1
|
Elmardi KA, Adam I, Malik EM, Kafy HT, Abdin MS, Kleinschmidt I, Kremers S. Impact of malaria control interventions on malaria infection and anaemia in areas with irrigated schemes: a cross-sectional population-based study in Sudan. BMC Infect Dis 2021; 21:1248. [PMID: 34906083 PMCID: PMC8670187 DOI: 10.1186/s12879-021-06929-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
Background While the overall burden of malaria is still high, the global technical strategy for malaria advocates for two sets of interventions: vector control-based prevention and diagnosis and prompt effective treatment of malaria cases. This study aimed to assess the performance of malaria interventions on malaria infection and anaemia in irrigated areas in Sudan. Methods Based on the Sudan 2016 national malaria indicator survey, data for two states (Gezira and Sennar), characterized by large-irrigated schemes, were analysed. Four community-level malaria interventions were used as contextual variables: utilization of malaria diagnosis, utilization of Artemisinin-based combination therapy (ACT), utilization of long-lasting insecticidal nets (LLINs) and coverage with indoor residual spraying (IRS). Association between these interventions and two outcomes: malaria infection and anaemia, was assessed separately. Malaria infection was assessed in all age groups while anaemia was assessed in children under 5 years. Multilevel multiple logistic regression analysis were conducted. Results Among 4478 individuals involved in this study distributed over 47 clusters, the overall malaria infection rate was 3.0% and 56.5% of the children under 5 years (total = 322) were anaemic. Except for IRS coverage (69.6%), the average utilization of interventions was relatively low: 52.3% for utilization of diagnosis, 33.0% for utilization of ACTs and 18.6% for LLINs utilization. The multi-level multiple logistic regression model showed that only IRS coverage was associated with malaria infection (Odds ratio 0.83 per 10% coverage, 95%Confidence Interval (95%CI) 0.74–0.94, p = 0.003) indicating that a higher level of IRS coverage was associated with less malaria infection. Anaemia was not associated with any intervention (all p values larger than 0.1). Conclusions Malaria transmission in Gezira and Sennar areas is low. IRS, with insecticide to which vectors are susceptible, is an effective malaria control intervention in irrigated schemes. Community utilization of other interventions was not associated with malaria infection in this study. This may be due to the low utilization of these interventions. However, individual use of LLINs provide personal protection. This study failed to establish an association between anaemia and malaria control interventions in low transmission areas. The higher level of malaria infection in urban areas is a cause for concern.
Collapse
Affiliation(s)
- Khalid Abdelmutalab Elmardi
- Health Information, Monitoring and Evaluation and Evidence Department, Federal Ministry of Health, Khartoum, Sudan. .,Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands.
| | - Ishag Adam
- Department of Obstetrics and Gynecology, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | | | - Hmooda Toto Kafy
- Directorate General of Primary Health Care, Federal Ministry of Health, Khartoum, Sudan
| | - Mogahid Sheikheldien Abdin
- Health Information, Monitoring and Evaluation and Evidence Department, Federal Ministry of Health, Khartoum, Sudan
| | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, Departments of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Stef Kremers
- Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| |
Collapse
|
2
|
Hayuma PM, Wang CW, Liheluka E, Baraka V, Madebe RA, Minja DTR, Misinzo G, Alifrangis M, Lusingu JPA. Prevalence of asymptomatic malaria, submicroscopic parasitaemia and anaemia in Korogwe District, north-eastern Tanzania. Malar J 2021; 20:424. [PMID: 34715886 PMCID: PMC8555315 DOI: 10.1186/s12936-021-03952-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background Asymptomatic malaria infections largely remain undetected and act as a reservoir for continuous transmission. The study assessed the prevalence of submicroscopic asymptomatic malaria infections and anaemia in two rural low (300 m above sea level) and highland (700 m asl) settings of Korogwe District north-eastern Tanzania. Methods A cross-sectional malariometric survey involving individuals aged 0–19 years was conducted in June 2018 in the two rural villages. Venous blood was collected from eligible study participants for estimation of haemoglobin level, detection of malaria by rapid diagnostic test (RDT), quantification of malaria parasitaemia by microscopy, as well as dried blood spot (DBS) for determining submicroscopic infections by PCR targeting the small subunit of the ribosomal ribonucleic acid (ssrRNA) of human Plasmodium. Results Out of 565 individuals tested, 211 (37.3%) were malaria positive based on RDT, whereas only 81 (14.3%) were positive by microscopy. There was no significant difference in the prevalence between the highland and the lowland village, p = 0.19 and p = 0.78 microscopy and RDT, respectively. Three out of 206 (1.5%) RDT/microscopy negative samples were P. falciparum positive by PCR. Of the 211 RDT and 81 microscopy positive, 130 (61.6%) and 33 (40.7%), respectively, were defined as being asymptomatic. Of the 565 individuals, 135 (23.9%) were anaemic (haemoglobin < 11 g/dL) out of which 5.2% were severely anaemic. The risk of being anaemic was significantly higher among individuals with asymptomatic malaria as compared to those without malaria as confirmed by RDT (AOR = 2.06 (95% CI 1.32–3.20) while based on microscopic results there was no significant differences observed (AOR = 2.09, 95% CI 0.98–4.47). Age and altitude had no effect on the risk of anaemia even after adjusting for asymptomatic malaria. Conclusions Asymptomatic malaria is associated with an increased risk of having anaemia in the study communities. The findings highlight the need for targeted interventions focusing on asymptomatic infections which is an important risks factor for anaemia in the community and act as a source of continued transmission of malaria in the study area.
Collapse
Affiliation(s)
- Paul M Hayuma
- National Institute for Medical Research, Tanga Research Centre, P. O. Box 5004, Tanga, Tanzania. .,Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P. O. Box 3019, Morogoro, Tanzania.
| | - Christian W Wang
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Edwin Liheluka
- National Institute for Medical Research, Tanga Research Centre, P. O. Box 5004, Tanga, Tanzania
| | - Vito Baraka
- National Institute for Medical Research, Tanga Research Centre, P. O. Box 5004, Tanga, Tanzania
| | - Rashid A Madebe
- National Institute for Medical Research, Tanga Research Centre, P. O. Box 5004, Tanga, Tanzania
| | - Daniel T R Minja
- National Institute for Medical Research, Tanga Research Centre, P. O. Box 5004, Tanga, Tanzania
| | - Gerald Misinzo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P. O. Box 3019, Morogoro, Tanzania.,SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P. O. Box 3297, Morogoro, Tanzania
| | - Michael Alifrangis
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - John P A Lusingu
- National Institute for Medical Research, Tanga Research Centre, P. O. Box 5004, Tanga, Tanzania
| |
Collapse
|
3
|
Olsen RW, Ecklu-Mensah G, Bengtsson A, Ofori MF, Lusingu JPA, Castberg FC, Hviid L, Adams Y, Jensen ATR. Natural and Vaccine-Induced Acquisition of Cross-Reactive IgG-Inhibiting ICAM-1-Specific Binding of a Plasmodium falciparum PfEMP1 Subtype Associated Specifically with Cerebral Malaria. Infect Immun 2018; 86:e00622-17. [PMID: 29426042 PMCID: PMC5865037 DOI: 10.1128/iai.00622-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
Cerebral malaria (CM) is a potentially deadly outcome of Plasmodium falciparum malaria that is precipitated by sequestration of infected erythrocytes (IEs) in the brain. The adhesion of IEs to brain endothelial cells is mediated by a subtype of parasite-encoded erythrocyte membrane protein 1 (PfEMP1) that facilitates dual binding to host intercellular adhesion molecule 1 (ICAM-1) and endothelial protein receptor C (EPCR). The PfEMP1 subtype is characterized by the presence of a particular motif (DBLβ_motif) in the constituent ICAM-1-binding DBLβ domain. The rate of natural acquisition of DBLβ_motif-specific IgG antibodies and the ability to induce such antibodies by vaccination are unknown, and the aim of this study was to provide such data. We used an enzyme-linked immunosorbent assay (ELISA) to measure DBLβ-specific IgG in plasma from Ghanaian children with malaria. The ability of human immune plasma and DBLβ-specific rat antisera to inhibit the interaction between ICAM-1 and DBLβ was assessed using ELISA and in vitro assays of IE adhesion under flow. The acquisition of DBLβ_motif-specific IgG coincided with age-specific susceptibility to CM. Broadly cross-reactive antibodies inhibiting the interaction between ICAM-1 and DBLβ_motif domains were detectable in immune plasma and in sera of rats immunized with specific DBLβ_motif antigens. Importantly, antibodies against the DBLβ_motif inhibited ICAM-1-specific in vitro adhesion of erythrocytes infected by four of five P. falciparum isolates from cerebral malaria patients. We conclude that natural exposure to P. falciparum as well as immunization with specific DBLβ_motif antigens can induce cross-reactive antibodies that inhibit the interaction between ICAM-1 and a broad range of DBLβ_motif domains. These findings raise hope that a vaccine designed specifically to prevent CM is feasible.
Collapse
MESH Headings
- Adolescent
- Amino Acid Motifs
- Antibodies, Neutralizing/immunology
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/immunology
- Binding Sites
- Child
- Child, Preschool
- Cross Reactions/immunology
- Ghana
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Infant
- Intercellular Adhesion Molecule-1/metabolism
- Malaria Vaccines/immunology
- Malaria, Cerebral/immunology
- Malaria, Cerebral/metabolism
- Malaria, Cerebral/parasitology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Plasmodium falciparum/immunology
- Protein Binding/immunology
- Protein Interaction Domains and Motifs
- Protozoan Proteins/chemistry
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Tanzania
Collapse
Affiliation(s)
- Rebecca W Olsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrude Ecklu-Mensah
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Anja Bengtsson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - John P A Lusingu
- National Institute for Medical Research, Tanga Centre, Tanga City, Tanzania
| | - Filip C Castberg
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Challe DP, Kamugisha ML, Mmbando BP, Francis F, Chiduo MG, Mandara CI, Gesase S, Abdul O, Lemnge MM, Ishengoma DS. Pattern of all-causes and cause-specific mortality in an area with progressively declining malaria burden in Korogwe district, north-eastern Tanzania. Malar J 2018; 17:97. [PMID: 29482553 PMCID: PMC5828081 DOI: 10.1186/s12936-018-2240-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although death records are useful for planning and monitoring health interventions, such information is limited in most developing countries. Verbal autopsy (VA) interviews are alternatively used to determine causes of death in places without or with incomplete hospital records. This study was conducted to determine all causes and cause-specific mortality in Korogwe health and demographic surveillance system (HDSS) undertaken in Korogwe district, northeastern Tanzania. METHODS The study was conducted from January 2006 to December 2012 in 14 villages under Korogwe HDSS. Vital events such as births, deaths and migrations were routinely updated quarterly. A standard VA questionnaire was administered to parents/close relatives of the deceased to determine cause of death. RESULTS Overall, 1325 deaths of individuals with median age of 46 years were recorded in a population with 170,471.4 person years observed (PY). Crude mortality rate was 7.8 per 1000 PY (95% CI 7.2-8.4) and the highest rate was observed in infants (77.9 per 1000 PY; 95% CI 67.4-90.0). The overall mortality increased between 2006 and 2007, followed by a slight decline up to 2011, with the highest decrease observed in 2012. Causes of deaths were established in 942 (71.1%) deaths and malaria (198 deaths, 21.0%) was the leading cause of death in all age groups except adults (15-59 years). HIV/AIDS (17.6%, n = 365) was the leading cause of death in individuals aged 15-59 years followed by malaria (13.9%) and tuberculosis. Non-communicable diseases (NCDs) including stroke, hypertension, cancer, and cardiac failure caused majority of deaths in elderly (60 years and above) accounting for 37.1% (n = 348) of all deaths, although malaria was the single leading cause of death in this group (16.6%). CONCLUSION The study showed a significant decline of deaths in the Korogwe HDSS site and malaria was the main cause of death in all age groups (except adults, aged 15-59 years) while HIV/AIDS and NCDs were the main causes in adults and elderly, respectively. Further surveillance is required to monitor and document changes in cause-specific mortality as malaria transmission continues to decline in this and other parts of Tanzania.
