gradual increase in cases, with a peak of P. vivax in 2019 and the reintroduction of P. falciparum. Males and individuals aged 0-11 years presented the greatest number of cases. Significant correlations were found between malaria incidence and the Oceanic Niño Index (ONI) at lag0 (ρ = 0.14, p = 0.037), corrected precipitation at lag1 (ρ = 0.16, p = 0.020), and minimum wind speed at lag1 (ρ = 0.15, p = 0.024). CONCLUSIONS Malaria incidence in Condorcanqui has increased over the last 5 years, driven by climatic influences such as the ONI, precipitation, and low wind speeds. Without immediate preventive efforts, cases are expected to continue rising. Effective control strategies must tackle the social, economic, and political issues that heighten vulnerability, such as poverty and limited healthcare access. Maintaining control initiatives and tailoring them to local needs will be essential for achieving long-term reductions of malaria in Peru.
Collapse
Affiliation(s)
- Milagros Saavedra-Samillán
- Instituto de Investigación de Enfermedades Tropicales (IET), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, Peru
| | - Fátima Burgos
- Instituto de Investigación de Enfermedades Tropicales (IET), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, Peru
| | - Flor García Huamán
- Instituto de Investigación de Enfermedades Tropicales (IET), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, Peru
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, Perú
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Dionicia Gamboa
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stella M Chenet
- Instituto de Investigación de Enfermedades Tropicales (IET), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, Peru.
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, Peru.
| |
Collapse
|
2
|
Popkin-Hall ZR, Niaré K, Crudale R, Simkin A, Fola AA, Sanchez JF, Pannebaker DL, Giesbrecht DJ, Kim IE, Aydemir Ö, Bailey JA, Valdivia HO, Juliano JJ. High-throughput genotyping of Plasmodium vivax in the Peruvian Amazon via molecular inversion probes. Nat Commun 2024; 15:10219. [PMID: 39587110 PMCID: PMC11589703 DOI: 10.1038/s41467-024-54731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
Plasmodium vivax transmission occurs throughout the tropics and is an emerging threat in areas of Plasmodium falciparum decline, causing relapse infections that complicate treatment and control. Targeted sequencing for P. falciparum has been widely deployed to detect population structure and the geographic spread of antimalarial and diagnostic resistance. However, there are fewer such tools for P. vivax. Leveraging global variation data, we designed four molecular inversion probe (MIP) genotyping panels targeting geographically differentiating SNPs, neutral SNPs, putative antimalarial resistance genes, and vaccine candidate genes. We deployed these MIP panels on 866 infections from the Peruvian Amazon and identified transmission networks with clonality (IBD[identity by descent]>0.99), copy number variation in Pvdbp and multiple Pvrbps, mutations in antimalarial resistance orthologs, and balancing selection in 13 vaccine candidate genes. Our MIP panels are the broadest genotyping panel currently available and are poised for successful deployment in other regions of P. vivax transmission.
Collapse
Affiliation(s)
- Zachary R Popkin-Hall
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA.
| | - Karamoko Niaré
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Rebecca Crudale
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Alfred Simkin
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Juan F Sanchez
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Danielle L Pannebaker
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - David J Giesbrecht
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Isaac E Kim
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Özkan Aydemir
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum of Genetics and Molecular Biology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Cáceres Carrera L, Santamaría AM, Castillo AM, Romero L, Urriola E, Torres-Cosme R, Calzada JE. Detection through the use of RT-MqPCR of asymptomatic reservoirs of malaria in samples of patients from the indigenous Comarca of Guna Yala, Panama: Essential method to achieve the elimination of malaria. PLoS One 2024; 19:e0305558. [PMID: 39046959 PMCID: PMC11268588 DOI: 10.1371/journal.pone.0305558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 06/02/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Plasmodium vivax is the main causative agent of malaria in Panama. However, the prevalence of asymptomatic infections in the different endemic regions remains unknown. Understanding the epidemiological behavior of asymptomatic infections is essential for the elimination of malaria. This study aimed to determine the prevalence of asymptomatic malarial infections in one of the main endemic regions of Panama using multiplex real-time reverse transcription RT-MqPCR. METHODS A cross-sectional study was conducted in three communities in the Guna Yala Comarca. A total of 551 thick blood smears and their respective samples on filter paper were collected from volunteers of different ages and sexes from June 20 to 25, 2016. Infections by the Plasmodium spp. were diagnosed using microscopy and RT-MqPCR. All statistical analyses were performed using the R software. RESULTS The average prevalence of asymptomatic infections by P. vivax in the three communities detected by RT-MqPCR was 9.3%, with Ukupa having the highest prevalence (13.4%), followed by Aidirgandi (11.1%) and Irgandi (3.3%). A total of 74 samples were diagnosed as asymptomatic infections using RT-MqPCR. Light microscopy (LM) detected that 17.6% (13/74) of the asymptomatic samples and 82.4% (61/74) were diagnosed as false negatives. A 100% correlation was observed between samples diagnosed using LM and RT-MqPCR. A total of 52.7% (39/74) of the asymptomatic patients were female and 85.1% (63/74) were registered between the ages of 1 and 21 years. Factors associated with asymptomatic infection were community (aOR = 0.38 (95% CI 0.17-0.83), p < 0.001) and age aOR = 0.98 (95% CI 0.97-1.00), p < 0.05); F = 5.38; p < 0.05). CONCLUSIONS This study provides novel evidence of the considerable prevalence of asymptomatic P. vivax infections in the endemic region of Kuna Yala, representing a new challenge that requires immediate attention from the National Malaria Program. The results of this study provide essential information for the health authorities responsible for developing new policies. Furthermore, it will allow program administrators to reorient and design effective malaria control strategies that consider asymptomatic infections as a fundamental part of malaria control and move towards fulfilling their commitment to eliminate it.
Collapse
Affiliation(s)
- Lorenzo Cáceres Carrera
- Departmento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Ana María Santamaría
- Departmento de Parasitología del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Anakena Margarita Castillo
- Departmento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Luis Romero
- Laboratorio Central de Referencia en Salud Pública del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Eduardo Urriola
- Facultad de Ciencias Biomédicas, Universidad Latina de Panamá, Ciudad de Panamá, Panamá
| | - Rolando Torres-Cosme
- Departmento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - José Eduardo Calzada
- Departmento de Parasitología del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| |
Collapse
|
4
|
Villena FE, Sanchez JF, Nolasco O, Braga G, Ricopa L, Barazorda K, Salas CJ, Lucas C, Lizewski SE, Joya CA, Gamboa D, Delgado-Ratto C, Valdivia HO. Drug resistance and population structure of Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon. Sci Rep 2022; 12:16474. [PMID: 36182962 PMCID: PMC9526214 DOI: 10.1038/s41598-022-21028-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Malaria is a major health problem in Peru despite substantial progress achieved by the ongoing malaria elimination program. This study explored the population genetics of 63 Plasmodium falciparum and 170 P. vivax cases collected in the Peruvian Amazon Basin between 2015 and 2019. Microscopy and PCR were used for malaria detection and positive samples were genotyped at neutral and drug resistance-associated regions. The P. falciparum population exhibited a low nucleotide diversity (π = 0.02) whereas the P. vivax population presented a higher genetic diversity (π = 0.34). All P. falciparum samples (n = 63) carried chloroquine (CQ) resistant mutations on Pfcrt. Most P. falciparum samples (53 out of 54) carried sulfadoxine (SD) resistant mutations on Pfdhfr and Pfdhps. No evidence was found of artemisinin resistance mutations on kelch13. Population structure showed that a single cluster accounted for 93.4% of the P. falciparum samples whereas three clusters were found for P. vivax. Our study shows a low genetic diversity for both species with significant differences in genetic sub-structuring. The high prevalence of CQ-resistance mutations could be a result of indirect selection pressures driven by the P. vivax treatment scheme. These results could be useful for public health authorities to safeguard the progress that Peru has achieved towards malaria elimination.
