1
|
Tchouakui M, Ibrahim SS, Mangoua MK, Thiomela RF, Assatse T, Ngongang-Yipmo SL, Muhammad A, Mugenzi LJM, Menze BD, Mzilahowa T, Wondji CS. Substrate promiscuity of key resistance P450s confers clothianidin resistance while increasing chlorfenapyr potency in malaria vectors. Cell Rep 2024; 43:114566. [PMID: 39088320 PMCID: PMC11372441 DOI: 10.1016/j.celrep.2024.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
Novel insecticides were recently introduced to counter pyrethroid resistance threats in African malaria vectors. To prolong their effectiveness, potential cross-resistance from promiscuous pyrethroid metabolic resistance mechanisms must be elucidated. Here, we demonstrate that the duplicated P450s CYP6P9a/-b, proficient pyrethroid metabolizers, reduce neonicotinoid efficacy in Anopheles funestus while enhancing the potency of chlorfenapyr. Transgenic expression of CYP6P9a/-b in Drosophila confirmed that flies expressing both genes were significantly more resistant to neonicotinoids than controls, whereas the contrasting pattern was observed for chlorfenapyr. This result was also confirmed by RNAi knockdown experiments. In vitro expression of recombinant CYP6P9a and metabolism assays established that it significantly depletes both clothianidin and chlorfenapyr, with metabolism of chlorfenapyr producing the insecticidally active intermediate metabolite tralopyril. This study highlights the risk of cross-resistance between pyrethroid and neonicotinoid and reveals that chlorfenapyr-based control interventions such as Interceptor G2 could remain efficient against some P450-based resistant mosquitoes.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon.
| | - Sulaiman S Ibrahim
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK
| | - Mersimine K Mangoua
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Riccado F Thiomela
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Tatiane Assatse
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Sonia L Ngongang-Yipmo
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK; Centre for Biotechnology Research, Bayero University, PMB 3011, Kano, Nigeria
| | - Leon J M Mugenzi
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Benjamin D Menze
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Themba Mzilahowa
- Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), Entomology Department, P.O. Box 265, Blantyre, Malawi
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK; International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
2
|
Wangrawa DW, Odero JO, Baldini F, Okumu F, Badolo A. Distribution and insecticide resistance profile of the major malaria vector Anopheles funestus group across the African continent. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:119-137. [PMID: 38303659 DOI: 10.1111/mve.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
There has been significant progress in malaria control in the last 2 decades, with a decline in mortality and morbidity. However, these gains are jeopardised by insecticide resistance, which negatively impacts the core interventions, such as insecticide-treated nets (ITN) and indoor residual spraying (IRS). While most malaria control and research efforts are still focused on Anopheles gambiae complex mosquitoes, Anopheles funestus remains an important vector in many countries and, in some cases, contributes to most of the local transmission. As countries move towards malaria elimination, it is important to ensure that all dominant vector species, including An. funestus, an important vector in some countries, are targeted. The objective of this review is to compile and discuss information related to A. funestus populations' resistance to insecticides and the mechanisms involved across Africa, emphasising the sibling species and their resistance profiles in relation to malaria elimination goals. Data on insecticide resistance in An. funestus malaria vectors in Africa were extracted from published studies. Online bibliographic databases, including Google Scholar and PubMed, were used to search for relevant studies. Articles published between 2000 and May 2023 reporting resistance of An. funestus to insecticides and associated mechanisms were included. Those reporting only bionomics were excluded. Spatial variation in species distribution and resistance to insecticides was recorded from 174 articles that met the selection criteria. It was found that An. funestus was increasingly resistant to the four classes of insecticides recommended by the World Health Organisation for malaria vector control; however, this varied by country. Insecticide resistance appears to reduce the effectiveness of vector control methods, particularly IRS and ITN. Biochemical resistance due to detoxification enzymes (P450s and glutathione-S-transferases [GSTs]) in An. funestus was widely recorded. However, An. funestus in Africa remains susceptible to other insecticide classes, such as organophosphates and neonicotinoids. This review highlights the increasing insecticide resistance of An. funestus mosquitoes, which are important malaria vectors in Africa, posing a significant challenge to malaria control efforts. While An. funestus has shown resistance to the recommended insecticide classes, notably pyrethroids and, in some cases, organochlorides and carbamates, it remains susceptible to other classes of insecticides such as organophosphates and neonicotinoids, providing potential alternative options for vector control strategies. The study underscores the need for targeted interventions that consider the population structure and geographical distribution of An. funestus, including its sibling species and their insecticide resistance profiles, to effectively achieve malaria elimination goals.
Collapse
Affiliation(s)
- Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Département des Sciences de la Vie et de la Terre, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
3
|
Machange JJ, Maasayi MS, Mundi J, Moore J, Muganga JB, Odufuwa OG, Moore SJ, Tenywa FC. Comparison of the Trapping Efficacy of Locally Modified Gravid Aedes Trap and Autocidal Gravid Ovitrap for the Monitoring and Surveillance of Aedes aegypti Mosquitoes in Tanzania. INSECTS 2024; 15:401. [PMID: 38921116 PMCID: PMC11204168 DOI: 10.3390/insects15060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
The study assessed the trapping efficacy of locally modified (1) Gravid Aedes Trap (GAT) lined with insecticide-treated net (ITN) as a killing agent and (2) Autocidal Gravid Ovitrap (AGO) with sticky board in the semi-field system (SFS) and field setting. Fully balanced Latin square experiments were conducted to compare GAT lined with ITN vs. AGO, both with either yeast or grass infusion. Biogent-Sentinel (BGS) with BG-Lure and no CO2 was used as a standard trap for Aedes mosquitoes. In the SFS, GAT outperformed AGO in collecting both nulliparous (65% vs. 49%, OR = 2.22, [95% CI: 1.89-2.60], p < 0.001) and gravid mosquitoes (73% vs. 64%, OR = 1.67, [95% CI: 1.41-1.97], p < 0.001). Similar differences were observed in the field. Yeast and grass infusion did not significantly differ in trapping gravid mosquitoes (OR = 0.91, [95% CI: 0.77-1.07], p = 0.250). The use of ITN improved mosquito recapture from 11% to 70% in the SFS. The same trend was observed in the field. Yeast was chosen for further evaluation in the optimized GAT due to its convenience and bifenthrin net for its resistance management properties. Mosquito density was collected when using 4× GATs relative to BGS-captured gravid mosquitoes 64 vs. 58 (IRR = 0.82, [95% CI: 0.35-1.95], p = 0.658) and showed no density dependence. Deployment of multiple yeast-baited GAT lined with bifenthrin net is cost-effective (single GAT < $8) compared to other traps such as BGS ($160).
Collapse
Affiliation(s)
- Jane Johnson Machange
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania; (M.S.M.); (S.J.M.)
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - Masudi Suleiman Maasayi
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania; (M.S.M.); (S.J.M.)
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - John Mundi
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - Jason Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Joseph Barnabas Muganga
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - Olukayode G. Odufuwa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Sarah J. Moore
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania; (M.S.M.); (S.J.M.)