Collapse
Affiliation(s)
- Daniel P Challe
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania.
| | - Mathias L Kamugisha
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| | - Bruno P Mmbando
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| | - Mercy G Chiduo
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| | - Celine I Mandara
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| | - Samuel Gesase
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| | - Omari Abdul
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| | - Martha M Lemnge
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| | - Deus S Ishengoma
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| |
Collapse
|
5
|
Lennartz F, Adams Y, Bengtsson A, Olsen RW, Turner L, Ndam NT, Ecklu-Mensah G, Moussiliou A, Ofori MF, Gamain B, Lusingu JP, Petersen JEV, Wang CW, Nunes-Silva S, Jespersen JS, Lau CKY, Theander TG, Lavstsen T, Hviid L, Higgins MK, Jensen ATR. Structure-Guided Identification of a Family of Dual Receptor-Binding PfEMP1 that Is Associated with Cerebral Malaria. Cell Host Microbe 2017; 21:403-414. [PMID: 28279348 PMCID: PMC5374107 DOI: 10.1016/j.chom.2017.02.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 11/09/2022]
Abstract
Cerebral malaria is a deadly outcome of infection by Plasmodium falciparum, occurring when parasite-infected erythrocytes accumulate in the brain. These erythrocytes display parasite proteins of the PfEMP1 family that bind various endothelial receptors. Despite the importance of cerebral malaria, a binding phenotype linked to its symptoms has not been identified. Here, we used structural biology to determine how a group of PfEMP1 proteins interacts with intercellular adhesion molecule 1 (ICAM-1), allowing us to predict binders from a specific sequence motif alone. Analysis of multiple Plasmodium falciparum genomes showed that ICAM-1-binding PfEMP1s also interact with endothelial protein C receptor (EPCR), allowing infected erythrocytes to synergistically bind both receptors. Expression of these PfEMP1s, predicted to bind both ICAM-1 and EPCR, is associated with increased risk of developing cerebral malaria. This study therefore reveals an important PfEMP1-binding phenotype that could be targeted as part of a strategy to prevent cerebral malaria. Structural basis for P. falciparum PfEMP1 binding to endothelial receptor ICAM-1defined A sequence motif derived from structure predicts group A PfEMP1 binding to ICAM-1 These ICAM-1-binding PfEMP1s also all bind to endothelial protein C receptor (EPCR) Expression of dual ICAM-1- and EPCR-binding PfEMP1 is associated with cerebral malaria
Collapse
Affiliation(s)
- Frank Lennartz
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Yvonne Adams
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Anja Bengtsson
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Rebecca W Olsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Nicaise T Ndam
- Faculté de Pharmacie, Institut de Recherche pour le Développement (IRD), COMUE Sorbonne Paris Cité, 75013 Paris, France; Faculté des Sciences de la Santé (FSS), Université d'Aboméy Calavi, 01 BP 526 Cotonou, Benin
| | - Gertrude Ecklu-Mensah
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark; Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Azizath Moussiliou
- Faculté des Sciences de la Santé (FSS), Université d'Aboméy Calavi, 01 BP 526 Cotonou, Benin
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Benoit Gamain
- UMR_S1134, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75013 Paris, France
| | - John P Lusingu
- National Institute for Medical Research, Tanga Centre, 11101 Dar es Salaam, Tanzania
| | - Jens E V Petersen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Christian W Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Sofia Nunes-Silva
- UMR_S1134, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75013 Paris, France
| | - Jakob S Jespersen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Clinton K Y Lau
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Francis F, Ishengoma DS, Mmbando BP, Rutta ASM, Malecela MN, Mayala B, Lemnge MM, Michael E. Deployment and use of mobile phone technology for real-time reporting of fever cases and malaria treatment failure in areas of declining malaria transmission in Muheza district north-eastern Tanzania. Malar J 2017; 16:308. [PMID: 28764792 PMCID: PMC5540449 DOI: 10.1186/s12936-017-1956-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Early detection of febrile illnesses at community level is essential for improved malaria case management and control. Currently, mobile phone-based technology has been commonly used to collect and transfer health information and services in different settings. This study assessed the applicability of mobile phone-based technology in real-time reporting of fever cases and management of malaria by village health workers (VHWs) in north-eastern Tanzania. Methods The community mobile phone-based disease surveillance and treatment for malaria (ComDSTM) platform, combined with mobile phones and web applications, was developed and implemented in three villages and one dispensary in Muheza district from November 2013 to October 2014. A baseline census was conducted in May 2013. The data were uploaded on a web-based database and updated during follow-up home visits by VHWs. Active and passive case detection (ACD, PCD) of febrile cases were done by VHWs and cases found positive by malaria rapid diagnostic test (RDT) were given the first dose of artemether–lumefantrine (AL) at the dispensary. Each patient was visited at home by VHWs daily for the first 3 days to supervise intake of anti-malarial and on day 7 to monitor the recovery process. The data were captured and transmitted to the database using mobile phones. Results The baseline population in the three villages was 2934 in 678 households. A total of 1907 febrile cases were recorded by VHWs and 1828 (95.9%) were captured using mobile phones. At the dispensary, 1778 (93.2%) febrile cases were registered and of these, 84.2% were captured through PCD. Positivity rates were 48.2 and 45.8% by RDT and microscopy, respectively. Nine cases had treatment failure reported on day 7 post-treatment and adherence to treatment was 98%. One patient with severe febrile illness was referred to Muheza district hospital. Conclusion The study showed that mobile phone-based technology can be successfully used by VHWs in surveillance and timely reporting of fever episodes and monitoring of treatment failure in remote areas. Further optimization and scaling-up will be required to utilize the tools for improved malaria case management and drug resistance surveillance.
Collapse
Affiliation(s)
- Filbert Francis
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania.
| | - Deus S Ishengoma
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Bruno P Mmbando
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Acleus S M Rutta
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | | | - Benjamin Mayala
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania.,University of Notre Dame, South Bend, IN, USA
| | - Martha M Lemnge
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | | |
Collapse
|
7
|
Bowman NM, Juliano JJ, Snider CJ, Kharabora O, Meshnick SR, Vulule J, John CC, Moormann AM. Longevity of Genotype-Specific Immune Responses to Plasmodium falciparum Merozoite Surface Protein 1 in Kenyan Children from Regions of Different Malaria Transmission Intensity. Am J Trop Med Hyg 2016; 95:580-7. [PMID: 27481054 DOI: 10.4269/ajtmh.15-0710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/02/2016] [Indexed: 01/06/2023] Open
Abstract
Naturally acquired immunity to Plasmodium falciparum presents a changing landscape as malaria control programs and vaccine initiatives are implemented. Determining which immunologic indicators remain surrogates of past infection, as opposed to mediators of protection, led us to compare stability of immune responses across regions with divergent malaria transmission intensities. A repeat cross-sectional study of Kenyan children from a malaria-holoendemic area and an epidemic-prone area was used to examine longitudinal antibody and interferon-gamma (IFN-γ) responses to the 3D7 and FVO variants of merozoite surface protein 1 (MSP1). Antibodies to MSP1 were common in both study populations and did not significantly wane over a 21-month time period. IFN-γ responses were less frequent and rapidly disappeared in children after a prolonged period of no malaria transmission. Antibody and IFN-γ responses rarely correlated with each other; however, MSP1-specific IFN-γ response correlated with lack of concurrent P. falciparum parasitemia of the same genotype, though only statistically significantly in the malaria-holoendemic region (odds ratio = 0.31, 95% confidence interval = 0.12-0.84). This study affirms that antimalarial antibodies are informative for evaluation of history of malaria exposure within individuals, whereas cell-mediated immunity, though short lived under natural exposure conditions, might provide an assessment of recent infection and protection from parasitemia.
Collapse
Affiliation(s)
- Natalie M Bowman
- Division of Infectious Diseases, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| | - Jonathan J Juliano
- Division of Infectious Diseases, University of North Carolina, School of Medicine, Chapel Hill, North Carolina. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina.
| | - Cynthia J Snider
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Oksana Kharabora
- Division of Infectious Diseases, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John Vulule
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University, Indianapolis, Indiana
| | - Ann M Moormann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
8
|
Griffin JT, Ferguson NM, Ghani AC. Estimates of the changing age-burden of Plasmodium falciparum malaria disease in sub-Saharan Africa. Nat Commun 2015; 5:3136. [PMID: 24518518 PMCID: PMC3923296 DOI: 10.1038/ncomms4136] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 12/17/2013] [Indexed: 01/08/2023] Open
Abstract
Estimating the changing burden of malaria disease remains difficult owing to limitations in health reporting systems. Here, we use a transmission model incorporating acquisition and loss of immunity to capture age-specific patterns of disease at different transmission intensities. The model is fitted to age-stratified data from 23 sites in Africa, and we then produce maps and estimates of disease burden. We estimate that in 2010 there were 252 (95% credible interval: 171-353) million cases of malaria in sub-Saharan Africa that active case finding would detect. However, only 34% (12-86%) of these cases would be observed through passive case detection. We estimate that the proportion of all cases of clinical malaria that are in under-fives varies from above 60% at high transmission to below 20% at low transmission. The focus of some interventions towards young children may need to be reconsidered, and should be informed by the current local transmission intensity.
Collapse
Affiliation(s)
- Jamie T Griffin
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Neil M Ferguson
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Azra C Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| |
Collapse
|
9
|
Dhiman S, Goswami D, Rabha B, Yadav K, Chattopadhyay P, Veer V. Absence of asymptomatic malaria in a cohort of 133 individuals in a malaria endemic area of Assam, India. BMC Public Health 2015; 15:919. [PMID: 26384971 PMCID: PMC4575429 DOI: 10.1186/s12889-015-2294-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 09/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria in northeast India affects children and adults annually. The number of malaria cases reported has declined over the past few years. Nevertheless, it is not clear whether there is an actual decline in parasitaemia or whether asymptomatic malaria infections are on the rise, especially in forested and forest-fringed areas. Asymptomatic malaria forms a parasite reservoir that acts as an epicentre for malaria spread during high-transmission season. Therefore it is important to understand the quantum of asymptomatic malaria infections among the vulnerable population. METHOD Four forest fringed historically malaria endemic villages were selected for the study. A total of 133 individuals without a fever history in the past four weeks were tested for malaria parasite using rapid diagnostic test (RDT), microscopy and polymerase chain reaction (PCR) assay during January - February 2014. Indoor resting Anopheles vectors were collected, identified and tested for sporozoite using VectorTest™ panel assay during October 2013 to March 2014, which is a low transmission season for malaria. Social and demographic data were recorded during the study. RESULTS Mean age (± SEM) of the participants was 16.1 ± 1.2 years (95 % CI: 13.8-18.4). All participants (100 %) reported to use mosquito nets. Altogether, 43.6 % of participants had education below primary level and only 9 % reported a travel history during the past four weeks. All RDT, microscopy and PCR assays were found negative indicating no asymptomatic malaria parasitaemia. Seven known malaria vector species namely, Anopheles nivipes, An. minimus, An. annularis, An. vagus, An. aconitus, An. philippinensis and An. culicifacies, were recorded in the present study. VectorTest™ sporozoite panel assay conducted on 45 pools (N = 224) of vector mosquitoes were found negative for Plasmodium sporozoite. DISCUSSION Northeastern states of India report asymptomatic malaria parasitemia along with high malaria transmission. An. minimus and An. dirus are recognised as efficient vectors, but An. culicifacies, An. philippinensis and An. annularis also play role in malaria transmission. Currently all participants were found negative for asymptomatic malaria, however the small sample size may restrict the scope of present results to the population living in more remote areas. CONCLUSION No cases of asymptomatic malaria infections parasitaemia was found in the present study conducted during a low transmission season indicating that asymptomatic malaria parasitaemia may not be prevalent in the region. Mosquito specimens were tested negative for the malaria sporozoites. Study findings encourage the ongoing malaria intervention efforts and recommends similar investigations in different ecological areas involving large populations.
Collapse
Affiliation(s)
- Sunil Dhiman
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| | - Diganta Goswami
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| | - Bipul Rabha
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| | - Kavita Yadav
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| | - Pronobesh Chattopadhyay
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| | - Vijay Veer
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| |
Collapse
|
10
|
Defining the relationship between infection prevalence and clinical incidence of Plasmodium falciparum malaria. Nat Commun 2015; 6:8170. [PMID: 26348689 PMCID: PMC4569718 DOI: 10.1038/ncomms9170] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
In many countries health system data remain too weak to accurately enumerate Plasmodium falciparum malaria cases. In response, cartographic approaches have been developed that link maps of infection prevalence with mathematical relationships to predict the incidence rate of clinical malaria. Microsimulation (or ‘agent-based') models represent a powerful new paradigm for defining such relationships; however, differences in model structure and calibration data mean that no consensus yet exists on the optimal form for use in disease-burden estimation. Here we develop a Bayesian statistical procedure combining functional regression-based model emulation with Markov Chain Monte Carlo sampling to calibrate three selected microsimulation models against a purpose-built data set of age-structured prevalence and incidence counts. This allows the generation of ensemble forecasts of the prevalence–incidence relationship stratified by age, transmission seasonality, treatment level and exposure history, from which we predict accelerating returns on investments in large-scale intervention campaigns as transmission and prevalence are progressively reduced. Mathematical models are used to predict malaria burden to inform disease control efforts. Here, Cameron et al. use Bayesian statistics to calibrate previous models against a data set of age-structured prevalence and incidence, generating stratified forecasts of the prevalence–incidence relationship.