Collapse
Affiliation(s)
| | - Juan F Sanchez
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Oscar Nolasco
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 31, Peru
| | - Greys Braga
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | | | - Carola J Salas
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Carmen Lucas
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Stephen E Lizewski
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Christie A Joya
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 31, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Peru
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 31, Peru.,Malaria Research Group (MaRCH), Global Health Institute, University of Antwerp, 2610, Antwerp, Belgium
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru.
| |
Collapse
|
5
|
Fernandez-Miñope C, Delgado-Ratto C, Contreras-Mancilla J, Ferrucci HR, Llanos-Cuentas A, Gamboa D, Van Geertruyden JP. Towards one standard treatment for uncomplicated Plasmodium falciparum and Plasmodium vivax malaria: Perspectives from and for the Peruvian Amazon. Int J Infect Dis 2021; 105:293-297. [PMID: 33596478 DOI: 10.1016/j.ijid.2021.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022] Open
Abstract
Malaria continues to wreak havoc in the Peruvian Amazon. Lengthy research efforts have brought important lessons on its particular epidemiology: the heterogeneous levels of transmission, the large reservoir of both asymptomatic and submicroscopic infections, the co-transmission of Plasmodium vivax and Plasmodium falciparum in the same areas, and the limitations of current diagnostics. Based on these features, the national elimination program could greatly benefit from simplified standard treatment, with the use of artemisinin-based combination therapy and even shorter schemes of primaquine maintaing the total dosing. It is acknowledged that there is some uncertainty regarding the true prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PD) and genetic polymorphisms related to cytochrome P-450 isozyme 2D6 functioning. Once we have a better understanding, tafenoquine, whether or not in combination with a rapid G6PD enzyme test, may become a future pathway to eliminate the otherwise hidden reservoir of the P. vivax hypnozoite through one standard Plasmodium treatment.
Collapse
Affiliation(s)
- Carlos Fernandez-Miñope
- Global Health Institute, University of Antwerp, Antwerp, Belgium; Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Christopher Delgado-Ratto
- Global Health Institute, University of Antwerp, Antwerp, Belgium; Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Juan Contreras-Mancilla
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | |
Collapse
|
6
|
Kattenberg JH, Razook Z, Keo R, Koepfli C, Jennison C, Lautu-Gumal D, Fola AA, Ome-Kaius M, Barnadas C, Siba P, Felger I, Kazura J, Mueller I, Robinson LJ, Barry AE. Monitoring Plasmodium falciparum and Plasmodium vivax using microsatellite markers indicates limited changes in population structure after substantial transmission decline in Papua New Guinea. Mol Ecol 2020; 29:4525-4541. [PMID: 32985031 PMCID: PMC10008436 DOI: 10.1111/mec.15654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/27/2020] [Indexed: 02/01/2023]
Abstract
Monitoring the genetic structure of pathogen populations may be an economical and sensitive approach to quantify the impact of control on transmission dynamics, highlighting the need for a better understanding of changes in population genetic parameters as transmission declines. Here we describe the first population genetic analysis of two major human malaria parasites, Plasmodium falciparum (Pf) and Plasmodium vivax (Pv), following nationwide distribution of long-lasting insecticide-treated nets (LLINs) in Papua New Guinea (PNG). Parasite isolates from pre- (2005-2006) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite parasite prevalence declining substantially (East Sepik Province: Pf = 54.9%-8.5%, Pv = 35.7%-5.6%, Madang Province: Pf = 38.0%-9.0%, Pv: 31.8%-19.7%), genetically diverse and intermixing parasite populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East Sepik: Rs = 7.1-6.4, HE = 0.77-0.71; Madang: Rs = 8.2-6.1, HE = 0.79-0.71). Unexpectedly, population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more frequent human movement between provinces may have contributed to higher gene flow. Pv prevalence initially declined but increased again in one province, yet diversity remained high throughout the study period (East Sepik: Rs = 11.4-9.3, HE = 0.83-0.80; Madang: Rs = 12.2-14.5, HE = 0.85-0.88). Although genetic differentiation values increased between provinces over time, no significant population structure was observed at any time point. For both species, a decline in multiple infections and increasing clonal transmission and significant multilocus linkage disequilibrium post-LLIN were positive indicators of impact on the parasite population using microsatellite markers. These parameters may be useful adjuncts to traditional epidemiological tools in the early stages of transmission reduction.
Collapse
Affiliation(s)
- Johanna Helena Kattenberg
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea
| | - Zahra Razook
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Raksmei Keo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Charlie Jennison
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Abebe A Fola
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Maria Ome-Kaius
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Céline Barnadas
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - James Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Alyssa E Barry
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Manrique P, Miranda-Alban J, Alarcon-Baldeon J, Ramirez R, Carrasco-Escobar G, Herrera H, Guzman-Guzman M, Rosas-Aguirre A, Llanos-Cuentas A, Vinetz JM, Escalante AA, Gamboa D. Microsatellite analysis reveals connectivity among geographically distant transmission zones of Plasmodium vivax in the Peruvian Amazon: A critical barrier to regional malaria elimination. PLoS Negl Trop Dis 2019; 13:e0007876. [PMID: 31710604 PMCID: PMC6874088 DOI: 10.1371/journal.pntd.0007876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/21/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022] Open
Abstract
Despite efforts made over decades by the Peruvian government to eliminate malaria, Plasmodium vivax remains a challenge for public health decision-makers in the country. The uneven distribution of its incidence, plus its complex pattern of dispersion, has made ineffective control measures based on global information that lack the necessary detail to understand transmission fully. In this sense, population genetic tools can complement current surveillance. This study describes the genetic diversity and population structure from September 2012 to March 2015 in three geographically distant settlements, Cahuide (CAH), Lupuna (LUP) and Santa Emilia (STE), located in the Peruvian Amazon. A total 777 P. vivax mono-infections, out of 3264, were genotyped. Among study areas, LUP showed 19.7% of polyclonal infections, and its genetic diversity (Hexp) was 0.544. Temporal analysis showed a significant increment of polyclonal infections and Hexp, and the introduction and persistence of a new parasite population since March 2013. In STE, 40.1% of infections were polyclonal, with Hexp = 0.596. The presence of four genetic clusters without signals of clonal expansion and infections with lower parasite densities compared against the other two areas were also found. At least four parasite populations were present in CAH in 2012, where, after June 2014, malaria cases decreased from 213 to 61, concomitant with a decrease in polyclonal infections (from 0.286 to 0.18), and expectedly variable Hexp. Strong signals of gene flow were present in the study areas and wide geographic distribution of highly diverse parasite populations were found. This study suggests that movement of malaria parasites by human reservoirs connects geographically distant malaria transmission areas in the Peruvian Amazon. The maintenance of high levels of parasite genetic diversity through human mobility is a critical barrier to malaria elimination in this region. Plasmodium vivax transmission is heterogeneous and discontinuous in the Peruvian Amazon. Such heterogeneity is the result of factors that include, but are not restricted to, the environment, public policies, and characteristics of the parasite, the vector, and human activities. All these factors make P. vivax transmission resilient to interventions. In order to achieve the goals of control and local elimination, P. vivax surveillance must inform how those factors sustain disease transmission in order to focalize and synchronize control strategies. In this study, we implemented molecular surveillance complemented with population genetic tools in the areas of Cahuide, Lupuna, and Santa Emilia located in the Peruvian Amazon. In particular, we characterize the transmission and the parasite genetic variation in these sites from September 2012 to March 2015. The changes in parasite diversity, the wide geographic dispersion of parasite subpopulation and the introduction of a new parasite clone or subpopulation in Lupuna documented in this study suggest that connectivity among the different endemic areas, likely due to human mobility, sustains disease transmission in the region hindering the success of control measures. This information must be considered in the design of current control strategies.