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Frank Chelestino Tenywa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
4
|
Tchouakui M, Thiomela RF, Nchoutpouen E, Menze BD, Ndo C, Achu D, Tabue RN, Njiokou F, Joel A, Wondji CS. High efficacy of chlorfenapyr-based net Interceptor ® G2 against pyrethroid-resistant malaria vectors from Cameroon. Infect Dis Poverty 2023; 12:81. [PMID: 37641108 PMCID: PMC10463949 DOI: 10.1186/s40249-023-01132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The increasing reports of resistance to pyrethroid insecticides associated with reduced efficacy of pyrethroid-only interventions highlight the urgency of introducing new non-pyrethroid-only control tools. Here, we investigated the performance of piperonyl-butoxide (PBO)-pyrethroid [Permanet 3.0 (P3.0)] and dual active ingredients (AI) nets [Interceptor G2 (IG2): containing pyrethroids and chlorfenapyr and Royal Guard (RG): containing pyrethroids and pyriproxyfen] compared to pyrethroid-only net Royal Sentry (RS) against pyrethroid-resistant malaria vectors in Cameroon. METHODS The efficacy of these tools was firstly evaluated on Anopheles gambiae s.l. and Anopheles funestus s.l. from Gounougou, Mibellon, Mangoum, Nkolondom, and Elende using cone/tunnel assays. In addition, experimental hut trials (EHT) were performed to evaluate the performance of unwashed and 20 times washed nets in semi-field conditions. Furthermore, pyrethroid-resistant markers were genotyped in dead vs alive, blood-fed vs unfed mosquitoes after exposure to the nets to evaluate the impact of these markers on net performance. The XLSTAT software was used to calculate the various entomological outcomes and the Chi-square test was used to compare the efficacy of various nets. The odds ratio and Fisher exact test were then used to establish the statistical significance of any association between insecticide resistance markers and bed net efficacy. RESULTS Interceptor G2 was the most effective net against wild pyrethroid-resistant An. funestus followed by Permanet 3.0. In EHT, this net induced up to 87.8% mortality [95% confidence interval (CI): 83.5-92.1%) and 55.6% (95% CI: 48.5-62.7%) after 20 washes whilst unwashed pyrethroid-only net (Royal Sentry) killed just 18.2% (95% CI: 13.4-22.9%) of host-seeking An. funestus. The unwashed Permanet 3.0 killed up to 53.8% (95% CI: 44.3-63.4%) of field-resistant mosquitoes and 47.2% (95% CI: 37.7-56.7%) when washed 20 times, and the Royal Guard 13.2% (95% CI: 9.0-17.3%) for unwashed net and 8.5% (95% CI: 5.7-11.4%) for the 20 washed net. Interceptor G2, Permanet 3.0, and Royal Guard provided better personal protection (blood-feeding inhibition 66.2%, 77.8%, and 92.8%, respectively) compared to pyrethroid-only net Royal Sentry (8.4%). Interestingly, a negative association was found between kdrw and the chlorfenapyr-based net Interceptor G2 (χ2 = 138; P < 0.0001) with homozygote-resistant mosquitoes predominantly found in the dead ones. CONCLUSIONS The high mortality recorded with Interceptor G2 against pyrethroid-resistant malaria vectors in this study provides first semi-field evidence of high efficacy against these major malaria vectors in Cameroon encouraging the implementation of this novel net for malaria control in the country. However, the performance of this net should be established in other locations and on other major malaria vectors before implementation at a large scale.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
| | - Riccado F Thiomela
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Elysee Nchoutpouen
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Benjamin D Menze
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Cyrille Ndo
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Dorothy Achu
- Ministry of Public Health, National Malaria Control Programme, P.O. Box 14386, Yaounde, Cameroon
| | - Raymond N Tabue
- Ministry of Public Health, National Malaria Control Programme, P.O. Box 14386, Yaounde, Cameroon
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Ateba Joel
- Ministry of Public Health, National Malaria Control Programme, P.O. Box 14386, Yaounde, Cameroon
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
5
|
Menze BD, Mugenzi LMJ, Tchouakui M, Wondji MJ, Tchoupo M, Wondji CS. Experimental Hut Trials Reveal That CYP6P9a/b P450 Alleles Are Reducing the Efficacy of Pyrethroid-Only Olyset Net against the Malaria Vector Anopheles funestus but PBO-Based Olyset Plus Net Remains Effective. Pathogens 2022; 11:pathogens11060638. [PMID: 35745492 PMCID: PMC9228255 DOI: 10.3390/pathogens11060638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Malaria remains a major public health concern in Africa. Metabolic resistance in major malaria vectors such as An. funestus is jeopardizing the effectiveness of long-lasting insecticidal nets (LLINs) to control malaria. Here, we used experimental hut trials (EHTs) to investigate the impact of cytochrome P450-based resistance on the efficacy of PBO-based net (Olyset Plus) compared to a permethrin-only net (Olyset), revealing a greater loss of efficacy for the latter. EHT performed with progenies of F5 crossing between the An. funestus pyrethroid-resistant strain FUMOZ and the pyrethroid-susceptible strain FANG revealed that PBO-based nets (Olyset Plus) induced a significantly higher mortality rate (99.1%) than pyrethroid-only nets (Olyset) (56.7%) (p < 0.0001). The blood-feeding rate was higher in Olyset compared to Olyset Plus (11.6% vs. 5.6%; p = 0.013). Genotyping the CYP6P9a/b and the intergenic 6.5 kb structural variant (SV) resistance alleles showed that, for both nets, homozygote-resistant mosquitoes have a greater ability to blood-feed than the susceptible mosquitoes. Homozygote-resistant genotypes significantly survived more with Olyset after cone assays (e.g., CYP6P9a OR = 34.6; p < 0.0001) than homozygote-susceptible mosquitoes. A similar but lower correlation was seen with Olyset Plus (OR = 6.4; p < 0.001). Genotyping EHT samples confirmed that CYP6P9a/b and 6.5 kb_SV homozygote-resistant mosquitoes survive and blood-feed significantly better than homozygote-susceptible mosquitoes when exposed to Olyset. Our findings highlight the negative impact of P450-based resistance on pyrethroid-only nets, further supporting that PBO nets, such as Olyset Plus, are a better solution in areas of P450-mediated resistance to pyrethroids.
Collapse
Affiliation(s)
- Benjamin D. Menze
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
- Correspondence: (B.D.M.); (C.S.W.)
| | - Leon M. J. Mugenzi
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
| | - Murielle J. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
| | - Micareme Tchoupo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
- Correspondence: (B.D.M.); (C.S.W.)
| |
Collapse
|
6
|
Bamou R, Kopya E, Nkahe LD, Menze BD, Awono-Ambene P, Tchuinkam T, Njiokou F, Wondji CS, Antonio-Nkondjio C. Increased prevalence of insecticide resistance in Anopheles coluzzii populations in the city of Yaoundé, Cameroon and influence on pyrethroid-only treated bed net efficacy. ACTA ACUST UNITED AC 2021; 28:8. [PMID: 33528357 PMCID: PMC7852377 DOI: 10.1051/parasite/2021003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
In Cameroon, pyrethroid-only long-lasting insecticidal nets (LLINs) are still largely used for malaria control. The present study assessed the efficacy of such LLINs against a multiple-resistant population of the major malaria vector, Anopheles coluzzii, in the city of Yaoundé via a cone bioassay and release-recapture experimental hut trial. Susceptibility of field mosquitoes in Yaoundé to pyrethroids, DDT, carbamates and organophosphate insecticides was investigated using World Health Organization (WHO) bioassay tube tests. Mechanisms of insecticide resistance were characterised molecularly. Efficacy of unwashed PermaNet® 2.0 was evaluated against untreated control nets using a resistant colonised strain of An. coluzzii. Mortality, exophily and blood feeding inhibition were estimated. Field collected An. coluzzii displayed high resistance with mortality rates of 3.5% for propoxur (0.1%), 4.16% for DDT (4%), 26.9% for permethrin (0.75%), 50.8% for deltamethrin (0.05%), and 80% for bendiocarb (0.1%). High frequency of the 1014F west-Africa kdr allele was recorded in addition to the overexpression of several detoxification genes, such as Cyp6P3, Cyp6M2, Cyp9K1, Cyp6P4 Cyp6Z1 and GSTe2. A low mortality rate (23.2%) and high blood feeding inhibition rate (65%) were observed when resistant An. coluzzii were exposed to unwashed PermaNet® 2.0 net compared to control untreated net (p < 0.001). Furthermore, low personal protection (52.4%) was observed with the resistant strain, indicating reduction of efficacy. The study highlights the loss of efficacy of pyrethroid-only nets against mosquitoes exhibiting high insecticide resistance and suggests a switch to new generation bed nets to improve control of malaria vector populations in Yaoundé.
Collapse
Affiliation(s)
- Roland Bamou
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon - Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon
| | - Edmond Kopya
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Leslie Diane Nkahe
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Benjamin D Menze
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom - Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Flobert Njiokou
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles S Wondji
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom - Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
7
|
An Experimental Hut Evaluation of PBO-Based and Pyrethroid-Only Nets against the Malaria Vector Anopheles funestus Reveals a Loss of Bed Nets Efficacy Associated with GSTe2 Metabolic Resistance. Genes (Basel) 2020; 11:genes11020143. [PMID: 32013227 PMCID: PMC7073577 DOI: 10.3390/genes11020143] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
Growing insecticide resistance in malaria vectors is threatening the effectiveness of insecticide-based interventions, including Long Lasting Insecticidal Nets (LLINs). However, the impact of metabolic resistance on the effectiveness of these tools remains poorly characterized. Using experimental hut trials and genotyping of a glutathione S-transferase resistance marker (L119F-GSTe2), we established that GST-mediated resistance is reducing the efficacy of LLINs against Anopheles funestus. Hut trials performed in Cameroon revealed that Piperonyl butoxide (PBO)-based nets induced a significantly higher mortality against pyrethroid resistant An. funestus than pyrethroid-only nets. Blood feeding rate and deterrence were significantly higher in all LLINs than control. Genotyping the L119F-GSTe2 mutation revealed that, for permethrin-based nets, 119F-GSTe2 resistant mosquitoes have a greater ability to blood feed than susceptible while the opposite effect is observed for deltamethrin-based nets. For Olyset Plus, a significant association with exophily was observed in resistant mosquitoes (OR = 11.7; p < 0.01). Furthermore, GSTe2-resistant mosquitoes (cone assays) significantly survived with PermaNet 2.0 (OR = 2.1; p < 0.01) and PermaNet 3.0 (side) (OR = 30.1; p < 0.001) but not for Olyset Plus. This study shows that the efficacy of PBO-based nets (e.g., blood feeding inhibition) against pyrethroid resistant malaria vectors could be impacted by other mechanisms including GST-mediated metabolic resistance not affected by the synergistic action of PBO. Mosaic LLINs incorporating a GST inhibitor (diethyl maleate) could help improve their efficacy in areas of GST-mediated resistance.
