1
|
Martin CH, Martin RCG. Optimal Dosing and Patient Selection for Electrochemotherapy in Solid Abdominal Organ and Bone Tumors. Bioengineering (Basel) 2023; 10:975. [PMID: 37627860 PMCID: PMC10451240 DOI: 10.3390/bioengineering10080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The primary aim of this study was to analyze studies that use electrochemotherapy (ECT) in "deep-seated" tumors in solid organs (liver, kidney, bone metastasis, pancreas, and abdomen) and understand the similarities between patient selection, oncologic selection, and use of new procedures and technology across the organ systems to assess response rates. A literature search was conducted using the term "Electrochemotherapy" in the title field using publications from 2017 to 2023. After factoring in inclusion and exclusion criteria, 29 studies were analyzed and graded based on quality in full. The authors determined key patient and oncologic selection characteristics and ECT technology employed across organ systems that yielded overall responses, complete responses, and partial responses of the treated tumor. It was determined that key selection factors included: the ability to be administered bleomycin, life expectancy greater than three months, unrespectability of the lesion being treated, and a later stage, more advanced cancer. Regarding oncologic selection, all patient cohorts had received chemotherapy or surgery previously but had disease recurrence, making ECT the only option for further treatment. Lastly, in terms of the use of technology, the authors found that studies with better response rates used the ClinporatorTM and updated procedural guidelines by SOP. Thus, by considering patient, oncologic, and technology selection, ECT can be further improved in treating lesions in solid organs.
Collapse
Affiliation(s)
| | - Robert C. G. Martin
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Granata V, Fusco R, D’Alessio V, Simonetti I, Grassi F, Silvestro L, Palaia R, Belli A, Patrone R, Piccirillo M, Izzo F. Percutanous Electrochemotherapy (ECT) in Primary and Secondary Liver Malignancies: A Systematic Review. Diagnostics (Basel) 2023; 13:209. [PMID: 36673019 PMCID: PMC9858594 DOI: 10.3390/diagnostics13020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
The aim of the study was to analyse papers describing the use of Electrochemotherapy (ECT) in local treatment of primary and secondary liver tumours located at different sites and with different histologies. Other Local Ablative Therapies (LAT) are also discussed. Analyses of these papers demonstrate that ECT use is safe and effective in lesions of large size, independently of the histology of the treated lesions. ECT performed better than other thermal ablation techniques in lesions > 6 cm in size and can be safely used to treat lesions distant, close, or adjacent to vital structures. ECT spares vessel and bile ducts, is repeatable, and can be performed between chemotherapeutic cycles. ECT can fill the gap in local ablative therapies due to being lesions too large or localized in highly challenging anatomical sites.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Oncology Medical and Research & Development Division, Casalnuovo di Napoli, 80013 Naples, Italy
| | - Valeria D’Alessio
- Oncology Medical and Research & Development Division, Casalnuovo di Napoli, 80013 Naples, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Lucrezia Silvestro
- Division of Clinical Experimental Oncology Abdomen, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Raffaele Palaia
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Andrea Belli
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Mauro Piccirillo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
3
|
Trotovsek B, Hadzialjevic B, Cemazar M, Sersa G, Djokic M. Laparoscopic electrochemotherapy for the treatment of hepatocellular carcinoma: Technological advancement. Front Oncol 2022; 12:996269. [PMID: 36439427 PMCID: PMC9686426 DOI: 10.3389/fonc.2022.996269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Electrochemotherapy is an effective treatment modality for hepatocellular carcinoma (HCC). Electrochemotherapy for HCC was initially used in the setting of open surgery. Recently, with the development of newer electrodes, percutaneous approaches have also been performed. However, laparoscopic application of electrochemotherapy for HCC has not yet been described. Two patients with unresectable HCC were enrolled in the study. The first patient was not suitable for the percutaneous approach because the tumor was located close to the gallbladder. He also had symptomatic gallstones. The second patient had HCC in close proximity to the stomach and was therefore not suitable for percutaneous access or any other ablative technique. Thus, the laparoscopic approach was chosen, using newly developed Stinger electrodes for the application of electric pulses. After intravenous administration of bleomycin, several sets of electric pulses were delivered to the whole tumor mass in both patients. Ultrasonographically, the coverage of the whole tumor was verified, as described previously. Cholecystectomy was also performed in the first patient. Follow-up abdominal computed tomography showed a complete response of the treated lesions in both patients. Minimally invasive laparoscopic electrochemotherapy is safe, feasible and effective method for the treatment of HCC. It could be used in patients in whom the percutaneous approach is unsafe (proximity to other organs) and in patients with concomitant symptomatic gallstones in whom cholecystectomy is already indicated. This technological approach thus allows broader and minimally invasive clinical applicability of electrochemotherapy.
Collapse
Affiliation(s)
- Blaz Trotovsek
- Department of Abdominal Surgery, University Medical Center Ljubljana, Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Benjamin Hadzialjevic
- Department of Abdominal Surgery, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Mihajlo Djokic
- Department of Abdominal Surgery, University Medical Center Ljubljana, Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Electrochemotherapy of Primary Colon Rectum Cancer and Local Recurrence: Case Report and Prospective Analysis. J Clin Med 2022; 11:jcm11102745. [PMID: 35628872 PMCID: PMC9143872 DOI: 10.3390/jcm11102745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose: Surgery, radiotherapy, and oncological treatment (chemotherapy and antineoplastic antibodies) are standard treatments of rectal cancer. ECT has shown its effectiveness and suitability in deep solid tumors conducted in both preclinical and clinical studies. We show here an update and preliminary results with locally advanced rectum cancer (LARC) treated with ECT. Methods: Two patients with major clinical response to restaging after neoadjuvant treatment for LARC were subjected to ECT 12 weeks after completing chemo-radiation therapy. One patient was subjected to ECT on a colorectal local recurrence formed after neoadjuvant treatment for LARC and surgery. Computed Tomography and Magnetic Resonance Imaging were used to assess ECT response. Results: The results showed stable disease in two of the three patients treated, while one patient achieved a complete response. The local control of disease is maintained in the patient follow-up. For each patient, a reduction in pain was observed and for the patient with local recurrence, a reduction in bleeding present before ECT was also achieved. Conclusion: Preliminary results showed that ECT is a safe and effective treatment in patients with a major clinical response or local recurrence after neoadjuvant therapy for LARC and allows a reduction in pain and bleeding with a consequent improvement to quality of life.