Collapse
Affiliation(s)
- Paulo Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- * E-mail:
| | - Julio Miranda-Alban
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jhonatan Alarcon-Baldeon
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Roberson Ramirez
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Henry Herrera
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Fund for Scientific Research FNRS, Brussels, Belgium
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Yale School of Medicine, Section of Infectious Diseases, Department of Internal Medicine, New Haven, Connecticut, United States of America
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Ananias A. Escalante
- Institute for Genomics and Evolutionary Medicine (IGEM), Temple University, Philadelphia, Pennsylvania, United States of America
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
8
|
Moreno-Gutierrez D, Llanos-Cuentas A, Luis Barboza J, Contreras-Mancilla J, Gamboa D, Rodriguez H, Carrasco-Escobar G, Boreux R, Hayette MP, Beutels P, Speybroeck N, Rosas-Aguirre A. Effectiveness of a Malaria Surveillance Strategy Based on Active Case Detection during High Transmission Season in the Peruvian Amazon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122670. [PMID: 30486449 PMCID: PMC6314008 DOI: 10.3390/ijerph15122670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Background: Faced with the resurgence of malaria, malaria surveillance in the Peruvian Amazon incorporated consecutive active case detection (ACD) interventions using light microscopy (LM) as reactive measure in communities with an unusual high number of cases during high transmission season (HTS). We assessed the effectiveness in malaria detection of this local ACD-based strategy. Methods: A cohort study was conducted in June–July 2015 in Mazan, Loreto. Four consecutive ACD interventions at intervals of 10 days were conducted in four riverine communities (Gamitanacocha, Primero de Enero, Libertad and Urco Miraño). In each intervention, all inhabitants were visited at home, and finger-prick blood samples collected for immediate diagnosis by LM and on filter paper for later analysis by quantitative real-time polymerase chain reaction (qPCR). Effectiveness was calculated by dividing the number of malaria infections detected using LM by the number of malaria infections detected by delayed qPCR. Results: Most community inhabitants (88.1%, 822/933) were present in at least one of the four ACD interventions. A total of 451 infections were detected by qPCR in 446 participants (54.3% of total participants); five individuals had two infections. Plasmodium vivax was the predominant species (79.8%), followed by P. falciparum (15.3%) and P. vivax-P. falciparum co-infections (4.9%). Most qPCR-positive infections were asymptomatic (255/448, 56.9%). The ACD-strategy using LM had an effectiveness of 22.8% (detection of 103 of the total qPCR-positive infections). Children aged 5–14 years, and farming as main economic activity were associated with P. vivax infections. Conclusions: Although the ACD-strategy using LM increased the opportunity of detecting and treating malaria infections during HTS, the number of detected infections was considerably lower than the real burden of infections (those detected by qPCR).
Collapse
Affiliation(s)
- Diamantina Moreno-Gutierrez
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Loreto 160, Peru.
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium.
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - José Luis Barboza
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Juan Contreras-Mancilla
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Hugo Rodriguez
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Loreto 160, Peru.
| | - Gabriel Carrasco-Escobar
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raphaël Boreux
- Department of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liège, 4000 Liège, Belgium.
| | - Marie-Pierre Hayette
- Department of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liège, 4000 Liège, Belgium.
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium.
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
| | - Angel Rosas-Aguirre
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| |
Collapse
|
9
|
Cowell AN, Valdivia HO, Bishop DK, Winzeler EA. Exploration of Plasmodium vivax transmission dynamics and recurrent infections in the Peruvian Amazon using whole genome sequencing. Genome Med 2018; 10:52. [PMID: 29973248 PMCID: PMC6032790 DOI: 10.1186/s13073-018-0563-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plasmodium vivax poses a significant challenge to malaria elimination due to its ability to cause relapsed infections from reactivation of dormant liver parasites called hypnozoites. We analyzed 69 P. vivax whole genome sequences obtained from subjects residing in three different villages along the Peruvian Amazon. This included 23 paired P. vivax samples from subjects who experienced recurrent P. vivax parasitemia following observed treatment with chloroquine and primaquine. METHODS Genomic DNA was extracted from whole blood samples collected from subjects. P. vivax DNA was enriched using selective whole genome amplification and whole genome sequencing. We used single nucleotide polymorphisms (SNPs) from the core P. vivax genome to determine characteristics of the parasite population using discriminant analysis of principal components, maximum likelihood estimation of individual ancestries, and phylogenetic analysis. We estimated the relatedness of the paired samples by calculating the number of segregating sites and using a hidden Markov model approach to estimate identity by descent. RESULTS We present a comprehensive dataset of population genetics of Plasmodium vivax in the Peruvian Amazonian. We define the parasite population structure in this region and demonstrate a novel method for distinguishing homologous relapses from reinfections or heterologous relapses with improved accuracy. The parasite population in this area was quite diverse with an estimated five subpopulations and evidence of a highly heterogeneous ancestry of some of the isolates, similar to previous analyses of P. vivax in this region. Pairwise comparison of recurrent infections determined that there were 12 homologous relapses and 3 likely heterologous relapses with highly related parasites. To the best of our knowledge, this is the first large-scale study to evaluate recurrent P. vivax infections using whole genome sequencing. CONCLUSIONS Whole genome sequencing is a high-resolution tool that can identify P. vivax homologous relapses with increased sensitivity, while also providing data about drug resistance and parasite population genetics. This information is important for evaluating the efficacy of known and novel antirelapse medications in endemic areas and thus advancing the campaign to eliminate malaria.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| | - Hugo O Valdivia
- U.S. Naval Medical Research No. 6, Venezuela Ave, Block 36, Bellavista, Callao, Peru
| | - Danett K Bishop
- U.S. Naval Medical Research No. 6, Venezuela Ave, Block 36, Bellavista, Callao, Peru
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
10
|
Ventocilla JA, Nuñez J, Tapia LL, Lucas CM, Manock SR, Lescano AG, Edgel KA, Graf PCF. Genetic Variability of Plasmodium vivax in the North Coast of Peru and the Ecuadorian Amazon Basin. Am J Trop Med Hyg 2018; 99:27-32. [PMID: 29761758 DOI: 10.4269/ajtmh.17-0498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the Peruvian North Coast (PNC), the number of Plasmodium vivax malaria cases increased steadily from 2007 to 2010 despite a significant decline in the overall number of cases in Peru during the same period. To better understand the transmission dynamics of P. vivax populations in the PNC and the neighboring Ecuadorian Amazon Basin (EAB), we studied the genetic variability and population structure of P. vivax in these areas. One hundred and twenty P. vivax isolates (58 from Piura and 37 from Tumbes in the PNC collected from 2008 to 2010 and 25 from the EAB collected in Pastaza from 2001 to 2004) were assessed by five polymorphic microsatellite markers. Genetic variability was determined by expected heterozygosity (He) and population structure by Bayesian inference cluster analysis. We found very low genetic diversity in the PNC (He = 0-0.32) but high genetic diversity in the EAB (He = 0.43-0.70). Population structure analysis revealed three distinct populations in the three locations. Six of 37 (16%) isolates from Tumbes had an identical haplotype to that found in Piura, suggesting unidirectional flow from Piura to Tumbes. In addition, one haplotype from Tumbes showed similarity to a haplotype found in Pastaza, suggesting that this could be an imported case from EAB. These findings strongly suggest a minimal population flow and different levels of genetic variability between these two areas divided by the Andes Mountains. This work presents molecular markers that could be used to increase our understanding of regional malaria transmission dynamics, which has implications for the development of strategies for P. vivax control.