Collapse
|
11
|
Smith-Guzmán NE. Cribra orbitalia in the ancient Nile Valley and its connection to malaria. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2015; 10:1-12. [PMID: 29539534 DOI: 10.1016/j.ijpp.2015.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 05/26/2023]
Abstract
Cribra orbitalia is a common skeletal lesion found on ancient human remains excavated from the Nile Valley. Recent etiological research implicates hemolytic anemia as a main factor leading to the formation of cribra orbitalia. Further, an association between the hemolytic anemia caused by malaria and cribra orbitalia has been demonstrated. The presence of malaria in the ancient Nile Valley has been verified directly through genetic and immunologic studies of Egyptian mummies, but its prevalence and spread remain unknown. As some models have pointed to the Nile Valley as the pathway of malarial dispersion during the Egyptian Dynastic period, variability in cribra orbitalia rates should provide a way to track the disease spread. This study surveyed cribra orbitalia frequencies at 29 ancient Nile Valley sites, representing 4760 individuals ranging from prehistoric to Christian periods and situated between the 3rd Cataract and Nile Delta. Results showed high cribra orbitalia rates, with an overall mean of 42.8% of the total population affected. Over time and space, the data showed no significant correlation, suggesting high levels of anemia affected individuals in the Nile Valley equally from late pre-dynastic to Christian periods. These findings suggest widespread endemic malaria in the Nile Valley before Dynastic Egypt.
Collapse
Affiliation(s)
- Nicole E Smith-Guzmán
- Department of Anthropology, University of Arkansas, 330 Old Main, Fayetteville, AR 72701, United States.
| |
Collapse
|
12
|
Smith-Guzmán NE. The skeletal manifestation of malaria: An epidemiological approach using documented skeletal collections. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015. [PMID: 26213353 DOI: 10.1002/ajpa.22819] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Recent studies in paleopathology have shown promise in associating some skeletal lesions with malarial infection. However, malaria's skeletal manifestation has never been confirmed using a large clinical reference sample from an endemic area for malaria with known individual causes of death. MATERIALS AND METHODS To pinpoint evidence of malaria infection on ancient skeletal remains, this study uses an epidemiological approach to compare skeletal lesions in a modern reference sample of 98 individuals from Uganda, where malaria is holoendemic, to a similar modern sample of 106 individuals from a malaria-free area. RESULTS Five porous skeletal lesions are identified that appear more frequently in the endemic area population, especially in anemic individuals. These appear on the cranium, vertebral column, and humeral and femoral necks. Periostitis also associates strongly with individuals in the endemic population; however, linear enamel hypoplasias show an inverse association. The identified lesions are tested for their association with each other, and then tested individually for their diagnostic power through measures of sensitivity and specificity. A diagnostic outcome algorithm is formed from the remaining skeletal lesions and their inter-lesion associations. DISCUSSION Several etiological explanations for the characteristic malarial skeletal lesions are explored, including severe malarial anemia, an imbalance in bone remodeling, and extramedullary erythropoiesis. The importance of careful differential diagnoses between other infectious and noninfectious causes of these lesions is discussed, including the potential for coinfection of malaria with other infectious diseases. The findings of this study are pivotal in establishing diagnostic criteria by which we can identify the prevalence and impact of malaria on past populations.
Collapse
|
13
|
IgG antibodies to endothelial protein C receptor-binding cysteine-rich interdomain region domains of Plasmodium falciparum erythrocyte membrane protein 1 are acquired early in life in individuals exposed to malaria. Infect Immun 2015; 83:3096-103. [PMID: 26015475 DOI: 10.1128/iai.00271-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
Severe malaria syndromes are precipitated by Plasmodium falciparum parasites binding to endothelial receptors on the vascular lining. This binding is mediated by members of the highly variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. We have previously identified a subset of PfEMP1 proteins associated with severe malaria and found that the receptor for these PfEMP1 variants is endothelial protein C receptor (EPCR). The binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDR) of the subtypes α1.1 and α1.4 to α1.8. In this study, we investigated the acquisition of anti-CIDR antibodies using plasma samples collected in four study villages with different malaria transmission intensities in northeastern Tanzania during a period with a decline in malaria transmission. We show that individuals exposed to high levels of malaria transmission acquire antibodies to EPCR-binding CIDR domains early in life and that these antibodies are acquired more rapidly than antibodies to other CIDR domains. The rate by which antibodies to EPCR-binding CIDR domains are acquired in populations in areas where malaria is endemic is determined by the malaria transmission intensity, and on a population level, the antibodies are rapidly lost if transmission is interrupted. This indicates that sustained exposure is required to maintain the production of the antibodies.
Collapse
|
14
|
Yeka A, Nankabirwa J, Mpimbaza A, Kigozi R, Arinaitwe E, Drakeley C, Greenhouse B, Kamya MR, Dorsey G, Staedke SG. Factors associated with malaria parasitemia, anemia and serological responses in a spectrum of epidemiological settings in Uganda. PLoS One 2015; 10:e0118901. [PMID: 25768015 PMCID: PMC4358889 DOI: 10.1371/journal.pone.0118901] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Understanding the current epidemiology of malaria and the relationship between intervention coverage, transmission intensity, and burden of disease is important to guide control activities. We aimed to determine the prevalence of anemia, parasitemia, and serological responses to P. falciparum antigens, and factors associated with these indicators, in three different epidemiological settings in Uganda. Methods and Findings In 2012, cross-sectional surveys were conducted in 200 randomly selected households from each of three sites: Walukuba, Jinja district (peri-urban); Kihihi, Kanungu district (rural); and Nagongera, Tororo district (rural) with corresponding estimates of annual entomologic inoculation rates (aEIR) of 3.8, 26.6, and 125.0, respectively. Of 2737 participants, laboratory testing was done in 2227 (81.4%), including measurement of hemoglobin, parasitemia using microscopy, and serological responses to P. falciparum apical membrane antigen 1 (AMA-1) and merozoite surface protein 1, 19 kilodalton fragment (MSP-119). Analysis of laboratory results was restricted to 1949 (87.5%) participants aged ≤ 40 years. Prevalence of anemia (hemoglobin < 11.0 g/dL) was significantly higher in Walukuba (18.9%) and Nagongera (17.4%) than in Kihihi (13.1%), and was strongly associated with decreasing age for those ≤ 5 years at all sites. Parasite prevalence was significantly higher in Nagongera (48.3%) than in Walukuba (12.2%) and Kihihi (12.8%), and significantly increased with age to 11 years, and then significantly decreased at all sites. Seropositivity to AMA-1 was 53.3% in Walukuba, 63.0% in Kihihi, and 83.7% in Nagongera and was associated with increasing age at all sites. AMA-1 seroconversion rates strongly correlated with transmission intensity, while serological responses to MSP-119 did not. Conclusion Anemia was predominant in young children and parasitemia peaked by 11 years across 3 sites with varied transmission intensity. Serological responses to AMA-1 appeared to best reflect transmission intensity, and may be a more accurate indicator for malaria surveillance than anemia or parasitemia.
Collapse
Affiliation(s)
- Adoke Yeka
- Makerere University School of Public Health, College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
- * E-mail:
| | - Joaniter Nankabirwa
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Arthur Mpimbaza
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Ruth Kigozi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, United States of America
| | - Moses R. Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, United States of America
| | - Sarah G. Staedke
- Infectious Diseases Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
15
|
Tchuinkam T, Nyih-Kong B, Fopa F, Simard F, Antonio-Nkondjio C, Awono-Ambene HP, Guidone L, Mpoame M. Distribution of Plasmodium falciparum gametocytes and malaria-attributable fraction of fever episodes along an altitudinal transect in Western Cameroon. Malar J 2015; 14:96. [PMID: 25889511 PMCID: PMC4354986 DOI: 10.1186/s12936-015-0594-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/07/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Highland areas are hypoendemic zones of malaria and are therefore prone to epidemics, due to lack of protective immunity. So far, Cameroon has not succeeded in implementing a convenient and effective method to detect, prevent and forecast malaria epidemic in these peculiar zones. This monitoring and evaluation study aims to assess the operational feasibility of using the human malaria infectious reservoir (HMIR) and the malaria-attributable fraction of fever episodes (MAFE) as indicators, in designing a malaria epidemic early warning system (MEWS). METHODS Longitudinal parasitological surveys were conducted in sentinel health centres installed in three localities, located along an altitudinal transect in Western Cameroon: Santchou (750 m), Dschang (1,400 m) and Djuttitsa (1,965 m). The syndromes of outpatients with malaria-like complaints were recorded and their blood samples examined. The HMIR and the MAFE were estimated and their spatial-temporal variations described. RESULTS The prevalence of asexual Plasmodium infection in outpatients decreased with increasing altitude; meanwhile the HMIR remained fairly constant, indicating that scarcity of malaria disease in highlands is likely due to absence of vectors and not parasites. In lowland, children carried the heaviest malaria burden in the form of febrile episodes, and asexual parasites decreased with age, after an initial peak in the 0-5 year's age group; however, they were similar for all age groups in highland. The HMIR did not show any variation with age in the plain; but some discrepancies were observed in the highland with extreme age groups, and migration of populations between lowland and highland was suspected to be the cause. Plasmodium infection was perennial in the lowland and seasonal uphill, with malaria disease occurring here mostly during the short dry season. The MAFE was high and did not change with altitude. CONCLUSION It is obvious that a malaria outbreak will cause the sudden rise of HMIR and MAFE in highland, prior to the malaria season; the discrepancy with lowland would then help detecting an incipient malaria epidemic. It is recommended that in designing the MEWS, the National Malaria Control Programme should include these parameters and put special emphasis on: altitude, age groups and seasons.
Collapse
Affiliation(s)
- Timoléon Tchuinkam
- Malaria Research Unit of the Laboratory of Applied Biology and Ecology (MRU-LABEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, P. O. Box 067, Dschang, Cameroon.
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroun.
| | - Bridget Nyih-Kong
- Malaria Research Unit of the Laboratory of Applied Biology and Ecology (MRU-LABEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, P. O. Box 067, Dschang, Cameroon.
| | - François Fopa
- Malaria Research Unit of the Laboratory of Applied Biology and Ecology (MRU-LABEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, P. O. Box 067, Dschang, Cameroon.
- Hôpital Saint Vincent De Paul, Mission Catholique Sacré Cœur, BP 011, Dschang, Cameroon.
| | - Frédéric Simard
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroun.
- MIVEGEC, UMR IRD224-CNRS5290-UM, Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP 64501, Montpellier, France.
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroun.
| | - Herman-Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroun.
| | - Laura Guidone
- Hôpital Saint Vincent De Paul, Mission Catholique Sacré Cœur, BP 011, Dschang, Cameroon.
| | - Mbida Mpoame
- Malaria Research Unit of the Laboratory of Applied Biology and Ecology (MRU-LABEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, P. O. Box 067, Dschang, Cameroon.
| |
Collapse
|
16
|
Shayo A, Mandara CI, Shahada F, Buza J, Lemnge MM, Ishengoma DS. Therapeutic efficacy and safety of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in North-Eastern Tanzania. Malar J 2014; 13:376. [PMID: 25240962 PMCID: PMC4177150 DOI: 10.1186/1475-2875-13-376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The World Health Organization recommends that regular efficacy monitoring should be undertaken by all malaria endemic countries that have deployed artemisinin combination therapy (ACT). Although ACT is still efficacious for treatment of uncomplicated malaria, artemisinin resistance has been reported in South East Asia suggesting that surveillance needs to be intensified by all malaria endemic countries. This study assessed the efficacy and safety of artemether-lumefantrine (AL) for the treatment of uncomplicated falciparum malaria in Muheza district of north-eastern Tanzania, an area where the transmission has significantly declined in recent years. METHODS Eighty eight children (aged 6 months to 10 years) with uncomplicated falciparum malaria were recruited into the study. The patients were treated with standard doses of AL and followed up for 28 days. The primary end point was parasitological cure on day 28 while the secondary end points included: improvement in haemoglobin levels and occurrence, and severity of adverse events. RESULTS A total of 163 febrile patients were screened, out of which 88 patients (56 under-fives and 32 aged ≥ 5 years) were enrolled and 79 (89.8%) completed the 28 days of follow-up. There were no cases of early treatment failure whilst 40 (78.4%) under-fives and 21(75.0%) older children had adequate clinical and parasitological response (ACPR) before PCR correction. Late clinical failure was seen in 5.6% (n=51) and 3.6% (n=28) of the under-fives and older children respectively; while 15.7% and 21.6% had late parasitological failure in the two groups respectively. After PCR correction, ACPR was 100% in both groups. Reported adverse events included cough (49.7%), fever (20.2%), abdominal pain (10.1%), diarrhoea (1.3%), headache (1.3%) and skin rashes (1.3%). CONCLUSION This study showed that AL was safe, well-tolerated and efficacious for treatment of uncomplicated falciparum malaria. Since Muheza has historically been a hotspot of drug resistance (e.g. pyrimethamine, chloroquine, and SP), surveillance needs to be continued to detect future changes in parasite sensitivity to ACT.