Collapse
|
5
|
Percutaneous electrochemotherapy in primary and secondary liver malignancies - local tumor control and impact on overall survival. Radiol Oncol 2022; 56:102-110. [PMID: 35148468 PMCID: PMC8884851 DOI: 10.2478/raon-2022-0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Local nonsurgical tumor ablation currently represents a further option for the treatment of patients with liver tumors or metastases. Electrochemotherapy (ECT) is a welcome addition to the portfolio of local therapies. A retrospective analysis of patients with liver tumors or metastases treated with ECT is reported. Attention is given to the safety and efficacy of the treatment over time. Patients and methods Eighteen consecutive patients were recruited with measurable liver tumors of different histopatologic origins, mainly colorectal cancer, breast cancer, and hepatocellular cancer. They were treated with percutaneous ECT following the standard operating procedures (SOP) for ECT under general anaesthesia and muscle relaxation. Treatment planning was performed based on MRI preoperative images. The follow-up assessment included contrast-enhanced MR within at least 1–3 months after treatment and then after 5, 7, 9, 12, and 18 months until progression of the disease or death. Results Only mild or moderate side effects were observed after ECT. The objective response rate was 85.7% (complete response 61.9%, partial 23.8%), the mean progression-free survival (PFS) was 9.0 ± 8.2 months, and the overall survival (OS) was 11.3 ± 8.6 months. ECT performed best (PFS and OS) in lesions within 3 and 6 cm diameters (p = 0.0242, p = 0.0297). The effectiveness of ECT was independent of the localization of the lesions: distant, close or adjacent to vital structures. Progression-free survival and overall survival were independent of the primary histology considered. Conclusions Electrochemotherapy provides an effective valuable option for the treatment of unresectable liver metastases not amenable to other ablative techniques.
Collapse
|
6
|
A Multicenter Randomized Controlled Prospective Study to Assess Efficacy of Laparoscopic Electrochemotherapy in the Treatment of Locally Advanced Pancreatic Cancer. J Clin Med 2021; 10:jcm10174011. [PMID: 34501459 PMCID: PMC8432461 DOI: 10.3390/jcm10174011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Eighty percent of patients with pancreatic adenocarcinoma present a locally advanced or metastatic disease at diagnosis and are not eligible for surgery if not with palliative intent. In cases of locally advanced disease (LAPC), the combination of chemo and radiotherapy is the only therapeutic option and correlates with a median survival of 15 months (10 months without treatment), with partial remission of disease in 50% of cases. The feasibility and safety of Electrochemotherapy (ECT) have been demonstrated in the treatment of deep tumors. Aim: The aim of the study is to evaluate the efficacy of electrochemotherapy (ECT) followed by conventional systemic treatment compared to the only conventional systemic treatment in LAPC in terms of objective response and overall survival. Patients and Methods: This study is a phase IIb prospective multicenter randomized controlled trial with two arms. The study will include 90 patients: 45 in the control group and 45 in the experimental group. Patients with LAPC in the control arm will receive conventional chemotherapy (FOLFOXIRI). Patients with LAPC in the experimental arm will be subjected to Electrochemotherapy and subsequently to FOLFOXIRI. The objective response at 30, 90, and 180 days from treatment will be based on the computed tomography (CT), magnetic resonance (MR), and positron emission tomography/CT response (PET/CT). The objective long-term treatment response will be evaluated with the modified response evaluation criteria in solid tumors (m-RECIST) criteria, which will take into account the difference in vascularization, determined by the images obtained by CT and MR of the tumor treated before and after ECT. Conclusions: Not resectable liver metastasis, pancreatic tumors, and locally advanced renal carcinomas can be treated with laparoscopic electrodes. ECT could represent an effective therapeutic option for patients not eligible for surgery susceptible to be managed only with palliative therapies.
Collapse
|
7
|
Rega D, Granata V, Petrillo A, Pace U, Sassaroli C, Di Marzo M, Cervone C, Fusco R, D’Alessio V, Nasti G, Romano C, Avallone A, Pecori B, Botti G, Tatangelo F, Maiolino P, Delrio P. Organ Sparing for Locally Advanced Rectal Cancer after Neoadjuvant Treatment Followed by Electrochemotherapy. Cancers (Basel) 2021; 13:cancers13133199. [PMID: 34206858 PMCID: PMC8267997 DOI: 10.3390/cancers13133199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary This is a Phase II randomized controlled trial conducted with the aim of investigating whether the use of Electrochemotherapy after neoadjuvant therapy (ECT) and before surgery in patients with major clinical response allows for a more conservative surgical approach in patients with Locally Advanced Rectal Cancer (LARC) in comparison with the control group that will not receive ECT. The treatment response, in both the control arm and in the treatment arm, will be assessed using the histopathological tumor regression grade on tissue specimens after local excision. Abstract Background: Currently, 45–55% of rectal cancer patients receive preoperative chemo- radio-therapy for Locally Advanced Rectal Cancer (LARC). The idea of our study is to use Electrochemotherapy (ECT) before surgery, in patients with major clinical response after neoadjuvant therapy, to allow for a more conservative surgical approach. Objective: To evaluate the increase of the complete response rate after neoadjuvant treatment in LARC and to spare organ function due to total mesorectal excision (TME). Patients and Methods: This is a Phase II randomized controlled trial enrolling 70 patients that will be developed in two stages. In the first step, 28 patients will be enrolled: 14 of these will receive ECT for four weeks after neo-adjuvant treatment and then local excision (treatment group) and 14 patients will receive neo-adjuvant treatment and then local excision (control group). If an increase of response rate is observed in the first stage, and/or feasibility/safety is demonstrated, the second stage of the trial will be performed, enrolling an additional 42 patients. The treatment response. in both the control arm and the treatment arm, will be assessed using the histopathological tumor regression grade on tissue specimens after local excision.
Collapse
Affiliation(s)
- Daniela Rega
- Division of Colorectal Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (D.R.); (U.P.); (C.S.); (M.D.M.); (C.C.); (P.D.)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy;
- Correspondence:
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy;
| | - Ugo Pace
- Division of Colorectal Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (D.R.); (U.P.); (C.S.); (M.D.M.); (C.C.); (P.D.)
| | - Cinzia Sassaroli
- Division of Colorectal Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (D.R.); (U.P.); (C.S.); (M.D.M.); (C.C.); (P.D.)
| | - Massimiliano Di Marzo
- Division of Colorectal Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (D.R.); (U.P.); (C.S.); (M.D.M.); (C.C.); (P.D.)
| | - Carmela Cervone
- Division of Colorectal Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (D.R.); (U.P.); (C.S.); (M.D.M.); (C.C.); (P.D.)
| | - Roberta Fusco
- IGEA SpA Medical Division-Oncology, Via Casarea 65, Casalnuovo di Napoli, I-80013 Napoli, Italy; (R.F.); (V.D.)
| | - Valeria D’Alessio
- IGEA SpA Medical Division-Oncology, Via Casarea 65, Casalnuovo di Napoli, I-80013 Napoli, Italy; (R.F.); (V.D.)
| | - Guglielmo Nasti
- Division of Abdominal Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (G.N.); (C.R.); (A.A.)
| | - Carmela Romano
- Division of Abdominal Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (G.N.); (C.R.); (A.A.)
| | - Antonio Avallone
- Division of Abdominal Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (G.N.); (C.R.); (A.A.)
| | - Biagio Pecori
- Division of Abdominal Radiotherapy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy;
| | - Gerardo Botti
- Division of Pathological Anatomy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (G.B.); (F.T.)
| | - Fabiana Tatangelo
- Division of Pathological Anatomy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (G.B.); (F.T.)
| | - Piera Maiolino
- Division of Pharmacy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy;
| | - Paolo Delrio
- Division of Colorectal Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (D.R.); (U.P.); (C.S.); (M.D.M.); (C.C.); (P.D.)