Collapse
|
8
|
Patterns of anopheline feeding/resting behaviour and Plasmodium infections in North Cameroon, 2011-2014: implications for malaria control. Parasit Vectors 2019; 12:297. [PMID: 31196161 PMCID: PMC6567421 DOI: 10.1186/s13071-019-3552-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Effective malaria control relies on evidence-based interventions. Anopheline behaviour and Plasmodium infections were investigated in North Cameroon, following long-lasting insecticidal net (LLIN) distribution in 2010. Methods During four consecutive years from 2011 to 2014, adult mosquitoes were collected indoors, outdoors and in exit traps across 38 locations in the Garoua, Pitoa and Mayo-Oulo health districts. Anophelines were morphologically and molecularly identified, then analysed for blood meal origins and Plasmodium falciparum circumsporozoite protein (Pf-CSP). Blood from children under 5 years-old using LLINs was examined for Plasmodium infections. Results Overall, 9376 anophelines belonging to 14 species/sibling species were recorded. Anopheles gambiae (s.l.) [An. arabiensis (73.3%), An. coluzzii (17.6%) and An. gambiae (s.s.) (9.1%)] was predominant (72%), followed by An. funestus (s.l.) (20.5%) and An. rufipes (6.5%). The recorded blood meals were mainly from humans (28%), cattle (15.6%) and sheep (11.6%) or mixed (45%). Pf-CSP rates were higher indoors (3.2–5.4%) versus outdoors (0.8–2.0%), and increased yearly (χ2 < 18, df = 10, P < 0.03). Malaria prevalence in children under 5 years-old, in households using LLINs was 30% (924/3088). Conclusions The present study revealed the variability of malaria vector resting and feeding behaviour, and the persistence of Plasmodium infections regardless the use of LLINs. Supplementary interventions to LLINs are therefore needed to sustain malaria prevention in North Cameroon.
Collapse
|
9
|
Mandeng SE, Awono-Ambene HP, Bigoga JD, Ekoko WE, Binyang J, Piameu M, Mbakop LR, Fesuh BN, Mvondo N, Tabue R, Nwane P, Mimpfoundi R, Toto JC, Kleinschmidt I, Knox TB, Mnzava AP, Donnelly MJ, Fondjo E, Etang J. Spatial and temporal development of deltamethrin resistance in malaria vectors of the Anopheles gambiae complex from North Cameroon. PLoS One 2019; 14:e0212024. [PMID: 30779799 PMCID: PMC6380565 DOI: 10.1371/journal.pone.0212024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/26/2019] [Indexed: 02/07/2023] Open
Abstract
The effectiveness of insecticide-based malaria vector control interventions in Africa is threatened by the spread and intensification of pyrethroid resistance in targeted mosquito populations. The present study aimed at investigating the temporal and spatial dynamics of deltamethrin resistance in An. gambiae s.l. populations from North Cameroon. Mosquito larvae were collected from 24 settings of the Garoua, Pitoa and Mayo Oulo Health Districts (HDs) from 2011 to 2015. Two to five days old female An. gambiae s.l. emerging from larval collections were tested for deltamethrin resistance using the World Health Organization’s (WHO) standard protocol. Sub samples of test mosquitoes were identified to species using PCR-RFLP and genotyped for knockdown resistance alleles (Kdr 1014F and 1014S) using Hot Ligation Oligonucleotide Assay (HOLA). All the tested mosquitoes were identified as belonging to the An. gambiae complex, including 3 sibling species mostly represented by Anopheles arabiensis (67.6%), followed by Anopheles coluzzii (25.4%) and Anopheles gambiae (7%). Deltamethrin resistance frequencies increased significantly between 2011 and 2015, with mosquito mortality rates declining from 70–85% to 49–73% in the three HDs (Jonckheere-Terstra test statistic (JT) = 5638, P< 0.001), although a temporary increase of mortality rates (91–97%) was seen in the Pitoa and Mayo Oulo HDs in 2012. Overall, confirmed resistance emerged in 10 An. gambiae s.l. populations over the 24 field populations monitored during the study period, from 2011 to 2015. Phenotypic resistance was mostly found in urban settings compared with semi-urban and rural settings (JT = 5282, P< 0.0001), with a spatial autocorrelation between neighboring localities. The Kdr 1014F allelic frequencies in study HDs increased from 0–30% in 2011 to 18–61% in 2014–2015 (JT = 620, P <0.001), especially in An. coluzzii samples. The overall frequency of the Kdr 1014S allele was 0.1%. This study revealed a rapid increase and widespread deltamethrin resistance frequency as well as Kdr 1014F allelic frequencies in An. gambiae s.l. populations over time, emphasizing the urgent need for vector surveillance and insecticide resistance management strategies in Cameroon.
Collapse
Affiliation(s)
- Stanislas Elysée Mandeng
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Laboratory of General Biology, University of Yaounde I, Yaounde, Cameroon
| | - Herman Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Jude D. Bigoga
- Laboratory for Vector Biology and control, National Reference Unit for Vector Control, The Biotechnology Center, Nkolbisson-University of Yaounde I, Yaounde, Cameroon
| | - Wolfgang Eyisap Ekoko
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Laboratory of Animal Biology and Physiology, Faculty of Science, University of Douala, Douala, Cameroon
| | - Jérome Binyang
- Laboratory of General Biology, University of Yaounde I, Yaounde, Cameroon
| | - Michael Piameu
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Ecole des Sciences de la Santé, Université Catholique d’Afrique Centrale, Yaoundé, Cameroon
| | - Lili Ranaise Mbakop
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Laboratory of General Biology, University of Yaounde I, Yaounde, Cameroon
| | - Betrand Nono Fesuh
- National Advanced School of Engineering, University of Yaounde I, Yaounde, Cameroon
| | - Narcisse Mvondo
- Laboratory of General Biology, University of Yaounde I, Yaounde, Cameroon
| | - Raymond Tabue
- Laboratory for Vector Biology and control, National Reference Unit for Vector Control, The Biotechnology Center, Nkolbisson-University of Yaounde I, Yaounde, Cameroon
- Ministry of Public Health, National Malaria Control Programme, Yaounde, Cameroon
| | - Philippe Nwane
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Rémy Mimpfoundi
- Laboratory of General Biology, University of Yaounde I, Yaounde, Cameroon
| | - Jean Claude Toto
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Immo Kleinschmidt
- Department of Infectious Disease Epidemiology, London School of Tropical Medicine & Hygiene, MRC Tropical Epidemiology Group, London, United Kingdom
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Tessa Bellamy Knox
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Etienne Fondjo
- Ministry of Public Health, National Malaria Control Programme, Yaounde, Cameroon
| | - Josiane Etang
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Department of biological sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Institute for Insect Biotechnology, Justus Liebig University Gießen, Heinrich-Buff-Ring, Germany
- * E-mail:
| |
Collapse
|
10
|
Frank DF, Brander SM, Hasenbein S, Harvey DJ, Lein PJ, Geist J, Connon RE. Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:1-13. [PMID: 30414561 PMCID: PMC6464817 DOI: 10.1016/j.aquatox.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/05/2023]
Abstract
Altered transcription of calcium-dependent signaling cascades involving the ryanodine receptor (RyR) and mechanistic target of rapamycin (mTOR) in response to environmental exposures have been described in model vertebrates, including zebrafish, while the relevance for wild fishes remains unknown. To address this knowledge gap, we exposed the euryhaline model species Menidia beryllina (inland silversides) to the insecticide bifenthrin, a known modulator of calcium signaling. The main objectives of this study were to determine: (1) whether exposure of developing silversides to environmentally relevant concentrations of bifenthrin alters their behavior; and (2) whether behavioral changes correlate with altered expression of genes involved in RyR and mTOR-dependent signaling pathways. At six hours post fertilization (hpf), inland silversides were exposed to bifenthrin at 3, 27 and 122 ng/L until 7 days post fertilization (dpf, larvae hatched at 6dpf), followed by a 14-day recovery period in uncontaminated water. Transcriptional responses were measured at 5, 7 and 21 dpf; locomotor behavior following external stimuli and response to an olfactory predator cue were assessed at 7 and 21 dpf. Bifenthrin elicited significant non-monotonic transcriptional responses in the majority of genes examined at 5 dpf and at 21 dpf. Bifenthrin also significantly altered predator avoidance behavior via olfactory mechanisms with main effects identified for animals exposed to 3 and 27 ng/L. Behavioral effects were not detected in response to visual stimuli during acute exposure, but were significant in the predator-cue assessment following the recovery period, suggesting delayed and long-term effects of early developmental exposures to bifenthrin. Our findings demonstrate that at picomolar (pM) concentrations, which are often not represented in ecotoxicological studies, bifenthrin perturbs early development of inland silversides. These developmental impacts are manifested behaviorally at later life stages, specifically as altered patterns of predator avoidance behavior, which have been correlated with population decline. Collectively, these data suggest that bifenthrin may be negatively impacting wild fish populations.