Collapse
Affiliation(s)
| | | | | | | | | | - Deus S Ishengoma
- National Institute for Medical Research, Tanga Medical Research Centre, P,O, BOX 5004, Tanga, Tanzania.
| |
Collapse
|
17
|
Defining the malaria burden in Nchelenge District, northern Zambia using the World Health Organization malaria indicators survey. Malar J 2014; 13:220. [PMID: 24902708 PMCID: PMC4067379 DOI: 10.1186/1475-2875-13-220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is considered as one of the major public health problems and among the diseases of poverty. In areas of stable and relatively high transmission, pregnant women and their newborn babies are among the higher risk groups. A multicentre trial on the safety and efficacy of several formulations of artemisinin-based combination therapy (ACT) during pregnancy is currently on-going in four African countries, including Zambia, whose study site is in Nchelenge district. As the study outcomes may be influenced by the local malaria endemicity, this needs to be characterized. A cross-sectional survey to determine the prevalence and intensity of infection among <10 years old was carried out in March-April 2012 in Nchelenge district. METHODS The sampling unit was the household where all children < 10 years of age were included in the survey using simple random household selection on a GPS coded list. A blood sample for determining haemoglobin concentration and identifying malaria infection was collected from each recruited child. RESULTS Six hundred thirty households were selected and 782 children tested for malaria and anaemia. Prevalence of malaria infection was 30.2% (236/782), the large majority (97.9%, 231/236) being Plasmodium falciparum and the remaining ones (2.1%, 5/236) Plasmodium malariae. Anaemia, defined as haemoglobin concentration <11 g/dl, was detected in 51.2% (398/782) children. CONCLUSION In Zambia, despite the reported decline in malaria burden, pockets of high malaria endemicity, such as Nchelenge district, still remain. This is a border area and significant progress can be achieved only by concerted efforts aimed at increasing coverage of current control interventions across the border.
Collapse
|
18
|
No asymptomatic malaria parasitaemia found among 108 young children at one health facility in Dar es Salaam, Tanzania. Malar J 2013; 12:417. [PMID: 24228811 PMCID: PMC3830543 DOI: 10.1186/1475-2875-12-417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/12/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Asymptomatic malaria parasitaemia has been reported in areas with high malaria transmission. It may serve as a reservoir for continued transmission, and furthermore complicates diagnostics, as not all individuals with a positive malaria test are necessarily ill due to malaria, although they may present with malaria-like symptoms. Asymptomatic malaria increases with age as immunity to malaria gradually develops. As mortality and morbidity of malaria is higher among younger children it is important to know the prevalence of asymptomatic malaria parasitaemia in this population in order to interpret laboratory results for malaria correctly. METHODS A total of 108 children that had neither been treated for malaria nor had a fever the previous four weeks were recruited consecutively at a maternal and child health clinic (MCHC) in Dar es Salaam, Tanzania. A rapid diagnostic test (RDT) for malaria and dried blood spot (DBS) on filter paper were taken from each child. Social and clinical data were recorded. DNA was extracted from the DBS of study participants by a method using InstaGene™ matrix. PCR targeting the Plasmodium mitochondrial genome was performed on all samples. RESULTS Median age was 4.6 months (range 0.5-38). All the RDTs were negative. PCR was negative for all study subjects. CONCLUSION The study suggests that asymptomatic malaria may not be present in apparently healthy children up to the age of three years in Dar es Salaam, Tanzania. However, because of the small sample size and low median age of the study population, the findings cannot be generalized. Larger studies, including higher age groups, need to be done to clarify whether asymptomatic malaria parasitaemia is present in the general population in the Dar es Salaam area.
Collapse
|
19
|
Ishengoma DS, Mmbando BP, Segeja MD, Alifrangis M, Lemnge MM, Bygbjerg IC. Declining burden of malaria over two decades in a rural community of Muheza district, north-eastern Tanzania. Malar J 2013; 12:338. [PMID: 24053121 PMCID: PMC3850962 DOI: 10.1186/1475-2875-12-338] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recently reported declining burden of malaria in some African countries has been attributed to scaling-up of different interventions although in some areas, these changes started before implementation of major interventions. This study assessed the long-term trends of malaria burden for 20 years (1992-2012) in Magoda and for 15 years in Mpapayu village of Muheza district, north-eastern Tanzania, in relation to different interventions as well as changing national malaria control policies. METHODS Repeated cross-sectional surveys recruited individuals aged 0 - 19 years from the two villages whereby blood smears were collected for detection of malaria parasites by microscopy. Prevalence of Plasmodium falciparum infections and other indices of malaria burden (prevalence of anaemia, splenomegaly and gametocytes) were compared across the years and between the study villages. Major interventions deployed including a mobile clinic, bed nets and other research activities, and changes in national malaria control policies were also marked. RESULTS In Magoda, the prevalence of P. falciparum infections initially decreased between 1992 and 1996 (from 83.5 to 62.0%), stabilized between 1996 and 1997, and further declined to 34.4% in 2004. A temporary increase between 2004 and 2008 was followed by a progressive decline to 7.2% in 2012, which is more than 10-fold decrease since 1992. In Mpapayu (from 1998), the highest prevalence was 81.5% in 1999 and it decreased to 25% in 2004. After a slight increase in 2008, a steady decline followed, reaching <5% from 2011 onwards. Bed net usage was high in both villages from 1999 to 2004 (≥88%) but it decreased between 2008 and 2012 (range, 28% - 68%). After adjusting for the effects of bed nets, age, fever and year of study, the risk of P. falciparum infections decreased significantly by ≥97% in both villages between 1999 and 2012 (p < 0.001). The prevalence of splenomegaly (>40% to <1%) and gametocytes (23% to <1%) also decreased in both villages. DISCUSSION AND CONCLUSIONS A remarkable decline in the burden of malaria occurred between 1992 and 2012 and the initial decline (1992 - 2004) was most likely due to deployment of interventions, such as bed nets, and better services through research activities. Apart from changes of drug policies, the steady decline observed from 2008 occurred when bed net coverage was low suggesting that other factors contributed to the most recent pattern. These results suggest that continued monitoring is required to determine causes of the changing malaria epidemiology and also to monitor the progress towards maintaining low malaria transmission and reaching related millennium development goals.
Collapse
Affiliation(s)
- Deus S Ishengoma
- National Institute for Medical Research, Tanga Medical Research Centre, P,O Box 5004, Tanga, Tanzania.
| | | | | | | | | | | |
Collapse
|
20
|
Hendriksen ICE, White LJ, Veenemans J, Mtove G, Woodrow C, Amos B, Saiwaew S, Gesase S, Nadjm B, Silamut K, Joseph S, Chotivanich K, Day NPJ, von Seidlein L, Verhoef H, Reyburn H, White NJ, Dondorp AM. Defining falciparum-malaria-attributable severe febrile illness in moderate-to-high transmission settings on the basis of plasma PfHRP2 concentration. J Infect Dis 2013; 207:351-61. [PMID: 23136222 PMCID: PMC3532834 DOI: 10.1093/infdis/jis675] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/23/2012] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In malaria-endemic settings, asymptomatic parasitemia complicates the diagnosis of malaria. Histidine-rich protein 2 (HRP2) is produced by Plasmodium falciparum, and its plasma concentration reflects the total body parasite burden. We aimed to define the malaria-attributable fraction of severe febrile illness, using the distributions of plasma P. falciparum HRP2 (PfHRP2) concentrations from parasitemic children with different clinical presentations. METHODS Plasma samples were collected from and peripheral blood slides prepared for 1435 children aged 6-60 months in communities and a nearby hospital in northeastern Tanzania. The study population included children with severe or uncomplicated malaria, asymptomatic carriers, and healthy control subjects who had negative results of rapid diagnostic tests. The distributions of plasma PfHRP2 concentrations among the different groups were used to model severe malaria-attributable disease. RESULTS The plasma PfHRP2 concentration showed a close correlation with the severity of infection. PfHRP2 concentrations of >1000 ng/mL denoted a malaria-attributable fraction of severe disease of 99% (95% credible interval [CI], 96%-100%), with a sensitivity of 74% (95% CI, 72%-77%), whereas a concentration of <200 ng/mL denoted severe febrile illness of an alternative diagnosis in >10% (95% CI, 3%-27%) of patients. Bacteremia was more common among patients in the lowest and highest PfHRP2 concentration quintiles. CONCLUSIONS The plasma PfHRP2 concentration defines malaria-attributable disease and distinguishes severe malaria from coincidental parasitemia in African children in a moderate-to-high transmission setting.
Collapse
Affiliation(s)
- Ilse C E Hendriksen
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bengtsson A, Joergensen L, Rask TS, Olsen RW, Andersen MA, Turner L, Theander TG, Hviid L, Higgins MK, Craig A, Brown A, Jensen ATR. A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies. THE JOURNAL OF IMMUNOLOGY 2012; 190:240-9. [PMID: 23209327 DOI: 10.4049/jimmunol.1202578] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1-binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically to ICAM-1. The ICAM-1-binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding-like β3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum-exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1-specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration.
Collapse
Affiliation(s)
- Anja Bengtsson
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1014, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
[Frequency of severe anemia in children aged 2 months to 15 years at Mother and Child Centre of the Chantal Biya Foundation Yaounde, Cameroon]. Pan Afr Med J 2012; 12:46. [PMID: 22937186 PMCID: PMC3428166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/07/2012] [Indexed: 11/17/2022] Open
Abstract
Introduction Les anémies sévères constituent une cause importante de décès d’enfants. Une analyse épidémiologique et clinique permettrait d’estimer la morbidité et mortalité y relatives afin lutter efficacement contre les causes. Méthodes Notre étude rétrospective et descriptive porte sur les anémies sévères chez les enfants de 2 mois à 15 ans de juillet 2005 à juillet 2011. Les drépanocytaires et les enfants souffrant de néoplasie étaient exclus. Toutes les admissions de janvier 2008 à juillet 2011 et les décès totaux, qui répondaient aux critères ci-dessus ont été également répertoriés. Résultats Ont été analysés 4735 cas d’anémie sévère dont 215 décès (4,5%). Entre janvier 2008 et juillet 2011, sur 12879 enfants hospitalisés 2456 souffraient d’anémie sévère dont 96 sont décédés, soit une mortalité spécifique de 0,7% et une létalité de 4,0%. Au total, 22,4% d’anémies sévères survenaient dans la tranche d’âge de moins de 12 mois. Celles de 12 à 59 mois et de plus de 5 ans représentaient respectivement 64,4% et 13,2% des cas. Le paludisme était l’étiologie évoquée chez 89,0% des cas, suivi du sepsis (9,4%). Les décès concernaient les enfants sévèrement anémiés âgés de 12 à 59 mois dans 67,2% de cas. La plupart de patients (84,8%) résidaient à Yaoundé (P = 0,004). Conclusion Les anémies sévères restent fréquentes à Yaoundé. La mise en œuvre de da politique de gratuité des antipaludiques et l’utilisation des moustiquaires doivent être effectives. Le renforcement de ces mesures dès le début des saisons pluvieuses préviendrait les flambées d’anémies.
Collapse
|
23
|
Minja DTR, Schmiegelow C, Oesterholt M, Magistrado PA, Boström S, John D, Pehrson C, Andersen D, Deloron P, Salanti A, Lemnge M, Luty AJF, Alifrangis M, Theander T, Lusingu JPA. Reliability of rapid diagnostic tests in diagnosing pregnancy-associated malaria in north-eastern Tanzania. Malar J 2012; 11:211. [PMID: 22720788 PMCID: PMC3459785 DOI: 10.1186/1475-2875-11-211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. METHODS A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. RESULTS From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. CONCLUSIONS Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool.
Collapse
Affiliation(s)
- Daniel T R Minja
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Simba DO, Kakoko D. Primacy of effective communication and its influence on adherence to artemether-lumefantrine treatment for children under five years of age: a qualitative study. BMC Health Serv Res 2012; 12:146. [PMID: 22682180 PMCID: PMC3441426 DOI: 10.1186/1472-6963-12-146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background Prompt access to artemesinin-combination therapy (ACT) is not adequate unless the drug is taken according to treatment guidelines. Adherence to the treatment schedule is important to preserve efficacy of the drug. Although some community based studies have reported fairly high levels of adherence, data on factors influencing adherence to artemether-lumefantrine (AL) treatment schedule remain inadequate. This study was carried-out to explore the provider’s instructions to caretakers, caretakers’ understanding of the instructions and how that understanding was likely to influence their practice with regard to adhering to AL treatment schedule. Methods A qualitative study was conducted in five villages in Kilosa district, Tanzania. In-depth interviews were held with providers that included prescribers and dispensers; and caretakers whose children had just received AL treatment. Information was collected on providers’ instructions to caretakers regarding dose timing and how to administer AL; and caretakers’ understanding of providers’ instructions. Results Mismatch was found on providers’ instructions as regards to dose timing. Some providers’ (dogmatists) instructions were based on strict hourly schedule (conventional) which was likely to lead to administering some doses in awkward hours and completing treatment several hours before the scheduled time. Other providers (pragmatists) based their instruction on the existing circumstances (contextual) which was likely to lead to delays in administering the initial dose with serious treatment outcomes. Findings suggest that, the national treatment guidelines do not provide explicit information on how to address the various scenarios found in the field. A communication gap was also noted in which some important instructions on how to administer the doses were sometimes not provided or were given with false reasons. Conclusions There is need for a review of the national malaria treatment guidelines to address local context. In the review, emphasis should be put on on-the-job training to address practical problems faced by providers in the course of their work. Further research is needed to determine the implication of completing AL treatment prior to scheduled time.