| |
Collapse
|
8
|
Perri F, Longo F, Fusco R, D’Alessio V, Aversa C, Pavone E, Pontone M, Marciano ML, Villano S, Franco P, Togo G, Fazio GRD, Ordano D, Maglitto F, Salzano G, Maglione MG, Guida A, Ionna F. Electrochemotherapy as a First Line Treatment in Recurrent Squamous Cell Carcinoma of the Oral Cavity and Oropharynx PDL-1 Negative and/or with Evident Contraindication to Immunotherapy: A Randomized Multicenter Controlled Trial. Cancers (Basel) 2021; 13:cancers13092210. [PMID: 34064511 PMCID: PMC8124504 DOI: 10.3390/cancers13092210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A significant proportion of patients with head and neck squamous cell carcinoma (HNSCC) have advanced-stage disease (stages III to IVB) that do not respond to therapy despite aggressive, site-specific multimodality therapy. A great number of them will develop disease recurrence, with up to 60% risk of local failure and up to 30% risk of distant failure. Therapy can be very demanding for the patient especially when important anatomical structures are involved. For these reasons, therapies that preserve organ functionality in combination with effective local tumor control, like electrochemotherapy (ECT), are of great interest. Until few months ago, systemic cetuximab + platinum-based therapy + 5-fluorouracil represented the standard treatment for HNSCC relapses with a median overall survival of 10.1 months and an objective response rate of 36%. Recently the results of KEYNOTE-048 study were published and a new combination of monoclonal antibody named pembrolizumab and chemotherapy emerged as standard first line therapy of recurrent or metastatic tumor that overexpress tissue PDL-1 (Programmed Death 1 ligand). Nevertheless, a variable percentage from 10 to 15% of patients with recurrent/metastatic disease have a tumor that does not overexpress tissue PDL-1, and therefore, according to the results of the KEYNOTE-048 study, does not benefit from replacement of cetuximab with pembrolizumab. These patients will be treated with the "gold standard": cetuximab, cisplatin/carboplatin and 5-fluorouracil. AIM To verify whether electrochemotherapy performed with bleomycin of HNSCC relapses of the oral cavity and oropharynx (single relapse on T) is able to lead to an increase in the objective response rate in comparison with the systemic treatment with cetuximab + platinum-based therapy + 5-fluorouracil in patients with PDL-1 negative tumors. METHODS The phase IIb study involves the enrolment of 96 patients who meet the inclusion criteria (48 in the control arm and 48 in the treatment arm). The control arm involves the treatment of HNSCC with systemic treatment (cetuximab + platinum-based therapy + 5-fluorouracil). The treatment arm involves the ECT with bleomycin. The primary objective is to verify the objective response rate of patients in the control arm compared to the treatment arm.
Collapse
Affiliation(s)
- Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Via M. Semmola, 80131 Naples, Italy; (F.P.); (M.P.); (M.L.M.)
| | - Francesco Longo
- Head and Neck Surgery Unit, Ospedale Casa Sollievo della Sofferenza, S. Giovanni Rotondo, 71013 Foggia, Italy;
| | - Roberta Fusco
- IGEA SpA Medical Division—Oncology, Via Casarea 65, Casalnuovo di Napoli, 80013 Napoli, Italy;
- Correspondence:
| | - Valeria D’Alessio
- IGEA SpA Medical Division—Oncology, Via Casarea 65, Casalnuovo di Napoli, 80013 Napoli, Italy;
| | - Corrado Aversa
- Head and Neck Surgery Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, Via M. Semmola, 80131 Naples, Italy; (C.A.); (E.P.); (S.V.); (P.F.); (F.M.); (G.S.); (M.G.M.); (F.I.)
| | - Ettore Pavone
- Head and Neck Surgery Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, Via M. Semmola, 80131 Naples, Italy; (C.A.); (E.P.); (S.V.); (P.F.); (F.M.); (G.S.); (M.G.M.); (F.I.)
| | - Monica Pontone
- Medical and Experimental Head and Neck Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Via M. Semmola, 80131 Naples, Italy; (F.P.); (M.P.); (M.L.M.)
| | - Maria Luisa Marciano
- Medical and Experimental Head and Neck Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Via M. Semmola, 80131 Naples, Italy; (F.P.); (M.P.); (M.L.M.)
| | - Salvatore Villano
- Head and Neck Surgery Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, Via M. Semmola, 80131 Naples, Italy; (C.A.); (E.P.); (S.V.); (P.F.); (F.M.); (G.S.); (M.G.M.); (F.I.)
| | - Pierluigi Franco
- Head and Neck Surgery Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, Via M. Semmola, 80131 Naples, Italy; (C.A.); (E.P.); (S.V.); (P.F.); (F.M.); (G.S.); (M.G.M.); (F.I.)
| | - Giulia Togo
- School of Specialization in Maxillo-Facial Surgery, University of Naples Federico II, Via Sergio Pansini, 80131 Naples, Italy; (G.T.); (G.R.D.F.); (D.O.)
| | - Gianluca Renato De Fazio
- School of Specialization in Maxillo-Facial Surgery, University of Naples Federico II, Via Sergio Pansini, 80131 Naples, Italy; (G.T.); (G.R.D.F.); (D.O.)
| | - Daniele Ordano
- School of Specialization in Maxillo-Facial Surgery, University of Naples Federico II, Via Sergio Pansini, 80131 Naples, Italy; (G.T.); (G.R.D.F.); (D.O.)
| | - Fabio Maglitto
- Head and Neck Surgery Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, Via M. Semmola, 80131 Naples, Italy; (C.A.); (E.P.); (S.V.); (P.F.); (F.M.); (G.S.); (M.G.M.); (F.I.)
| | - Giovanni Salzano
- Head and Neck Surgery Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, Via M. Semmola, 80131 Naples, Italy; (C.A.); (E.P.); (S.V.); (P.F.); (F.M.); (G.S.); (M.G.M.); (F.I.)
| | - Maria Grazia Maglione
- Head and Neck Surgery Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, Via M. Semmola, 80131 Naples, Italy; (C.A.); (E.P.); (S.V.); (P.F.); (F.M.); (G.S.); (M.G.M.); (F.I.)
| | - Agostino Guida
- U.O.C. Odontostomatologia, AORN A. Cardarelli, 80131 Naples, Italy;
| | - Franco Ionna
- Head and Neck Surgery Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, Via M. Semmola, 80131 Naples, Italy; (C.A.); (E.P.); (S.V.); (P.F.); (F.M.); (G.S.); (M.G.M.); (F.I.)
| |
Collapse
|
9
|
Kovács A, Bischoff P, Haddad H, Kovács G, Schaefer A, Zhou W, Pinkawa M. Personalized Image-Guided Therapies for Local Malignencies: Interdisciplinary Options for Interventional Radiology and Interventional Radiotherapy. Front Oncol 2021; 11:616058. [PMID: 33869002 PMCID: PMC8047426 DOI: 10.3389/fonc.2021.616058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Minimal-invasive interventions considerably extend the therapeutic spectrum in oncology and open new dimensions in terms of survival, tolerability and patient-friendliness. Through the influence of image-guided interventions, many interdisciplinary therapy concepts have significantly evolved, and this process is by far not yet over. The rapid progression of minimal-invasive technologies offers hope for new therapeutic concepts in the short, medium and long term. Image-guided hybrid-technologies complement and even replace in selected cases classic surgery. In this newly begun era of immune-oncology, interdisciplinary collaboration and the focus on individualized and patient-friendly therapies are crucial.