Collapse
Affiliation(s)
- Daniel F Frank
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Department of Biology & Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Simone Hasenbein
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Danielle J Harvey
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Juergen Geist
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Bamou R, Mbakop LR, Kopya E, Ndo C, Awono-Ambene P, Tchuinkam T, Rono MK, Mwangangi J, Antonio-Nkondjio C. Changes in malaria vector bionomics and transmission patterns in the equatorial forest region of Cameroon between 2000 and 2017. Parasit Vectors 2018; 11:464. [PMID: 30103825 PMCID: PMC6090627 DOI: 10.1186/s13071-018-3049-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/02/2018] [Indexed: 11/22/2022] Open
Abstract
Background Increased use of long-lasting insecticidal nets (LLINs) over the last decade has considerably improved the control of malaria in sub-Saharan Africa. However, there is still a paucity of data on the influence of LLIN use and other factors on mosquito bionomics in different epidemiological foci. The objective of this study was to provide updated data on the evolution of vector bionomics and malaria transmission patterns in the equatorial forest region of Cameroon over the period 2000–2017, during which LLIN coverage has increased substantially. Methods The study was conducted in Olama and Nyabessan, two villages situated in the equatorial forest region. Mosquito collections from 2016–2017 were compared to those of 2000–2001. Mosquitoes were sampled using both human landing catches and indoor sprays, and were identified using morphological taxonomic keys. Specimens belonging to the An. gambiae complex were further identified using molecular tools. Insecticide resistance bioassays were undertaken on An. gambiae to assess the susceptibility levels to both permethrin and deltamethrin. Mosquitoes were screened for Plasmodium falciparum infection and blood-feeding preference using the ELISA technique. Parasitological surveys in the population were conducted to determine the prevalence of Plasmodium infection using rapid diagnostic tests. Results A change in the species composition of sampled mosquitoes was recorded between the 2000–2001 collections and those of 2016–2017. A drop in the density of the local primary vectors An. nili and An. moucheti in the forest region was recorded, whereas there was an increase in the density of An. gambiae (s.l.), An. marshallii, An. ziemannii and An. paludis. A change in the biting behaviour from indoor to outdoor was recorded in Olama. Very few indoor resting mosquitoes were collected. A change in the night biting cycle was recorded with mosquitoes displaying a shift from night biting to late evening/early in the night. Several mosquitoes were found positive for Plasmodium infection, thus sustaining continuous transmission of malaria in both sites. Reduction of malaria transmission in Nyabessan was lower than that seen in Olama and associated with deforestation and the construction of a dam that may have enabled a more efficient vector, An. gambiae (s.l.), to invade the area. A high level of resistance to pyrethroids (permethrin and deltamethrin) was detected for An. gambiae in both sites. High parasite prevalence was recorded in both sites, with children of 0–16 years being the most affected. In both Olama and Nyabessan, bed net usage appeared to correlate to protection against malaria infection. Conclusions The study shows important changes in the bionomics of vector populations and malaria transmission patterns in the equatorial forest region. The changes call for more concerted efforts to address challenges such as insecticide resistance, environmental modifications or behavioural changes affecting the performance of current control measures.
Collapse
Affiliation(s)
- Roland Bamou
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P. O. Box 067, Dschang, Cameroon.,Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon
| | - Lili Ranaise Mbakop
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Edmond Kopya
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Cyrille Ndo
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon.,Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.,Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon
| | - Timoleon Tchuinkam
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P. O. Box 067, Dschang, Cameroon
| | - Martin Kibet Rono
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,KEMRI-Centre for Geographic Medicine Research Kilifi, Kilifi, Kenya
| | - Joseph Mwangangi
- KEMRI-Centre for Geographic Medicine Research Kilifi, Kilifi, Kenya.,Pwani University Health and Research Institute, Pwani University, Kilifi, Kenya
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288, Yaoundé, Cameroon. .,Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
12
|
Traoré DF, Sagna AB, Adja AM, Zoh DD, Lingué KN, Coulibaly I, N’Cho Tchiekoi B, Assi SB, Poinsignon A, Dagnogo M, Remoue F. Evaluation of Malaria Urban Risk Using an Immuno-Epidemiological Biomarker of Human Exposure to Anopheles Bites. Am J Trop Med Hyg 2018; 98:1353-1359. [PMID: 29512479 PMCID: PMC5953354 DOI: 10.4269/ajtmh.17-0231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/22/2017] [Indexed: 11/07/2022] Open
Abstract
Urban malaria is an underestimated serious health concern in African countries. This study aimed to evaluate the risk of malaria transmission in an urban area by evaluating the level of human exposure to Anopheles bites using an Anopheles salivary biomarker (gambiae Salivary Gland Protein-6 peptide 1 [gSG6-P1] peptide). Two multidisciplinary cross-sectional studies were undertaken in five sites of Bouaké city (three urban districts and two surrounding villages, used as control; Côte d'Ivoire) during the rainy season and the dry season. Blood samples were obtained from children 6 months to 14 years of age for immunological tests. The level of anti-gSG6-P1 immunoglobulin G (IgG) antibodies was significantly higher in the rainy season than the dry season in both urban and rural sites (P < 0.0001). Interestingly, children with the highest anti-gSG6-P1 IgG responses in the rainy season were infected by Plasmodium falciparum. Surprisingly, no difference of anti-gSG6-P1 IgG level was observed between urban and rural areas, for either season. The current data suggest that children in the urban city of Bouaké could be as highly exposed to Anopheles bites as children living in surrounding villages. The immunological biomarker of human exposure to Anopheles bites may be used to accurately assess the potential risk of malaria transmission in African urban settings.
Collapse
Affiliation(s)
- Dipomin F. Traoré
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD.224-CNRS.5290, Université de Montpellier, Montpellier, France
- Unité de Formation et de Recherche des Sciences de la nature (UFR SN) Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
| | - André B. Sagna
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD.224-CNRS.5290, Université de Montpellier, Montpellier, France
| | - Akré M. Adja
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences (UFR Biosciences), Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Dounin D. Zoh
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences (UFR Biosciences), Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Kouassi N. Lingué
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Issa Coulibaly
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Bertin N’Cho Tchiekoi
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Serge B. Assi
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Anne Poinsignon
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD.224-CNRS.5290, Université de Montpellier, Montpellier, France
| | - Mamadou Dagnogo
- Unité de Formation et de Recherche des Sciences de la nature (UFR SN) Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
| | - Franck Remoue
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD.224-CNRS.5290, Université de Montpellier, Montpellier, France
| |
Collapse
|
13
|
Kweka EJ, Lyaruu LJ, Mahande AM. Efficacy of PermaNet® 3.0 and PermaNet® 2.0 nets against laboratory-reared and wild Anopheles gambiae sensu lato populations in northern Tanzania. Infect Dis Poverty 2017; 6:11. [PMID: 28095897 PMCID: PMC5242039 DOI: 10.1186/s40249-016-0220-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes have developed resistance against pyrethroids, the only class of insecticides approved for use on long-lasting insecticidal nets (LLINs). The present study sought to evaluate the efficacy of the pyrethroid synergist PermaNet® 3.0 LLIN versus the pyrethroid-only PermaNet® 2.0 LLIN, in an East African hut design in Lower Moshi, northern Tanzania. In this setting, resistance to pyrethroid insecticides has been identified in Anopheles gambiae mosquitoes. METHODS Standard World Health Organization bioefficacy evaluations were conducted in both laboratory and experimental huts. Experimental hut evaluations were conducted in an area where there was presence of a population of highly pyrethroid-resistant An. arabiensis mosquitoes. All nets used were subjected to cone bioassays and then to experimental hut trials. Mosquito mortality, blood-feeding inhibition and personal protection rate were compared between untreated nets, unwashed LLINs and LLINs that were washed 20 times. RESULTS Both washed and unwashed PermaNet® 2.0 and PermaNet® 3.0 LLINs had knockdown and mortality rates of 100% against a susceptible strain of An. gambiae sensu stricto. The adjusted mortality rate of the wild mosquito population after use of the unwashed PermaNet® 3.0 and PermaNet® 2.0 nets was found to be higher than after use of the washed PermaNet® 2.0 and PermaNet® 3.0 nets. CONCLUSIONS Given the increasing incidence of pyrethroid resistance in An. gambiae mosquitoes in Tanzania, we recommend that consideration is given to its distribution in areas with pyrethroid-resistant malaria vectors within the framework of a national insecticide-resistance management plan.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Tropical Pesticides Research Institute, Division of Livestock and Human Diseases Vector Control, Mosquito Section, P.O. Box 3024, Arusha, Tanzania. .,Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania.