Collapse
Affiliation(s)
- Daudi O Simba
- Department of Community Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | | |
Collapse
|
25
|
Bougouma EC, Tiono AB, Ouédraogo A, Soulama I, Diarra A, Yaro JB, Ouédraogo E, Sanon S, Konaté AT, Nébié I, Watson NL, Sanza M, Dube TJT, Sirima SB. Haemoglobin variants and Plasmodium falciparum malaria in children under five years of age living in a high and seasonal malaria transmission area of Burkina Faso. Malar J 2012; 11:154. [PMID: 22559271 PMCID: PMC3544150 DOI: 10.1186/1475-2875-11-154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/19/2012] [Indexed: 11/25/2022] Open
Abstract
Background Genetic factors play a key role in determining resistance/susceptibility to infectious disease. Susceptibility of the human host to malaria infection has been reported to be influenced by genetic factors, which could be confounders if not taken into account in the assessment of the efficacy of interventions against malaria. This study aimed to assess the relationship between haemoglobin genotypes and malaria in children under five years in a site being characterized for future malaria vaccine trials. Methods The study population consisted of 452 children living in four rural villages. Hb genotype was determined at enrolment. Clinical malaria incidence was evaluated over a one-year period using combined active and passive surveillance. Prevalence of infection was evaluated via bi-annual cross-sectional surveys. At each follow-up visit, children received a brief clinical examination and thick and thin blood films were prepared for malaria diagnosis. A clinical malaria was defined as Plasmodium falciparum parasitaemia >2,500 parasites/μl and axillary temperature ≥37.5°C or reported fever over the previous 24 hours. Results Frequencies of Hb genotypes were 73.2% AA; 15.0% AC; 8.2% AS; 2.2% CC; 1.1% CS and 0.2% SS. Prevalence of infection at enrolment ranged from 61.9%-54.1% among AA, AC and AS children. After one year follow-up, clinical malaria incidence (95% CI) (episodes per person-year) was 1.9 (1.7-2.0) in AA, 1.6 (1.4-2.1) in AC, and 1.7 (1.4-2.0) in AS children. AC genotype was associated with lower incidence of clinical malaria relative to AA genotype among children aged 1–2 years [rate ratio (95% CI) 0.66 (0.42-1.05)] and 2–3 years [rate ratio (95% CI) 0.37 (0.18-0.75)]; an association of opposite direction was however apparent among children aged 3–4 years. AS genotype was associated with lower incidence of clinical malaria relative to AA genotype among children aged 2–3 years [rate ratio (95% CI) 0.63 (0.40-1.01)]. Conclusions In this cohort of children, AC or AS genotype was associated with lower risk of clinical malaria relative to AA genotype only among children aged one to three years. It would be advisable for clinical studies of malaria in endemic regions to consider haemoglobin gene differences as a potentially important confounder, particularly among younger children.
Collapse
Affiliation(s)
- Edith C Bougouma
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rutta ASM, Francis F, Mmbando BP, Ishengoma DS, Sembuche SH, Malecela EK, Sadi JY, Kamugisha ML, Lemnge MM. Using community-owned resource persons to provide early diagnosis and treatment and estimate malaria burden at community level in north-eastern Tanzania. Malar J 2012; 11:152. [PMID: 22554149 PMCID: PMC3517357 DOI: 10.1186/1475-2875-11-152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background Although early diagnosis and prompt treatment is an important strategy for control of malaria, using fever to initiate presumptive treatment with expensive artemisinin combination therapy is a major challenge; particularly in areas with declining burden of malaria. This study was conducted using community-owned resource persons (CORPs) to provide early diagnosis and treatment of malaria, and collect data for estimation of malaria burden in four villages of Korogwe district, north-eastern Tanzania. Methods In 2006, individuals with history of fever within 24 hours or fever (axillary temperature ≥37.5°C) at presentation were presumptively treated using sulphadoxine/pyrimethamine. Between 2007 and 2010, individuals aged five years and above, with positive rapid diagnostic tests (RDTs) were treated with artemether/lumefantrine (AL) while under-fives were treated irrespective of RDT results. Reduction in anti-malarial consumption was determined by comparing the number of cases that would have been presumptively treated and those that were actually treated based on RDTs results. Trends of malaria incidence and slide positivity rates were compared between lowlands and highlands. Results Of 15,729 cases attended, slide positivity rate was 20.4% and declined by >72.0% from 2008, reaching <10.0% from 2009 onwards; and the slide positivity rates were similar in lowlands and highlands from 2009 onwards. Cases with fever at presentation declined slightly, but remained at >40.0% in under-fives and >20.0% among individuals aged five years and above. With use of RDTs, cases treated with AL decreased from <58.0% in 2007 to <11.0% in 2010 and the numbers of adult courses saved were 3,284 and 1,591 in lowlands and highlands respectively. Malaria incidence declined consistently from 2008 onwards; and the highest incidence of malaria shifted from children aged <10 years to individuals aged 10–19 years from 2009. Conclusions With basic training, supervision and RDTs, CORPs successfully provided early diagnosis and treatment and reduced consumption of anti-malarials. Progressively declining malaria incidence and slide positivity rates suggest that all fever cases should be tested with RDTs before treatment. Data collected by CORPs was used to plan phase 1b MSP3 malaria vaccine trial and will be used for monitoring and evaluation of different health interventions. The current situation indicates that there is a remarkable changing pattern of malaria and these areas might be moving from control to pre-elimination levels.
Collapse
Affiliation(s)
- Acleus S M Rutta
- National Institute for Medical Research, Tanga Centre, P.O. Box 5004, Tanga, Tanzania
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang CW, Lavstsen T, Bengtsson DC, Magistrado PA, Berger SS, Marquard AM, Alifrangis M, Lusingu JP, Theander TG, Turner L. Evidence for in vitro and in vivo expression of the conserved VAR3 (type 3) plasmodium falciparum erythrocyte membrane protein 1. Malar J 2012; 11:129. [PMID: 22533832 PMCID: PMC3407477 DOI: 10.1186/1475-2875-11-129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 04/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion antigen family are major contributors to the pathogenesis of P. falciparum malaria infections. The PfEMP1-encoding var genes are among the most diverse sequences in nature, but three genes, var1, var2csa and var3 are found conserved in most parasite genomes. The most severe forms of malaria disease are caused by parasites expressing a subset of antigenically conserved PfEMP1 variants. Thus the ubiquitous and conserved VAR3 PfEMP1 is of particular interest to the research field. Evidence of VAR3 expression on the infected erythrocyte surface has never been presented, and var3 genes have been proposed to be transcribed and expressed differently from the rest of the var gene family members. METHODS In this study, parasites expressing VAR3 PfEMP1 were generated using anti-VAR3 antibodies and the var transcript and PfEMP1 expression profiles of the generated parasites were investigated. The IgG reactivity by plasma from children living in malaria-endemic Tanzania was tested to parasites and recombinant VAR3 protein. Parasites from hospitalized children were isolated and the transcript level of var3 was investigated. RESULTS Var3 is transcribed and its protein product expressed on the surface of infected erythrocytes. The VAR3-expressing parasites were better recognized by children´s IgG than a parasite line expressing a Group B var gene. Two in 130 children showed increased recognition of parasites expressing VAR3 and to the recombinant VAR3 protein after a malaria episode and the isolated parasites showed high levels of var3 transcripts. CONCLUSIONS Collectively, the presented data suggest that var3 is transcribed and its protein product expressed on the surface of infected erythrocytes in the same manner as seen for other var genes both in vitro and in vivo. Only very few children exhibit seroconversion to VAR3 following a malaria episode requiring hospitalization, supporting the previous conclusion drawn from var3 transcript analysis of parasites collected from children hospitalized with malaria, that VAR3 is not associated with severe anaemia or cerebral malaria syndromes in children.
Collapse
Affiliation(s)
- Christian W Wang
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Dominique C Bengtsson
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Pamela A Magistrado
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Sanne S Berger
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Andrea M Marquard
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - John P Lusingu
- National Institute for Medical Research (NIMR), Tanga Medical Research Centre, Tanga, Tanzania
| | - Thor G Theander
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 1014, Copenhagen, Denmark
| |
Collapse
|
28
|
Ishengoma DS, Francis F, Mmbando BP, Lusingu JPA, Magistrado P, Alifrangis M, Theander TG, Bygbjerg IC, Lemnge MM. Accuracy of malaria rapid diagnostic tests in community studies and their impact on treatment of malaria in an area with declining malaria burden in north-eastern Tanzania. Malar J 2011; 10:176. [PMID: 21703016 PMCID: PMC3145609 DOI: 10.1186/1475-2875-10-176] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/26/2011] [Indexed: 11/29/2022] Open
Abstract
Background Despite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results. Methods Data were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model. Results Overall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ2 = 367.7, p < 0.001), while the specificity was significantly higher (94.3%; χ2 = 143.1, p < 0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of < 200 asexual parasites/μl was significantly associated with high risk of false negative RDTs (OR≥16.60, p < 0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5°C) (OR ≤ 0.63, p ≤ 0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p < 0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years. Conclusion Although RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers.
Collapse
Affiliation(s)
- Deus S Ishengoma
- National Institute for Medical Research, Tanga Medical Research Centre, P.O. Box 5004, Tanga, Tanzania.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Winskill P, Rowland M, Mtove G, Malima RC, Kirby MJ. Malaria risk factors in north-east Tanzania. Malar J 2011; 10:98. [PMID: 21507217 PMCID: PMC3094229 DOI: 10.1186/1475-2875-10-98] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/20/2011] [Indexed: 01/06/2023] Open
Abstract
Background Understanding the factors which determine a household's or individual's risk of malaria infection is important for targeting control interventions at all intensities of transmission. Malaria ecology in Tanzania appears to have reduced over recent years. This study investigated potential risk factors and clustering in face of changing infection dynamics. Methods Household survey data were collected in villages of rural Muheza district. Children aged between six months and thirteen years were tested for presence of malaria parasites using microscopy. A multivariable logistic regression model was constructed to identify significant risk factors for children. Geographical information systems combined with global positioning data and spatial scan statistic analysis were used to identify clusters of malaria. Results Using an insecticide-treated mosquito net of any type proved to be highly protective against malaria (OR 0.75, 95% CI 0.59-0.96). Children aged five to thirteen years were at higher risk of having malaria than those aged under five years (OR 1.71, 95% CI 1.01-2.91). The odds of malaria were less for females when compared to males (OR 0.62, 95% CI 0.39-0.98). Two spatial clusters of significantly increased malaria risk were identified in two out of five villages. Conclusions This study provides evidence that recent declines in malaria transmission and prevalence may shift the age groups at risk of malaria infection to older children. Risk factor analysis provides support for universal coverage and targeting of long-lasting insecticide-treated nets (LLINs) to all age groups. Clustering of cases indicates heterogeneity of risk. Improved targeting of LLINs or additional supplementary control interventions to high risk clusters may improve outcomes and efficiency as malaria transmission continues to fall under intensified control.
Collapse
Affiliation(s)
- Peter Winskill
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | | | | | | | |
Collapse
|
30
|
Damien GB, Djènontin A, Rogier C, Corbel V, Bangana SB, Chandre F, Akogbéto M, Kindé-Gazard D, Massougbodji A, Henry MC. Malaria infection and disease in an area with pyrethroid-resistant vectors in southern Benin. Malar J 2010; 9:380. [PMID: 21194470 PMCID: PMC3224346 DOI: 10.1186/1475-2875-9-380] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 12/31/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate baseline data on malaria before the evaluation of new vector control strategies in an area of pyrethroid-resistance of vectors. The burden of malaria was estimated in terms of infection (prevalence and parasite density) and of clinical episodes. METHODS Between December 2007 and December 2008 in the health district of Ouidah-Kpomassè-Tori Bossito (southern Benin), a descriptive epidemiological survey of malaria was conducted. From 28 selected villages, seven were randomized from which a total of 440 children aged 0 to 5 years were randomly selected. Clinical and parasitological information was obtained by active case detection of malaria episodes carried out during eight periods of six consecutive days scheduled at six weekly intervals and by cross-sectional surveys of asymptomatic infection. Entomological information was also collected. The ownership, the use and the correct use of long-lasting insecticide-treated nets (LLINs) were checked over weekly-survey by unannounced visits at home in the late evening. RESULTS Mean parasite density in asymptomatic children was 586 P. falciparum asexual forms per μL of blood (95%CI 504-680). Pyrogenic parasite cut-off was estimated 2,000 P. falciparum asexual blood forms per μL. The clinical incidence of malaria was 1.5 episodes per child per year (95%CI 1.2-1.9). Parasitological and clinical variables did not vary with season. Anopheles gambiae s.l. was the principal vector closely followed by Anopheles funestus. Entomological inoculation rate was 5.3 (95%CI 1.1-25.9) infective bites per human per year. Frequency of the L1014F kdr (West) allele was around 50%. Annual prevalence rate of Plasmodium falciparum asymptomatic infection was 21.8% (95%CI 19.1-24.4) and increased according to age. Mean rates of ownership and use of LLINs were 92% and 70% respectively. The only correct use of LLINs (63%) conferred 26% individual protection against only infection (OR = 0.74 (95%IC 0.62-0.87), p = 0.005). CONCLUSION The health district of Ouidah-Kpomassè-Tori Bossito is a mesoendemic area with a moderate level of pyrethroid-resistance of vectors. The used LLINs rate was high and only the correct use of LLINs was found to reduce malaria infection without influencing malaria morbidity.