Collapse
Affiliation(s)
- Attila Kovács
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, MediClin Robert Janker Klinik, Bonn, Germany
| | - Peter Bischoff
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, MediClin Robert Janker Klinik, Bonn, Germany
| | - Hathal Haddad
- Clinic for Radiotherapy and Radiooncology, MediClin Robert Janker Klinik, Bonn, Germany
| | - György Kovács
- Gemelli-INTERACTS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andreas Schaefer
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, MediClin Robert Janker Klinik, Bonn, Germany
| | - Willi Zhou
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, MediClin Robert Janker Klinik, Bonn, Germany
| | - Michael Pinkawa
- Clinic for Radiotherapy and Radiooncology, MediClin Robert Janker Klinik, Bonn, Germany
| |
Collapse
|
10
|
Potočnik T, Miklavčič D, Maček Lebar A. Gene transfer by electroporation with high frequency bipolar pulses in vitro. Bioelectrochemistry 2021; 140:107803. [PMID: 33975183 DOI: 10.1016/j.bioelechem.2021.107803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
High-frequency bipolar pulses (HF-BP) have been demonstrated to be efficient for membrane permeabilization and irreversible electroporation. Since membrane permeabilization has been achieved using HF-BP pulses we hypothesized that with these pulses we can also achieve successful gene electrotransfer (GET). Three variations of bursts of 2 µs bipolar pulses with 2 µs interphase delay were applied in HF-BP protocols. We compared transfection efficiency of monopolar micro and millisecond pulses and HF-BP protocols at various plasmid DNA (pDNA) concentrations on CHO - K1 cells. GET efficiency increased with increasing pDNA concentration. Overall GET obtained by HF-BP pulse protocols was comparable to overall GET obtained by longer monopolar pulse protocols. Our results, however, suggest that although we were able to achieve similar percent of transfected cells, the number of pDNA copies that were successfully transferred into cells seemed to be higher when longer monopolar pulses were used. Interestingly, we did not observe any direct correlation between fluorescence intensity of pDNA aggregates formed on cell membrane and transfection efficiency. The results of our study confirmed that we can achieve successful GET with bipolar microsecond i. e. HF-BP pulses, although at the expense of higher pDNA concentrations.
Collapse
Affiliation(s)
- Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
11
|
Electrochemotherapy in the Treatment of Head and Neck Cancer: Current Conditions and Future Directions. Cancers (Basel) 2021; 13:cancers13061418. [PMID: 33808884 PMCID: PMC8003720 DOI: 10.3390/cancers13061418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Electrochemotherapy (ECT) was first introduced in the late 1980s and was initially used mainly on cutaneous tumors. It has now evolved into a clinically verified treatment approach. Thanks to its high feasibility, it has been extended to treating mucosal and deep-seated tumors, including head and neck cancer (HNC) and in heavily pretreated settings. This review describes current knowledge and data on the use of ECT in various forms of HNCs across different clinical settings, with attention to future clinical and research perspectives. Abstract Despite recent advances in the development of chemotherapeutic drug, treatment for advanced cancer of the head and neck cancer (HNC) is still challenging. Options are limited by multiple factors, such as a prior history of irradiation to the tumor site as well as functional limitations. Against this background, electrochemotherapy (ECT) is a new modality which combines administration of an antineoplastic agent with locally applied electric pulses. These pulses allow the chemotherapeutic drug to penetrate the intracellular space of the tumor cells and thereby increase its cytotoxicity. ECT has shown encouraging efficacy and a tolerable safety profile in many clinical studies, including in heavily pre-treated HNC patients, and is considered a promising strategy. Efforts to improve its efficacy and broaden its application are now ongoing. Moreover, the combination of ECT with recently developed novel therapies, including immunotherapy, represented by immune checkpoint inhibitor (ICI)s, has attracted attention for its potent theoretical rationale. More extensive, well-organized clinical studies and timely updating of consensus guidelines will bring this hopeful treatment to HNC patients under challenging situations.
Collapse
|
12
|
Howard B, Haines DE, Verma A, Packer D, Kirchhof N, Barka N, Onal B, Fraasch S, Miklavčič D, Stewart MT. Reduction in Pulmonary Vein Stenosis and Collateral Damage With Pulsed Field Ablation Compared With Radiofrequency Ablation in a Canine Model. Circ Arrhythm Electrophysiol 2020; 13:e008337. [PMID: 32877256 PMCID: PMC7495982 DOI: 10.1161/circep.120.008337] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary vein (PV) stenosis is a highly morbid condition that can result after catheter ablation for PV isolation. We hypothesized that pulsed field ablation (PFA) would reduce PV stenosis risk and collateral injury compared with irrigated radiofrequency ablation (IRF). METHODS IRF and PFA deliveries were randomized in 8 dogs with 2 superior PVs ablated using one technology and 2 inferior PVs ablated using the other technology. IRF energy (25-30 W) or PFA was delivered (16 pulse trains) at each PV in a proximal and in a distal site. Contrast computed tomography scans were collected at 0, 2, 4, 8, and 12-week (termination) time points to monitor PV cross-sectional area at each PV ablation site. RESULTS Maximum average change in normalized cross-sectional area at 4-weeks was -46.1±45.1% post-IRF compared with -5.5±20.5% for PFA (P≤0.001). PFA-treated targets showed significantly fewer vessel restrictions compared with IRF (P≤0.023). Necropsy showed expansive PFA lesions without stenosis in the proximal PV sites, compared with more confined and often incomplete lesions after IRF. At the distal PV sites, only IRF ablations were grossly identified based on focal fibrosis. Mild chronic parenchymal hemorrhage was noted in 3 left superior PV lobes after IRF. Damage to vagus nerves as well as evidence of esophagus dilation occurred at sites associated with IRF. In contrast, no lung, vagal nerve, or esophageal injury was observed at PFA sites. CONCLUSIONS PFA significantly reduced risk of PV stenosis compared with IRF postprocedure in a canine model. IRF also caused vagus nerve, esophageal, and lung injury while PFA did not.