| | - Lucile J Lyaruu
- Tropical Pesticides Research Institute, Division of Livestock and Human Diseases Vector Control, Mosquito Section, P.O. Box 3024, Arusha, Tanzania
| | - Aneth M Mahande
- Tropical Pesticides Research Institute, Division of Livestock and Human Diseases Vector Control, Mabogini field station, Moshi, Tanzania
| |
Collapse
|
14
|
Aïkpon R, Sèzonlin M, Ossè R, Akogbéto M. Evidence of multiple mechanisms providing carbamate and organophosphate resistance in field An. gambiae population from Atacora in Benin. Parasit Vectors 2014; 7:568. [PMID: 25443399 PMCID: PMC4256734 DOI: 10.1186/s13071-014-0568-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insecticide resistance in Anopheles gambiae s.l is a major concern to malaria vector control programmes. In West Africa, resistance is mainly due to target-site insensitivity arising from a single point mutation. Metabolic-based resistance mechanisms have also been implicated and are currently being investigated in west Africa. The aim of this study is to better understand the origins of carbamate and organophosphate resistance in An. gambiae population from Atacora, Benin in West Africa. METHODS Anopheles mosquitoes were reared from larvae collected in two districts (Kouandé and Tanguiéta) of the Atacora department. Mosquitoes were then exposed to WHO impregnated papers. Four impregnated papers were used: carbamates (0.1% bendiocarb, 0.1% propoxur) and organophosphates (0.25% pirimiphos methyl, 1% fenitrothion). PCR assays were run to determine the members of the An. gambiae complex, as well as phenotypes for insensitive acetylcholinesterase (AChE1). Biochemical assays were also carried out to detect any increase in the activity of enzyme typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase). RESULTS 769 female of An. gambiae mosquitoes from Kouandé and Tanguiéta were exposed to bendiocarb, propoxur, pirimiphos methyl and fenitrothion. Bioassays showed resistance with low mortality to bendiocarb (78.57% to 80.17%), propoxur (77.21% to 89.77%), and fenitrothion (89.74% to 92.02%). On the other hand, the same populations of An. gambiae from Kouandé and Tanguiéta showed high susceptibility to pirimiphos methyl with recorded mortality of 99.02% and 100% respectively. The low rate of ace-1R allele frequency (3.75% among survivors and 0.48% among dead) added to the high proportion of homozygous susceptible specimens which survived the WHO bioassays (8/28), suggest that the ace-1 mutation could not entirely explain Anopheles gambiae resistance to carbamate and organophosphate. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GST, MFO and NSE compared to a susceptible strain An. gambiae Kisumu. CONCLUSIONS Anopheles gambiae populations resistance from Atacora is multifactorial and includes target-site mutation and metabolic mechanism. The co-implication of both resistance mechanisms in An. gambiae s.l may be a serious obstacle for the future success of malaria control operations based on LLINs and IRS.
Collapse
Affiliation(s)
- Rock Aïkpon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Bénin.
- Faculté des Sciences et Techniques, Université d'Abomey Calavi, Calavi, Bénin.
| | - Michel Sèzonlin
- Faculté des Sciences et Techniques, Université d'Abomey Calavi, Calavi, Bénin.
| | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Bénin.
- Faculté des Sciences et Techniques, Université d'Abomey Calavi, Calavi, Bénin.
| | - Martin Akogbéto
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Bénin.
- Faculté des Sciences et Techniques, Université d'Abomey Calavi, Calavi, Bénin.
| |
Collapse
|
15
|
Ndong IC, van Reenen M, Boakye DA, Mbacham WF, Grobler AF. Trends in malaria admissions at the Mbakong Health Centre of the North West Region of Cameroon: a retrospective study. Malar J 2014; 13:328. [PMID: 25145498 PMCID: PMC4247771 DOI: 10.1186/1475-2875-13-328] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/06/2014] [Indexed: 11/20/2022] Open
Abstract
Background Malaria is the leading cause of death worldwide. It is urgent to assess the impact of interventions and scaled-up control efforts. Despite reported reduction in malaria prevalence in Africa, the trends in Cameroon are not yet fully understood. The aim of this study was to investigate the trends in malaria admissions among febrile patients seeking treatment over a seven-year period (2006–2012) in an endemic area in Cameroon, hypothesizing a declining trend. This period followed changes in malaria treatment policy. The objectives were to identify possible trends in malaria admissions and to evaluate the impact of changes to treatment guidelines on the prevalence. Methods Data was collected through consultation and perusal of laboratory and prescription registers of the Mbakong Health Centre. Data analysis was conducted using SPSS and SAS Statistics. Results Analysis revealed that 4,230 febrile patients were received from 2006–2012. Of these febrile cases, 29.30% were confirmed positive. Between 2006 and 2012 confirmed malaria positive cases of those tested fluctuated, dropping from 53.21% in 2006 to 17.20% in 2008; then rising to 35.00% in 2011 and, finally, dropping to 18.2% of those tested in 2012. The prevalence in females and males across all age groups were similar: a slightly higher risk of males to have malaria (OR = 1.08, 95% CI 0.94-1.25) were not practically significant. Of those tested, the 5 to < 15 years and the 1 to < 5 years age groups were the hardest hit by malaria in the area. A practically visible and significant association was observed between the age and gender with regards to the number of malaria positive results (Pearson ×2 = 153.675, p < 0.00001, Cramer’s V = 0.352). Malaria prevalence exhibited a fluctuating yet declining trend, as observed over the 28 quarters between January, 2006 and December, 2012. Conclusions The changes to the treatment guidelines appear to result in a declining trend as was observed between 2006 and 2008. However, malaria admissions fluctuated between 2008 and 2012. There is, therefore, a need to step up control efforts of especially the vulnerable groups, such as the very young. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-328) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ignatius C Ndong
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom Campus, Vanderbijlpark, South Africa.
| | | | | | | | | |
Collapse
|
16
|
Akono Ntonga P, Baldovini N, Mouray E, Mambu L, Belong P, Grellier P. Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus essential oils against Plasmodium falciparum and mature-stage larvae of Anopheles funestus s.s. ACTA ACUST UNITED AC 2014; 21:33. [PMID: 24995776 PMCID: PMC4082313 DOI: 10.1051/parasite/2014033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/23/2014] [Indexed: 11/14/2022]
Abstract
The biological activities of essential oils from three plants grown in Cameroon: Ocimum basilicum, Ocimum canum, and Cymbopogon citratus were tested against Plasmodium falciparum and mature-stage larvae of Anopheles funestus. Gas chromatography and gas chromatography - mass spectrometry analyses showed that the main compounds are geranial, 1,8-cineole and linalool in C. citratus, O. canum and O. basilicum, respectively. Larvicidal tests carried out according to the protocol recommended by the World Health Organization showed that the essential oil of leaves of C. citratus is the most active against larvae of An. funestus (LC50 values = 35.5 ppm and 34.6 ppm, respectively, for larval stages III and IV after 6 h of exposure). Besides, the in vitro anti-plasmodial activity evaluated by the radioisotopic method showed that the C. citratus oil is the most active against P. falciparum, with an IC50 value of 4.2 ± 0.5 μg/mL compared with O. canum (20.6 ± 3.4 μg/mL) and O. basilicum (21 ± 4.6 μg/mL). These essential oils can be recommended for the development of natural biocides for fighting the larvae of malaria vectors and for the isolation of natural products with anti-malarial activity.
Collapse
Affiliation(s)
- Patrick Akono Ntonga
- Laboratory of Animal Biology, Department of Animal Biology, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Nicolas Baldovini
- Institut de Chimie de Nice UMR 7272, Faculté des Sciences, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Elisabeth Mouray
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS, CP 52, 61 rue Buffon, 75231 Paris Cedex 05, France
| | - Lengo Mambu
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, Institut GEIST, Faculté de Pharmacie, 2 rue Docteur Marcland, 87025 Limoges Cedex, France
| | - Philippe Belong
- Higher Teacher Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Philippe Grellier
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS, CP 52, 61 rue Buffon, 75231 Paris Cedex 05, France
| |
Collapse
|
17
|
Lutambi AM, Chitnis N, Briët OJT, Smith TA, Penny MA. Clustering of vector control interventions has important consequences for their effectiveness: a modelling study. PLoS One 2014; 9:e97065. [PMID: 24823656 PMCID: PMC4019655 DOI: 10.1371/journal.pone.0097065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 04/14/2014] [Indexed: 11/23/2022] Open
Abstract
Vector control interventions have resulted in considerable reductions in malaria morbidity and mortality. When universal coverage cannot be achieved for financial or logistical reasons, the spatial arrangement of vector control is potentially important for optimizing benefits. This study investigated the effect of spatial clustering of vector control interventions on reducing the population of biting mosquitoes. A discrete-space continuous-time mathematical model of mosquito population dynamics and dispersal was extended to incorporate vector control interventions of insecticide treated bednets (ITNs), Indoor residual Spraying (IRS), and larviciding. Simulations were run at varying levels of coverage and degree of spatial clustering. At medium to high coverage levels of each of the interventions or in combination was more effective to spatially spread these interventions than to cluster them. Suggesting that when financial resources are limited, unclustered distribution of these interventions is more effective. Although it is often stated that locally high coverage is needed to achieve a community effect of ITNs or IRS, our results suggest that if the coverage of ITNs or IRS are insufficient to achieve universal coverage, and there is no targeting of high risk areas, the overall effects on mosquito densities are much greater if they are distributed in an unclustered way, rather than clustered in specific localities. Also, given that interventions are often delivered preferentially to accessible areas, and are therefore clustered, our model results show this may be inefficient. This study provides evidence that the effectiveness of an intervention can be highly dependent on its spatial distribution. Vector control plans should consider the spatial arrangement of any intervention package to ensure effectiveness is maximized.