Collapse
Affiliation(s)
- Georgia B Damien
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Bénin.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Victor ME, Bengtsson A, Andersen G, Bengtsson D, Lusingu JP, Vestergaard LS, Arnot DE, Theander TG, Joergensen L, Jensen ATR. Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes. Malar J 2010; 9:325. [PMID: 21078147 PMCID: PMC2994891 DOI: 10.1186/1475-2875-9-325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The PFD1235w Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigen is associated with severe malaria in children and can be expressed on the surface of infected erythrocytes (IE) adhering to ICAM1. However, the exact three-dimensional structure of this PfEMP1 and its surface-exposed epitopes are unknown. An insect cell and Escherichia coli based system was used to express single and double domains encoded by the pfd1235w var gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w PfEMP1 antigen expressed on 3D7PFD1235w-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed. METHODS The recombinant proteins were run on SDS-PAGE and Western blots for quantification and size estimation. Insect cell and E. coli-produced recombinant proteins were coupled to a bead-based Luminex assay to measure the plasma antibody reactivity of 180 samples collected from Tanzanian individuals. The recombinant proteins used for immunization of rats and antisera were also tested by flow cytometry for their ability to surface label 3D7PFD1235w-IE. RESULTS All seven pAcGP67A constructs were successfully expressed as recombinant protein in baculovirus-infected insect cells and subsequently produced to a purity of 60-97% and a yield of 2-15 mg/L. By comparison, only three of seven pET101/D-TOPO constructs expressed in the E. coli system could be produced at all with purity and yield ranging from 3-95% and 6-11 mg/L. All seven insect cell, but only two of the E. coli produced proteins induced antibodies reactive with native PFD1235w expressed on 3D7PFD1235w-IE. The recombinant proteins were recognized in an age- and transmission intensity-dependent manner by antibodies from 180 Tanzanian individuals in a bead-based Luminex assay. CONCLUSIONS The baculovirus based insect cell system was distinctly superior to the E. coli expression system in producing a larger number of different recombinant PFD1235w protein domains and these were significantly easier to purify at a useful yield. However, proteins produced in both systems were able to induce antibodies in rats, which can recognize the native PFD1235w on the surface of IE.
Collapse
Affiliation(s)
- Michala E Victor
- Department of International Health, University of Copenhagen, Copenhagen K, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tembo D, Montgomery J. Var gene expression and human Plasmodium pathogenesis. Future Microbiol 2010; 5:801-15. [PMID: 20441551 DOI: 10.2217/fmb.10.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plasmodium falciparum is responsible for most of the morbidity and mortality associated with malaria and is unique in its ability to sequester in organ postcapillary venules. Specific host-parasite interactions mediate this phenomenon and the P. falciparum erythrocyte membrane protein 1 is the predominant ligand responsible for adhering to host endothelial receptors. This review focuses on the current knowledge regarding this protein family, evidence for its role in various pathogenic mechanisms and on insights that have been gained in this area from field studies.
Collapse
Affiliation(s)
- Dumizulu Tembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Blantyre 3, Malawi
| | | |
Collapse
|
33
|
Acquisition of antibodies to merozoite surface protein 3 among residents of Korogwe, north eastern Tanzania. BMC Infect Dis 2010; 10:55. [PMID: 20205959 PMCID: PMC2841183 DOI: 10.1186/1471-2334-10-55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 03/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A polymorphic malaria parasite antigen, merozoite surface protein 3 (MSP3), is among the blood stage malaria vaccine candidates. It is believed to induce immunity through cytophilic antibodies that disrupt the process of erythrocytes invasion by merozoites. This study aimed at assessing natural acquisition of antibodies to MSP3 in individuals living in an area with different malaria transmission intensity in preparation for malaria vaccine trials. METHODS The study was conducted in individuals aged 0-19 years from villages located in lowland, intermediate and highland strata in Korogwe district, northeastern Tanzania. Blood samples from 492 study participants were collected between May and June 2006 for malaria diagnosis and immunological investigations. Reactivity of MSP3 to different types of antibodies (immunoglobulin M, G and IgG subclass 1 and 3) were analysed by Enzyme Linked ImmunoSorbent Assay (ELISA). RESULTS Malaria parasite prevalence was higher in the lowland (50%) compared to the intermediate (23.1%) and highland (9.8%) strata. Immunogloblin G subclasses 1 and 3 (IgG1 & IgG3), total IgG and IgM were found to increase with increasing age. IgG3 levels were significantly higher than IgG1 (p < 0.001). Furthermore, Plasmodium falciparum infection was associated with higher IgG3 levels (p = 0.008). Adjusting by strata and age in individuals who had positive blood smears, both IgG and IgM were associated with parasite density, whereby IgG levels decreased by 0.227 (95%CI: 0.064 - 0.391; p = 0.007) while IgM levels decreased by 0.165 (95%CI: 0.044 - 0.286; p = 0.008). CONCLUSION Individuals with higher levels of IgG3 might be partially protected from malaria infection. Higher levels of total IgG and IgM in highlands might be due to low exposure to malaria infection, recent infection or presence of cross-reactive antigens. Further studies of longitudinal nature are recommended. Data obtained from this study were used in selection of one village (Kwashemshi) for conducting MSP3 phase 1b malaria vaccine trial in Korogwe.
Collapse
|
34
|
Carneiro I, Roca-Feltrer A, Griffin JT, Smith L, Tanner M, Schellenberg JA, Greenwood B, Schellenberg D. Age-patterns of malaria vary with severity, transmission intensity and seasonality in sub-Saharan Africa: a systematic review and pooled analysis. PLoS One 2010; 5:e8988. [PMID: 20126547 PMCID: PMC2813874 DOI: 10.1371/journal.pone.0008988] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 01/06/2010] [Indexed: 11/19/2022] Open
Abstract
Background There is evidence that the age-pattern of Plasmodium falciparum malaria varies with transmission intensity. A better understanding of how this varies with the severity of outcome and across a range of transmission settings could enable locally appropriate targeting of interventions to those most at risk. We have, therefore, undertaken a pooled analysis of existing data from multiple sites to enable a comprehensive overview of the age-patterns of malaria outcomes under different epidemiological conditions in sub-Saharan Africa. Methodology/Principal Findings A systematic review using PubMed and CAB Abstracts (1980–2005), contacts with experts and searching bibliographies identified epidemiological studies with data on the age distribution of children with P. falciparum clinical malaria, hospital admissions with malaria and malaria-diagnosed mortality. Studies were allocated to a 3×2 matrix of intensity and seasonality of malaria transmission. Maximum likelihood methods were used to fit five continuous probability distributions to the percentage of each outcome by age for each of the six transmission scenarios. The best-fitting distributions are presented graphically, together with the estimated median age for each outcome. Clinical malaria incidence was relatively evenly distributed across the first 10 years of life for all transmission scenarios. Hospital admissions with malaria were more concentrated in younger children, with this effect being even more pronounced for malaria-diagnosed deaths. For all outcomes, the burden of malaria shifted towards younger ages with increasing transmission intensity, although marked seasonality moderated this effect. Conclusions The most severe consequences of P. falciparum malaria were concentrated in the youngest age groups across all settings. Despite recently observed declines in malaria transmission in several countries, which will shift the burden of malaria cases towards older children, it is still appropriate to target strategies for preventing malaria mortality and severe morbidity at very young children who will continue to bear the brunt of malaria deaths in Sub-Saharan Africa.
Collapse
Affiliation(s)
- Ilona Carneiro
- Disease Control and Vector Biology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mmbando BP, Lusingu JP, Vestergaard LS, Lemnge MM, Theander TG, Scheike TH. Parasite threshold associated with clinical malaria in areas of different transmission intensities in north eastern Tanzania. BMC Med Res Methodol 2009; 9:75. [PMID: 19909523 PMCID: PMC2781814 DOI: 10.1186/1471-2288-9-75] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 11/12/2009] [Indexed: 11/21/2022] Open
Abstract
Background In Sub-Sahara Africa, malaria due to Plasmodium falciparum is the main cause of ill health. Evaluation of malaria interventions, such as drugs and vaccines depends on clinical definition of the disease, which is still a challenge due to lack of distinct malaria specific clinical features. Parasite threshold is used in definition of clinical malaria in evaluation of interventions. This however, is likely to be influenced by other factors such as transmission intensity as well as individual level of immunity against malaria. Methods This paper describes step function and dose response model with threshold parameter as a tool for estimation of parasite threshold for onset of malaria fever in highlands (low transmission) and lowlands (high transmission intensity) strata. These models were fitted using logistic regression stratified by strata and age groups (0-1, 2-3, 4-5, 6-9, and 10-19 years). Dose response model was further extended to fit all age groups combined in each stratum. Sub-sampling bootstrap was used to compute confidence intervals. Cross-sectional and passive case detection data from Korogwe district, north eastern Tanzania were used. Results Dose response model was better in the estimation of parasite thresholds. Parasite thresholds (scale = log parasite/μL) were high in lowlands than in highlands. In the lowlands, children in age group 4-5 years had the highest parasite threshold (8.73) while individuals aged 10-19 years had the lowest (6.81). In the highlands, children aged 0-1 years had the highest threshold (7.12) and those aged 10-19 years had the lowest (4.62). Regression analysis with all ages combined showed similar pattern of thresholds in both strata, whereby, in the lowlands the threshold was highest in age group 2-5 years and lowest in older individuals, while in the highlands was highest in age group 0-1 and decreased with increased age. The sensitivity of parasite threshold by age group ranged from 64%-74% in the lowlands and 67%-97% in the highlands; while specificity ranged between 67%-90% in the lowlands and 37%-73% in the highlands. Conclusion Dose response model with threshold parameter can be used to estimate parasite threshold associated with malaria fever onset. Parasite threshold were lower in older individuals and in low malaria transmission area.
Collapse
Affiliation(s)
- Bruno P Mmbando
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
36
|
Cham GKK, Turner L, Lusingu J, Vestergaard L, Mmbando BP, Kurtis JD, Jensen ATR, Salanti A, Lavstsen T, Theander TG. Sequential, ordered acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 domains. THE JOURNAL OF IMMUNOLOGY 2009; 183:3356-63. [PMID: 19675168 DOI: 10.4049/jimmunol.0901331] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The binding of erythrocytes infected with mature blood stage parasites to the vascular bed is key to the pathogenesis of malignant malaria. The binding is mediated by members of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. PfEMP1s can be divided into groups, and it has previously been suggested that parasites expressing group A or B/A PfEMP1s are most pathogenic. To test the hypothesis that the first malaria infections in infants and young children are dominated by parasites expressing A and B/A PfEMP1s, we measured the plasma Ab level against 48 recombinant PfEMP1 domains of different groupings in 1342 individuals living in five African villages characterized by markedly different malaria transmission. We show that children progressively acquire a broader repertoire of anti-PfEMP1 Abs, but that the rate of expansion is governed by transmission intensity. However, independently of transmission intensity, Abs are first acquired to particular Duffy binding ligand-like domains belonging to group A or B/A PfEMP1s. The results support the view that anti-PfEMP1 Ab responses effectively structure the expenditure of the repertoire of PfEMP1 maintained by the parasite. Parasites expressing certain group A and B/A PfEMP1s are responded to first by individuals with limited previous exposure, and the resulting Abs reduce the fitness and pathogenicity of these parasites during subsequent infections. This allows parasites expressing less pathogenic PFEMP1s to dominate during later infections. The identification of PfEMP1 domains expressed by parasites causing disease in infants and young children is important for development of vaccines protecting against severe malaria.