Collapse
Affiliation(s)
- Brian Howard
- Medtronic, Inc, Minneapolis, MN (B.H., N.K., N.B., B.O., S.F., M.T.S.)
| | - David E Haines
- Oakland University William Beaumont School of Medicine, Royal Oak, MI (D.E.H.)
| | - Atul Verma
- Southlake Regional Health Centre, Newmarket, ON, Canada (A.V.)
| | | | - Nicole Kirchhof
- Medtronic, Inc, Minneapolis, MN (B.H., N.K., N.B., B.O., S.F., M.T.S.)
| | - Noah Barka
- Medtronic, Inc, Minneapolis, MN (B.H., N.K., N.B., B.O., S.F., M.T.S.)
| | - Birce Onal
- Medtronic, Inc, Minneapolis, MN (B.H., N.K., N.B., B.O., S.F., M.T.S.)
| | - Steve Fraasch
- Medtronic, Inc, Minneapolis, MN (B.H., N.K., N.B., B.O., S.F., M.T.S.)
| | | | - Mark T Stewart
- Medtronic, Inc, Minneapolis, MN (B.H., N.K., N.B., B.O., S.F., M.T.S.)
| |
Collapse
|
13
|
Percutaneous image guided electrochemotherapy of hepatocellular carcinoma: technological advancement. Radiol Oncol 2020; 54:347-352. [PMID: 32562533 PMCID: PMC7409604 DOI: 10.2478/raon-2020-0038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Electrochemotherapy is an effective treatment of colorectal liver metastases and hepatocellular carcinoma (HCC) during open surgery. The minimally invasive percutaneous approach of electrochemotherapy has already been performed but not on HCC. The aim of this study was to demonstrate the feasibility, safety and effectiveness of electrochemotherapy with percutaneous approach on HCC. Patient and methods The patient had undergone the transarterial chemoembolization and microwave ablation of multifocal HCC in segments III, V and VI. In follow-up a new lesion was identified in segment III, and recognized by multidisciplinary team to be suitable for minimally invasive percutaneous electrochemotherapy. The treatment was performed with long needle electrodes inserted by the aid of image guidance. Results The insertion of electrodes was feasible, and the treatment proved safe and effective, as demonstrated by control magnetic resonance imaging. Conclusions Minimally invasive, image guided percutaneous electrochemotherapy is feasible, safe and effective in treatment of HCC.
Collapse
|
14
|
Polajžer T, Miklavčič D. Development of adaptive resistance to electric pulsed field treatment in CHO cell line in vitro. Sci Rep 2020; 10:9988. [PMID: 32561789 PMCID: PMC7305184 DOI: 10.1038/s41598-020-66879-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 12/02/2022] Open
Abstract
Pulsed electric field treatment has increased over the last few decades with successful translation from in vitro studies into different medical treatments like electrochemotherapy, irreversible electroporation for tumor and cardiac tissue ablation and gene electrotransfer for gene therapy and DNA vaccination. Pulsed electric field treatments are efficient but localized often requiring repeated applications to obtain results due to partial response and recurrence of disease. While these treatment times are several orders of magnitude lower than conventional biochemical treatment, it has been recently suggested that cells may become resistant to electroporation in repetitive treatments. In our study, we evaluate this possibility of developing adaptive resistance in cells exposed to pulsed electric field treatment over successive lifetimes. Mammalian cells were exposed to electroporation pulses for 30 generations. Every 5th generation was analyzed by determining permeabilization and survival curve. No statistical difference between cells in control and cells exposed to pulsed electric field treatment was observed. We offer evidence that electroporation does not affect cells in a way that they would become less susceptible to pulsed electric field treatment. Our findings indicate pulsed electric field treatment can be used in repeated treatments with each treatment having equal efficiency to the initial treatment.
Collapse
Affiliation(s)
- Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Sugrue A, Vaidya VR, Livia C, Padmanabhan D, Abudan A, Isath A, Witt T, DeSimone CV, Stalboerger P, Kapa S, Asirvatham SJ, McLeod CJ. Feasibility of selective cardiac ventricular electroporation. PLoS One 2020; 15:e0229214. [PMID: 32084220 PMCID: PMC7034868 DOI: 10.1371/journal.pone.0229214] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction The application of brief high voltage electrical pulses to tissue can lead to an irreversible or reversible electroporation effect in a cell-specific manner. In the management of ventricular arrhythmias, the ability to target different tissue types, specifically cardiac conduction tissue (His-Purkinje System) vs. cardiac myocardium would be advantageous. We hypothesize that pulsed electric fields (PEFs) can be applied safely to the beating heart through a catheter-based approach, and we tested whether the superficial Purkinje cells can be targeted with PEFs without injury to underlying myocardial tissue. Methods In an acute (n = 5) and chronic canine model (n = 6), detailed electroanatomical mapping of the left ventricle identified electrical signals from myocardial and overlying Purkinje tissue. Electroporation was effected via percutaneous catheter-based Intracardiac bipolar current delivery in the anesthetized animal. Repeat Intracardiac electrical mapping of the heart was performed at acute and chronic time points; followed by histological analysis to assess effects. Results PEF demonstrated an acute dose-dependent functional effect on Purkinje, with titration of pulse duration and/or voltage associated with successful acute Purkinje damage. Electrical conduction in the insulated bundle of His (n = 2) and anterior fascicle bundle (n = 2), was not affected. At 30 days repeat cardiac mapping demonstrated resilient, normal electrical conduction throughout the targeted area with no significant change in myocardial amplitude (pre 5.9 ± 1.8 mV, 30 days 5.4 ± 1.2 mV, p = 0.92). Histopathological analysis confirmed acute Purkinje fiber targeting, with chronic studies showing normal Purkinje fibers, with minimal subendocardial myocardial fibrosis. Conclusion PEF provides a novel, safe method for non-thermal acute modulation of the Purkinje fibers without significant injury to the underlying myocardium. Future optimization of this energy delivery is required to optimize conditions so that selective electroporation can be utilized in humans the treatment of cardiac disease.
Collapse
Affiliation(s)
- Alan Sugrue
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Vaibhav R. Vaidya
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher Livia
- Department of Cardiovascular Medicine and Department of Molecular Pharmacology and Experimental Therapeutics, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Deepak Padmanabhan
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Anas Abudan
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Ameesh Isath
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Tyra Witt
- Department of Cardiovascular Medicine and Department of Molecular Pharmacology and Experimental Therapeutics, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher V. DeSimone
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Paul Stalboerger
- Department of Cardiovascular Medicine and Department of Molecular Pharmacology and Experimental Therapeutics, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Suraj Kapa
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Samuel J. Asirvatham
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher J. McLeod
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
16
|
Percutaneous Image-Guided Electrochemotherapy of Spine Metastases: Initial Experience. Cardiovasc Intervent Radiol 2019; 42:1806-1809. [DOI: 10.1007/s00270-019-02316-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
|
17
|
Sugrue A, Vaidya V, Witt C, DeSimone CV, Yasin O, Maor E, Killu AM, Kapa S, McLeod CJ, Miklavčič D, Asirvatham SJ. Irreversible electroporation for catheter-based cardiac ablation: a systematic review of the preclinical experience. J Interv Card Electrophysiol 2019; 55:251-265. [PMID: 31270656 DOI: 10.1007/s10840-019-00574-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Irreversible electroporation (IRE) utilizing high voltage pulses is an emerging strategy for catheter-based cardiac ablation with considerable growth in the preclinical arena. METHODS A systematic search for articles was performed from three sources (PubMed, EMBASE, and Google Scholar). The primary outcome was the efficacy of tissue ablation with characteristics of lesion formation evaluated by histologic analysis. The secondary outcome was focused on safety and damage to collateral structures. RESULTS Sixteen studies met inclusion criteria. IRE was most commonly applied to the ventricular myocardium (n = 7/16, 44%) by a LifePak 9 Defibrillator (n = 9/16, 56%), NanoKnife Generator (n = 2/16, 13%), or other custom generators (n = 5/16, 31%). There was significant heterogeneity regarding electroporation protocols. On histological analysis, IRE was successful in creating ablation lesions with variable transmurality depending on the electric pulse parameters and catheter used. CONCLUSION Preclinical studies suggest that cardiac tissue ablation using IRE shows promise in delivering efficacious, safe lesions.