Collapse
Affiliation(s)
- Angelina Mageni Lutambi
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Nakul Chitnis
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Olivier J. T. Briët
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas A. Smith
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Melissa A. Penny
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Koffi AA, Ahoua Alou LP, Adja MA, Chandre F, Pennetier C. Insecticide resistance status of Anopheles gambiae s.s population from M'Bé: a WHOPES-labelled experimental hut station, 10 years after the political crisis in Côte d'Ivoire. Malar J 2013; 12:151. [PMID: 23641777 PMCID: PMC3658939 DOI: 10.1186/1475-2875-12-151] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An experimental hut station built at M'Bé in 1998 was used for many years for the evaluation of insecticidal product for public health until the civil war broke out in 2002. Breeding sites of mosquitoes and selection pressure in the area were maintained by local farming practices and the West African Rice Development Association (WARDA, actually AfricaRice) in a large rice growing area. Ten years after the crisis, bioassays, molecular and biochemical analyses were conducted to update the resistance status and study the evolution of resistance mechanisms of Anopheles gambiae s.s population. METHODS Anopheles gambiae s.s larvae from M'Bé were collected in breeding sites and reared until emergence. Resistance status of this population to conventional insecticides was assessed using WHO bioassay test kits for adult mosquitoes, with 10 insecticides belonging to pyrethroids, pseudo-pyrethroid, organochlorides, carbamates and organophosphates with and without the inhibitor piperonyl butoxyde (PBO). Molecular and biochemical assays were carried out to identify the L1014F kdr, L1014S kdr and ace-1(R) alleles in individual mosquitoes and to detect potential increase in mixed function oxidases (MFO) level, non-specific esterases (NSE) and glutathione S-transferases (GST) activities. RESULTS AND DISCUSSION Anopheles gambiae s.s from M'Bé exerted high resistance levels to organochlorides, pyrethroids, and carbamates. Mortalities ranged from 3% to 21% for organochlorides, from 50% to 75% for pyrethroids, 34% for etofenprox, the pseudo-pyrethroid, and from 7% to 80% for carbamates. Tolerance to organophosphates was observed with mortalities ranging from 95% to 98%. Bioassays run with a pre-exposition of mosquitoes to PBO induced very high levels of mortalities compared to the bioassays without PBO, suggesting that the resistance to pyrethroid and carbamate relied largely on detoxifying enzymes' activities. The L1014F kdr allelic frequency was 0.33 in 2012 compared to 0.05 before the crisis in 2002. Neither the L1014S kdr nor ace-1(R) mutations were detected. An increased activity of NSE and level of MFO was found relative to the reference strain Kisumu. This was the first evidence of metabolic resistance based resistance in An. gambiae s.s from M'Bé. CONCLUSION The An. gambiae s.s population showed very high resistance to organochlorides, pyrethroids and carbamates. This resistance level relied largely on two major types of resistance: metabolic and target-site mutation. This multifactorial resistance offers a unique opportunity to evaluate the impact of both mechanisms and their interaction with the vector control tools currently used or in development.
Collapse
|
19
|
Koffi AA, Alou LPA, Adja MA, Koné M, Chandre F, N'guessan R. Update on resistance status of Anopheles gambiae s.s. to conventional insecticides at a previous WHOPES field site, "Yaokoffikro", 6 years after the political crisis in Côte d'Ivoire. Parasit Vectors 2012; 5:68. [PMID: 22472088 PMCID: PMC3351368 DOI: 10.1186/1756-3305-5-68] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/02/2012] [Indexed: 11/15/2022] Open
Abstract
Background At Yaokoffikro field site near Bouaké, in central Côte d'Ivoire, a group of experimental huts built in 1996 served over many years for the evaluation of insecticides against highly resistant mosquitoes. Breeding sites of mosquitoes and selection pressure in the area were maintained by local farming practices until a war broke out in September 2002. Six years after the crisis, we conducted bioassays and biochemical analysis to update the resistance status of Anopheles gambiae s.s. populations and detect other potential mechanisms of resistance that might have evolved. Methods An. gambiae s.s. larvae from Yaokoffikro were collected in breeding sites and reared to adults. Resistance status of this population to insecticides was assessed using WHO bioassay test kits for adult mosquitoes with seven insecticides: two pyrethroids, a pseudo-pyrethroid, an organochloride, two carbamates and an organophosphate. Molecular and biochemical assays were carried out to identify the L1014F kdr and ace-1R alleles in individual mosquitoes and to detect potential increase in mixed function oxidases (MFO), non-specific esterases (NSE) and glutathione S-transferases (GST) activity. Results High pyrethroids, DDT and carbamate resistance was confirmed in An. gambiae s.s. populations from Yaokoffikro. Mortality rates were less than 70% with pyrethroids and etofenprox, 12% with DDT, and less than 22% with the carbamates. Tolerance to fenitrothion was observed, with 95% mortality after 24 h. PCR analysis of samples from the site showed high allelic frequency of the L1014F kdr (0.94) and the ace-1R (0.50) as before the crisis. In addition, increased activity of NSE, GST and to a lesser extent MFO was found relative to the reference strain Kisumu. This was the first report detecting enhanced activity of these enzymes in An. gambiae s.s from Yaokoffikro, which could have serious implications in detoxification of insecticides. Their specific roles in resistance should be investigated using additional tools. Conclusion The insecticide resistance profile at Yaokoffikro appears multifactorial. The site presents a unique opportunity to evaluate its impact on the protective efficacy of insecticidal products as well as new tools to manage these complex mechanisms. It calls for innovative research on the behaviour of the local vector, its biology and genetics that drive resistance.
Collapse
|
20
|
Kongmee M, Boonyuan W, Achee NL, Prabaripai A, Lerdthusnee K, Chareonviriyaphap T. Irritant and repellent responses of Anopheles harrisoni and Anopheles minimus upon exposure to bifenthrin or deltamethrin using an excito-repellency system and a live host. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2012; 28:20-29. [PMID: 22533080 DOI: 10.2987/11-6197.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Feeding responses of Anopheles harrisoni and An. minimus were evaluated following exposure to 2 pyrethroid insecticides, bifenthrin or deltamethrin, using an excito-repellency test system in the presence and absence of live host cues. The results demonstrated that contact irritancy was the primary action of bifenthrin or deltamethrin in both mosquito species. There was no noncontact repellency effect elicited by either insecticide. Anopheles minimus showed rapid escape response with high mortality rates following direct contact with deltamethrin in the absence of a host and delayed escape responses when a host was present. Similarly, exposure of An. minimus to bifenthrin also elicited a delayed escape response in the presence of a host but with lower mortality rates. In experiments using An. harrisoni, the presence or absence of a host had no significant effect on behavioral responses to either insecticide (P > 0.05). We conclude that deltamethrin elicited stronger irritant chemical effects than bifenthrin but that behavioral responses in vector populations are dampened in the presence of an available host. This information is useful for estimating probability of pathogen transmission when using irritant chemicals in proximity to a blood-meal source.
Collapse
Affiliation(s)
- Monthathip Kongmee
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
21
|
da Silva-Nunes M, Moreno M, Conn JE, Gamboa D, Abeles S, Vinetz JM, Ferreira MU. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. Acta Trop 2012; 121:281-91. [PMID: 22015425 DOI: 10.1016/j.actatropica.2011.10.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/30/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022]
Abstract
Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil.
Collapse
|
22
|
Koudou BG, Koffi AA, Malone D, Hemingway J. Efficacy of PermaNet® 2.0 and PermaNet® 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in Côte d'Ivoire. Malar J 2011; 10:172. [PMID: 21699703 PMCID: PMC3141592 DOI: 10.1186/1475-2875-10-172] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/23/2011] [Indexed: 11/16/2022] Open
Abstract
Background Pyrethroid resistance in vectors could limit the efficacy of long-lasting insecticidal nets (LLINs) because all LLINs are currently treated with pyrethroids. The goal of this study was to evaluate the efficacy and wash resistance of PermaNet® 3.0 compared to PermaNet® 2.0 in an area of high pyrethroid in Côte d'Ivoire. PermaNet® 3.0 is impregnated with deltamethrin at 85 mg/m2 on the sides of the net and with deltamethrin and piperonyl butoxide on the roof. PermaNet® 2.0 is impregnated with deltamethrin at 55 mg/m2 across the entire net. Methods The study was conducted in the station of Yaokoffikro, in central Côte d'Ivoire. The efficacy of intact unwashed and washed LLINs was compared over a 12-week period with a conventionally-treated net (CTN) washed to just before exhaustion. WHO cone bioassays were performed on sub-sections of the nets, using wild-resistant An. gambiae and Kisumu strains. Mosquitoes were collected five days per week and were identified to genus and species level and classified as dead or alive, then unfed or blood-fed. Results Mortality rates of over 80% from cone bioassays with wild-caught pyrethroid-resistant An. gambiae s.s were recorded only with unwashed PermaNet® 3.0. Over 12 weeks, a total of 7,291 mosquitoes were collected. There were significantly more An. gambiae s.s. and Culex spp. caught in control huts than with other treatments (P < 0.001). The proportion of mosquitoes exiting the huts was significantly lower with the control than for the treatment arms (P < 0.001). Mortality rates with resistant An. gambiae s.s and Culex spp, were lower for the control than for other treatments (P < 0.001), which did not differ (P > 0.05) except for unwashed PermaNet® 3.0 (P < 0.001), which gave significantly higher mortality (P < 0.001). Conclusions This study showed that unwashed PermaNet® 3.0 caused significantly higher mortality against pyrethroid resistant An. gambiae s.s and Culex spp than PermaNet® 2.0 and the CTN. The increased efficacy with unwashed PermaNet® 3.0 over PermaNet® 2.0 and the CTN was also demonstrated by higher KD and mortality rates (KD > 95% and mortality rate > 80%) in cone bioassays performed with wild pyrethroid-resistant An. gambiae s.s from Yaokoffikro.