Collapse
Affiliation(s)
- Gerald K K Cham
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mmbando BP, Segeja MD, Msangeni HA, Sembuche SH, Ishengoma DS, Seth MD, Francis F, Rutta AS, Kamugisha ML, Lemnge MM. Epidemiology of malaria in an area prepared for clinical trials in Korogwe, north-eastern Tanzania. Malar J 2009; 8:165. [PMID: 19615093 PMCID: PMC2720983 DOI: 10.1186/1475-2875-8-165] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 07/18/2009] [Indexed: 11/10/2022] Open
Abstract
Background Site preparation is a pre-requesite in conducting malaria vaccines trials. This study was conducted in 12 villages to determine malariometric indices and associated risk factors, during long and short rainy seasons, in an area with varying malaria transmission intensities in Korogwe district, Tanzania. Four villages had passive case detection (PCD) of fever system using village health workers. Methods Four malariometric cross-sectional surveys were conducted between November 2005 and May 2007 among individuals aged 0–19 years, living in lowland urban, lowland rural and highland strata. A total of 10,766 blood samples were collected for malaria parasite diagnosis and anaemia estimation. Blood smears were stained with Giemsa while haemoglobin level was measured by HaemoCue. Socio-economic data were collected between Jan-Apr 2006. Results Adjusting for the effect of age, the risk of Plasmodium falciparum parasitaemia was significantly lower in both lowland urban, (OR = 0.26; 95%CI: 0.23–0.29, p < 0.001) and highlands, (OR = 0.21; 95%CI: 0.17–0.25, p < 0.001) compared to lowland rural. Individuals aged 6–9 years in the lowland rural and 4–19 years in both lowland urban and highlands had the highest parasite prevalence, whilst children below five years in all strata had the highest parasite density. Prevalence of splenomegaly and gametocyte were also lower in both lowland urban and highlands than in lowland rural. Anaemia (Hb <11 g/dl) prevalence was lowest in the lowland urban. Availability of PCD and higher socio-economic status (SES) were associated with reduced malaria and anaemia prevalence. Conclusion Higher SES and use of bed nets in the lowland urban could be the important factors for low malaria infections in this stratum. Results obtained here were used together with those from PCD and DSS in selecting a village for Phase 1b MSP3 vaccine trial, which was conducted in the study area in year 2008.
Collapse
Affiliation(s)
- Bruno P Mmbando
- National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stewart L, Gosling R, Griffin J, Gesase S, Campo J, Hashim R, Masika P, Mosha J, Bousema T, Shekalaghe S, Cook J, Corran P, Ghani A, Riley EM, Drakeley C. Rapid assessment of malaria transmission using age-specific sero-conversion rates. PLoS One 2009; 4:e6083. [PMID: 19562032 PMCID: PMC2698122 DOI: 10.1371/journal.pone.0006083] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 05/29/2009] [Indexed: 11/18/2022] Open
Abstract
Background Malaria transmission intensity is a crucial determinant of malarial disease burden and its measurement can help to define health priorities. Rapid, local estimates of transmission are required to focus resources better but current entomological and parasitological methods for estimating transmission intensity are limited in this respect. An alternative is determination of antimalarial antibody age-specific sero-prevalence to estimate sero-conversion rates (SCR), which have been shown to correlate with transmission intensity. This study evaluated SCR generated from samples collected from health facility attendees as a tool for a rapid assessment of malaria transmission intensity. Methodology and Principal Findings The study was conducted in north east Tanzania. Antibodies to Plasmodium falciparum merozoite antigens MSP-119 and AMA-1 were measured by indirect ELISA. Age-specific antibody prevalence was analysed using a catalytic conversion model based on maximum likelihood to generate SCR. A pilot study, conducted near Moshi, found SCRs for AMA-1 were highly comparable between samples collected from individuals in a conventional cross-sectional survey and those collected from attendees at a local health facility. For the main study, 3885 individuals attending village health facilities in Korogwe and Same districts were recruited. Both malaria parasite prevalence and sero-positivity were higher in Korogwe than in Same. MSP-119 and AMA-1 SCR rates for Korogwe villages ranged from 0.03 to 0.06 and 0.07 to 0.21 respectively. In Same district there was evidence of a recent reduction in transmission, with SCR among those born since 1998 [MSP-119 0.002 to 0.008 and AMA-1 0.005 to 0.014 ] being 5 to 10 fold lower than among individuals born prior to 1998 [MSP-119 0.02 to 0.04 and AMA-1 0.04 to 0.13]. Current health facility specific estimates of SCR showed good correlations with malaria incidence rates in infants in a contemporaneous clinical trial (MSP-119 r2 = 0.78, p<0.01 & AMA-1 r2 = 0.91, p<0.001). Conclusions SCRs generated from age-specific anti-malarial antibody prevalence data collected via health facility surveys were robust and credible. Analysis of SCR allowed detection of a recent drop in malaria transmission in line with recent data from other areas in the region. This health facility-based approach represents a potential tool for rapid assessment of recent trends in malaria transmission intensity, generating valuable data for local and national malaria control programs to target, monitor and evaluate their control strategies.
Collapse
Affiliation(s)
- Laveta Stewart
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Joint Malaria Programme, Moshi, Tanzania
| | - Roly Gosling
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- KILI-IPTi Project, JMP, Korogwe, Tanzania
| | - Jamie Griffin
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | | | - Joseph Campo
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Joint Malaria Programme, Moshi, Tanzania
| | | | | | | | - Teun Bousema
- Kilimanjaro Christian Medical College, Tumaini University, Moshi, Tanzania
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Seif Shekalaghe
- Kilimanjaro Christian Medical College, Tumaini University, Moshi, Tanzania
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jackie Cook
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Patrick Corran
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Biotherapeutics Group, NIBSC, South Mimms, Herts, United Kingdom
| | - Azra Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Eleanor M. Riley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Joint Malaria Programme, Moshi, Tanzania
- * E-mail:
| |
Collapse
|
39
|
Okell LC, Drakeley CJ, Bousema T, Whitty CJM, Ghani AC. Modelling the impact of artemisinin combination therapy and long-acting treatments on malaria transmission intensity. PLoS Med 2008; 5:e226; discussion e226. [PMID: 19067479 PMCID: PMC2586356 DOI: 10.1371/journal.pmed.0050226] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/02/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas. METHODS AND FINDINGS We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting. CONCLUSIONS Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.
Collapse
Affiliation(s)
- Lucy C Okell
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | | | | |
Collapse
|
40
|
Cham GKK, Kurtis J, Lusingu J, Theander TG, Jensen ATR, Turner L. A semi-automated multiplex high-throughput assay for measuring IgG antibodies against Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) domains in small volumes of plasma. Malar J 2008; 7:108. [PMID: 18549480 PMCID: PMC2435541 DOI: 10.1186/1475-2875-7-108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/12/2008] [Indexed: 11/20/2022] Open
Abstract
Background The level of antibodies against PfEMP1 is routinely quantified by the conventional microtitre enzyme-linked immunosorbent assay (ELISA). However, ELISA only measures one analyte at a time and requires a relatively large plasma volume if the complete antibody profile of the sample is to be obtained. Furthermore, assay-to-assay variation and the problem of storage of antigen can influence ELISA results. The bead-based assay described here uses the BioPlex100 (BioRad, Hercules, CA, USA) system which can quantify multiple antibodies simultaneously in a small plasma volume. Methods A total of twenty nine PfEMP1 domains were PCR amplified from 3D7 genomic DNA, expressed in the Baculovirus system and purified by metal-affinity chromatography. The antibody reactivity level to the recombinant PfEMP1 proteins in human hyper-immune plasma was measured by ELISA. In parallel, these recombinant PfEMP1 proteins were covalently coupled onto beads each having its own unique detection signal and the human hyper-immune plasma reactivity was detected for each individual protein using a BioPlex100 system. Protein-coupled beads were analysed at two time points seven months apart, before and after lyophilization and the results compared to determine the effect of storage and lyophilization respectively on the beads. Multiplexed protein-coupled beads from twenty eight unique bead populations were evaluated on the BioPlex100 system against pooled human hyper-immune plasma before and after lyophilization. Results The bead-based assay was sensitive, accurate and reproducible. Four recombinant PfEMP1 proteins C17, D5, D9 and D12, selected on the basis that they showed a spread of median fluorescent intensity (MFI) values from low to high when analysed by the bead-based assay were analysed by ELISA and the results from both analyses were highly correlated. The Spearman's rank correlation coefficients (Rho) were ≥ 0.86, (P < 0.0001) for all comparisons. Bead-based assays gave similar results regardless of whether they were performed on individual beads or on multiplexed beads; lyophilization had no impact on the assay performance. Spearman's rank correlation coefficients (Rho) were ≥ 0.97, (P < 0.0001) for all comparisons. Importantly, the reactivity of protein-coupled non-lyophilized beads decreased with long term storage at 4°C in the dark. Conclusion Using this lyophilized multiplex assay, antibody reactivity levels to twenty eight different recombinant PfEMP1 proteins were simultaneously measured using a single microliter of plasma. Thus, the assay reported here provides a useful tool for rapid and efficient quantification of antibody reactivity against PfEMP1 variants in human plasma.
Collapse
Affiliation(s)
- Gerald K K Cham
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
41
|
Proposed Treatment Program for Acute Renal Failure (ARF) in the United Republic of Tanzania as a Model for Sub-Saharan Africa. ACTA ACUST UNITED AC 2008; 18:81-8. [DOI: 10.1300/j375v18n01_07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Differences in human antibody reactivity to Plasmodium falciparum variant surface antigens are dependent on age and malaria transmission intensity in northeastern Tanzania. Infect Immun 2008; 76:2706-14. [PMID: 18250179 DOI: 10.1128/iai.01401-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum variant surface antigens (VSA) are involved in the pathogenesis of malaria. Immunoglobulin G (IgG) with specificity for VSA (anti-VSA IgG) is therefore considered important for acquired immunity. To better understand the nature and dynamics of variant-specific IgG responses at population level, we conducted an immunoepidemiological study in nearby communities in northeastern Tanzania, situated at different altitudes and therefore exposed to different levels of P. falciparum transmission intensity. Samples of plasma and infected red blood cells (IRBC) were collected from 759 individuals aged 0 to 19 years. Plasma levels of IgG with specificity for VSA expressed by a panel of different parasite isolates were measured by flow cytometry, while the ability of plasma to inhibit IRBC adhesion to CD36 was examined in cellular assays. The level and repertoire of the heterologous anti-VSA IgG response developed dramatically in individuals at 1 to 2 years of age in the high-transmission area, reaching a maximum level at around 10 years of age; only a modest further increase was observed among older children and adults. In contrast, at lower levels of malaria transmission, anti-VSA IgG levels were lower and the repertoire was more narrow, and similar age- and transmission-dependent differences were observed with regard to the ability of the plasma samples to inhibit adhesion of IRBC to CD36. These differences indicate a strong and dynamic relationship between malaria exposure and functional characteristics of the variant-specific antibody response, which is likely to be important for protection against malaria.
Collapse
|
43
|
Shekalaghe S, Drakeley C, Gosling R, Ndaro A, van Meegeren M, Enevold A, Alifrangis M, Mosha F, Sauerwein R, Bousema T. Primaquine clears submicroscopic Plasmodium falciparum gametocytes that persist after treatment with sulphadoxine-pyrimethamine and artesunate. PLoS One 2007; 2:e1023. [PMID: 17925871 PMCID: PMC1995753 DOI: 10.1371/journal.pone.0001023] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 08/31/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND P. falciparum gametocytes may persist after treatment with sulphadoxine-pyrimethamine (SP) plus artesunate (AS) and contribute considerably to malaria transmission. We determined the efficacy of SP+AS plus a single dose of primaquine (PQ, 0.75 mg/kg) on clearing gametocytaemia measured by molecular methods. METHODOLOGY The study was conducted in Mnyuzi, an area of hyperendemic malaria in north-eastern Tanzania. Children aged 3-15 years with uncomplicated P. falciparum malaria with an asexual parasite density between 500-100,000 parasites/microL were randomized to receive treatment with either SP+AS or SP+AS+PQ. P. falciparum gametocyte prevalence and density during the 42-day follow-up period were determined by real-time nucleic acid sequence-based amplification (QT-NASBA). Haemoglobin levels (Hb) were determined to address concerns about haemolysis in G6PD-deficient individuals. RESULTS 108 individuals were randomized. Pfs25 QT-NASBA gametocyte prevalence was 88-91% at enrolment and decreased afterwards for both treatment arms. Gametocyte prevalence and density were significantly lower in children treated with SP+AS+PQ. On day 14 after treatment 3.9% (2/51) of the SP+AS+PQ treated children harboured gametocytes compared to 62.7% (32/51) of those treated with SP+AS (p<0.001). Hb levels were reduced in the week following treatment with SP+AS+PQ and this reduction was related to G6PD deficiency. The Hb levels of all patients recovered to pre-treatment levels or greater within one month after treatment. CONCLUSIONS PQ clears submicroscopic gametocytes after treatment with SP+AS and the persisting gametocytes circulated at densities that are unlikely to contribute to malaria transmission. For individuals without severe anaemia, addition of a single dose of PQ to an efficacious antimalarial drug combination is a safe approach to reduce malaria transmission following treatment. TRIAL REGISTRATION Controlled-Trials.com ISRCTN61534963.