Collapse
Affiliation(s)
| | - Jorge Nuñez
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | - L Lorena Tapia
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | - Carmen M Lucas
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | | | - Andrés G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration Universidad Peruana Cayetano Heredia, Lima, Peru.,U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | | | | |
Collapse
|
11
|
Nationwide genetic surveillance of Plasmodium vivax in Papua New Guinea reveals heterogeneous transmission dynamics and routes of migration amongst subdivided populations. INFECTION GENETICS AND EVOLUTION 2017; 58:83-95. [PMID: 29313805 DOI: 10.1016/j.meegid.2017.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022]
Abstract
The Asia Pacific Leaders in Malaria Alliance (APLMA) have committed to eliminate malaria from the region by 2030. Papua New Guinea (PNG) has the highest malaria burden in the Asia-Pacific region but with the intensification of control efforts since 2005, transmission has been dramatically reduced and Plasmodium vivax is now the dominant malaria infection in some parts of the country. To gain a better understanding of the transmission dynamics and migration patterns of P. vivax in PNG, here we investigate population structure in eight geographically and ecologically distinct regions of the country. A total of 219 P. vivax isolates (16-30 per population) were successfully haplotyped using 10 microsatellite markers. A wide range of genetic diversity (He=0.37-0.87, Rs=3.60-7.58) and significant multilocus linkage disequilibrium (LD) was observed in six of the eight populations (IAS=0.08-0.15 p-value<0.05) reflecting a spectrum of transmission intensities across the country. Genetic differentiation between regions was evident (Jost's D=0.07-0.72), with increasing divergence of populations with geographic distance. Overall, P. vivax isolates clustered into three major genetic populations subdividing the Mainland lowland and coastal regions, the Islands and the Highlands. P. vivax gene flow follows major human migration routes, and there was higher gene flow amongst Mainland parasite populations than among Island populations. The Central Province (samples collected in villages close to the capital city, Port Moresby), acts as a sink for imported infections from the three major endemic areas. These insights into P. vivax transmission dynamics and population networks will inform targeted strategies to contain malaria infections and to prevent the spread of drug resistance in PNG.
Collapse
|
12
|
Carrasco-Escobar G, Miranda-Alban J, Fernandez-Miñope C, Brouwer KC, Torres K, Calderon M, Gamboa D, Llanos-Cuentas A, Vinetz JM. High prevalence of very-low Plasmodium falciparum and Plasmodium vivax parasitaemia carriers in the Peruvian Amazon: insights into local and occupational mobility-related transmission. Malar J 2017; 16:415. [PMID: 29037202 PMCID: PMC5644076 DOI: 10.1186/s12936-017-2063-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of malaria due both to Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon has risen in the past 5 years. This study tested the hypothesis that the maintenance and emergence of malaria in hypoendemic regions such as Amazonia is determined by submicroscopic and asymptomatic Plasmodium parasitaemia carriers. The present study aimed to precisely quantify the rate of very-low parasitaemia carriers in two sites of the Peruvian Amazon in relation to transmission patterns of P. vivax and P. falciparum in this area. METHODS This study was carried out within the Amazonian-ICEMR longitudinal cohort. Blood samples were collected for light microscopy diagnosis and packed red blood cell (PRBC) samples were analysed by qPCR. Plasma samples were tested for total IgG reactivity against recombinant PvMSP-10 and PfMSP-10 antigens by ELISA. Occupation and age 10 years and greater were considered surrogates of occupation-related mobility. Risk factors for P. falciparum and P. vivax infections detected by PRBC-qPCR were assessed by multilevel logistic regression models. RESULTS Among 450 subjects, the prevalence of P. vivax by PRBC-PCR (25.1%) was sixfold higher than that determined by microscopy (3.6%). The prevalence of P. falciparum infection was 4.9% by PRBC-PCR and 0.2% by microscopy. More than 40% of infections had parasitaemia under 5 parasites/μL. Multivariate analysis for infections detected by PRBC-PCR showed that participants with recent settlement in the study area (AOR 2.1; 95% CI 1.03:4.2), age ≥ 30 years (AOR 3.3; 95% CI 1.6:6.9) and seropositivity to P. vivax (AOR 1.8; 95% CI 1.0:3.2) had significantly higher likelihood of P. vivax infection, while the odds of P. falciparum infection was higher for participants between 10 and 29 years (AOR 10.7; 95% CI 1.3:91.1) and with a previous P. falciparum infection (AOR 10.4; 95% CI 1.5:71.1). CONCLUSIONS This study confirms the contrasting transmission patterns of P. vivax and P. falciparum in the Peruvian Amazon, with stable local transmission for P. vivax and the source of P. falciparum to the study villages dominated by very low parasitaemia carriers, age 10 years and older, who had travelled away from home for work and brought P. falciparum infection with them.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Julio Miranda-Alban
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Fernandez-Miñope
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kimberly C. Brouwer
- Division of Epidemiology, Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA USA
| | - Katherine Torres
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maritza Calderon
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC0760, Biomedical Research Facility-2, Room 4A16, La Jolla, CA USA
| |
Collapse
|
13
|
Carrasco-Escobar G, Gamboa D, Castro MC, Bangdiwala SI, Rodriguez H, Contreras-Mancilla J, Alava F, Speybroeck N, Lescano AG, Vinetz JM, Rosas-Aguirre A, Llanos-Cuentas A. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Sci Rep 2017; 7:8082. [PMID: 28808240 PMCID: PMC5556029 DOI: 10.1038/s41598-017-07818-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
Malaria has steadily increased in the Peruvian Amazon over the last five years. This study aimed to determine the parasite prevalence and micro-geographical heterogeneity of Plasmodium vivax parasitaemia in communities of the Peruvian Amazon. Four cross-sectional active case detection surveys were conducted between May and July 2015 in four riverine communities in Mazan district. Analysis of 2785 samples of 820 individuals nested within 154 households for Plasmodium parasitaemia was carried out using light microscopy and qPCR. The spatio-temporal distribution of Plasmodium parasitaemia, dominated by P. vivax, was shown to cluster at both household and community levels. Of enrolled individuals, 47% had at least one P. vivax parasitaemia and 10% P. falciparum, by qPCR, both of which were predominantly sub-microscopic and asymptomatic. Spatial analysis detected significant clustering in three communities. Our findings showed that communities at small-to-moderate spatial scales differed in P. vivax parasite prevalence, and multilevel Poisson regression models showed that such differences were influenced by factors such as age, education, and location of households within high-risk clusters, as well as factors linked to a local micro-geographic context, such as travel and occupation. Complex transmission patterns were found to be related to human mobility among communities in the same micro-basin.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celularesy Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shrikant I Bangdiwala
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | | | - Juan Contreras-Mancilla
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Andres G Lescano
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celularesy Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
14
|
Flores-Alanis A, González-Cerón L, Santillán F, Ximenez C, Sandoval MA, Cerritos R. Temporal genetic changes in Plasmodium vivax apical membrane antigen 1 over 19 years of transmission in southern Mexico. Parasit Vectors 2017; 10:217. [PMID: 28464959 PMCID: PMC5414334 DOI: 10.1186/s13071-017-2156-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/25/2017] [Indexed: 01/21/2023] Open
Abstract
Background Mexico advanced to the pre-elimination phase in 2009 due to a significant reduction in malaria cases, and since 2000, Plasmodium vivax is the only species transmitted. During the last two decades, malaria transmission has been mostly local and isolated to a few regions. It is important to gain further insights into the impact of control measures on the parasite population structure. Hence, the aim of the current study was to determine detailed changes in P. vivax genetic diversity and population structure based on analysing the gene that encodes the apical membrane antigen 1 (pvama1). This analysis covered from control to pre-elimination (1993–2011) in a hypo-endemic region in southern Mexico. Results The 213 pvama1I-II sequences presently analysed were grouped into six periods of three years each. They showed low genetic diversity, with 15 haplotypes resolved. Among the DNA sequences, there was a gradual decrease in genetic diversity, the number of mixed genotype infections and the intensity of positive selection, in agreement with the parallel decline in malaria cases. At the same time, linkage disequilibrium (R2) increased. The three-dimensional haplotype network revealed that pvama1I-II haplotypes were separated by 1–11 mutational steps, and between one another by 0–3 unsampled haplotypes. In the temporal network, seven haplotypes were detected in at least two of the six-time layers, and only four distinct haplotypes were evidenced in the pre-elimination phase. Structure analysis indicated that three subpopulations fluctuated over time. Only 8.5% of the samples had mixed ancestry. In the pre-elimination phase, subpopulation P1 was drastically reduced, and the admixture was absent. Conclusions The results suggest that P. vivax in southern Mexico evolved based on local adaptation into three “pseudoclonal” subpopulations that diversified at the regional level and persisted over time, although with varying frequency. Control measures and climate events influenced the number of malaria cases and the genetic structure. The sharp decrease in parasite diversity and other related genetic parameters during the pre-elimination phase suggests that malaria elimination is possible in the near future. These results are useful for epidemiological surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2156-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Flores-Alanis
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico.