Collapse
Affiliation(s)
- Benjamin G Koudou
- Département Environnement et Santé, Centre Suisse de Recherches Scientifiques, 01 BP 1303 Abidjan 01, Côte d'Ivoire.
| | | | | | | |
Collapse
|
23
|
Guan YQ, Chen JM, Li ZB, Feng QL, Liu JM. Immobilisation of bifenthrin for termite control. PEST MANAGEMENT SCIENCE 2011; 67:244-251. [PMID: 21104824 DOI: 10.1002/ps.2065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND Termites are worldwide pests causing considerable damage to agriculture, forestry and buildings. While various approaches have been tried to eliminate termite populations, the relevant toxicants are associated with certain risks to the environment and human health. RESULTS In this study, to combine the merits of effective chemical control by bifenthrin and a drug photoimmobilisation technique, silk fibroin was used as a carrier to embed bifenthrin, which was then photoactively immobilised by ultraviolet treatment on the surface of wood (cellulose). The immobilised bifenthrin embedded in the photoactive silk fibroin was characterised by Fourier transform infrared spectroscopy (FTIR), ultraviolet absorption spectroscopy (UV), fluorescence measurement and CHN analysis. The surface structures and biological activity were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), electron spectroscopy for chemical analysis (ESCA) and bioassays respectively. CONCLUSIONS The results indicate that the embedded and immobilised bifenthrin has been very well protected from free release and has a long-term stability allowing slow release with a high efficiency against termites at a low dose of 1.25 µg cm(-2). This study provides a novel and environmentally benign technique for termite control by photoimmobilising silk-fibroin-embedded bifenthrin on the surface of materials that are otherwise easily attacked by termites.
Collapse
Affiliation(s)
- Yan-Qing Guan
- School of Life Science and MOE Key Laboratory of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | | | | | | | | |
Collapse
|
24
|
Drame PM, Poinsignon A, Besnard P, Cornelie S, Le Mire J, Toto JC, Foumane V, Dos-Santos MA, Sembène M, Fortes F, Simondon F, Carnevale P, Remoue F. Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control. PLoS One 2010; 5:e15596. [PMID: 21179476 PMCID: PMC3001874 DOI: 10.1371/journal.pone.0015596] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/15/2010] [Indexed: 11/23/2022] Open
Abstract
To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact.
Collapse
Affiliation(s)
- Papa Makhtar Drame
- UR016 Contrôle et Caractérisation des Populations de Vecteurs, Institut de Recherche pour le Développement, Cotonou, Benin.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Drame PM, Poinsignon A, Besnard P, Le Mire J, Dos-Santos MA, Sow CS, Cornelie S, Foumane V, Toto JC, Sembene M, Boulanger D, Simondon F, Fortes F, Carnevale P, Remoue F. Human antibody response to Anopheles gambiae saliva: an immuno-epidemiological biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Am J Trop Med Hyg 2010; 83:115-21. [PMID: 20595489 DOI: 10.4269/ajtmh.2010.09-0684] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
For the fight against malaria, the World Health Organization (WHO) has emphasized the need for indicators to evaluate the efficacy of vector-control strategies. This study investigates a potential immunological marker, based on human antibody responses to Anopheles saliva, as a new indicator to evaluate the efficacy of insecticide-treated nets (ITNs). Parasitological, entomological, and immunological assessments were carried out in children and adults from a malaria-endemic region of Angola before and after the introduction of ITNs. Immunoglobulin G (IgG) levels to An. gambiae saliva were positively associated with the intensity of An. gambiae exposure and malaria infection. A significant decrease in the anti-saliva IgG response was observed after the introduction of ITNs, and this was associated with a drop in parasite load. This study represents the first stage in the development of a new indicator to evaluate the efficacy of malaria vector-control strategies, which could apply in other arthropod vector-borne diseases.
Collapse
Affiliation(s)
- Papa M Drame
- Institut de Recherche pour le Développement (IRD), UR024 "Epidémiologie et Prévention" Unit, Dakar, Senegal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Goodyer LI, Croft AM, Frances SP, Hill N, Moore SJ, Onyango SP, Debboun M. Expert review of the evidence base for arthropod bite avoidance. J Travel Med 2010; 17:182-92. [PMID: 20536888 DOI: 10.1111/j.1708-8305.2010.00402.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Larry I Goodyer
- Leicester School of Pharmacy, De Montfort University, Gateway, Leicester, UK.
| | | | | | | | | | | | | |
Collapse
|
27
|
Corbel V, Chabi J, Dabiré RK, Etang J, Nwane P, Pigeon O, Akogbeto M, Hougard JM. Field efficacy of a new mosaic long-lasting mosquito net (PermaNet 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa. Malar J 2010; 9:113. [PMID: 20423479 PMCID: PMC2877060 DOI: 10.1186/1475-2875-9-113] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 04/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN), i.e. PermaNet 3.0, against wild pyrethroid-resistant Anopheles gambiae s.l. in West and Central Africa. METHODS A multi centre experimental hut trial was conducted in Malanville (Benin), Vallée du Kou (Burkina Faso) and Pitoa (Cameroon) to investigate the exophily, blood feeding inhibition and mortality induced by PermaNet 3.0 (i.e. a mosaic net containing piperonyl butoxide and deltamethrin on the roof) comparatively to the WHO recommended PermaNet 2.0 (unwashed and washed 20-times) and a conventionally deltamethrin-treated net (CTN). RESULTS The personal protection and insecticidal activity of PermaNet 3.0 and PermaNet 2.0 were excellent (>80%) in the "pyrethroid-tolerant" area of Malanville. In the pyrethroid-resistance areas of Pitoa (metabolic resistance) and Vallée du Kou (presence of the L1014F kdr mutation), PermaNet 3.0 showed equal or better performances than PermaNet 2.0. It should be noted however that the deltamethrin content on PermaNet 3.0 was up to twice higher than that of PermaNet 2.0. Significant reduction of efficacy of both LLIN was noted after 20 washes although PermaNet 3.0 still fulfilled the WHO requirement for LLIN. CONCLUSION The use of combination nets for malaria control offers promising prospects. However, further investigations are needed to demonstrate the benefits of using PermaNet 3.0 for the control of pyrethroid resistant mosquito populations in Africa.
Collapse
Affiliation(s)
- Vincent Corbel
- Institut de Recherche pour le Développement, UR016, Caractérisation et Contrôle des Populations de Vecteurs, 01 BP 4414 RP Cotonou, République du Bénin.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The prospect of malaria eradication has been raised recently by the Bill and Melinda Gates Foundation with support from the international community. There are significant lessons to be learned from the major successes and failures of the eradication campaign of the 1960s, but cessation of transmission in the malaria heartlands of Africa will depend on a vaccine and better drugs and insecticides. Insect control is an essential part of reducing transmission. To date, two operational scale interventions, indoor residual spraying and deployment of long-lasting insecticide-treated nets (LLINs), are effective at reducing transmission. Our ability to monitor and evaluate these interventions needs to be improved so that scarce resources can be sensibly deployed, and new interventions that reduce transmission in a cost-effective and efficient manner need to be developed. New interventions could include using transgenic mosquitoes, larviciding in urban areas, or utilizing cost-effective consumer products. Alongside this innovative development agenda, the potential negative impact of insecticide resistance, particularly on LLINs, for which only pyrethroids are available, needs to be monitored.