Collapse
Affiliation(s)
- Seif Shekalaghe
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Chris Drakeley
- Department of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Roly Gosling
- Department of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Arnold Ndaro
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Monique van Meegeren
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anders Enevold
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
- Institute for International Health, Immunology and Microbiology, Center for Medical Parasitology (CMP), University of Copenhagen, Copenhagen, Denmark
| | - Michael Alifrangis
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
- Institute for International Health, Immunology and Microbiology, Center for Medical Parasitology (CMP), University of Copenhagen, Copenhagen, Denmark
| | - Frank Mosha
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Shekalaghe S, Drakeley C, Gosling R, Ndaro A, van Meegeren M, Enevold A, Alifrangis M, Mosha F, Sauerwein R, Bousema T. Primaquine clears submicroscopic Plasmodium falciparum gametocytes that persist after treatment with sulphadoxine-pyrimethamine and artesunate. PLoS One 2007. [PMID: 17925871 DOI: 10.1371/journal.-pone.0001023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND P. falciparum gametocytes may persist after treatment with sulphadoxine-pyrimethamine (SP) plus artesunate (AS) and contribute considerably to malaria transmission. We determined the efficacy of SP+AS plus a single dose of primaquine (PQ, 0.75 mg/kg) on clearing gametocytaemia measured by molecular methods. METHODOLOGY The study was conducted in Mnyuzi, an area of hyperendemic malaria in north-eastern Tanzania. Children aged 3-15 years with uncomplicated P. falciparum malaria with an asexual parasite density between 500-100,000 parasites/microL were randomized to receive treatment with either SP+AS or SP+AS+PQ. P. falciparum gametocyte prevalence and density during the 42-day follow-up period were determined by real-time nucleic acid sequence-based amplification (QT-NASBA). Haemoglobin levels (Hb) were determined to address concerns about haemolysis in G6PD-deficient individuals. RESULTS 108 individuals were randomized. Pfs25 QT-NASBA gametocyte prevalence was 88-91% at enrolment and decreased afterwards for both treatment arms. Gametocyte prevalence and density were significantly lower in children treated with SP+AS+PQ. On day 14 after treatment 3.9% (2/51) of the SP+AS+PQ treated children harboured gametocytes compared to 62.7% (32/51) of those treated with SP+AS (p<0.001). Hb levels were reduced in the week following treatment with SP+AS+PQ and this reduction was related to G6PD deficiency. The Hb levels of all patients recovered to pre-treatment levels or greater within one month after treatment. CONCLUSIONS PQ clears submicroscopic gametocytes after treatment with SP+AS and the persisting gametocytes circulated at densities that are unlikely to contribute to malaria transmission. For individuals without severe anaemia, addition of a single dose of PQ to an efficacious antimalarial drug combination is a safe approach to reduce malaria transmission following treatment. TRIAL REGISTRATION Controlled-Trials.com ISRCTN61534963.
Collapse
Affiliation(s)
- Seif Shekalaghe
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chiyaka C, Garira W, Dube S. Transmission model of endemic human malaria in a partially immune population. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.mcm.2006.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Yé Y, Kimani-Murage E, Kebaso J, Mugisha F. Assessing the risk of self-diagnosed malaria in urban informal settlements of Nairobi using self-reported morbidity survey. Malar J 2007; 6:71. [PMID: 17531102 PMCID: PMC1894801 DOI: 10.1186/1475-2875-6-71] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Because of the belief that Nairobi is a low risk zone for malaria, little empirical data exists on malaria risk in the area. The aim of this study was to explore the risk of perceived malaria and some associated factors in Nairobi informal settlements using self-reported morbidity survey. METHODS The survey was conducted from May to August 2004 on 7,288 individuals in two informal settlements of Nairobi. Participants were asked to report illnesses they experienced in the past 14 days. Logistic regression was used to estimate the odds of perceived-malaria. The model included variables such as site of residence, age, ethnicity and number of reported symptoms. RESULTS Participants reported 165 illnesses among which malaria was the leading cause (28.1%). The risk of perceived-malaria was significantly higher in Viwandani compared to Korogocho (OR 1.61, 95%CI: 1.10-2.26). Participants in age group 25-39 years had significantly higher odds of perceived-malaria compared to those under-five years (OR 2.07, 95%CI: 1.43-2.98). The Kikuyu had reduced odds of perceived-malaria compared to other ethnic groups. Individuals with five and more symptoms had higher odds compared to those with no symptoms (OR 23.69, 95%CI: 12.98-43.23). CONCLUSION Malaria was the leading cause of illness as perceived by the residents in the two informal settlements. This was rational as the number of reported symptoms was highly associated with the risk of reporting the illness. These results highlight the need for a more comprehensive assessment of malaria epidemiology in Nairobi to be able to offer evidence-based guidance to policy on malaria in Kenya and particularly in Nairobi.
Collapse
Affiliation(s)
- Yazoumé Yé
- African Population and Health Research Centre (APHRC), Shelter Afrique Centre, 2nd Floor, Longonot Road, Upper Hill, P.O. Box 10787-00100 GPO, Nairobi, Kenya
| | - Elizabeth Kimani-Murage
- African Population and Health Research Centre (APHRC), Shelter Afrique Centre, 2nd Floor, Longonot Road, Upper Hill, P.O. Box 10787-00100 GPO, Nairobi, Kenya
| | - John Kebaso
- African Population and Health Research Centre (APHRC), Shelter Afrique Centre, 2nd Floor, Longonot Road, Upper Hill, P.O. Box 10787-00100 GPO, Nairobi, Kenya
| | - Frederick Mugisha
- African Population and Health Research Centre (APHRC), Shelter Afrique Centre, 2nd Floor, Longonot Road, Upper Hill, P.O. Box 10787-00100 GPO, Nairobi, Kenya
| |
Collapse
|
47
|
Magistrado PA, Lusingu J, Vestergaard LS, Lemnge M, Lavstsen T, Turner L, Hviid L, Jensen ATR, Theander TG. Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from P. falciparum malaria. Infect Immun 2007; 75:2415-20. [PMID: 17283085 PMCID: PMC1865733 DOI: 10.1128/iai.00951-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Variant surface antigens (VSA) on the surface of Plasmodium falciparum-infected red blood cells play a major role in the pathogenesis of malaria and are key targets for acquired immunity. The best-characterized VSA belong to the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. In areas where P. falciparum is endemic, parasites causing severe malaria and malaria in young children with limited immunity tend to express semiconserved PfEMP1 molecules encoded by group A var genes. Here we investigated antibody responses of Tanzanians who were 0 to 19 years old to PF11_0008, a group A PfEMP1. PF11_0008 has previously been found to be highly transcribed in a nonimmune Dutch volunteer experimentally infected with NF54 parasites. A high proportion of the Tanzanian donors had antibodies against recombinant PF11_0008 domains, and in children who were 4 to 9 years old the presence of antibodies to the PF11_0008 CIDR2beta domain was associated with reduced numbers of malaria episodes. These results indicate that homologues of PF11_0008 are present in P. falciparum field isolates and suggest that PF11_0008 CIDR2beta-reactive antibodies might be involved in protection against malaria episodes.
Collapse
Affiliation(s)
- Pamela A Magistrado
- Centre for Medical Parasitology at Department of Medical Microbiology and Immunology, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Montgomery CM, Mwengee W, Kong'ong'o M, Pool R. 'To help them is to educate them': power and pedagogy in the prevention and treatment of malaria in Tanzania. Trop Med Int Health 2007; 11:1661-9. [PMID: 17054745 DOI: 10.1111/j.1365-3156.2006.01719.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Acknowledging that mothers are often the primary caregivers at the household level, malaria control efforts have emphasized educating women in its early recognition. This fails to consider the context in which knowledge will be transformed into action, as women lack decision-making responsibility and financial resources. We examine the knowledge and power dynamics of provider-patient interactions and the implications for malaria treatment of educating mothers during consultations. METHODS We conducted in-depth interviews in Tanga, Tanzania, with 79 household participants over 2 years to explore knowledge and perceptions of febrile illness, its treatment and prevention. We also interviewed 55 clinicians at government and private healthcare facilities about their patients' knowledge and treatment-seeking behaviour. We analysed our data using a grounded theory approach. RESULTS Informants had good knowledge of malaria aetiology, symptoms and treatment. Healthcare workers reported that mothers were able to give them sufficient information about their child for accurate diagnosis. However, health staff continued to see mothers who present 'late' as uneducated, intellectually incapable and lazy. Whilst evidence shows that decisions about treatment do not rest with mothers, but with male family members, it is women who continue to be blamed and targeted by health education. CONCLUSIONS Aggressive didactic teaching methods used by health staff may be disempowering those already equipped with knowledge, yet unable to control treatment decisions within the household. This may lead to further delays in presentation at a healthcare facility. We propose a rethinking of health education that is context-sensitive, acknowledges class and gendered power relations, and targets men as well as women.
Collapse
Affiliation(s)
- Catherine M Montgomery
- Health Policy Unit, London School of Hygiene & Tropical Medicine, London, UK, and Center for International Health, Hospital Clinic, University of Barcelona, Spain.
| | | | | | | |
Collapse
|
49
|
Joergensen L, Vestergaard LS, Turner L, Magistrado P, Lusingu JP, Lemnge M, Theander TG, Jensen ATR. 3D7-DerivedPlasmodium falciparumErythrocyte Membrane Protein 1 Is a Frequent Target of Naturally Acquired Antibodies Recognizing Protein Domains in a Particular Pattern Independent of Malaria Transmission Intensity. THE JOURNAL OF IMMUNOLOGY 2006; 178:428-35. [PMID: 17182581 DOI: 10.4049/jimmunol.178.1.428] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protection against Plasmodium falciparum malaria is largely mediated by IgG against surface Ags such as the erythrocyte membrane protein 1 family (PfEMP1) responsible for antigenic variation and sequestration of infected erythrocytes. PfEMP1 molecules can be divided into groups A, B/A, B, C, and B/C. We have previously suggested that expression of groups A and B/A PfEMP1 is associated with severe disease and that Abs to these molecules are acquired earlier in life than Abs to PfEMP1 belonging to groups B, B/C, and C PfEMP1. In this study, we compared the acquisition of IgG to 20 rPfEMP1 domains derived from 3D7 in individuals living under markedly different malaria transmission intensity and were unable to find differences in the Ab acquisition rate to PfEMP1 of different groupings (A, B, or C) or domain type (alpha, beta, gamma, delta, epsilon, or x). Abs were acquired early in life in individuals living in the high transmission village and by the age of 2-4 years most individuals had Abs against most constructs. This level of reactivity was found at the age of 10-20 years in the medium transmission village and was never reached by individuals living under low transmission. Nevertheless, the sequence by which individuals acquired Abs to particular constructs was largely the same in the three villages. This indicates that the pattern of PfEMP1 expression by parasites transmitted at the different sites was similar, suggesting that PfEMP1 expression is nonrandom and shaped by host-parasite relationship factors operating at all transmission intensities.
Collapse
Affiliation(s)
- Louise Joergensen
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen and Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Oesterholt MJAM, Bousema JT, Mwerinde OK, Harris C, Lushino P, Masokoto A, Mwerinde H, Mosha FW, Drakeley CJ. Spatial and temporal variation in malaria transmission in a low endemicity area in northern Tanzania. Malar J 2006; 5:98. [PMID: 17081311 PMCID: PMC1635725 DOI: 10.1186/1475-2875-5-98] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 11/03/2006] [Indexed: 11/25/2022] Open
Abstract
Background Spatial and longitudinal monitoring of transmission intensity will allow better targeting of malaria interventions. In this study, data on meteorological, demographic, entomological and parasitological data over the course of a year was collected to describe malaria epidemiology in a single village of low transmission intensity. Methods Entomological monitoring of malaria vectors was performed by weekly light trap catches in 10 houses. Each house in the village of Msitu wa Tembo, Lower Moshi, was mapped and censused. Malaria cases identified through passive case detection at the local health centre were mapped by residence using GIS software and the incidence of cases by season and distance to the main breeding site was calculated. Results The principle vector was Anopheles arabiensis and peak mosquito numbers followed peaks in recent rainfall. The entomological inoculation rate estimated was 3.4 (95% CI 0.7–9.9) infectious bites per person per year. The majority of malaria cases (85/130) occurred during the rainy season (χ2 = 62,3, p < 0.001). Living further away from the river (OR 0.96, CI 0.92–0.998, p = 0.04 every 50 m) and use of anti-insect window screens (OR 0.65, CI 0.44–0.94, p = 0.023) were independent protective factors for the risk of malaria infection. Children aged 1–5 years and 5–15 years were at greater risk of clinical episodes (OR 2.36, CI 1.41–3.97, p = 0.001 and OR 3.68, CI 2.42–5.61, p < 0.001 respectively). Conclusion These data show that local malaria transmission is restricted to the rainy season and strongly associated with proximity to the river. Transmission reducing interventions should, therefore, be timed before the rain-associated increase in mosquito numbers and target households located near the river.
Collapse
Affiliation(s)
- MJAM Oesterholt
- Joint Malaria Programme, Moshi, Tanzania
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - JT Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - OK Mwerinde
- Joint Malaria Programme, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - C Harris
- Joint Malaria Programme, Moshi, Tanzania
| | - P Lushino
- Joint Malaria Programme, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - A Masokoto
- Joint Malaria Programme, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | | | - FW Mosha
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - CJ Drakeley
- Joint Malaria Programme, Moshi, Tanzania
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|