| | - Frida Santillán
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico
| | - Cecilia Ximenez
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 06729, Mexico
| | - Marco A Sandoval
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico
| | - René Cerritos
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
15
|
Rosas-Aguirre A, Gamboa D, Manrique P, Conn JE, Moreno M, Lescano AG, Sanchez JF, Rodriguez H, Silva H, Llanos-Cuentas A, Vinetz JM. Epidemiology of Plasmodium vivax Malaria in Peru. Am J Trop Med Hyg 2016; 95:133-144. [PMID: 27799639 PMCID: PMC5201219 DOI: 10.4269/ajtmh.16-0268] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/29/2016] [Indexed: 01/01/2023] Open
Abstract
Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination.
Collapse
Affiliation(s)
- Angel Rosas-Aguirre
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Paulo Manrique
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| | - Andres G Lescano
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan F Sanchez
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Hugo Rodriguez
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Hermann Silva
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
16
|
Motshoge T, Ababio GK, Aleksenko L, Read J, Peloewetse E, Loeto M, Mosweunyane T, Moakofhi K, Ntebele DS, Chihanga S, Motlaleng M, Chinorumba A, Vurayai M, Pernica JM, Paganotti GM, Quaye IK. Molecular evidence of high rates of asymptomatic P. vivax infection and very low P. falciparum malaria in Botswana. BMC Infect Dis 2016; 16:520. [PMID: 27682611 PMCID: PMC5041318 DOI: 10.1186/s12879-016-1857-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Botswana is one of eight SADC countries targeting malaria elimination by 2018. Through spirited upscaling of control activities and passive surveillance, significant reductions in case incidence of Plasmodium falciparum (0.96 - 0.01) was achieved between 2008 and 2012. As part of the elimination campaign, active detection of asymptomatic Plasmodium species by a highly sensitive method was deemed necessary. This study was carried out to determine asymptomatic Plasmodium species carriage by nested PCR in the country, in 2012. METHOD A cross-sectional study involving 3924 apparently healthy participants were screened for Plasmodium species in 14 districts (5 endemic: Okavango, Ngami, Tutume, Boteti and Bobirwa; and 9 epidemic: North East, Francistown, Serowe-Palapye, Ghanzi, Kweneng West, Kweneng East, Kgatleng, South East, and Good Hope). Venous blood was taken from each participant for a nested PCR detection of Plasmodium species. RESULTS The parasite rates of asymptomatic Plasmodium species detected were as follows: Plasmodium falciparum, 0.16 %; Plasmodium vivax, 4.66 %; Plasmodium malariae, (Pm) 0.16 %; Plasmodium ovale, 0 %, mixed infections (P. falciparum and P. vivax), 0.055 %; and (P. vivax and P. malariae), 0.027 %, (total: 5.062 %). The high proportion of asymptomatic reservoir of P. vivax was clustered in the East, South Eastern and Central districts of the country. There appeared to be a correlation between the occurrence of P. malariae infection with P. vivax infection, with the former only occurring in districts that had substantial P. vivax circulation. The median age among 2-12 year olds for P. vivax infection was 5 years (Mean 5.13 years, interquartile range 3-7 years). The odds of being infected with P. vivax decreased by 7 % for each year increase in age (OR 0.93, 95 % CI 0.87-1.00, p = 0.056). CONCLUSION We have confirmed low parasite rate of asymptomatic Plasmodium species in Botswana, with the exception of P.vivax which was unexpectedly high. This has implication for the elimination campaign so a follow up study is warranted to inform decisions on new strategies that take this evidence into account in the elimination campaign.
Collapse
Affiliation(s)
- Thato Motshoge
- Ministry of Health, Gaborone, Botswana.,Biological Sciences Department, University of Botswana, Gaborone, Botswana
| | - Grace K Ababio
- University of Ghana School of Allied Health and Biomedical Sciences, Accra, Ghana
| | - Larysa Aleksenko
- Department of Pathology, University of Namibia School of Medicine, Windhoek, Namibia
| | - John Read
- School of Medicine, University of Botswana, Gaborone, Botswana
| | - Elias Peloewetse
- Biological Sciences Department, University of Botswana, Gaborone, Botswana
| | - Mazhani Loeto
- School of Medicine, University of Botswana, Gaborone, Botswana
| | | | - Kentse Moakofhi
- World Health Organization, Botswana Country Office, Gaborone, Botswana
| | - Davies S Ntebele
- Ministry of Health, National Malaria Control Program, Gaborone, Botswana
| | - Simon Chihanga
- Ministry of Health, National Malaria Control Program, Gaborone, Botswana
| | - Mpho Motlaleng
- Ministry of Health, National Malaria Control Program, Gaborone, Botswana
| | | | - Moses Vurayai
- Ministry of Health, National Malaria Control Program, Gaborone, Botswana
| | - Jeffrey M Pernica
- Division of Infectious Disease, Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Giacomo M Paganotti
- University of Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Isaac K Quaye
- University of Namibia School of Medicine, Windhoek, PBAG13301, Namibia.
| |
Collapse
|
17
|
Prospective Study of Plasmodium vivax Malaria Recurrence after Radical Treatment with a Chloroquine-Primaquine Standard Regimen in Turbo, Colombia. Antimicrob Agents Chemother 2016; 60:4610-9. [PMID: 27185794 DOI: 10.1128/aac.00186-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Plasmodium vivax recurrences help maintain malaria transmission. They are caused by recrudescence, reinfection, or relapse, which are not easily differentiated. A longitudinal observational study took place in Turbo municipality, Colombia. Participants with uncomplicated P. vivax infection received supervised treatment concomitantly with 25 mg/kg chloroquine and 0.25 mg/kg/day primaquine for 14 days. Incidence of recurrence was assessed over 180 days. Samples were genotyped, and origins of recurrences were established. A total of 134 participants were enrolled between February 2012 and July 2013, and 87 were followed for 180 days, during which 29 recurrences were detected. The cumulative incidence of first recurrence was 24.1% (21/87) (95% confidence interval [CI], 14.6 to 33.7%), and 86% (18/21) of these events occurred between days 51 and 110. High genetic diversity of P. vivax strains was found, and 12.5% (16/128) of the infections were polyclonal. Among detected recurrences, 93.1% (27/29) of strains were genotyped as genetically identical to the strain from the previous infection episode, and 65.5% (19/29) of infections were classified as relapses. Our results indicate that there is a high incidence of P. vivax malaria recurrence after treatment in Turbo municipality, Colombia, and that a large majority of these episodes are likely relapses from the previous infection. We attribute this to the primaquine regimen currently used in Colombia, which may be insufficient to eliminate hypnozoites.