Collapse
Affiliation(s)
- A Enayati
- School of Public Health and Environmental Health Research Centre, Mazandaran University of Medical Sciences, Sari, Iran.
| | | |
Collapse
|
29
|
Predicting the impact of insecticide-treated bed nets on malaria transmission: the devil is in the detail. Malar J 2009; 8:256. [PMID: 19917119 PMCID: PMC2780451 DOI: 10.1186/1475-2875-8-256] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/16/2009] [Indexed: 12/02/2022] Open
Abstract
Background Insecticide-treated bed nets (ITNs), including long-lasting insecticidal nets (LLINs), play a primary role in global campaigns to roll back malaria in tropical Africa. Effectiveness of treated nets depends on direct impacts on individual mosquitoes including killing and excite-repellency, which vary considerably among vector species due to variations in host-seeking behaviours. While monitoring and evaluation programmes of ITNs have focuses on morbidity and all-cause mortality in humans, local entomological context receives little attention. Without knowing the dynamics of local vector species and their responses to treated nets, it is difficult to predict clinical outcomes when ITN applications are scaled up across African continent. Sound model frameworks incorporating intricate interactions between mosquitoes and treated nets are needed to develop the predictive capacity for scale-up applications of ITNs. Methods An established agent-based model was extended to incorporate the direct outcomes, e.g. killing and avoidance, of individual mosquitoes exposing to ITNs in a hypothetical village setting with 50 houses and 90 aquatic habitats. Individual mosquitoes were tracked throughout the life cycle across the landscape. Four levels of coverage, i.e. 40, 60, 80 and 100%, were applied at the household level with treated houses having only one bed net. By using Latin hypercube sampling scheme, parameters governing killing, diverting and personal protection of net users were evaluated for their relative roles in containing mosquito populations, entomological inoculation rates (EIRs) and malaria incidence. Results There were substantial gaps in coverage between households and individual persons, and 100% household coverage resulted in circa 50% coverage of the population. The results show that applications of ITNs could give rise to varying impacts on population-level metrics depending on values of parameters governing interactions of mosquitoes and treated nets at the individual level. The most significant factor in determining effectiveness was killing capability of treated nets. Strong excito-repellent effect of impregnated nets might lead to higher risk exposure to non-bed net users. Conclusion With variabilities of vector mosquitoes in host-seeking behaviours and the responses to treated nets, it is anticipated that scale-up applications of INTs might produce varying degrees of success dependent on local entomological and epidemiological contexts. This study highlights that increased ITN coverage led to significant reduction in risk exposure and malaria incidence only when treated nets yielded high killing effects. It is necessary to test efficacy of treated nets on local dominant vector mosquitoes, at least in laboratory, for monitoring and evaluation of ITN programmes.
Collapse
|
30
|
McGinn D, Frances SP, Sweeney AW, Brown MD, Cooper RD. Evaluation of Bistar 80SC (bifenthrin) as a tent treatment for protection against mosquitoes in Northern Territory, Australia. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:1087-1091. [PMID: 19058633 DOI: 10.1603/0022-2585(2008)45[1087:eobsba]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A field trial to assess the efficacy of Bistar 80 SC as a barrier treatment of Australian military tents was conducted over 10 d at Mount Bundey Military Training Area, Northern Territory, Australia, in March 2003. Four pairs of standard eight-person tents were erected, with a single tent in each pair treated with 0.1% Bistar 80 SC as a course spray, and the remainder left as untreated control tents. Carbon dioxide-baited traps were operated in each tent nightly, and biting collections conducted over 8 nights. There was a mean increase in protection of 81% for mosquitoes entering treated tents and 90.4% increase in protection against biting of predominantly Culex annulirostris Skuse. In addition, bifenthrin applied to the military tents enhances the protection of occupants against bites from this important arbovirus vector.
Collapse
Affiliation(s)
- D McGinn
- Griffith University, School of Public Health, Queensland, 4074, Australia
| | | | | | | | | |
Collapse
|
31
|
Cohuet A, Krishnakumar S, Simard F, Morlais I, Koutsos A, Fontenille D, Mindrinos M, Kafatos FC. SNP discovery and molecular evolution in Anopheles gambiae, with special emphasis on innate immune system. BMC Genomics 2008; 9:227. [PMID: 18489733 PMCID: PMC2405807 DOI: 10.1186/1471-2164-9-227] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 05/19/2008] [Indexed: 01/10/2023] Open
Abstract
Background Anopheles innate immunity affects Plasmodium development and is a potential target of innovative malaria control strategies. The extent and distribution of nucleotide diversity in immunity genes might provide insights into the evolutionary forces that condition pathogen-vector interactions. The discovery of polymorphisms is an essential step towards association studies of susceptibility to infection. Results We sequenced coding fragments of 72 immune related genes in natural populations of Anopheles gambiae and of 37 randomly chosen genes to provide a background measure of genetic diversity across the genome. Mean nucleotide diversity (π) was 0.0092 in the A. gambiae S form, 0.0076 in the M form and 0.0064 in A. arabiensis. Within each species, no statistically significant differences in mean nucleotide diversity were detected between immune related and non immune related genes. Strong purifying selection was detected in genes of both categories, presumably reflecting strong functional constraints. Conclusion Our results suggest similar patterns and rates of molecular evolution in immune and non-immune genes in A. gambiae. The 3,214 Single Nucleotide Polymorphisms (SNPs) that we identified are the first large set of Anopheles SNPs from fresh, field-collected material and are relevant markers for future phenotype-association studies.
Collapse
Affiliation(s)
- Anna Cohuet
- Institut de Recherche pour le Développement, UR 016, BP 64501, 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chouaïbou M, Etang J, Brévault T, Nwane P, Hinzoumbé CK, Mimpfoundi R, Simard F. Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in Northern Cameroon. Trop Med Int Health 2008; 13:476-86. [PMID: 18248566 DOI: 10.1111/j.1365-3156.2008.02025.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To explore temporal variation in insecticide susceptibility of Anopheles gambiae s.l. populations to the four chemical groups of insecticides used in public health and agriculture, in close match with the large-scale cotton spraying programme implemented in the cotton-growing area of North Cameroon. METHODS Mosquito larvae were collected in 2005 before (mid June), during (mid August) and at the end (early October) of the cotton spraying programme. Larvae were sampled in breeding sites located within the cotton fields in Gaschiga and Pitoa, and in Garoua, an urban cotton-free area that served as a control. Insecticide susceptibility tests were carried out with 4% DDT (organochlorine), 0.4% chlorpyrifos methyl (organophosphate), 0.1% propoxur (carbamate), 0.05% deltamethrin and 0.75% permethrin (pyrethroids). RESULTS Throughout the survey, An. gambiae s.l. populations were completely susceptible to carbamate and organophosphate, whereas a significant decrease of susceptibility to organochlorine and pyrethroids was observed during spraying in cotton-growing areas. Tolerance to these insecticides was associated with a slight increase of knockdown times compared to the reference strain. Among survivor mosquitoes, the East and West African Kdr mutations were detected only in two specimens of An. gambiae s.s. (n = 45) and not in Anopheles arabiensis (n = 150), suggesting metabolic-based resistance mechanisms. CONCLUSIONS Environmental disturbance due to the use of insecticides in agriculture may provide local mosquito populations with the enzymatic arsenal selecting tolerance to insecticides.
Collapse
Affiliation(s)
- M Chouaïbou
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | | | | | | | | | | | | |
Collapse
|
33
|
Amenya DA, Naguran R, Lo TCM, Ranson H, Spillings BL, Wood OR, Brooke BD, Coetzee M, Koekemoer LL. Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles Funestus, resistant to pyrethroids. INSECT MOLECULAR BIOLOGY 2008; 17:19-25. [PMID: 18237281 DOI: 10.1111/j.1365-2583.2008.00776.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Anopheles funestus Giles is one of the major African malaria vectors. It has previously been implicated in a major outbreak of malaria in KwaZulu/Natal, South Africa, during the period 1996 to 2000. The re-emergence of this vector was associated with monooxygenase-based resistance to pyrethroid insecticides. We have identified a gene from the monooxygenase CYP6 family, CYP6P9, which is over expressed in a pyrethroid resistant strain originating from Mozambique. Quantitative Real-Time PCR shows that this gene is highly over expressed in the egg and adult stages of the resistant strain relative to the susceptible strain but the larval stages showed almost no difference in expression between strains. This gene is genetically linked to a major locus associated with pyrethroid resistance in this A. funestus population.
Collapse
Affiliation(s)
- D A Amenya
- Vector Control Reference Unit, National Institute for Communicable Diseases, NHLS, Private bag X 4, Sandringham, 2131, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Müller P, Chouaïbou M, Pignatelli P, Etang J, Walker ED, Donnelly MJ, Simard F, Ranson H. Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Mol Ecol 2007; 17:1145-55. [PMID: 18179425 DOI: 10.1111/j.1365-294x.2007.03617.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spraying of agricultural crops with insecticides can select for resistance in nontarget insects and this may compromise the use of insecticides for the control of vector-borne diseases. The tolerance of the malaria vector, Anopheles arabiensis to deltamethrin was determined in a field population from a cotton-growing region of Northern Cameroon both prior to and midway through the 4-month period of insecticide application to the cotton crop. A 1.6-fold increase in the median knockdown time was observed. To determine whether this increased tolerance was associated with constitutively elevated levels of genes commonly associated with insecticide resistance, RNA was extracted from F1 progeny from family lines of field-caught mosquitoes and hybridized to the Anopheles gambiae detox chip. The experimental design avoided the confounding effects of colonization, and this study is the first to measure gene expression in the progeny of gravid, wild-caught mosquitoes. Several genes with antioxidant roles, including superoxide dismutases, a glutathione S-transferase and a thioredoxin-dependent peroxidase, and a cytochrome P450 showed elevated expression in mosquito families collected during the insecticide-spraying programme. These genes may constitute an important general defence mechanism against insecticides. Intriguingly, the levels of expression of these genes were strongly correlated suggesting a common regulatory mechanism.
Collapse
Affiliation(s)
- Pie Müller
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | | | | | | | | | |
Collapse
|