Collapse
Affiliation(s)
- Alan Sugrue
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vaibhav Vaidya
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Chance Witt
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Omar Yasin
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Elad Maor
- Leviev Heart Center, Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ammar M Killu
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Suraj Kapa
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher J McLeod
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000, Ljubljana, Slovenia
| | - Samuel J Asirvatham
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Cornelis FH, Korenbaum C, Ben Ammar M, Tavolaro S, Nouri-Neuville M, Lotz JP. Multimodal image-guided electrochemotherapy of unresectable liver metastasis from renal cell cancer. Diagn Interv Imaging 2019; 100:309-311. [PMID: 30691970 DOI: 10.1016/j.diii.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Affiliation(s)
- F H Cornelis
- Department of Radiology, Tenon Hospital, Sorbonne University, 4, rue de la Chine, 75020 Paris, France.
| | - C Korenbaum
- Department of Medical Oncology and Cellular Therapy, Tenon Hospital, Sorbonne University, 4, rue de la Chine, 75020 Paris, France
| | - M Ben Ammar
- Department of Radiology, Tenon Hospital, Sorbonne University, 4, rue de la Chine, 75020 Paris, France
| | - S Tavolaro
- Department of Radiology, Tenon Hospital, Sorbonne University, 4, rue de la Chine, 75020 Paris, France
| | - M Nouri-Neuville
- Department of Radiology, Tenon Hospital, Sorbonne University, 4, rue de la Chine, 75020 Paris, France
| | - J P Lotz
- Department of Medical Oncology and Cellular Therapy, Tenon Hospital, Sorbonne University, 4, rue de la Chine, 75020 Paris, France
| |
Collapse
|
19
|
Esmaeili N, Friebe M. Electrochemotherapy: A Review of Current Status, Alternative IGP Approaches, and Future Perspectives. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:2784516. [PMID: 30719264 PMCID: PMC6335737 DOI: 10.1155/2019/2784516] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/20/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
The efficiency of electroporation (EP) has made it a widely used therapeutic procedure to transfer cell killing substances effectively to the target site. A lot of researches are being done on EP-based cancer treatment techniques. Electrochemotherapy (ECT) is the first EP-based application in the field of drug administration. ECT is a local and nonthermal treatment of cancer that combines the use of a medical device with pharmaceutical agents to obtain local tumor control in solid cancers. It involves the application of eight, 100µs, pulses at 1 or 5000 Hz frequency and specified electric field (V/cm) with a median duration of 25 minutes. The efficacy of chemotherapeutic drugs increases by applying short and intense electrical pulses. Several clinical studies proposed ECT as a safe and complementary curative or palliative treatment option (curative intent of 50% to 63% in the treatment of Basal Cell Carcinoma (BCC)) to treat a number of solid tumors and skin malignancies, which are not suitable for conventional treatments. It is used currently for treatment of cutaneous and subcutaneous lesions, without consideration of their histology. On the contrary, it is also becoming a practical method for treatment of internal, deep-seated tumors and tissues. A review of this method, needed instruments, alternative image-guided procedures (IGP) approaches, and future perspectives and recommendations are discussed in this paper.
Collapse
Affiliation(s)
- Nazila Esmaeili
- INKA Intelligente Katheter, Otto-von-Guericke-Universität Magdeburg, Magdenurg, Germany
| | - Michael Friebe
- INKA Intelligente Katheter, Otto-von-Guericke-Universität Magdeburg, Magdenurg, Germany
| |
Collapse
|
20
|
Pintar M, Langus J, Edhemović I, Brecelj E, Kranjc M, Sersa G, Šuštar T, Rodič T, Miklavčič D, Kotnik T, Kos B. Time-Dependent Finite Element Analysis of In Vivo Electrochemotherapy Treatment. Technol Cancer Res Treat 2018; 17:1533033818790510. [PMID: 30089424 PMCID: PMC6083743 DOI: 10.1177/1533033818790510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrochemotherapy and irreversible electroporation are gaining importance in clinical practice for the treatment of solid tumors. For successful treatment, it is extremely important that the coverage and exposure time of the treated tumor to the electric field are within the specified range. In order to ensure successful coverage of the entire target volume with sufficiently strong electric fields, numerical treatment planning has been proposed and its use has also been demonstrated in practice. Most of numerical models in treatment planning are based on charge conservation equation and are not able to provide time course of electric current, electrical conductivity, or electric field distribution changes established in the tissue during pulse delivery. Recently, a model based on inverse analysis of experimental data that delivers time course of tissue electroporation has been introduced. The aim of this study was to apply the previously reported time-dependent numerical model to a complex in vivo example of electroporation with different tissue types and with a long-term follow-up. The model, consisting of a tumor placed in the liver with 2 needle electrodes inserted in the center of the tumor and 4 around the tumor, was validated by comparison of measured and calculated time course of applied electric current. Results of simulations clearly indicated that proposed numerical model can successfully capture transient effects, such as evolution of electric current during each pulse, and effects of pulse frequency due to electroporation effects in the tissue. Additionally, the model can provide evolution of electric field amplitude and electrical conductivity in the tumor with consecutive pulse sequences.
Collapse
Affiliation(s)
| | | | | | - Erik Brecelj
- 2 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Matej Kranjc
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- 2 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | - Tomaž Rodič
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavčič
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Kotnik
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bor Kos
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Campana LG, Edhemovic I, Soden D, Perrone AM, Scarpa M, Campanacci L, Cemazar M, Valpione S, Miklavčič D, Mocellin S, Sieni E, Sersa G. Electrochemotherapy - Emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration. Eur J Surg Oncol 2018; 45:92-102. [PMID: 30528893 DOI: 10.1016/j.ejso.2018.11.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
The treatment of tumors with electrochemotherapy (ECT) has surged over the past decade. Thanks to the transient cell membrane permeabilization induced by the short electric pulses used by ECT, cancer cells are exposed to otherwise poorly permeant chemotherapy agents, with consequent increased cytotoxicity. The codification of the procedure in 2006 led to a broad diffusion of the procedure, mainly in Europe, and since then, the progressive clinical experience, together with the emerging technologies, have extended the range of its application. Herein, we review the key advances in the ECT field since the European Standard Operating Procedures on ECT (ESOPE) 2006 guidelines and discuss the emerging clinical data on the new ECT indications. First, technical developments have improved ECT equipment, with custom electrode probes and dedicated tools supporting individual treatment planning in anatomically challenging tumors. Second, the feasibility and short-term efficacy of ECT has been established in deep-seated tumors, including bone metastases, liver malignancies, and pancreatic and prostate cancers (long-needle variable electrode geometry ECT), and gastrointestinal tumors (endoscopic ECT). Moreover, pioneering studies indicate lung and brain tumors as suitable future targets. A further advance relates to new combination strategies with immunotherapy, gene electro transfer (GET), calcium EP, and radiotherapy. Finally and fourth, cross-institutional collaborative groups have been established to refine procedural guidelines, promote clinical research, and explore new indications.