Collapse
|
18
|
Muhindo Mavoko H, Kalabuanga M, Delgado-Ratto C, Maketa V, Mukele R, Fungula B, Inocêncio da Luz R, Rosanas-Urgell A, Lutumba P, Van geertruyden JP. Uncomplicated Clinical Malaria Features, the Efficacy of Artesunate-Amodiaquine and Their Relation with Multiplicity of Infection in the Democratic Republic of Congo. PLoS One 2016; 11:e0157074. [PMID: 27280792 PMCID: PMC4900589 DOI: 10.1371/journal.pone.0157074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/24/2016] [Indexed: 02/03/2023] Open
Abstract
Background In the Democratic Republic of Congo, artesunate-amodiaquine (ASAQ) is the first-line medication recommended for uncomplicated malaria treatment. We conducted a study in Kinshasa to describe the clinical features of the disease and assess the efficacy of ASAQ and its impact on the multiplicity of infection in children with uncomplicated malaria. Methods Children aged 12 to 59 months with uncomplicated P. falciparum malaria were treated with ASAQ and followed up passively for 42 days. To distinguish new infections from recrudescent parasites, samples were genotyped using a stepwise strategy with three molecular markers (GLURP, MSP2 and MSP1). We then assessed PCR-corrected and -uncorrected day-42 cure rates and multiplicity of infection (MOI). Results In total, 2,796 patients were screened and 865 enrolled in the study. Clinical features were characterized by history of fever (100%), coryza (59.9%) and weakness (59.4%). The crude and PCR-corrected efficacies of ASAQ were 55.3% (95%CI: 51.8–58.8) and 92.8% (95%CI: 91.0–94.6) respectively, as 83.6% (95%CI: 79.1–87.2) of the recurrences were new infections. Compared to monoclonal infections, polyclonal infections were more frequent at enrollment (88.1%) and in recurrences (80.1%; p = 0.005; OR: 1.8, 95%CI: 1.20–2.8). The median MOI at enrollment (MOI = 3.7; IQR: 0.7–6.7) decreased to 3 (IQR: 1–5) in the recurrent samples (p<0.001). Patients infected with a single haplotype on day 0 had no recrudescence; the risk of recrudescence increased by 28% with each additional haplotype (HR: 1.3, 95%CI: 1.24–1.44). Conclusion The PCR-corrected efficacy of ASAQ at day 42 was 92.8%, but crude efficacy was relatively poor due to high reinfection rates. Treatment outcomes were positively correlated with MOI. Continued monitoring of the efficacy of ACTs—ASAQ, in this case—is paramount. Trial Registration ClinicalTrials.gov NCT01374581
Collapse
Affiliation(s)
- Hypolite Muhindo Mavoko
- Tropical Medicine Department, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Global Health Institute, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Marion Kalabuanga
- Outpatients Department, Lisungi Health Center, Kinshasa, Democratic Republic of Congo
| | | | - Vivi Maketa
- Tropical Medicine Department, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Rodin Mukele
- Tropical Medicine Department, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Blaise Fungula
- Outpatients Department, Lisungi Health Center, Kinshasa, Democratic Republic of Congo
| | | | | | - Pascal Lutumba
- Tropical Medicine Department, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | |
Collapse
|
19
|
Quispe AM, Llanos-Cuentas A, Rodriguez H, Clendenes M, Cabezas C, Leon LM, Chuquiyauri R, Moreno M, Kaslow DC, Grogl M, Herrera S, Magill AJ, Kosek M, Vinetz JM, Lescano AG, Gotuzzo E. Accelerating to Zero: Strategies to Eliminate Malaria in the Peruvian Amazon. Am J Trop Med Hyg 2016; 94:1200-1207. [PMID: 30851016 PMCID: PMC4889734 DOI: 10.4269/ajtmh.15-0369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractIn February 2014, the Malaria Elimination Working Group, in partnership with the Peruvian Ministry of Health (MoH), hosted its first international conference on malaria elimination in Iquitos, Peru. The 2-day meeting gathered 85 malaria experts, including 18 international panelists, 23 stakeholders from different malaria-endemic regions of Peru, and 11 MoH authorities. The main outcome was consensus that implementing a malaria elimination project in the Amazon region is achievable, but would require: 1) a comprehensive strategic plan, 2) the altering of current programmatic guidelines from control toward elimination by including symptomatic as well as asymptomatic individuals for antimalarial therapy and transmission-blocking interventions, and 3) the prioritization of community-based active case detection with proper rapid diagnostic tests to interrupt transmission. Elimination efforts must involve key stakeholders and experts at every level of government and include integrated research activities to evaluate, implement, and tailor sustainable interventions appropriate to the region.
Collapse
Affiliation(s)
- Antonio M. Quispe
- *Address correspondence to Antonio M. Quispe, Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Population Genetics of Plasmodium vivax in Four Rural Communities in Central Vietnam. PLoS Negl Trop Dis 2016; 10:e0004434. [PMID: 26872387 PMCID: PMC4752448 DOI: 10.1371/journal.pntd.0004434] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background The burden of malaria in Vietnam has drastically reduced, prompting the National Malaria Control Program to officially engage in elimination efforts. Plasmodium vivax is becoming increasingly prevalent, remaining a major problem in the country's central and southern provinces. A better understanding of P. vivax genetic diversity and structure of local parasite populations will provide baseline data for the evaluation and improvement of current efforts for control and elimination. The aim of this study was to examine the population genetics and structure of P. vivax isolates from four communities in Tra Leng commune, Nam Tra My district in Quang Nam, Central Vietnam. Methodology/Principal Findings P. vivax mono infections collected from 234 individuals between April 2009 and December 2010 were successfully analyzed using a panel of 14 microsatellite markers. Isolates displayed moderate genetic diversity (He = 0.68), with no significant differences between study communities. Polyclonal infections were frequent (71.4%) with a mean multiplicity of infection of 1.91 isolates/person. Low but significant genetic differentiation (FST value from -0.05 to 0.18) was observed between the community across the river and the other communities. Strong linkage disequilibrium ( IAS = 0.113, p < 0.001) was detected across all communities, suggesting gene flow within and among them. Using multiple approaches, 101 haplotypes were grouped into two genetic clusters, while 60.4% of haplotypes were admixed. Conclusions/Significance In this area of Central Vietnam, where malaria transmission has decreased significantly over the past decade, there was moderate genetic diversity and high occurrence of polyclonal infections. Local human populations have frequent social and economic interactions that facilitate gene flow and inbreeding among parasite populations, while decreasing population structure. Findings provide important information on parasites populations circulating in the study area and are relevant to current malaria elimination efforts. In Vietnam, Plasmodium vivax (P. vivax) is the second most frequent human malaria parasite and a major obstacle to countrywide malaria elimination. Knowing the local parasite structure is useful for elimination efforts. Therefore, we analyzed, with a panel of 14 microsatellite markers, 234 P. vivax mono infections in blood samples collected from 4 communities in central Vietnam. Genetic diversity in the population was moderate; a high occurrence of polyclonal infections and significant linkage disequilibrium were detected, suggesting inbreeding or recombination between highly related haplotypes. In addition, both genetic differentiation and population structure was low and only detected between communities at each side of the river. Those results suggest gene flow between study communities with the river defining a moderate geographical barrier. Future studies should determine how this genetic variation is maintained in an area of extremely low transmission.
Collapse
|
21
|
Delgado-Ratto C, Gamboa D, Soto-Calle VE, Van den Eede P, Torres E, Sánchez-Martínez L, Contreras-Mancilla J, Rosanas-Urgell A, Rodriguez Ferrucci H, Llanos-Cuentas A, Erhart A, Van geertruyden JP, D’Alessandro U. Population Genetics of Plasmodium vivax in the Peruvian Amazon. PLoS Negl Trop Dis 2016; 10:e0004376. [PMID: 26766548 PMCID: PMC4713096 DOI: 10.1371/journal.pntd.0004376] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Background Characterizing the parasite dynamics and population structure provides useful information to understand the dynamic of transmission and to better target control interventions. Despite considerable efforts for its control, vivax malaria remains a major health problem in Peru. In this study, we have explored the population genetics of Plasmodium vivax isolates from Iquitos, the main city in the Peruvian Amazon, and 25 neighbouring peri-urban as well as rural villages along the Iquitos-Nauta Road. Methodology/ Results From April to December 2008, 292 P. vivax isolates were collected and successfully genotyped using 14 neutral microsatellites. Analysis of the molecular data revealed a similar proportion of monoclonal and polyclonal infections in urban areas, while in rural areas monoclonal infections were predominant (p = 0.002). Multiplicity of infection was higher in urban (MOI = 1.5–2) compared to rural areas (MOI = 1) (p = 0.003). The level of genetic diversity was similar in all areas (He = 0.66–0.76, p = 0.32) though genetic differentiation between areas was substantial (PHIPT = 0.17, p<0.0001). Principal coordinate analysis showed a marked differentiation between parasites from urban and rural areas. Linkage disequilibrium was detected in all the areas ( IAs = 0.08–0.49, for all p<0.0001). Gene flow among the areas was stablished through Bayesian analysis of migration models. Recent bottleneck events were detected in 4 areas and a recent parasite expansion in one of the isolated areas. In total, 87 unique haplotypes grouped in 2 or 3 genetic clusters described a sub-structured parasite population. Conclusion/Significance Our study shows a sub-structured parasite population with clonal propagation, with most of its components recently affected by bottleneck events. Iquitos city is the main source of parasite spreading for all the peripheral study areas. The routes of transmission and gene flow and the reduction of the parasite population described are important from the public health perspective as well for the formulation of future control policies. We present the population genetics of malaria vivax parasites in a large area of the Peruvian Amazon. Our results showed that the parasite population had a predominant clonal propagation, reproducing themselves with identically or closely related parasites; therefore, the same genetic characteristics are maintained in the offspring. The clonal propagation may favour the higher levels of genetic differentiation among the parasites from isolated areas compared to areas where human migration is common. The patterns of gene flow have been established, finding Iquitos city as a reservoir of parasite genetic variability. Moreover, a recent reduction of the parasite population was observed in areas where recent control activities were performed. This research provides a picture of the nature and dynamics of the parasite population which have a significant impact in the malaria epidemiology; therefore, this knowledge is crucial for the development of efficient control policies.
Collapse
Affiliation(s)
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Veronica E. Soto-Calle
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Eliana Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis Sánchez-Martínez
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan Contreras-Mancilla
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Umberto D’Alessandro
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- Medical Research Council Unit, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
22
|
Zuluaga-Idarraga LM, Tamayo Perez ME, Aguirre-Acevedo DC. Therapeutic efficacy of alternative primaquine regimens to standard treatment in preventing relapses by Plasmodium vivax: A systematic review and meta-analysis. Colomb Med (Cali) 2015; 46:183-91. [PMID: 26848199 PMCID: PMC4732508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To compare efficacy and safety of primaquine regimens currently used to prevent relapses by P. vivax. METHODS A systematic review was carried out to identify clinical trials evaluating efficacy and safety to prevent malaria recurrences by P. vivax of primaquine regimen 0.5 mg/kg/ day for 7 or 14 days compared to standard regimen of 0.25 mg/kg/day for 14 days. Efficacy of primaquine according to cumulative incidence of recurrences after 28 days was determined. The overall relative risk with fixed-effects meta-analysis was estimated. RESULTS For the regimen 0.5 mg/kg/day/7 days were identified 7 studies, which showed an incidence of recurrence between 0% and 20% with follow-up 60-210 days; only 4 studies comparing with the standard regimen 0.25 mg/kg/day/14 days and no difference in recurrences between both regimens (RR= 0.977, 95% CI= 0.670 to 1.423) were found. 3 clinical trials using regimen 0.5 mg/kg/day/14 days with an incidence of recurrences between 1.8% and 18.0% during 330-365 days were identified; only one study comparing with the standard regimen (RR= 0.846, 95% CI= 0.484 to 1.477). High risk of bias and differences in handling of included studies were found. CONCLUSION Available evidence is insufficient to determine whether currently PQ regimens used as alternative rather than standard treatment have better efficacy and safety in preventing relapse of P. vivax. Clinical trials are required to guide changes in treatment regimen of malaria vivax.
Collapse
Affiliation(s)
- Lina Marcela Zuluaga-Idarraga
- Grupo Malaria, Facultad de Medicina. Universidad de Antioquia. Medellín, Colombia.
, Grupo Epidemiología y Bioestadística, Facultad de Medicina. Universidad CES. Medellín, Colombia Medellín
| | - María-Eulalia Tamayo Perez
- Grupo Académico de Epidemiología Clínica, Facultad de Medicina. Universidad de Antioquia. Medellín, Colombia., Departamento de Pediatría, Universidad de Antioquia, Fundación Hospital Universitario San Vicente, Medellín, Colombia
| | | |
Collapse
|
23
|
Gonzalez-Ceron L, Rodriguez MH, Sandoval MA, Santillan F, Galindo-Virgen S, Betanzos AF, Rosales AF, Palomeque OL. Effectiveness of combined chloroquine and primaquine treatment in 14 days versus intermittent single dose regimen, in an open, non-randomized, clinical trial, to eliminate Plasmodium vivax in southern Mexico. Malar J 2015; 14:426. [PMID: 26518132 PMCID: PMC4628368 DOI: 10.1186/s12936-015-0938-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023] Open
Abstract
Background In Mexico, combined chloroquine (CQ) and primaquine (PQ) treatment has been used since the late 1950s to treat Plasmodium vivax infections. Although malaria transmission has declined, current treatment strategies must be evaluated to advance towards malaria elimination. Methods The clinical and parasitological outcome of treating symptomatic P. vivax with the 14-day (T14) treatment or intermittent single dose (ISD) regimen was evaluated in southern Mexico between February 2008 and September 2010. Patients over 12 months old with P. vivax mono-infection and asexual parasitaemia ≥500 parasites/µl were treated under supervision. After diagnosis (day 0), treatment began immediately. T14 patients received CQ for 3 days (10, 10 and 5 mg/kg) and PQ daily for 14 days (0.25 mg/kg), while ISD patients received a single dose of CQ (10 mg/kg) and PQ (0.75 mg/kg) on days 0, 30, 60, 180, 210, and 240. Follow-up was done by observing clinical and laboratory (by microscopy, serology and PCR) outcome, considering two endpoints: primary blood infection clearance and clinical response at ~28 days, and the incidence of recurrent blood infection during 12 months. Parasite genotypes of primary/recurrent blood infections were analysed. Results During the first 28 days, no differences in parasite clearance or clinical outcome were observed between T14 (86 patients) and ISD (67 patients). On day 3, 95 % of patients in both groups showed no blood parasites, and no recurrences were detected on days 7–28. Contrarily, the therapeutic effectiveness (absence of recurrent parasitaemia) was distinct for T14 versus ISD at 12 months: 83.7 versus 50 %, respectively (p = 0.000). Symptomatic and asymptomatic infections were recorded on days 31–352. Some parasite recurrences were detected by PCR and/or serological testing. Conclusions T14 was effective for opportune elimination of the primary blood infection and preventing relapse episodes. The first single dose of CQ-PQ eliminated primary blood infection as efficiently as the initial three-dose scheme of T14, but the ISD regimen should be abandoned. A single combined dose administered to symptomatic patients in remote areas while awaiting parasitological diagnosis may contribute to halting P. vivax transmission. Alternatives for meeting the challenge of T14 supervision are discussed. Trial registration: NIH-USA, ClinicalTrial.gov Identifier: NCT02394197 Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0938-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lilia Gonzalez-Ceron
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Chiapas, Mexico.