Collapse
Affiliation(s)
- Luca G Campana
- Department of Surgery Oncology and Gastroenterology (DISCOG), University of Padua, Italy; Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| | - Ibrahim Edhemovic
- Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | - Anna M Perrone
- Oncologic Gynecology Unit, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Marco Scarpa
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Laura Campanacci
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Sara Valpione
- Christie NHS Foundation Trust, CRUK Manchester Institute, The University of Manchester, Manchester, M20 4GJ, UK
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology (DISCOG), University of Padua, Italy; Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Elisabetta Sieni
- Department of Industrial Engineering, University of Padua, Italy
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
Ultrasonographic changes in the liver tumors as indicators of adequate tumor coverage with electric field for effective electrochemotherapy. Radiol Oncol 2018; 52:383-391. [PMID: 30352044 PMCID: PMC6287182 DOI: 10.2478/raon-2018-0041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Background The aim of the study was to characterize ultrasonographic (US) findings during and after electrochem-otherapy of liver tumors to determine the actual ablation zone and to verify the coverage of the treated tumor with a sufficiently strong electric field for effective electrochemotherapy. Patients and methods US findings from two representative patients that describe immediate and delayed tumor changes after electrochemotherapy of colorectal liver metastases are presented. Results The US findings were interrelated with magnetic resonance imaging (MRI). Electrochemotherapy-treated tumors were exposed to electric pulses based on computational treatment planning. The US findings indicate immediate appearance of hyperechogenic microbubbles along the electrode tracks. Within minutes, the tumors became evenly hyperechogenic, and simultaneously, an oedematous rim was formed presenting as a hypoechogenic formation which persisted for several hours after treatment. The US findings overlapped with computed electric field distribution in the treated tissue, indicating adequate coverage of tumors with sufficiently strong electric field, which may predict an effective treatment outcome. Conclusions US provides a tool for assessment of appropriate electrode insertion for intraoperative electrochemo-therapy of liver tumors and assessment of the appropriate coverage of a tumor with a sufficiently strong electric field and can serve as predictor of the response of tumors.
Collapse
|
23
|
Dermol-Černe J, Miklavčič D, Reberšek M, Mekuč P, Bardet SM, Burke R, Arnaud-Cormos D, Leveque P, O'Connor R. Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability. Bioelectrochemistry 2018; 122:103-114. [PMID: 29621662 DOI: 10.1016/j.bioelechem.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/13/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
In electroporation-based medical treatments, excitable tissues are treated, either intentionally (irreversible electroporation of brain cancer, gene electrotransfer or ablation of the heart muscle, gene electrotransfer of skeletal muscles), or unintentionally (excitable tissues near the target area). We investigated how excitable and non-excitable cells respond to electric pulses, and if electroporation could be an effective treatment of the tumours of the central nervous system. For three non-excitable and one excitable cell line, we determined a strength-duration curve for a single pulse of 10ns-10ms. The threshold for depolarization decreased with longer pulses and was higher for excitable cells. We modelled the response with the Lapicque curve and the Hodgkin-Huxley model. At 1μs a plateau of excitability was reached which could explain why high-frequency irreversible electroporation (H-FIRE) electroporates but does not excite cells. We exposed cells to standard electrochemotherapy parameters (8×100μs pulses, 1Hz, different voltages). Cells behaved similarly which indicates that electroporation most probably occurs at the level of lipid bilayer, independently of the voltage-gated channels. These results could be used for optimization of electric pulses to achieve maximal permeabilization and minimal excitation/pain sensation. In the future, it should be established whether the in vitro depolarization correlates to nerve/muscle stimulation and pain sensation in vivo.
Collapse
Affiliation(s)
- Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia.
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia.
| | - Matej Reberšek
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia.
| | - Primož Mekuč
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia
| | - Sylvia M Bardet
- University of Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France.
| | - Ryan Burke
- University of Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | | | - Philippe Leveque
- University of Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France.
| | - Rodney O'Connor
- École des Mines de Saint-Étienne, Department of Bioelectronics, Georges Charpak Campus, Centre Microélectronique de Provence, 880 Route de Mimet, 13120 Gardanne, France.
| |
Collapse
|
24
|
Djokic M, Cemazar M, Popovic P, Kos B, Dezman R, Bosnjak M, Zakelj MN, Miklavcic D, Potrc S, Stabuc B, Tomazic A, Sersa G, Trotovsek B. Electrochemotherapy as treatment option for hepatocellular carcinoma, a prospective pilot study. Eur J Surg Oncol 2018; 44:651-657. [PMID: 29402556 DOI: 10.1016/j.ejso.2018.01.090] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Electrochemotherapy provides non-thermal ablation of cutaneous as well as deep seated tumors. Based on positive results of the treatment of colorectal liver metastases, we conducted a prospective pilot study on hepatocellular carcinomas with the aim of testing the feasibility, safety and effectiveness of electrochemotherapy. PATIENTS AND METHODS Electrochemotherapy with bleomycin was performed on 17 hepatocellular carcinomas in 10 patients using a previously established protocol. The procedure was performed during open surgery and the patients were followed for median 20.5 months. RESULTS Electrochemotherapy was feasible for all 17 lesions, and no treatment-related adverse events or major post-operative complications were observed. The median size of the treated lesions was 24 mm (range 8-41 mm), located either centrally, i.e., near the major hepatic vessels, or peripherally. The complete response rate at 3-6 months was 80% per patient and 88% per treated lesion. CONCLUSIONS Electrochemotherapy of hepatocellular carcinoma proved to be a feasible and safe treatment in all 10 patients included in this study. To evaluate the effectiveness of this method, longer observation period is needed; however the results at medium observation time of 20.5 months after treatment are encouraging, in 15 out of 17 lesions complete response was obtained. Electrochemotherapy is predominantly applicable in patients with impaired liver function due to liver cirrhosis and/or with lesions where a high-risk operation is needed to achieve curative intent, given the intra/perioperative risk for high morbidity and mortality.
Collapse
Affiliation(s)
- Mihajlo Djokic
- University Medical Centre Ljubljana, Department of Abdominal Surgery, Zaloska 7, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia
| | - Peter Popovic
- University Medical Centre Ljubljana, Institute of Radiology, Zaloska 7, SI-1000 Ljubljana, Slovenia
| | - Bor Kos
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, Ljubljana SI-1000, Slovenia
| | - Rok Dezman
- University Medical Centre Ljubljana, Institute of Radiology, Zaloska 7, SI-1000 Ljubljana, Slovenia
| | - Masa Bosnjak
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Martina Niksic Zakelj
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, Ljubljana SI-1000, Slovenia
| | - Stojan Potrc
- University Clinical Centre Maribor, Department of Abdominal Surgery, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia
| | - Borut Stabuc
- University Medical Centre Ljubljana, Department of Gastroenterology, Zaloska 7, SI-1000 Ljubljana, Slovenia
| | - Ales Tomazic
- University Medical Centre Ljubljana, Department of Abdominal Surgery, Zaloska 7, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Blaz Trotovsek
- University Medical Centre Ljubljana, Department of Abdominal Surgery, Zaloska 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Probst U, Fuhrmann I, Beyer L, Wiggermann P. Electrochemotherapy as a New Modality in Interventional Oncology: A Review. Technol Cancer Res Treat 2018; 17:1533033818785329. [PMID: 29986632 PMCID: PMC6048674 DOI: 10.1177/1533033818785329] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/01/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Electroporation is a well-known phenomenon that occurs at the cell membrane when cells are exposed to high-intensity electric pulses. Depending on electric pulse amplitude and number of pulses, applied electroporation can be reversible with membrane permeability recovery or irreversible. Reversible electroporation is used to introduce drugs or genetic material into the cell without affecting cell viability. Electrochemotherapy refers to a combined treatment: electroporation and drug injection to enhance its cytotoxic effect up to 1000-fold for bleomycin. Since several years, electrochemotherapy is gaining popularity as minimally invasive oncologic treatment. The adoption of electrochemotherapy procedure in interventional oncology poses several unsolved questions, since suitable tumor histology and size as well as therapeutic efficacy still needs to be deepen. Electrochemotherapy is usually applied in palliative settings for the treatment of patients with unresectable tumors to relieve pain and ameliorate quality of life. In most cases, it is used in the treatment of advanced stages of neoplasia when radical surgical treatment is not possible (eg, due to lesion location, size, and/or number). Further, electrochemotherapy allows treating tumor nodules in the proximity of important structures like vessels and nerves as the treatment does not involve tissue heating. Overall, the safety profile of electrochemotherapy is favorable. Most of the observed adverse events are local and transient, moderate local pain, erythema, edema, and muscle contractions during electroporation. The aim of this article is to review the recent published clinical experiences of electrochemotherapy use in deep-seated tumors with particular focus on liver cases. The principle of electrochemotherapy as well as the application to cutaneous metastases is briefly described. A short insight in the treatment of bone metastases, unresectable pancreas cancer, and soft tissue sarcoma will be given. Preclinical and clinical studies on treatment efficacy with electrochemotherapy of hepatic lesions and safety of the procedure adopted are discussed.
Collapse
Affiliation(s)
- Ute Probst
- Universitätsklinikum Regensburg Institut für Röntgendiagnostik, Regensburg,
Germany
| | - Irene Fuhrmann
- Universitätsklinikum Regensburg Institut für Röntgendiagnostik, Regensburg,
Germany
| | - Lukas Beyer
- Städtisches Klinikum Braunschweig, Institut für Röntgendiagnostik und
Nuklearmedizin, Braunschweig, Germany
| | - Philipp Wiggermann
- Universitätsklinikum Regensburg Institut für Röntgendiagnostik, Regensburg,
Germany
| |
Collapse
|
26
|
Tarantino L, Busto G, Nasto A, Fristachi R, Cacace L, Talamo M, Accardo C, Bortone S, Gallo P, Tarantino P, Nasto RA, Di Minno MND, Ambrosino P. Percutaneous electrochemotherapy in the treatment of portal vein tumor thrombosis at hepatic hilum in patients with hepatocellular carcinoma in cirrhosis: A feasibility study. World J Gastroenterol 2017; 23:906-918. [PMID: 28223736 PMCID: PMC5296208 DOI: 10.3748/wjg.v23.i5.906] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To treated with electrochemotherapy (ECT) a prospective case series of patients with liver cirrhosis and Vp3-Vp4- portal vein tumor thrombus (PVTT) from hepatocellular carcinoma (HCC), in order to evaluate the feasibility, safety and efficacy of this new non thermal ablative technique in those patients.
METHODS Six patients (5 males and 1 female), aged 61-85 years (mean age, 70 years), four in Child-Pugh A and two in Child-Pugh B class, entered our study series. All patients were studied with three-phase computed tomography (CT), contrast enhanced ultrasound (CEUS) and ultrasound-guided percutaneous biopsy of the thrombus before ECT. All patients underwent ECT treatment (Cliniporator Vitae®, IGEA SpA, Carpi, Modena, Italy) of Vp3-Vp4 PVTT in a single session. At the end of the procedure a post-treatment biopsy of the thrombus was performed. Scheduled follow-up in all patients entailed: CEUS within 24 h after treatment; triphasic contrast-enhanced CT and CEUS at 3 mo after treatment and every six months thereafter.
RESULTS Post-treatment CEUS showed complete absence of enhancement of the treated thrombus in all cases. Post-treatment biopsy showed apoptosis and necrosis of tumor cells in all cases. The follow-up ranged from 9 to 20 mo (median, 14 mo). In 2 patients, the follow-up CT and CEUS demonstrated complete patency of the treated portal vein. Other 3 patients showed a persistent avascular non-tumoral shrinked thrombus at CEUS and CT during follow-up. No local recurrence was observed at follow-up CT and CEUS in 5/6 patients. One patient was lost to follow-up because of death from gastrointestinal hemorrage 5 wk after ECT.
CONCLUSION In patients with cirrhosis, ECT seems effective and safe for curative treatment of Vp3-Vp4 PVTT from HCC.
Collapse
|
27
|
Bimonte S, Leongito M, Granata V, Barbieri A, Del Vecchio V, Falco M, Nasto A, Albino V, Piccirillo M, Palaia R, Amore A, Giacomo RD, Lastoria S, Setola SV, Fusco R, Petrillo A, Izzo F. Electrochemotherapy in pancreatic adenocarcinoma treatment: pre-clinical and clinical studies. Radiol Oncol 2016; 50:14-20. [PMID: 27069445 PMCID: PMC4825336 DOI: 10.1515/raon-2016-0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/13/2015] [Indexed: 12/18/2022] Open
Abstract
Background Pancreatic adenocarcinoma is currently one of the deadliest cancers with high mortality rate. This disease leads to an aggressive local invasion and early metastases, and is poorly responsive to treatment with chemotherapy or chemo-radiotherapy. Radical resection is still the only curative treatment for pancreatic cancer, but it is generally accepted that a multimodality strategy is necessary for its management. Therefore, new alternative therapies have been considered for local treatment. Conclusions Chemotherapeutic resistance in pancreatic cancer is associated to a low penetration of drugs into tumour cells due to the presence of fibrotic stroma surrounding cells. In order to increase the uptake of chemotherapeutic drugs into tumour cells, electrochemotherapy can be used for treatment of pancreatic adenocarcinoma leading to an increased tumour response rate. This review will summarize the published papers reported in literature on the efficacy and safety of electrochemotherapy in pre-clinical and clinical studies on pancreatic cancer.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Maddalena Leongito
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Antonio Barbieri
- S.S.D Sperimentazione Animale, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Vitale Del Vecchio
- S.S.D Sperimentazione Animale, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Michela Falco
- S.S.D Sperimentazione Animale, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Aurelio Nasto
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Vittorio Albino
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Mauro Piccirillo
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Palaia
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Alfonso Amore
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raimondo di Giacomo
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Secondo Lastoria
- Division of Nuclear Medicine, Department of Diagnostic Imaging and Radiotherapy, Istituto Nazionale Tumori "Fondazione G.Pascale" IRCCS, Naples, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Roberta Fusco
- Division of Radiology, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Francesco Izzo
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| |
Collapse
|
28
|
Electrochemotherapy (ECT) and irreversible electroporation (IRE) -advanced techniques for treating deep-seated tumors based on electroporation. Biomed Eng Online 2015; 14 Suppl 3:I1. [PMID: 26355606 PMCID: PMC4565117 DOI: 10.1186/1475-925x-14-s3-i1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|