| | - Mario H Rodriguez
- Centre for Research of Infectious Diseases, National Institute for Public Health, Cuernavaca, Morelos, Mexico.
| | - Marco A Sandoval
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Chiapas, Mexico.
| | - Frida Santillan
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Chiapas, Mexico.
| | - Sonia Galindo-Virgen
- Laboratory of Malaria, National Institute for Diagnosis and Epidemiological Reference, Mexico City, Mexico.
| | - Angel F Betanzos
- Centre for Research of Infectious Diseases, National Institute for Public Health, Cuernavaca, Morelos, Mexico.
| | - Angel F Rosales
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Chiapas, Mexico.
| | - Olga L Palomeque
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Chiapas, Mexico.
| |
Collapse
|
24
|
Manrique P, Hoshi M, Fasabi M, Nolasco O, Yori P, Calderón M, Gilman RH, Kosek MN, Vinetz JM, Gamboa D. Assessment of an automated capillary system for Plasmodium vivax microsatellite genotyping. Malar J 2015; 14:326. [PMID: 26293655 PMCID: PMC4546211 DOI: 10.1186/s12936-015-0842-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several platforms have been used to generate the primary data for microsatellite analysis of malaria parasite genotypes. Each has relative advantages but share a limitation of being time- and cost-intensive. A commercially available automated capillary gel cartridge system was assessed in the microsatellite analysis of Plasmodium vivax diversity in the Peruvian Amazon. METHODS The reproducibility and accuracy of a commercially-available automated capillary system, QIAxcel, was assessed using a sequenced PCR product of 227 base pairs. This product was measured 42 times, then 27 P. vivax samples from Peruvian Amazon subjects were analyzed with this instrument using five informative microsatellites. Results from the QIAxcel system were compared with a Sanger-type sequencing machine, the ABI PRISM(®) 3100 Genetic Analyzer. RESULTS Significant differences were seen between the sequenced amplicons and the results from the QIAxcel instrument. Different runs, plates and cartridges yielded significantly different results. Additionally, allele size decreased with each run by 0.045, or 1 bp, every three plates. QIAxcel and ABI PRISM systems differed in giving different values than those obtained by ABI PRISM, and too many (i.e. inaccurate) alleles per locus were also seen with the automated instrument. CONCLUSIONS While P. vivax diversity could generally be estimated using an automated capillary gel cartridge system, the data demonstrate that this system is not sufficiently precise for reliably identifying parasite strains via microsatellite analysis. This conclusion reached after systematic analysis was due both to inadequate precision and poor reproducibility in measuring PCR product size.
Collapse
Affiliation(s)
- Paulo Manrique
- Malaria Laboratory, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Mari Hoshi
- Malaria Laboratory, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | - Oscar Nolasco
- Malaria Laboratory, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Pablo Yori
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Martiza Calderón
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Robert H Gilman
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Margaret N Kosek
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Joseph M Vinetz
- Malaria Laboratory, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru. .,Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Dionicia Gamboa
- Malaria Laboratory, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru. .,Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
25
|
Koepfli C, Rodrigues PT, Antao T, Orjuela-Sánchez P, Van den Eede P, Gamboa D, van Hong N, Bendezu J, Erhart A, Barnadas C, Ratsimbasoa A, Menard D, Severini C, Menegon M, Nour BYM, Karunaweera N, Mueller I, Ferreira MU, Felger I. Plasmodium vivax Diversity and Population Structure across Four Continents. PLoS Negl Trop Dis 2015; 9:e0003872. [PMID: 26125189 PMCID: PMC4488360 DOI: 10.1371/journal.pntd.0003872] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/02/2015] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. Plasmodium vivax is the predominant malaria parasite in Latin America, Asia and the South Pacific. Different factors are expected to shape diversity and population structure across continents, e.g. transmission intensity which is much lower in South America as compared to Southeast-Asia and the South Pacific, or geographical isolation of P. vivax populations in the South Pacific. We have compiled data from 841 isolates from South and Central America, Africa, Central Asia, Southeast-Asia and the South Pacific typed with a panel of 11 microsatellite markers. Diversity was highest in Southeast-Asia, where transmission is intermediate-high and migration of infected hosts is high, and lowest in South America and Central Asia where malaria transmission is low and focal. Reducing the panel of microsatellites showed that 2–6 markers are sufficient for genotyping for most drug trials and epidemiological studies, as these markers can identify >90% of all haplotypes. Parasites clustered according to continental origin, with high population differentiation between South American and Central Asian populations and the other populations, and lowest differences between Southeast-Asia and the South Pacific. Current attempts to reduce malaria transmission might change this pattern, but only after transmission is reduced for an extended period of time.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago Antao
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Pamela Orjuela-Sánchez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nguyen van Hong
- National Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Jorge Bendezu
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Céline Barnadas
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Arsène Ratsimbasoa
- Immunology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Didier Menard
- Institut Pasteur de Cambodge, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Bakri Y. M. Nour
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Medani, Sudan
| | - Nadira Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Markus MB. Do hypnozoites cause relapse in malaria? Trends Parasitol 2015; 31:239-45. [DOI: 10.1016/j.pt.2015.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/01/2015] [Accepted: 02/20/2015] [Indexed: 12/25/2022]
|
27
|
Baniecki ML, Faust AL, Schaffner SF, Park DJ, Galinsky K, Daniels RF, Hamilton E, Ferreira MU, Karunaweera ND, Serre D, Zimmerman PA, Sá JM, Wellems TE, Musset L, Legrand E, Melnikov A, Neafsey DE, Volkman SK, Wirth DF, Sabeti PC. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections. PLoS Negl Trop Dis 2015; 9:e0003539. [PMID: 25781890 PMCID: PMC4362761 DOI: 10.1371/journal.pntd.0003539] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax malaria is a major global public health problem, with nearly 2.5 billion people at risk for infection and approximately 132–391 million clinical infections annually. It has a wide geographical range, with a high disease burden in Asia, Central and South America, the Middle East, Oceania, and East Africa. Advances in sequencing technology and sample processing have made it possible to characterize the genetic diversity of P. vivax populations. This genetic variation provides a means to identify parasites by unique genetic signatures, or “barcodes.” We developed such a genetic barcode for P. vivax, composed of 42 robust and informative variants. Here we report its development and validation based on 87 clinical samples identified by microscopy to contain P. vivax from geographically diverse parasite populations from South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We show that the SNP barcode provides a genotyping tool that can be performed at low cost, providing a means to uniquely identify parasite infections and distinguish geographic origins, and that barcode data may offer new insights into P. vivax population structure and diversity.
Collapse
Affiliation(s)
- Mary Lynn Baniecki
- Broad Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Aubrey L. Faust
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Daniel J. Park
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Kevin Galinsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rachel F. Daniels
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elizabeth Hamilton
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | | | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - David Serre
- Department of Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Department of International Health, Biology and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Lise Musset
- Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
| | - Eric Legrand
- Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
| | | | | | - Sarah K. Volkman
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America
| | - Dyann F. Wirth
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Pardis C. Sabeti
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|